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ABSTRACT 

 

Migraine is a complex polygenic disorder that continues to be a great source of morbidity in the 

developed world with a prevalence of 12% in the Caucasian population.  Genetic and 

pharmacological studies have implicated the glutamate pathway in migraine pathophysiology.  

Glutamate profoundly impacts brain circuits that regulate core symptom domains in a range of 

neuropsychiatric conditions and thus remains a “hot” target for drug discovery.  Glutamate has 

been implicated in cortical spreading depression (CSD), the phenomenon responsible for migraine 

with aura and in animal models carrying FHM mutations.  Genotyping case-control studies have 

shown an association between glutamate receptor genes, namely, GRIA1 and GRIA3 with 

migraine with indirect supporting evidence from GWAS.  New evidence localizes PRRT2 at 

glutamatergic synapses and shows it affects glutamate signalling and glutamate receptor activity 

via interactions with GRIA1.  Glutamate-system defects have also been recently implicated in a 

novel FHM2 ATP1A2 disease-mutation mouse model.   Adding to the growing evidence 

neurophysiological findings support a role for glutamate in cortical excitability.  In addition to 

the existence of multiple genes to choreograph the functions of fast-signalling glutamatergic 

neurons, glutamate receptor diversity and regulation is further increased by the post-translational 

mechanisms of RNA editing and miRNAs.  Ongoing genetic studies, GWAS and meta-analysis 

implicate neurogenic mechanisms in migraine pathology and the first genome-wide associated 

locus for migraine on chromosome X.  Finally, in addition to glutamate modulating therapies, the 

kynurenine pathway has emerged as a candidate for involvement in migraine pathophysiology.  

In this review we discuss recent genetic evidence and glutamate modulating therapies that bear on 

the hypothesis that a glutamatergic mechanism may be involved in migraine susceptibility.  
 

 

Keywords  

Migraine, Migraine with aura, Migraine without aura, Glutamate, PRRT2, GRIA1, cortical 

spreading depression, RNA editing, GWAS. 
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1. Glutamatergic Mechanisms in Migraine 

There has been ongoing interest in the involvement of glutamate in migraine pathophysiology.  

Biochemical studies of migraine patients have shown significant differences of glutamate in a 

range of biological fluids relative to controls, particularly in migraineurs with aura (1-3).  Evidence 

for this idea, the ‘glutamate hypothesis’, was discussed by Ramadan (4) and more recently 

Gasparini (5).  The glutamate hypothesis of migraine is centered on the subset of pathologic 

mechanisms linked to glutamatergic signaling and is based on genetic, biochemical and clinical 

findings pointing to a hypofunction of glutamatergic signaling (6).  Glutamate is a ubiquitous 

neuro-messenger that can be likened to a ‘handle with care explosive’ stored in intracellular 

vesicles at high concentration (10mM) and is a key player in numerous metabolic pathways (7).   

 

Glutamate is toxic to neurons in the brain can kill them when it persists in and around synapses, 

and is also able to initiate migraine by cortical spreading depression (CSD) the lynchpin of 

migraine aura (8-10).  CSD has been studied experimentally and waves of CSD promoted by a 

wide range of stimuli including local mechanical stimulation, local injury, high frequency 

electrical pulses, potassium chloride, potassium ions, hypo-osmotic medium, metabolic inhibitors, 

ouabain, glutamate receptor agonists, glutamate, acetylcholine and endothelin (11, 12).  These 

noxious stimuli perturb the neuronal environment leading to glutamate-induced excitotoxicity.  

During CSD, glutamate contributes to a loss of membrane potential and disruption of ionic 

gradients (Ca2+, Na+, K+) (13, 14).  Ca2+ and Na+ channels, as well as glutamatergic and/or 

GABAergic transmissions are active in CSD and targeted by antiepileptic drugs (9).  N-methyl-D-

aspartate (NMDA) receptors, which are activated by glutamate, play an essential role in CSD 

mechanisms and antagonists of NMDA receptors have been shown to reduce CSD (15, 16).   

 

Poor glutamate processing results in a build-up of extracellular glutamate which is toxic to neurons 

(17).  Overstimulation of glutamate receptors triggers a flood of Ca2+ into cells which leads to 

uncontrolled continuous depolarization of neurons, a toxic process termed excitotoxicity first 

introduced by Olney (18).  Unregulated Ca2+ influx in turn activates a destructive cascade of events 

that triggers a number of enzymes, including phospholipases, endonucleases, and proteases such 

as calpain which destroy cell structures and components of the cytoskeleton, membrane, and DNA 

leading to the demise of the cells (19).  This situation can occur when not enough glutamate 

transporters are present to clean up the extracellular spaces or transporters are sluggish because of 

CNS injury or genetic defects that decrease the functionality of glutamate transporters.  Alterations 

in the expression, distribution, synaptic levels, recycling and autoregulation of glutamate receptors 

and transporters can result in altered glutamatergic function (20). 
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2. Glutamate Genetic Evidence 

Glutamate action is governed by a number of genes involved in its reception; transport and 

synthesis (see Table 1).  Interest in the role of glutamate in migraine at the molecular genetic level 

was instigated by Formicola et al., in 2010 who reported an allelic association between intronic 

variants of the GRIA1 and GRIA3 AMPA receptor gene subunits and migraine with aura (21).  

Since this initial study a handful of subsequent studies have examined the relationship between 

glutamatergic dysfunction and migraine.  Notably, a replication study by Maher et al., (22) 

identified association in 1 of 3 GRIA3 polymorphisms (rs3761555) and none of the GRIA1 variants 

tested in the Formicola et al. study (21).  The positive association was observed in the GRIA3 

promoter polymorphism (rs3761555) (22) in an Australian case-control cohort of 500 migraineurs, 

this is double the size of the Italian population (250 migraineurs) used in the study by Formicola 

(21).  The GRIA3 SNP is in a promoter binding site and the T allele, which was over-represented 

in the Australian case cohort, reduces the promoter activity and therefore affects the expression of 

the gene (22).  In addition a positive association between the X-linked gene, GRIA3 (rs1034428, 

A allele) and schizophrenia was reported in female patients (23).  These results are supported by 

studies by Ibrahimetal et al., (24) and by Meador-Woodruffetal et al., (25) reporting decreased 

expression levels of the AMPA receptor.   

 

Two studies, one by Gasparini et al., (26) and a study by Cargnin et al., (27) genotyped 

polymorphisms in the GRIA2 and GRIA4 genes in an Australian case-control cohort and in the 

GRIA1 gene in an Italian case-control cohort, respectively.  Although both these studies indicated 

that GRIA genotypes and haplotypes did not influence migraine susceptibility, a recent study by 

Fang et al., 2015 (28) detected an association of GRIA1 (rs2195450) to female migraine (MA, 

MO) susceptibility in the Chinese Han population.  Investigation into other glutamate related genes 

have also shown connections with migraine. The activity of the enzyme glutamate oxaloacetate 

transaminase (GOT) was shown to be reduced in blood in a case-control study of 45 episodic 

migraine patients and 16 control subjects (20).  Recently mutations in glutamate receptor genes 

have also been reported for their involvement in the aetiology of epilepsy, intellectual disability 

and mental retardation (29-33).   In addition to the genetic evidence, biochemical studies add 

credence to a glutamatergic mechanism for migraine reviewed in Gasparini et al., 2015 (5). 

 

Imbalance in glutamate regulation including glutamate release and clearance, has also been 

postulated in the pathogenesis of familial hemiplegic migraine, (FHM), whereby mutations in 

causal ion channel genes CACNA1A, ATP1A2 or SCN1A  are linked to neuronal excitability and 

have been correlated with increased glutamate (34-38). In the last few years the PRRT2 gene 

(proline rich transmembrane protein 2) has attracted attention due to reports of heterozygous 

mutations in the PRRT2 gene identified in patients diagnosed with hemiplegic migraine and other 

forms of migraine (39-42).  PRRT2 is also a candidate gene for epilepsy, contributing to a broad 

range of seizure subtypes (43).  PRRT2 encodes a protein distributed in brain and spinal cord that 

is predicted to regulate presynaptic release of neurotransmitters in a calcium-triggered process that 

also requires synaptosomal associated protein 25 (SNAP-25) (44, 45).  Heron et al., pointed out 

that perturbation of this process due to mutations in the PRRT2 gene is likely to be the cause of 

seizure and movement disorder phenotypes including paroxysmal kinesigenic dyskinesia (PKD), 

benign familial infantile epilepsy (BFIE), infantile convulsions and choreoathetosis (ICCA) and 
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hemiplegic migraine (HM)  (46).   PRRT2 has thus been dubbed “a gene with remarkable 

pleiotropy” due to its involvement in a spectrum of paroxysmal neurological disorders. 

 

Interestingly, a recent study by Li et al., demonstrated that PRRT2 is located at glutamatergic 

synapses by double immunostaining neurons of mouse cortex with a pre-synaptic marker (vGlut1) 

and a post-synaptic marker (PSD-95) of glutamatergic neurons (47).  Greater levels of PRRT2 

expression were demonstrated in this study in the mouse cerebral cortex, hippocampus and 

cerebellum (48).  They also showed that wild type PRRT2 remains anchored in the membrane 

whilst mutated PRRT2 detaches and disperses in the cytoplasm of COS-7 cells.  The authors 

confirmed interactions between PRRT2 and SNAP-25 as previously demonstrated and that these 

are disturbed by the presence of mutations in PRRT2 (47, 49).  The SNAP-25 protein participates 

in the regulation of synaptic-vesicle exocytosis and association studies have suggested that some 

SNAP-25 gene polymorphisms may be implicated in psychiatric diseases including schizophrenia 

and attention deficit hyperactivity disorder (50, 51).  Most importantly, the authors demonstrated 

protein-protein interactions between mouse PRRT2 and GRIA1 both in vitro and in vivo and that 

these were weakened in the presence of mutant PRRT2.  GRIA1 is 1 of 4 subunits that assemble 

to form the ligand-gated AMPA receptor which is integral to fast excitatory transmission and 

common variants in the GRIA1 gene have previously been associated with migraine patients with 

and without aura (21, 52).  PRRT2 knock down gene expression with shRNA-PRRT2 lentivirus 

resulted in increased glutamate levels in neural cell culture.  This was the first study to verify that 

PRRT2 can affect glutamate signalling and glutamate receptor activity and that this event may be 

connected with neuronal hyperexcitability (47).  
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Table 1 Gene and Protein Constituents of the Glutamatergic System adapted from (53). 

 

Gene Name Protein - Enzymes 

PDP1 PDH, Pyruvate dehydrogenase 

GLS2 PAG, Phosphate activated glutaminase 

ME3 mME, Mitochondrial malic enzyme 

GAD1 GAD, Glutamic acid decarboxylase 

GLUL GS, Glutamine synthetase 

PC PC, Pyruvate carboxylase 

ME1 cME, Cytosolic malic enzyme 

GOT1 AAT, Aspartate aminotransferase 

GLUD1 GDH, Glutamate dehydrogenase 

Gene Name Protein - Ionotropic glutamate receptors (iGluRs) Antagonists 

GRIA1 AMPA BGG492 

GRIA2 AMPA LY293558 

AMPA/kainate 

GRIA3 AMPA  

GRIA4 AMPA  

GRIK1 Kainate LY466195 

GRIK2 Kainate  

GRIK3 Kainate  

GRIK4 Kainate  

GRIK5 Kainate  

GRIN1 NMDA Memantine 

GRIN2A NMDA Ketamine 

GRIN2B NMDA Topiramate 

AMPA/kainate 

GRIN2C NMDA  

GRIN2D NMDA  

GRIN3A NMDA  

GRIN3B NMDA  

GRID1 Orphan  

GRID2 Orphan  

Gene Name Protein - Metabotropic glutamate receptors 

(mGluRs) 

Antagonists 

GRM1 mGluR1  

GRM2 mGluR2  

GRM3 mGluR3  

GRM4 mGluR4  

GRM5 mGluR5 ADX10059 

GRM6 mGluR6  

GRM7 mGluR7  

GRM8 mGluR8  

Gene Name Protein - Transporter Type Antagonists 

http://en.wikipedia.org/wiki/GRIN3B
http://en.wikipedia.org/wiki/Metabotropic_glutamate_receptor_1
http://en.wikipedia.org/wiki/Metabotropic_glutamate_receptor_2
http://en.wikipedia.org/wiki/GRM3
http://en.wikipedia.org/wiki/Metabotropic_glutamate_receptor_4
http://en.wikipedia.org/wiki/Metabotropic_glutamate_receptor_5
http://en.wikipedia.org/wiki/Metabotropic_glutamate_receptor_6
http://en.wikipedia.org/wiki/Metabotropic_glutamate_receptor_7
http://en.wikipedia.org/wiki/Metabotropic_glutamate_receptor_8
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SLC1A3 EAAT1  

SLC1A2 EAAT2  

SLC1A1 EAAT3  

SLC1A6 EAAT4  

SLC1A7 EAAT5  

SCL17A7 VGLUT1 Botulinum toxin type A 

SCL17A6 VGLUT2 Lamotrigine 

SCL17A8 VGLUT3  

 

Note:  Some enzymes are composed from individual subunits that assemble to form larger 

multimeric complexes and therefore the same enzyme name will appear to have multiple 

chromosomal locations in the databases.   

 

 

 

 

3. Novel FHM2 ATP1A2 disease-mutation mouse model  

 

Perturbed glutamate neurotransmission is demonstrated in a myriad of psychiatric diseases 

including schizophrenia, Parkinson’s disease, Alzheimer’s disease, epilepsy and diseases of 

addiction (54, 55).  Models are needed to characterize and explore the key molecular events at the 

core of the neurobiological base of neuropsychiatric disorders.  Animal models are useful for two 

main reasons: one is to study the pathophysiology and progression of a disease and second to 

identify and validate drug targets and for developing and testing new drugs for use in human 

patients (56).  Models of glutamate involve studying glutamatergic signalling and up until now, 

have focussed on glutamate excitotoxicity induced by acute exposure of neurons, either in vitro or 

in vivo, to sudden large excesses of extracellular glutamate (17).  Cell model systems have been 

used to study glutamate excitotoxicity and in particular the end result of activating intracellular 

signaling cascades initiated by the excitotoxic insult (57).  In addition, cloning of the receptors has 

enabled the expression of proteins in expression systems, Xenopus oocytes or in mammalian cell 

lines for biochemical characterization, structure analyses, subunit composition and 

electrophysiological studies (57).  Pharmacological models of the single receptors can help derive 

knowledge of structure-function relationships and of glutamate function, kinetics of response, 

different doses, downstream signaling (58, 59).  In recent times, X-ray crystal structures of 

glutamate receptors have helped define structure-function relationships based upon co-crystals of 

the ligand-binding for a myriad glutamate receptors as well as with positive allosteric modulators 

(57, 60-62).  These studies have provided insight into the mechanism of action of glutamate 

receptor antagonists and the molecular interactions between receptor and modulator.  Finally, 

animal localization studies have also identified NMDA, AMPA, Ka receptors in the trigeminal 

system (63, 64).   

 

Recently Bottger et al., 2016 described a completely novel familial hemiplegic migraine (FHM), 

FHM2 disease-mutation mouse that exhibits glutamate-system defects and psychiatric 

manifestations, mood depression and obsessive-compulsive disorder (OCD) (65).  FHM2 (FHM2; 

MIM602481) is a rare form of migraine with hemiplegia and partial paralysis during the aura phase 

and, in some cases, accompanied by seizures or cognitive dysfunction (35).  Familial hemiplegic 

http://en.wikipedia.org/wiki/Excitatory_amino-acid_transporter_4
http://en.wikipedia.org/wiki/Excitatory_amino-acid_transporter_5
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migraine (FHM) is a disorder that lends itself more easily to functional analysis in animal models 

due to well characterized mutations in large effect genes.  FHM2 is caused by mutations in 

the ATP1A2 gene.  The ATP1A2 gene encodes the α2 isoform of the major subunit of the Na+/K+-

ATPase pump and is located at 1q21-23 (35).  The product of the ATP1A2 gene is a sodium-

potassium pump (α2Na+/K+-ATPase) that aids in establishing and maintaining the electrochemical 

gradients of Na+ and K+ ions across the plasma membrane of astrocytes.  Mutations in 

the ATP1A2 gene were first identified in two Italian families in 2003 and account for 

approximately 20% of FHM in families (66, 67). 

 

Most recently in the Lykke-Hartmann lab, Bottger et al., introduced the FHM2-associated G301R-

mutation in knock-in mice (65).  This new knock-in mouse builds upon previous work, including 

two separate groups, the Lingrel lab (68) and Kawakami lab (69) who created FHM2 knock-outs 

through disruption of the ATP1A2 gene at two different locations, exon 4 and exon 21 respectively.  

Conversely the Casari lab generated the first FHM2 knock-in mouse by inserting the T2763C 

mutation, which causes the amino acid substitution W887R in exon 19 of the gene (70).  In cell-

based studies, a complete loss of pump function is observed due to misfolding of the protein in the 

β subunit binding site (71).  The Lykke-Hartmann lab is the second group to create an FHM2 

knock-in mouse (65).  Mice heterozygous for the FHM2-associated G301R-mutation show 

impaired glutamate uptake in in vitro hippocampal-derived matured mixed cultures of astrocytes 

and neurons established from embryos (E17) compared to WT mice.  Following a series of 

behavioural tests the mice were found to suffer stress-induced depression and reduced sociability.  

The observed behavioural phenotypes are thought to be linked to ineffective handling of glutamate 

in the synaptic cleft and seem to be more pronounced in female mice α2+/G301R due to an interplay 

with the female sex hormone cycle.   

 

In addition pharmacological treatment of mice with NMDA receptor antagonists, amantadine and 

memantine, which act to decrease NMDA receptor signalling, was found to rescue marble burying 

behaviour.  Marble burying is typically used as a measure of compulsive behaviour of OCD, and 

in this instance amantadine and memantine counteracted the glutamate-system defects induced by 

the presence of the mutation in the ATP1A2 (65).  Electrophysiological recordings demonstrated 

prolonged recovery phase after induction of CSD in males due to compromise and impairment of 

Na+/K+-ATPase pump activity.  This is in line with other FHM mutations where the phenomenon 

CSD has been studied and glutamate has been implicated (72).  FHM gene mutations play a role 

in synaptic transmission and brain excitability by affecting the neuronal current and facilitating 

CSD ignition in FHM (38, 73, 74).  Deregulated handling of glutamate is hypothesised to play a 

role in facilitating CSD due to increased probability of glutamate release as shown in FHM1 

R192Q, S218L knock-in mice (37, 72).  Recently new evidence from a transgenic mouse model 

of migraine, reveals that CSD in addition to initiating a series of neural and vascular events can 

also modulate inflammatory processes (75).  In the cortex of FHM1 R192Q mutant brains, specific 

genes in interferon-mediated inflammatory signalling were shown to be up-regulated in response 

to CSD (75).  Altogether these results are novel and add to our current understanding of FHM and 

migraine and co-morbid psychiatric manifestations.   

 

In the future with the advent of the genome-editing toolbox, using transcription activator-like 

effector nucleases (TALEN) or clustered regularly interspaced short palindromic repeats that rely 

on RNA-guided DNA endonuclease Cas9 (CRISP/Cas9) in mammalian cells will surely be 

http://en.wikipedia.org/wiki/Na%2B/K%2B-ATPase
http://en.wikipedia.org/wiki/Na%2B/K%2B-ATPase
http://en.wikipedia.org/wiki/Na%2B/K%2B-ATPase
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exploited for functional studies based on GWAS findings to generate cellular and animal models 

in a more efficient manner.  Innovative methods such as non-viral (siRNA) or viral (shRNA) 

delivery techniques may enable more subtle genetic manipulations.  These methods can achieve 

more sensitive down-regulation or completely silencing genes in more subtle ways than by 

complete knock-down.  These can be useful to study time dependent gene expression and can be 

engineered in all cells of the body or in a tissue specific manner and may be manipulated to alter 

their activity in response to specific stimuli.   

 

 

 

4. Neurophysiological Evidence 

 

The aim of neurophysiology studies was originally to aid in diagnosis and then characterization of 

cortical excitability in the migraine brain in the search for biomarkers (76).  Cortical excitability 

refers to the reactivity of the brain to diverse exogenous and endogenous stimuli and is measured 

as the “global output of cortical neurons to external stimuli” (77, 78).  Neurophysiological 

interactions are typically assessed by techniques that measure the excitability of the brain and 

include evoked potentials (EPs) techniques and non-invasive brain stimulation methods such as 

transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) (79).  

Most studies support changes in cortical excitability throughout the migraine cycle and that 

migaineurs display an impairment of habituation to repeated sensorial stimulation which may 

represent a neurophysiological marker of migraine (77, 80-82).  Deficit of habituation seems to be 

the most consistent response found in migraineurs for many stimulation modalities: visual, 

auditory and somatosensory (83).  Habituation is a behaviour that refers to the inability of migraine 

patients to habituate or adapt to repeated sensory stimulation (84).  The goal of studies measuring 

visual evoked potentials (VEPs) in migraine is to determine if specific alterations in visual function 

may be present.  Many of these studies have reported that different subgroups of migraineurs, in 

particular those with migraine with aura, have distinct visual evoked potential profiles and a lack 

of habituation (85-90).  Recently a study assessed differences of pattern-reversal visual evoked 

potential parameters and migraine in a teenage migraine with aura and without aura cohort (91).  

In this cohort, migraine with aura patients had longer N2 wave latencies relative to migraine 

without aura patients and healthy controls. Results have not always been consistent and a clear 

consensus regarding habituation, which was considered to be a neurophysiological hallmark of 

migraine, is lacking.  This has been attributed to sources of methodological heterogeneity that 

prevent exact conclusions to be drawn.  In addition, migraine is a multifaceted and cycling disease 

and the type of migraine studied and the stage of illness can also have a bearing on the results 

obtained.  

 

The level of neuronal excitability (excited or inhibited) is determined by multiple neurotransmitter 

systems including glutamate-dopamine-serotonin which converge in their signalling circuits and 

cellular receptors (92).  The trio of primary neurotransmitters including serotonin, dopamine, and 

glutamate affect each other in complex ways, overlapping in their neurotransmitter circuits and 

hyperactive glutamate neurotransmission may account for the dysfunctions observed in migraine 

(see Figure 1).  Glutamate and its actions on N-methyl-d-aspartate (NMDA), and non-NMDA 

receptors facilitates excitation (93).  Certain groups support glutamatergic dysfunction as the 

culprit of cortical excitability (81, 94, 95).  In summary, neurophysiological studies have shown 
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evidence of cortical dysfunction and a deficit of habituation to repeated stimuli that fluctuates with 

the migraine cycle.  Moreover, a disequilibrium between intracortical inhibitory and excitatory 

neuronal circuits (96) is present in the migraine brain and neurophysiological testing may help 

reveal additional clues to understand brain dysexcitability.  Inconsistencies in results, however, 

still leave some questions in this area to be answered. Future studies will need to replicate one 

another and arrive at standardised methodologies in order to further our neurophysical 

understanding of migraine. 
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Figure 1 Neurotransmitter Systems implicated in Migraine adapted from (97).   

 

Genetic, biochemical and pharmacological studies support the involvement of the neurotransmitters serotonin, dopamine and glutamate 

in migraine aetiology.  Genetic studies have focused on the receptors, transporters and enzymes involved in the synthesis and metabolism 

of neurotransmitters.  Genetic variation in the gene constituents of neurotransmitter systems may cause dysfunctional signalling and 

neurotransmission leading to an imbalance in the way the neurotransmitter is handled at the synapse ie., released and recycled and may 

lead to a higher susceptibility to migraine.  The hypothesis is based on the idea that disturbances in circulating levels of neurotransmitters 

or in the function of the receptors, transporters and enzymes that synthesise and metabolise the neurotransmitters due to an aberrant 

combination of genes may express the biochemical phenotype of migraine.   
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5. RNA editing of AMPA glutamate receptors 

 

In addition to the existence of multiple genes to choreograph the functions of fast-signalling 

glutamatergic neurons, glutamate receptor diversity is further increased by the post-translational 

mechanisms of alternative splicing and RNA editing (98).  Adenosine-to-Inosine (A-to-I) RNA 

editing of the GRIA2 subunit of glutamate AMPA receptors at the coding region 

glutamine/arginine (Q/R607) site (in the pore forming second transmembrane (M2) domain) 

epitomizes genetic regulation of glutamate receptors (99).  The Q/R site of the GRIA2 subunit 

undergoes extensive (>99.9%) editing and this editing is important for gating Ca2+ entry through 

the AMPA receptor channels (100, 101).  In a healthy state, effective RNA editing at the Q/R site 

results in the production of GRIA2-(R) (arginine amino acid) whilst in a diseased state, defective 

RNA editing at the Q/R site results in the production of GRIA2-(Q) (glutamine amino acid) (102). 

Inefficient editing of the GRIA2 subunit results in AMPA glutamate receptor channels that are 

permeable to Ca2+ (103), resulting in cell death due to flooding with Ca2+ and this event has been 

linked to the disease amyotrophic lateral sclerosis (ALS) (104, 105).  Targeted RNA editing also 

controls the heteromeric assembly of the AMPA receptors by holding the GRIA2 subunits in the 

endoplasmic reticulum and delaying transport to the synaptic surface (106).  Consequently RNA 

editing at this site is an essential mechanism that indirectly contributes to the effective functioning 

of glutamatergic neurotransmission.  RNA editing is an enzymatic process that is carried out by 

two enzymes of the adenosine deaminase family ADARB1 and ADARB2 that mostly target 

neurotransmitter receptors and ion channels (107).  These two genes have also been investigated 

as plausible candidates in migraine (108) because they are most prevalent in the central nervous 

system and fit criteria for migraine neuropathology (109).  Further illustrating the importance of 

these two RNA-editing enzymes ADARB1 knockout mice die approximately 20 days post-birth 

and manifest epileptic seizures (99) whilst ADARB2 knockout mice die embryonically, exhibit a 

high interferon signature, increased apoptosis and hematopoietic defects (110-112).  Additionally 

a few studies suggest a role for ADARB1 in the pathophysiology of mental disorders (113, 114). 

 

6. miRNAs and Implications for Migraine 

 

Introducing another dimension to current migraine research is modification of gene expression via 

microRNAs (miRNAs).  miRNAs are small non-coding RNA molecules (19–24 nucleotides) 

encoded in our genome that modulate gene expression by actively targeting mRNAs post-

transcriptionally (115).  miRNAs interact with mRNAs by complementary binding by different 

mechanisms to inhibit their translation and expression of the encoded genetic information (116).  

They act like silencing tags that regulate genome activity and protein levels and thus fine tune 

numerous modalities of the cell including differentiation, proliferation, apoptosis in symphony 

with other gene regulatory processes (117).   

 

The extent to which miRNAs are involved in brain development and in the aetiology of neuro-

psycho and degenerative disorders remains to be quantified.  miRNA expression has been studied 

in a variety of neurological disorders including Alzheimer’s, Parkinson’s, and Huntington’s 

diseases, amyotrophic lateral sclerosis epilepsy (118) (119, 120), schizophrenia, autism, cognitive 

dysfunction and drug addiction (121).  Recently miRNAs have been implicated in bipolar disorder 

(122, 123) and it is not unlikely that these regulatory RNAs might have some usefulness in 
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migraine diagnosis as well.  miRNA are important regulators of gene expression with important 

functions, yet to be understood, in brain development and in regulating many aspects of neuronal 

morphology, such as neurite outgrowth and synapse formation (124).  miRNAs display a  brain-

specific expression pattern and the majority of proteins are regulated by miRNAs (125, 126).   

 

A point in case is miRNA regulation of the main CNS glutamate transporter EAAT2/GLT1 of the 

glutamatergic system.  In 2013, Morel et al., demonstrated that exogenously delivered miR-124a 

can up-regulate EAAT2 (excitatory amino acid transporter 2) protein expression both in vitro and 

in vivo (127).  This is an interesting finding with potential to be turned into a therapy to regulate 

EAAT2 activity in disease states and in addition reveals a novel regulatory mechanism.  In a study 

by Harraz et al., miR-223 was reported to regulate the expression of AMPAR subunit GluR2 and 

NMDAR subunit NR2B 3-UTR (128).  miR-223 deficiency increases expression of GluR2 and 

NR2B and consequently miR-223 is a key regulator of glutamate receptor expression and function.  

There are other examples whereby miRNAs have been shown to regulate NMDA receptors in 

schizophrenia and other conditions but it is beyond the scope of this review (129, 130).   

 

Thus far two studies have directly explored the nexus between miRNAs and migraine.  Anderson 

et al., profiled microRNAs using serum from migraine sufferers during attack periods and pain-

free periods, comparing these to healthy control subjects (131).  This study identified four 

microRNAs to be differentially expressed out of 372 (miR-34a-5p, miR-29c-5p, miR-382-5p and 

miR-26b-3p) and these were selected for further investigation (131).  Expression of these miRNAs 

was significantly altered between migraineurs and healthy controls in two independent validation 

cohorts (n = 16 and n = 24).  The authors could not account for the structures/tissues from which 

the miRNAs originate, however in silico target predictions suggested the miRNAs may target 

components of GABAergic and anti-inflammatory signalling pathways.  The second study by Tufi 

et al. (132) in contrast, screened 175 miRNAs most commonly detected in plasma exosomes and 

analysed the expression of miRNAs in the blood of 15 MO patients and matching controls by qRT-

PCR.  In this study four miRNAs were differentially expressed: miR-27b was significantly up-

regulated, while miR-181a, let-7b, and miR-22 were significantly down-regulated.  The miRNAs 

reported in this study appear to have some connection with cardiovascular disease and may provide 

a circulating exosome miRNA profile specific to MO patients. 

 

The significance and relevance of this layer of genetic regulation on the occurrence of migraine 

remains to be discerned.  Currently there is insufficient data to correlate a definite relationship 

between miRNAs and migraine.  From the evidence of involvement of miRNAs in other diseases 

co-morbid with migraine like epilepsy, however, it is clear these regulatory molecules may hold 

potential to be used as migraine biomarkers.  Although miRNA research is still in its infancy the 

field is blossoming with an increase in the number of biomarker studies investigating the potential 

use of miRNAs as a diagnostic tool in different biological fluids for different neurological 

disorders (133).    This is due to the fact that miRNAs are found in all body tissues and fluids such 

as plasma, serum, urine, saliva, milk and CSF and different organs express different miRNAs, 

allowing specific profiles to be obtained (134, 135). 
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7. GWAS 

 

Additional associations in SNPs located in genes that act to regulate glutamate turn over have been 

uncovered in Genome Wide Association Studies (GWAS).  Comprehensive GWAS studies have 

been instrumental in revealing a number of interesting and novel potential candidate loci without 

a priori assumptions that implicate glutamate in migraine aetiology (136-138).  The main hit from 

the first migraine GWAS was an intergenic SNP (rs1835740) at locus 8q22.1 identified in 

migraineurs from three European headache clinics that is in linkage disequilibrium (LD) with two 

candidate genes: plasma glutamate carboxypeptidase (PGCP) and; the astrocyte elevated gene 1 

(MTDH/AEG-1) (136).  The enzymatic function of the PGCP gene is to cleave N-acetyl-l-aspartyl-

l-glutamate into N-acetyl aspartate (NAA) and glutamate and via this function PGCP may 

contribute to a rise in extracellular glutamate concentrations (139).  Meta-analysis of GWAS 

results by Ligthart, et al., replicated the association with the MTDH/AEG-1 gene (138).  In cultured 

lymphoblastoid cell lines the risk allele A of SNP rs1835740 was found to correlate with the 

transcript levels of MTDH/AEG-1.  Furthermore, experiments in cultured astrocytes documented 

an inverse correlation between expression levels of MTDH/AEG-1 and EAAT2 (140-142).  

MTDH/AEG-1 can decrease the expression of the glutamate transporter EAAT2 (also called GLT1 

and SLC1A2) in neurons and this fault is thought to lead to excess glutamate in the synapse which 

could potentiate migraine by making cells more susceptible to glutamate excitotoxicity (143, 144).  

 

More recently, a study by Lee et al. (145) provided evidence of the ability of MTDH/AEG-1 to 

downregulate the expression of EAAT2 in the setting of glioma-induced neurodegeneration.  The 

proposed pathological mechanism is that too much glutamate in the synaptic cleft due to an 

increase in PGCP activity or MTDH/AEG-1 or both may contribute to migraine attacks.  EAAT2 

is the major transporter of glutamate in neurons whose importance to neural biology is further 

exemplified in knockout mice.  The lack of functional EAAT2 produces a fatal phenotype leading 

to progressive neurodegeneration and spontaneous epileptic seizures (146-148).  Glutamate 

transporters serve critical physiological functions such as terminating fast synaptic 

neurotransmission and as such they are subject to tight spatio-temporal expression and regulation 

(149).  In addition mutations in the related EAAT1 transporter have shown up in other episodic 

disorders such as episodic ataxia 6 (150, 151), and a non-familial hemiplegic migraine type 1 or 2 

(FHM1/2) hemiplegic migraine/episodic ataxia/seizure phenotype (152).   

 

In a GWAS by Chasman et al., 2011, the three most significant GWAS hits that reached genome-

wide significance and withstood replication in three replication data sets were rs2651899 in 

PRDM16, rs10166942 in TRPM8 and rs11172113 in LRP1 (137).  The proteins produced by 

PRDM16 (PR domain containing 6), TRPM8 (transient receptor potential melastatin 8) and LRP1 

(low density lipoprotein receptor 1) indirectly affect glutamate turnover.  The product of the 

PRDM16 gene is involved with the development of brown fat but its function and relation to 

migraine aetiology remains to be established (153).  TRPM8 is an ion channel related to 

neuropathic pain but its complete range of functions is not fully understood (154).  The LRP1 

protein has been found to interact with N-methyl-D-aspartate (NMDA) receptors, suggesting a 

more direct role in the glutamate pathway providing support for a glutamatergic mechanism in 

migraine (137, 155).  Two of the loci, rs10166942 in the TRPM8 gene and rs11172113 in the LRP1 

gene identified in the Chasman study were confirmed in German and Dutch individuals as being 
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involved with the MO phenotype (156).  Meta-analysis of clinic-based Danish and Icelandic 

migraineurs identified a similar association (157).   

 

Recently, replication studies in Spanish, Swedish, Chinese and Indian populations independently 

replicated some of the top-ranking SNPs from GWAS data (158-161).  Replicating GWAS hits is 

important as the risk imparted by the variants may vary and be population specific.  In the Spanish 

study nominal associations were identified for single nucleotide polymorphisms rs2651899 (within 

the PRDM16 gene), rs10166942 (near TRPM8), rs12134493 (close to TSPAN2) and rs10504861 

(near MMP16) in a migraine with aura sample (158).  In the Swedish study association in 

rs2651899 was identified (160).  The Indian study reports association in rs1835740, LRP1 

rs11172113 and PRDM16 rs2651899 polymorphisms (159).  In the Chinese Han study the 

association of PRDM16 to migraine susceptibility was reaffirmed (161).  

A recent GWAS conducted in 460 bipolar migraineurs with 914 bipolar patients without migraine 

from the Bipolar Genome Study (BiGS) identified a genome-wide significant association with 

migraine in these patients and rs1160720, an intronic SNP in the NBEA gene (162).  The NBEA 

protein plays a role in trafficking neurotransmitter receptor filled vesicles but since the association 

of this SNP did not replicate in data from the GWAS migraine meta-analysis consortium and a 

smaller sample of 289 migraine cases, the authors concluded that this may be an association 

specific to migraine co-morbid with bipolar disorder.   

 

Altogether GWAS have thus far identified 13 risk loci of genome-wide significance to modulate 

susceptibility to migraine (136, 137, 156, 163).  These loci show enriched functions in 

glutamatergic neurotransmission (MTDH, LRP1, MEF2D), neuron and synapse development 

(MEF2D, ASTN2, PRDM16, FHL5, PHACTR1, TGFBR2 and MMP16), brain vasculature 

(PHACTR1, TGFBR2, C7orf10), extracellular matrix (MMP16, TSPAN2, AJAP1), and pain-

sensing (TRPM8) supporting neurogenic mechanisms (164).  These findings are corroborated by 

another recent GWAS implicating astrocytes and oligodendrocytes in migraine pathophysiology 

with different genetic backgrounds for MA and MO (165).  Functional and biochemical 

characterization of these proteins will be needed to further decipher their involvement in migraine 

processes.  Despite GWAS proving to be a powerful tool to identify genes of small effect sizes it 

does not answer questions about disease-mechanisms, nor gene expression or biochemical 

questions to inform the underlying processes of a disease.   

 

Based on the generally accepted view that “functionally related genes show coordinated expression 

in order to perform their cellular functions” (166) a recent GWAS used two statistical methods to 

identify modules of gene expression to identify brain regions, cell types and pathways involved in 

migraine pathophysiology (167).  In this GWAS based study the authors used gene expression data 

from the Allen Human Brain Atlas enriching for migraine associated genes.  Secondly, drawing 

from the largest migraine GWAS dataset currently available (Anttila et al. 2013) they used high-

confidence migraine genes to build a migraine-related co-expression gene network (167).  

Importantly, this study highlighted genes involved in mitochondrial function and common 

migraine which is not surprising given that synapses of neurons are regions of high energy demand 

and abundant in mitochondria (168).  Glutamatergic alterations and mitochondrial impairments 

are closely interrelated (169-172).  Mitochondrial variants were hypothesized to be involved in 

migraine after morphological, biochemical, imaging and genetic studies identified some 

mitochondrial abnormalities that may be related to mitochondrial dysfunction at least in some 
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individuals (173-177).  Noteworthy is a study Zaki et al., who identified two polymorphisms in 

the mitochondrial genome, C16519T and G3010A, associated with migraine and cyclic vomiting 

syndrome CVS (174).  In addition, recently an association for a locus in the mitochondrial 

DNA with migraine, both with and without aura was reported by Guo et al. (178), and Anttila et 

al., for a mitochondrial ATP synthase, ATP5B  (179).   

 

Most recently the largest meta-analysis of migraine consisting of 59,674 cases and 316,078 

controls of European ancestry identified 38 susceptibility loci that map to factors in vascular and 

smooth muscle tissues for migraine from 22 GWA studies (180).  Not surprisingly, ten of the 13 

GWAS hits identified in this meta-analysis replicate previous GWAS results (180).  Surprisingly, 

only two of 38 genomic loci are in ion channel genes (KCNK523 and TRPM824) and three other 

loci (SLC24A326, ITPK127, and GJA128) are involved more generally in ion homeostasis (180).  

This result is in contrast to prevalent notions of migraine pathogenesis that support the involvement 

of ion channel genes and the grouping of migraine into a channelopathy but is in agreement with 

the idea that the expression of multiple genes of modest effect in the so called ‘migraine polygenic 

model’ perpetuates the migraine phenotype (181).   

 

 

8. X Chromosome 

 

The meta-analysis by Gormley et al., 2015 also identified the first genome-wide associated locus 

for migraine on chromosome X (180).  This finding is in line with previous genetic studies of the 

X chromosome which have implicated three distinct susceptibility loci at Xp22, Xq13, Xq24-28 

with stronger evidence in support of the Xq24-q28 region (182-184).  The hypothesis that genomic 

factors on the X-chromosome may play a part in migraine aetiology is due to the uneven gender 

distribution observed in epidemiological data (gender ratio 3:1 of female migraine sufferers) (185, 

186).  In particular, the observed female preponderance is ascribed to hormonal influences which 

correlate with reproductive milestones and possible gene dosing effects, as females inherit two 

copies of the X chromosome while males only inherit one X.  In addition, the proportion of male 

probands with affected first-degree relatives is notably higher with respect to relatives of female 

probands (187). 

 

Although a number of candidate genes in the Xq24-Xq28 region including 5-hydroxytryptamine 

(serotonin) receptor 2C (5HT2C), Glutamate Receptor ionatropic AMPA3 (GRIA3), gamma-

aminobutyric acid A receptor epsilon (GABRE), gamma-aminobutyric acid receptor theta 

(GABRQ) and gamma-aminobutyric acid A receptor 3 (GABRA3) have been investigated for 

association with migraine in a number of ethnically different populations (188-191), apart from 

the GRIA3 subunit of AMPA glutamate receptors at Xq24 implicated in an Italian migraine cohort, 

no specific causal gene on the X chromosome has yet been identified (21).  Interestingly, a 

common theme that links all these candidate genes together is that they have a neurological role 

and belong to the neurotransmitter class of genes supporting current concepts of neurological 

dysfunction in migraine.   

 

 

  

 

http://topics.sciencedirect.com/topics/page/Mitochondrial_DNA
http://topics.sciencedirect.com/topics/page/Mitochondrial_DNA
http://www.sciencedirect.com/science/article/pii/S0306452216301269#b0055
http://www.sciencedirect.com/science/article/pii/S0306452216301269#b0055
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9. Glutamate Modulating Therapies 

 

Glutamate profoundly impacts brain circuits that regulate core symptom domains in a range of 

neuropsychiatric conditions and thus remains a “hot” target for drug discovery.  Current 

evidence that supports a role of the glutamatergic system in migraine comes from randomized 

controlled trials of modulators of glutamatergic signalling and biochemical studies since the 

early 1990s that have identified increased levels of glutamate in CSF or in the blood among 

migraineurs compared with controls.  Much progress has been made in characterizing, cloning 

and crystallizing the receptors and developing antagonists since the first functional ionotropic 

glutamate receptor was cloned in 1989 (192).  Despite the number of glutamate receptor subtypes, 

their varied functions, and complex neurochemistry, to date there are only a handful of 

modulators of glutamatergic signalling in preclinical development (193).  Modulators that have 

undergone preclinical development for the treatment of migraine include BGG492, LY293558, 

LY466195, ADX10059 (194-197).  FDA approved modulators of glutamatergic signalling in 

clinical use include drugs lamotrigine, ketamine, topiramate, memantine, and BoNTA (198-202).  

The upside of these compounds is that because they are neurally based they do not have the 

vasoconstrictive side-effects of other regimens and thus may benefit some patients who have 

cardiovascular risk factors or co-morbidities (203, 204).   

 

Recently the kynurenine pathway (KP) has emerged as a candidate for involvement in migraine 

pathophysiology with growing interest in the literature (205).  The kynurenine pathway 

encompasses neuroactive compounds produced from metabolism of the essential amino acid 

tryptophan (206).  Targets of KP metabolites include both ionotropic and metabotropic glutamate 

receptors and some of these molecules have recently been linked to migraine (205, 207).  Curto 

et al., 2015 report decreased levels of kynurenine metabolites in serum samples from 21 chronic 

headache patients (208).  They also suggest that biochemical studies exploring serum kynurenine 

level may be warranted in parallel with genotypic/phenotypic profiles of the kynurenine pathway 

in migraine to better understand the importance of this pathway in migraine patients (209).  

Thorough assessment of the genetic background of the KP and pharmacological interactions with 

the KP in migraine is missing and consequently if this pathway is to be targeted for migraine 

therapy more establishing studies would need to be performed.  In addition, it may be worthwhile 

to determine if an association exists between KP metabolites, mitochondrial function and 

oxidative stress in the migraine brain and if these intracellular functions are brain-specific and 

if there are regional differences between glial cells and neurons (205).   
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10. CONCLUSION 

 

Migraine is a multi-factorial genetic disorder that evolves in adulthood and whose clinical 

presentation is dependent on the patient’s genetic background and environmental factors.  In 

agreement with biochemical studies, genetic studies provide evidence that malfunctioning of the 

glutamatergic system may contribute to symptoms of migraine.  Although it is not yet determined 

if any one component of the glutamatergic system plays a dominant role in migraine aetiology 

further studies in conjunction with recent GWAS will enhance our understanding of the pathway.  

What is definite at present is that genetic data implicating the glutamate hypothesis exists and is 

growing.  The hypothesis of a glutamatergic deficit in migraine is supported by genetic evidence 

implicating SNPs in GRIA subunit genes in migraine aura patients, glutamatergic abnormalities in 

plasma, platelets, urine and CSF in migraine aura patients and FHM mutations induce CSD and 

enhance glutamate release.  Additionally, glutamate may be involved in cortical excitability and 

consequently perturbation of the glutamatergic system and other neurotransmitter systems that 

interplay at multiple levels may play a role in migraine.  Specific animal models of glutamate are 

lacking, currently the most studied are cell based models of glutamate excitotoxicity.  

Nevertheless, progress will continue, particularly with multicentre collaborations making use of 

large patient cohorts and well-defined case material.  The application of novel genome-editing 

technologies also will help harvest recent genetic discoveries in GWASs, which is needed to have 

a more complete understanding of the disease mechanisms in migraine.  The molecular 

mechanisms regulating glutamate receptor expression and function including RNA editing and 

miRNAs remain unexplored.  This represents fertile terrain for more in depth study of how the 

gene and protein constituents of the glutamatergic system are regulated that could be developed 

into therapies. Glutamate modulating therapies and the kynurenine pathway are under-investigated 

from a genetic standpoint and further study may hasten development of novel drugs for treating 

migraine.  Deciphering the glutamatergic cross-talk in the brain is central to understanding how 

disruption of glutamatergic circuits leads to neurological and psychiatric diseases.  In conclusion, 

understanding the glutamatergic system is crucial for understanding basic brain functions such as 

learning and memory which might be applicable in the research for other neurodegenerative 

disorders than migraine, where glutamatergic proteins are additionally involved.   
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