
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Utting, Mark & Boulaire, Fanny
(2015)
Specification and validation of the MODAM module manager. In
2nd International Workshop about Sets and Tools (SETS 2015), 23-26
June 2015, Oslo, Norway.

This file was downloaded from: http://eprints.qut.edu.au/105413/

c© 2015 [Please consult the author]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/83151359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Utting,_Mark.html
http://eprints.qut.edu.au/view/person/Boulaire,_Fanny.html
http://eprints.qut.edu.au/105413/

Specification and Validation of the MODAM
Module Manager

Mark Utting1 and Fanny Boulaire2

1 University of the Sunshine Coast, Australia, utting@usc.edu.au
and The University of Waikato, New Zealand, marku@waikato.ac.nz

2 Queensland University of Technology, Australia, Fanny.Boulaire@qut.edu.au

Abstract. Electricity distribution networks are large complex systems
that are continuously evolving. Agent-based models are a useful way of
exploring possible future scenarios for these networks. This paper in-
troduces MODAM, a software framework developed to support building
large-scale agent-based models for electricity distribution network plan-
ning. This paper describes how models can be assembled in an automated
manner at runtime, even though an agent may be composed of aspects
that come together from separate components. The Module Manager,
which weaves the components together in an automated manner, is de-
scribed in this paper using formal specifications written in Z, and the
specification is validated using the ZLive animation tool.

Keywords: Agent-based modelling, automation, modularity, composi-
tion, networked structures, Z, ZLive, specification validation, animation

This paper describes how the MODAM (MODular Agent-based Model) frame-
work can automate the construction of a complex agent-based model (ABM)
from a set of user-chosen components. The components are designed and imple-
mented by programmers, but the selection, instantiation, and wiring together of
those components can be done by modellers who are not programmers, thanks
to the automated model-building features of MODAM. We specify the key as-
pects of this model-building process in Z, and we use the ZLive animation tool to
validate that our specification has the desired properties. We also discuss several
features of the ZLive tool that make it more convenient to use for this kind of
experimental exploration of the properties of a Z specification.

Sections 1 and 2 give a brief introduction to future electricity grids and the
MODAM framework. Sections 3 to 5 describe the three aspects that support
the automated building of large-scale agent-based models using dynamic agent
composition: the modularity technology, how components can be composed to
form a model, and finally how this composition process can be automated using
a Module Manager. We formalise key aspects of these stages, using Z. In Section
6, we validate some of important properties of these specifications using ZLive,
and in Section 7 we reflect upon the process of using ZLive for validating specifi-
cations, and discuss how ZLive’s ’why’ command is useful for debugging di�cult
specifications.

2

1 Future Electricity Networks: Motivation for MODAM

Electricity distribution networks are undergoing rapid changes with the introduc-
tion of new technologies, policies and demand management options. For example,
a study done by the Future Grid Forum predicts that batteries in combination
with energy e�ciency measures, gas generation and solar panels could lead a
third of the customers to leave the grid in Australia by 2050 [4].

To better plan the future grid, planning tools used by decision-makers need
to take into account the new technologies and new approaches that may impact
the future grid. We have developed a simulation environment, called MODAM
(MODular Agent-based Model), to assess the impact of di↵erent trajectories of
consumption at varying locations of the network over many years. It supports
understanding the changes in load at every node in the network with the in-
troduction of new technologies (e.g. solar panels, batteries), new policies (e.g.
time-of-use tari↵s) or/and demand management. It was developed using agent-
based modelling [5], which was chosen for its capacity to represent at a fine
level of detail the behaviours and interactions of the network’s entities that have
a spatial and temporal component, as well as the behaviours of the di↵erent
consumers impacting it. Agent-based modelling has been successfully used for
di↵erent applications in the electricity sector [7, 10, 3], for properties such as
those mentioned above, and is particularly suited to our application domain. Er-
gon Energy, a Queensland electricity distribution company, commissioned this
project to perform simulations of the future of their grid. To answer their needs,
the following software requirements were drawn:

– A large-scale agent-based model is to represent the Ergon’s distribution net-
work, based on large data sets coming from corporate databases;

– From there, trajectories of consumption are to be simulated using di↵erent
assumptions and knowledge about the type of technology that will likely be
taken up, their location and the way it is going to be used;

– The model can grow and change easily over the time of the project and
beyond it, bringing extensibility and flexibility in the model definition;

– A vast range of scenarios needs to be tried easily, and this can be done on a
daily basis by an engineer, without the need to code.

2 Automated Model Construction in MODAM

MODAM models are constructed at runtime from a collection of user-specified
modules. Figure 1 gives a schematic representation of the di↵erent building
blocks, also called components or modules that are currently available in MODAM.
For example, if we are building a simulation of a distribution network containing
premises with solar panels and batteries, we would use the modules of Network
Assets, PV assets and Battery Assets. The choice of behaviour modules for these
assets might vary, depending on the goals of the simulation. Data modules would
also be chosen to specify the characteristics of the assets or the behaviours, and
this data could come in various formats, requiring di↵erent reader modules.

3

Fig. 1. The MODAM framework with some modules for modelling electricity networks.

To support building flexible and extensible large-scale agent-based models
with many di↵erent behaviours, we developed a dynamic agent composition tech-
nique for building agent-based models [2]. It consists of breaking down an agent
into an asset part and a set of behaviours, where these aspects are defined sep-
arately in the model definition and its implementation.

Agent = Asset + Behaviours

These two aspects then come together at runtime only, to form what is tradi-
tionally called an agent (made of attributes and behaviours [8]). This method
facilitates building an agent-based model incrementally, as well as o↵ers many
options for agents to be defined using alternative or combining behaviours. With
this dynamic composition approach, it would be possible to take a manual ap-
proach to bringing the agents together at runtime into a coherent agent-based
model. However, this would require a modeller to code, which does not answer
our last requirement of code-free set up of simulations. Consequently, we have
automated this model-assembly process, which is the subject of this paper.

A Module Manager weaves together modules that hold information about
the agents, to compose a model at runtime, in an automated manner. Three
aspects support this automated process – these are the focus of this paper and
will be discussed in the following sections:

– Technical aspects to support modularity – the definition of modules, and the
technology to compose them at runtime;

– Collaboration between the user and MODAM to specify which modules and
data should be composed;

– An automation aspect, where the module manager links the assets, be-
haviours and data to create an ABM, on which simulations are run.

3 Specifying a MODAM module

A key criteria when building our ABMS application was for it to be a flexible and
extensible model environment. We chose OSGi (formerly Open Services Gateway

4

Initiative) as the technology to support modularity, as it allows modules to be
installed, started, stopped or uninstalled at runtime, and it is used extensively
in Eclipse. Each MODAM module is implemented as an Eclipse plugin, which
allows MODAM to easily assemble models from many plugins from a variety of
sources.

Using the Eclipse plugin architecture, the MODAM framework defines three
extension points :AssetFactory,BehaviourFactory andDataProvider. Each
plugin that defines an extension of these extension points specifies a Java class
name that will be used as the factory to create the assets, or behaviours, or
data outputs. In addition, each extension of DataProvider has a unique iden-
tifier and a path parameter to indicate the default input file to be used; while
extensions of AssetFactory and BehaviourFactory have a set of ’consumes’
identifiers that specify the kinds of input data that they need.

We specify the extension points and factories in the Z specification lan-
guage [1], using the Z section facilities to break the specification into several
parts. The first Z section defines the basic types of objects used by MODAM.

sectionModamTypes parents standard toolkit

First we declare the basic types used by the ModuleManager of MODAM.

[ClassName,ExtId ,DataId ,Path,Contributor]
OPTIONAL ::= YES | NO

ClassName is the set of all possible Java class names, ExtId is the set all pos-
sible Eclipse extension point identifiers (e.g., au.edu.qut.modam.assetfactory),
DataId is the set of all possible Data identifiers (eg. NetworkData) – these are
used to link providers and consumers together via named ports, Path is the set
of all filesystem paths to input data files, and a Contributor is a unique identi-
fier for a module. We define an extension point ID for the three key MODAM
extension points, plus several constants to represent unknown values, and the
dataProvidedError to model the exception that is returned when suitable
data providers cannot be found.

modamAssetFactory ,modamBehavFactory ,modamDataProvider : ExtId
noDataId : DataId
noPath : Path
nullClass , dataProviderError : ClassName

modamAssetFactory 6= modamBehavFactory
modamAssetFactory 6= modamDataProvider
modamBehavFactory 6= modamDataProvider
dataProviderError 6= nullClass

We actually have two versions of the above Z section: the one just shown,
which uses infinite given sets for each of the basic MODAM types, such as class
names; and an animation-friendly variant calledModamTypeAnimate, which uses
small integer ranges for each of these basic types, to make animation of the

5

specification easier. We typically develop and type-check the Z specification using
the infinite data type, and switch to the finite one (simply by changing the
name of the parent in the following section command) when we want to animate
operations, or run unit tests.

sectionModuleManager parentsModamTypes

This Z section describes the ModuleManager of MODAM. A key concept is a
SetterGetter , which represents a property of an object whose value can be read
and set via getter/setter methods. It has a name, an argument type, a current
value (for Modam, this is always a reference to a Java object that is an instance
of the value class, which must be a subtype of the argType class), and a flag
which specifies whether the property is optional or compulsory.

SetterGetter
name : DataId
argType, value : ClassName
optional : OPTIONAL

We define the Eclipse concept of extension point, which contains a class name
plus several properties. We call these extension classes Factory classes, because
in MODAM they are used to create assets and agents and data provider objects.
We define three extension points, for assets, behaviours, and data providers re-
spectively. We use a separate ID for each extension point, and we define various
special subclass characteristics for each kind of extension point. For example,
asset factories and behaviour factories may consume data providers but they
do not produce data, whereas data providers produce data but do not not con-
sume other data providers. Asset factories are the only kinds of factories whose
execution has to be ordered, so we set prior = ? for the other factories.

Factory
extId : ExtId
className : ClassName
consumes : PDataId
produces : DataId
path : Path
prior : PClassName
methods : PSetterGetter

AssetFactory == [Factory | extId = modamAssetFactory ^
produces = noDataId ^ path = noPath]

BehavFactory == [Factory | extId = modamBehavFactory ^
produces = noDataId ^ prior = ? ^ path = noPath]

DataProvider == [Factory | extId = modamDataProvider ^
consumes = ? ^ prior = ? ^ produces 6= noDataId]

6

A Module in MODAM is essentially just a contributor ID plus a set of ex-
tension classes, which must all have unique names. The consumes and produces
maps are derived by collecting into a single map all the data IDs consumed by all
the factories, or produced by all the data providers, respectively. Similar maps
are used in the Java implementation of the Module class in MODAM.

Module
contributor : Contributor
classes : PFactory
consumes : ClassName 7 7! PDataId
produces : ClassName 7 7!DataId

(8 c1, c2 : classes • c1.className = c2.className) c1 = c2)
consumes = {c : classes • (c.className, c.consumes)}
produces = {c : classes • (c.className, c.produces)}

Finally, the MODAM ModuleManager simply contains the set of modules
that the user has selected to be part of the model, either via the command-line
or via a GUI. We define outputid to be a mapping that captures key information
about all the available data providers.

ModuleManager
modules : PModule
outputid : ClassName 7 7!DataId

outputid =
S
{m : modules • m.produces}

4 Composing flexible ABMs

This section describes how a network planning engineer can build up a model and
run a simulation, without programming. Creating a model is done in a collabora-
tive manner between the user and the MODAM framework. There are currently
two main ways of interacting with the ABM simulation software: command line
scripts or graphical user interfaces.

4.1 Command line scripts

The command-line scripts are typically used to run a sweep of scenarios on a
cluster of computers. This allows many alternative scenarios to be explored at
once, or the same scenario run many times with di↵erent random seeds so that
the people and premises in the simulation have di↵erent behaviour each run –
then the results of all those runs can be analysed statistically to determine the
averages, standard deviations, and Probability of Exceedance (PoE) 50 and PoE
10 levels of demand peaks for each part of the network. There is no need to know
about programming, simply knowing which factories have been implemented and

7

Fig. 2. Example command line for a network with PV panels and batteries.

are available is su�cient. For some factories, additional arguments and datasets
can be specified, to populate the ABM and set some simulation parameters.

An example of a command script is given in Figure 2. It describes a simulation
of a base electrical network, on top of which solar panels and batteries have been
added. The boxes surrounding the commands highlight groups of information,
within which modules (”+M”), factory classes (”+C”) and parameters (”-D”)
are added to the simulation. Each class can be customized using -Dname=value
flags to specify parameter values. The Module Manager finds the modules in
the registry and instantiates the specified classes; reflection is used to set the
SetterGetter properties of that class to the specified parameter values. The last
part of Figure 2 shows parameters for the whole simulation: the start and end
dates (-from and -to), the -seed for the random number generator to ensure
reproducibility of simulation experiments, and -output for the folder that will
contain the simulation output. Finally, the -order parameter is used to schedule
groups of agents in the given order within each timestep.

8

Fig. 3. Web-based user interface for running agent-based network simulations.

4.2 Graphical User Interfaces

We have developed two types of GUIs: a generic one that corresponds closely to
the command line (allowing users to select any MODAM modules and classes
and set their parameters), and one tailored to the needs of electricity distribu-
tion planners. The tailored GUI supports only a limited number of plugins and
factories, which can be combined to answer predefined questions. This is more
user-friendly for a planner who does not need to know what factories to select
and only wants to perform a limited number of analysis types, where the data
populating the models and the simulation parameters can still be varied.

An example of the client part of the interface is shown in Figure 3 – this
runs in a web browser and communicates with the main ABM program that is
running on a server computer. The first tab allows a segment of the network to
be selected and viewed geographically on the map. Then the Demand, PV and
Battery tabs are used to set up a simulation, and the Run tab (shown) is used to
run the simulation on the server for a given simulation time period. The scenario
is also saved so it can be used as a basis for command-line batch simulations
later.

5 Assembling a model: an automated process

The Module manager, as its name indicates, manages the modules specified by
the user in the command scripts or the GUI. To assemble the model and start
the simulation, the Module Manager performs the following stages.

9

1. Find and collect the enabled modules and extension points;
2. Check and warns of missing dependencies;
3. Instantiate one instance of each factory and data provider and process their

SetterGetter methods (see definition of SetterGetter below);
4. Call the asset factories, in the correct order using topological sort, to create

assets and populate them with data if specified;
5. Use behaviour factories to create behaviours and populate them with data;
6. Call the start method on all the behaviours;
7. Start stepping the simulation.

These seven stages are automated by the module manager, so users do not have
to write code to assemble a model. They just have to choose modules, factories
and parameters, then the module manager automates the building and running
of the model. We shall specify in Z some interesting aspects of this process.

Once the modules specified by the user have been discovered and enabled
(Stage 1), the module manager checks for any missing dependencies (Stage 2).
The following GetMissingDependencies operation finds all the non-optional data
requirements that are not satisfied by any of the data providers. If the result
missing ! set is non-empty, this indicates that the current model setup is incom-
plete, so the model cannot be run.

If there are no missing dependencies, Stage 3 of the module manager in-
stantiates one instance of each selected factory and data provider, sets any in-
teger/string parameters that were specified for those objects on the command
line or GUI, and then tries to link the available data providers into the asset
and behaviour factories, so that the assets and behaviours can be created and
populated by the required data.

GetMissingDependencies
⌅ModuleManager
factories? : PFactory
missing ! : PDataId

missing ! = {unsatisfied : DataId |
(9m : modules; f : factories?; s : SetterGetter •

f .className 2 dom m.consumes ^
unsatisfied 2 m.consumes (f .className) ^
s 2 f .methods ^ s.optional = NO ^
s.name = unsatisfied ^
(¬ 9m 0 : modules • s.name 2 ran m 0.produces))}

One of the important operations in Stage 3 is automatically analyzing each
property of a requested factory to see if it can be satisfied by the available data
providers. The following SatisfySetterMethod specifies how this is done for each
property. It transforms the value of a SetterGetter method after having matched
an outputid to its dataProvider from a set of input dataProviders. The matching !
output set contains all the available data providers that can satisfy this property.
Then there are four cases:

10

– the success path corresponds to having exactly one match, which leads to
setting the value of the method to that match;

– another path where there is no match found but the matching was optional,
leading to an unchanged method;

– an error is thrown if no matches are found and the property is not optional;
– an error is thrown if there are multiple matches, so it is ambiguous which

data provider the user intended to be used.

SatisfySetterMethod
m,m 0 : SetterGetter
dataProviders? : PClassName
outputid : ClassName 7 7!DataId
matching ! : PClassName
value! : ClassName

m 0 = h|name == m.name, argType == m.argType,
optional == m.optional , value == value!|i
matching ! = {d : dataProviders? | outputid d = m.name}
#matching ! = 1) value! 2 matching !
#matching ! > 1) value! = dataProviderError
#matching ! = 0 ^ m.optional = YES) value! = m.value
#matching ! = 0 ^ m.optional = NO) value! = dataProviderError

After this Stage 3 has completed, the asset and behaviour factories have been
connected to appropriate data providers, so the desired assets and behaviours can
now be created. Stage 4 executes each asset factory so that it can create assets
(typically in a data-driven fashion) and add them to the ABMState, which is the
central class for the simulation. Since the creation of some kinds of assets (e.g.
PV systems) may depend on other kinds of assets already existing (e.g. houses to
install PV systems on), each asset factory can specify which other asset factories
it depends upon, and the module manager sorts these dependencies to ensure
that asset factories are run in a correct order.

Once the network of assets is built, Stage 5 executes the behaviour factories
to add behaviour objects to the assets (in MODAM an agent is an asset plus
zero or more behaviour objects). Stage 6 executes the start() method of all the
behaviours to initialise the agents, then in Stage 7 the ABMState object steps
through the simulation by using its scheduler to execute all the step() methods
of all the agent behaviours, in an appropriate order. This order is given by the
-order command line parameter, or is constructed automatically by the GUI.

6 Validation

Experience shows that the first draft of a formal specification such as the above
is rarely correct as written. To validate that the specification says what we want,

11

we use the ZLive animation tool to test some typical scenarios. ZLive is the Z
animation tool that is part of the CZT tools suite.3 It evaluates expressions,
schemas, and predicates written in Z, using the following steps:

1. Use CZT transformation rules to unfold schema operators and most other Z
operators into a core Z subset based on set comprehension expressions;

2. Perform static analysis (abstract interpretation to determine integer ranges
and set sizes) to reduce the search space from infinite to finite, and estimate
set sizes, where possible;

3. Sort the predicates within each set comprehension, using a greedy smallest-
first algorithm, so that small sets are iterated through first, and filter pred-
icates are evaluated as early as possible;

4. Lazily enumerate the solutions to each set comprehension, on demand.

For example, if we have defined a Factors schema as:

Factors == [num, fact : N | fact 2 dom{a, b : 0..num | a ⇤ b = num}]

the ZLive command do Factors ^ [num == 10] will return the first solution:

1 : h|num == 10, fact == 1|i

then successive ‘next’ commands will step through the remaining solutions (fact
equals 2, 5, and 10), and finally ZLive will report ‘no more solutions’.

Our methodology for validating the specification is similiar to a typical unit
testing approach. We take some simple real-world use cases of the MODAM
module manager and translate their example input modules into Z, then we use
those modules as inputs to our Z specification and animate the specification using
ZLive to produce some outputs. Finally, we check that those outputs agree with
our informal requirements for the module manager. As we shall see, we can also
use ZLive to check important properties of our example modules, such as being
uniquely defined – this is similar to type checking and determinism checking in
some programming languages.

So we define in Z an example asset factory for photovoltaic solar panels, with a
compulsory property called pvCharacteristics that takes any data provider that is
a subclass of pvCharacteristicsReader (this provides a list of typical PV systems),
and an optional getter-setter called exactAllocation that takes a data provider of
type pvExactAllocationReader (this is used when precise information is available
about which houses have PV systems, and the details of those systems).

pvCharacteristics
SetterGetter

name = dataIdPvCharacteristics
argType = pvCharacteristicsReader
value = nullClass
optional = NO

exactAllocation
SetterGetter

name = dataIdPvExactAllocation
argType = pvExactAllocationReader
value = nullClass
optional = YES

3 See http://czt.sourceforge.net/zlive for information about ZLive, and http://

czt.sourceforge.net for information about the Community Z Tools (CZT) project.

12

PvAssetFactory
AssetFactory

className = pvAssetFactory
consumes = {}
prior = {}
methods = pvCharacteristics [exactAllocation

We then check that these two getter-setters and the factory are correctly and
unambiguously defined (we have not defined any contradictory properties, or left
any properties unspecified), by defining theorems like the following (`?predicate
is the ISO Standard Z syntax for the conjecture that predicate follows from the
Z specification [1]):

theorem pvCharacteristicsIsValid
`?# pvCharacteristics = 1

The first time we asked ZLive to evaluate this conjecture, it was false! To
investigate why, we asked ZLive to generate members of the pvCharacteristics
schema one-by-one (‘do pvCharacteristics’), and quickly discovered that there
were no more solutions, so # pvCharacteristics is actually zero! This was because
we had specified the wrong kind of value for argType. This is a minor ‘typing’
error that is picked up by the Z typechecker when we use separate given types
for each kind of value, or is picked up by the above conjectures when we use
just integers for animation purposes. Reflecting on these failures led us to re-
vise our model so that the value and argType are now both Java class names,
representing the actual and expected types of parameter, respectively.

A similar failure happened the first time we tried to prove that our PvAssetFactory
was well-formed, via the following conjecture. This conjecture was initially false,
because we had accidently put class names into the consumes set, rather than
data IDs. We shall discuss this example further in the next section.

theorem PvAssetReaderFactoryIsValid
`?#PvAssetFactory = 1

Now we test each of the four cases of the SatisfySetterMethod .

1. First, we test the success path, where there is exactly one match.

testUniqMatch
SatisfySetterMethod

m 2 pvCharacteristics
dataProviders? = {pvCharacteristicsReader , pvExactAllocationReader}
outputid = {pvCharacteristicsReader 7! dataIdPvCharacteristics,

pvExactAllocationReader 7! dataIdPvExactAllocation}

13

In this case, ZLive updates m 0.value to the unique matching data provider
class pvCharacteristicsReader (whose ID is 14), and also returns that class
in value!. ZLive returns the following in LaTeX Z syntax (we have manually
highlighted the generated return values in bold):

1 : h|m == h|name == 35, argType == 14, value == 9, optional == 0|i,
m 0 == h|name == 35, argType == 14,value == 14, optional == 0|i,
dataProviders? == {14, 17}, outputid == {(14, 35), (17, 36)},
matching ! == {14},value! == 14|i

2. When there are multiple matching data providers, ZLive reports a unique
solution, with the value! output set to dataProviderError (8):

testSeveralMatch
SatisfySetterMethod

m 2 pvCharacteristics
dataProviders? = {pvCharacteristicsReader , pvExactAllocationReader}
outputid = {pvCharacteristicsReader 7! dataIdPvCharacteristics,

pvExactAllocationReader 7! dataIdPvCharacteristics}

1 : h|m == h|name == 35, argType == 14, value == 9, optional == 0|i,
m 0 == h|name == 35, argType == 14,value == 8, optional == 0|i,
dataProviders? == {14, 17}, outputid == {(14, 35), (17, 35)},
matching ! == {14, 17},value! == 8|i

The remaining two cases are similar. This validation approach uses the set-
oriented nature of Z to check that each of the four test cases is correctly defined
(no inconsistencies, and no missing/unspecified values), and that each test of
an operation returns a unique solution (a singleton set) that contains the ex-
pected results. This gives us strong confidence that the specified operation is
deterministic and correct, and that it has the four behaviours that we desire.

7 Reflections on Validation with ZLive

ZLive can be used in a fully automatic mode to evaluate the truth of all the con-
jectures in a specification, or in an interactive mode where we investigate the so-
lutions to specific schemas one by one. In general, each ZLive evaluation has three
possible outcomes: a solution is returned, or ‘no more solutions’ is reported,
or an evaluation error states that part of the evaluation is too large/infinite to
be able to continue. In the latter two cases, we found it is often useful to use the
ZLive ‘why’ command to find out exactly why the evaluation failed. This prints
the sorted predicates of each set comprehension, with a ‘high-tide’ marker just
after the furthest predicate that was successfully evaluated.

For example, when the PvAssetReaderFactoryIsValid conjecture initially failed
in the previous section, the ‘why’ command showed a large set comprehension
that contained:

14

tmp3672 = 30 .. 39;

tmp3671 = P tmp3672; %% powerset

. . .

tmp3706 = { 17, 14 };
consumes = tmp3706;

%%--------------- (The high-tide marker)
consumes in tmp3671 ;

which made it clear that although the consumes set was fully evaluated to
{17, 14}, it failed its type test: consumes 2 P(30..39) (because this is the first
line after the high-tide marker).

A more interesting example is if we accidentally write s.name = noDataId
for the second-to-last predicate in the GetMissingDependencies in Section 5. In
that case, when we evaluate the following test schema:

testGetMissing == [GetMissingDependencies | modules = EgModulePvAsset ;
factories? = PvAssetFactory ; #missing ! = 1]

ZLive just reports no more solutions. But the ‘why’ command shows:

tmp2654 = { . . .

tmp2911 = {
f in factories? :: 0.2097 ;

m in modules :: 0.3276 ;

. . . @ unsatisfied

};
missing! = tmp2911;

missing! in tmp2907 :: 1024.0 ;

missing! = tmp3197;

%%---------------

tmp3197 = 1;

tmp3199 = <| modules==modules, outputid==outputid, modules’==modules’,

outputid’==outputid’, factories?==factories?, missing!==missing! |>

@ tmp3199

}
%%----------

These two high-tide marks tell us that the outer set comprehension succeeded
(giving the empty set, hence ‘no more solutions’), but in the inner set it was
the cardinality of missing ! set that caused the failure. Removing this cardinality
check from test1 then shows us that missing ! was empty, and a further ‘why’
command shows us that potential members of missing ! were found, but they
were not in f .members, which helps to expose the error in the specification.
So the ‘why’ command is quite helpful for debugging specifications that fail to
return the expected results.

8 Conclusions

We have specified and validated key aspects of the MODAM module manager,
which automates the building of models from a set of components. The set-based

15

validation approach described here extends previous work on the unit testing of
Z specifications [9] by using a mixture of automated and interactive animation,
and in using the ‘why’ command to help debug set comprehensions.

In this case study, the Z specification was written after the Java implemen-
tation of the module manager, because the module manager was quite complex,
and we wanted to understand its abstract behaviour more clearly. The process
of specifying it in Z exposed several places where the Java implementation could
have been simplified, and a couple of potential errors in the Java implementation
where it omitted semantic checks that could have allowed undefined behaviour
on erroneous inputs (e.g. circular dependencies between modules). Using ZLive
to validate the Z specification exposed several minor errors in the Z specification,
as discussed above. Di�culties with animating some schemas also uncovered one
bug in ZLive that caused some disjunctive predicates to generate an error rather
than evaluating correctly, and led to two minor improvements in the animation
algorithms. These benefits are a good return for around 2.5 expert person days
to write and debug the Z, plus another 1.5 days spent improving ZLive.

The most similar tool to ZLive is the Pro-B animator for B [6]. This is
more sophisticated than ZLive, can animate multiple input languages, and has
several user interfaces. Like ZLive, it o↵ers automatic and interactive modes,
can handle some infinite constructs, and can be used to generate solutions to a
specification, to find counter-examples, or to search for simple proofs via finite
model-checking. However, it does not seem to have any command corresponding
to the ZLive ‘why’ command, which allows a sophisticated user to see how far it
got through animating each nested set comprehension within the specification.

References

1. 13568, I.: Information Technology—Z Formal Specification Notation—Syntax,
Type System and Semantics. ISO/IEC (2002), first Edition 2002-07-01

2. Boulaire, F., Utting, M., Drogemuller, R.: Dynamic agent composition for large-
scale agent-based models. Complex Adaptive Systems Modeling 3(1) (2015)

3. Cai, C., Jahangiri, P., Thomas, A.G., Zhao, H., Aliprantis, D.C., Tesfatsion, L.:
Agent-based simulation of distribution systems with high penetration of photo-
voltaic generation. In: Power and Energy Society General Meeting. IEEE (2011)

4. Forum, C.F.G.: Change and choice. Report, CSIRO (01/12/2013 2013)
5. Klügl, F., Bazzan, A.L.C.: Agent-based modeling and simulation. AI Magazine

33(3), 29–40 (2012)
6. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,

Mandrioli, D. (eds.) FME 2003. pp. 855–874. LNCS 2805, Springer-Verlag (2003)
7. North, M., Conzelmann, G., Koritarov, V., Macal, C., Thimmapuram, P., Veselka,

T.: E-laboratories: agent-based modeling of electricity markets (2002)
8. North, M.J.: A theoretical formalism for analyzing agent-based models. Complex

Adaptive Systems Modeling 2(1), 3–3 (2013)
9. Utting, M., Malik, P.: Unit testing of Z specifications. In: Börger, E., Butler, M.,

Bowen, J.P., Boca, P. (eds.) ABZ. LNCS, vol. 5238, pp. 309–322. Springer (2008)
10. Weidlich, A.: Engineering interrelated electricity markets: an agent-based compu-

tational approach. Springer [distributor], Heidelberg (2008)

