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Abstract—The advancement of smartphones with various
type of sensors enabled us to harness diverse information
with crowd sensing mobile application. However, traditional
approaches have suffered drawbacks such as high battery
consumption as a trade off to obtain high accuracy data using
high sampling rate. To mitigate the battery consumption, we
proposed low sampling point of interest (POI) extraction frame-
work, which is built upon validation based stay points detection
(VSPD) and sensor fusion based environment classification
(SFEC). We studied various of clustering algorithm and showed
that density based spatial clustering of application with noise
(DBSCAN) algorithms produce most accurate result among
existing methods. The SFEC model is utilized for classifying
the indoor or outdoor environment of the POI clustered
earlier by VSPD. Real world data are collected, benchmarked
using existing clustering method to denote effectiveness of low
sampling rate model in high noise spatial temporal data.

Keywords-Big Data, POI, Clustering, Environment Classifi-
cation, Trajectory, Sensor Fusion

I. I NTRODUCTION

Data collected using mobile devices such as smart phone
and wearable devices have been explicitly studied by various
researchers in [1], [2] as they are able to generate various
insights about a particular user life pattern. Among all the
information captured, point of interest (POI), user mobility,
user life pattern, and transportation mode gained a lot of
attention; but major existing crowd sensing applications
suffer from the drawbacks of high battery consumption.
The reason behind high battery consumption is due to high
sampling rate as well as limited battery capacity of mobile
devices, which render most of the methods only suitable for
short term data collection.

To solve the aforementioned challenges, we proposed
ultra low sampling architecture for extracting POI utilizing
various sensor information available on a smart-phone. One
of the main challenges of ultra low sampling architecture is
trade off for accuracy in order to obtain data at a very long
interval compared to traditional method. Another problem
that may arise is highly correlated with the data quality,
which may produce inaccurate output after computation.

The main objective of the paper is to study POI based
on the various sensor information generated by smart phone
using low sampling rate. Such technique will find application
in better understanding user life pattern, which in return
can improve user life style. However, in a crowd sourcing /

sensing environment, there are a wide variety of devices by
different users, and it is not possible to retrieve ground truth
from the users. In this paper, our main focus is to verify the
effectiveness of clustering algorithm based on data collected
from volunteer users. Our model require minimal attention
and is suitable for helping elderly to understand their life
pattern after retirements. These insights can be used for the
authorities to improve certain location facilities, whichwill
be reported in the continued works.

Various information has been collected through the appli-
cation we have previously developed in [3]. Data collected
from smart-phone are uploaded to the server and off-line
analysis are performed to gain insights about POI and
trajectory. We first extract data from database, and later
perform several preprocessing techniques namelydenoise
and timeSync. The former mentioned technique allows us
to remove any potential noise, outliers, and duplicate data;
whereas the latter mentioned technique is used for syn-
chronizing the data with different timestamps. Subsequently,
we apply VSPD algorithm to extract the POI, while the
DBSCAN is used for clustering similar POI. Trajectory can
be obtained through labeling each POI with the time stamp
based on duration of each stay point. As our main concern
is to determine POI, we further study the characteristic of
the POI and classify it into indoor vs outdoor, or private
vs public using SFEC technique. The SFEC is implemented
using multi sensor data obtained from mobile devices.

Our contributions in this paper are listed as follows:
• We present VSPD algorithm, which is capable to dis-

tinguish valid stay points due to poor the data quality of
low sampling rate. Stay points are validated using the
proposed module and later clustered into POI based on
temporal data.

• SFEC method is presented to distinguish POI by its
indoor and outdoor characteristic. In addition, we also
categorize the POI by its property, whether it is private
or public premises.

The rest of the paper is structured as follows: In Section
II, we propose ultra low sampling architecture and discuss
about the data processing techniques. In Section III, VSPD
algorithm is introduced and benchmarked against existing
clustering and stay point detection algorithms. After clus-
tering similar POI, we performed environment classification
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using SFEC method and show the efficiency of our methods
in Section IV. Finally, we conclude our work in Section V.

II. SYSTEM ARCHITECTURE ANDFRAMEWORK

In this section, we present the ultra low sampling rate
architecture for data collection and processing.
A. User Trajectory and Point of Interest Detection

User mobility has been studied in [4], [5] and several
features extraction show the necessity of extracting stay
points before obtaining insights from user trajectory. Stay
points are known as POI in our study scenario, where it can
be a particular user home, work place, leisure spot, and etc.

To study the POI, trajectory data and user mobility are
often used to visualize the path a user takes from one
POI to another. Extracting trajectory features yields a lotof
important information such as travel distance, duration, POI
location, transportation mode, and etc. On the other hand,
transportation mode (TM) is identified through the feature
extraction using methods such as probability estimation [6].
Other related works such as [1], [7] use mobile phone as
platform for data collection and try to capture trajectory data
using various interpolation methods (linear, cubic, and near-
est). Finer detail of TM, such as motion patterns have been
studied in [8], which uses Hidden Markov Model (HMM)
andk-means clustering for obtaining motion patterns; then
it is also serve as anomaly detection.

However, most of the methods only deal with high sam-
pling rate of data and are not suitable for day long data
collection due to limited battery capacity. We incorporated
validation function for the stay point detection in order to
validate low sampling rate of data.
B. System Architecture and Data Processing

The system framework for collecting POI information can
be divided into two phases, which are data collection and
data processing. Data collection phase involves installation
of mobile application at volunteers’ smart phone. Data
collected from mobile devices, which are (1) Location in-
formation, (2) Social Information, and (3) Activity Informa-
tion. The location information consists of user geographical
positioning data, while the social information is composed
of sound information collected from the mobile devices
microphone. The activity information consists of data such
as TM and type of activity that users are engaged in.

We have previously developed the application using An-
droid frameworks in [3] and is used for data collection in this
paper. It has been further fine-tuned to adapt the sampling
rate of 5 minutes and optimized for off-line data collection,
when there is no real-time Internet connection. The overview
of the system architecture is shown in Fig. 1.

The preprocessing of data is performed in order to gen-
erate usable data to extract useful features. First, the raw
data will be passed throughdenoiseprocess to remove any
duplicate records. The denoise module checks the data time-
stamp and eliminates data with same time-stamp. The reason

Figure 1. Overview of the system architecture

for duplicated data is mostly due to the redundant data kept
by mobile phone, which fails to receive acknowledgment
from server upon upload. The timeSync module act as the
function for linking different data to a similar time stamp
in order to perform data fusion computation, which will be
presented in later part. Data alignment starts by aligning
the data from different database based on the synchronized
time for each dataset into single matrices. The overall data
processing is shown in the Algorithm 1.

Algorithm 1 Overall System Algorithm
Data: {L,Q} whereit = 1, 2, ...,N
begin

preprocess({L, Q})
stayPoints = ValidationStayPointAlgorithm(P )
clusteredData = DBSCAN(stayPoints)
Tx = Trajectory(stayPoints,P , clusteredData)
timeSync({L, Q})
SFEC({L,Q})

We first define set of location data collected from the
mobile devices asL = {P1, P2, ..., PN}, whereP can be
denoted asPi = {ϕi, λi, ai, ti}. The latitude and longitude
data are represented byϕ andλ respectively, which is part
of GPS InformationPi. The t represents the time-stamp of
data obtained anda denotes the accuracy of GPS module.

We denoteQ = {S1, S2, ..., SN} as segment of stay
points and define each sensor value for eachQ as following
Si = {vi, ai,Ni, βi, φi}. Each data are partitioned into
segments based on the stay points. Thevi represents the
velocity of the user and this is captured using the mobile
device’s API, andai is the accuracy of location data.Ni

is the normalized noise intensity, andφi represents the
maximum occurred activity within a time segment.

We noticed different mobile devices possess different
noise levels due to different hardware component and manu-
facturer. In order to generate a fair comparison of noise level
across other devices, we will normalized the noise data using
the Equation (1) below:

N = 10

(

s− smin

smax − smin

)

(1)

wheres represents the noise amplitude level. Thesmin and
smax represent minimum and maximum noise level captured



respectively based on user data at a particular time frame (i.e.
one month data).

III. POINT OF INTERESTDETECTION

In this section, we discuss the POI extraction module
such as stay points detection and data clustering, that group
similar POI into cluster.

A. Point of Interest Clustering

K-means clustering [9] is one of the common clustering
techniques in handling numerical data since it offers fast
and easy usage compared to others. However, finding an
optimal k is one of the challenges as it is an NP hard
problem. In [10], they have studied the use ofk-means
clustering on spatial and temporal data for POI clustering.
However, k-means is not capable of identifying arbitrary
shape of cluster, which makes it not ideal for our proposed
architecture. Alternate common clustering method is density
based clustering such as DBSCAN [11] and OPTICS [12].
In [13], they have used customized DBSCAN algorithm for
geo-tagging photo which uses density threshold and adaptive
density. However, their proposed method only concentrates
on spatial information and ignores the temporal data.

Low ultra sampling data collection has a high impact
on the quality of data, which may results inaccurate data
clustering and wrong POI generated. Therefore, we studied
different kind of clustering technique as well as stay point
detection to ensure best features extraction technique is
chosen.

B. Validation based Stay Points Detection (VSPD) Algo-
rithm

VSPD algorithms utilize the stay point detection algorithm
first proposed in [4] and we added validation function to
remove incompetent POI. The validation function in VSPD
algorithm has been deployed in order to adapt ultra low
sampling architecture, which is presented in Algorithm 2.

Algorithm 2 Validation based Stay Point (VSPD) algorithm
Data: Pi wherei = 1, 2, ..., N
Result: SPx

for k ← 1 to N do
while j ← (k + 1) to N do

Check(a{i,i+1,...,j} , threshold(a)) using Equation (7)
Calculated using Equation (4)
if d > a then

Caclulate∆t using Equation (5)
if ∆t > threshold(t) then

if Validity(d,∆t) then
addStayPoint(Pi , Pj)

else
break

Before going into detail of the algorithm, we first define
the following key information, which are stay points and
trajectory. Stay points are defined asSP , where it represents
potential POI a particular user is at. Each stay point can
be arranged to trajectory by adding time-stamp, resulting
Tx = {SP1, SP2, ..., SPx}.

Reachability of distance between two points is a crucial
piece of information required for DBSCAN in order to
correctly cluster similar POI. Throughout this paper, the
distance between two points{ϕ1, λ1}, and {ϕ2, λ2} are
calculated using the Harvesine formula as shown in Eqn.
(2):

hav(
d

r
) = hav(ϕ2 − ϕ1) + cos(ϕ1) cos(ϕ2)hav(λ2 − λ1) (2)

where harvesine functionhav() can be found in [14] and
d is the distance between two points andr is the radius of
earth. Thehav() used in Eqn.(3) is defined as follows:

hav(θ) = sin2(
θ

2
) =

1− cos(θ)

2
(3)

To obtain the distance between two points, we apply the
inverse Harvesine function for Equation (4) by using arcsine
function as follows:

d = r × hav−1(h) = 2r arcsin
(√

h
)

(4)

After obtaining the distance between two points, we can
formulate duration difference between two stay points∆t

as follows:
∆t = ti+1 − ti (5)

where ti is the time-stamp for current sample andti+1 is
the timestamp for the previous sample.

Validation function is as a core function in detecting valid
stay points. Ultra low sampling may generate high noise
data from environment such as indoor buildings, tunnel, and
underground. To eliminate potential noise accounted into
stay points, we formulate the validation function as follows:

validaty(d,∆t) = ∆t < Θt andd < Θd (6)

whereΘt is the threshold for time andΘd is the threshold
for distance.

Subsequently, theeps andminPts need to be determined
before applying DBSCAN algorithm. Theeps are derived
using the accuracy of GPS location as follows:

eps =

{

ai + ai−1 if ai + ai−1 < Θl whereminPts = 1
Θl if ai + ai−1 ≥ Θl whereminPts = 1

(7)
where accuracy of GPS data are calculated is considered
for checking the validity of the stay points. For example, if
an user entered a tunnel and GPS points remain fixed until
he/she exit the tunnel after t time. Our validation model
in Eqn. 6 will deem the period of entering tunnel as part
of traveling because the time taken and distance traveled is
considered not valid. In Eqn.(7), a threshold ofΘl = 200
was included to prevent GPS accuracy become too large and
form a potential cluster. TheminPts is set to 1 since we
do not treat any POI as outliers at the moment.

C. Evaluation of Stay Point Detection and Clustering

To evaluate the proposed VSPD algorithm, we have few
volunteers installed the application on their smart phone and
proceed with their daily life. After data collection performed,
we will request ground truth from every participant in order
to correctly identify the POI they have been to.



Effect of Different Clustering Algorithms

Figure 2. Comparison of Different Stay Points Extraction and Clustering
Techniques

First, we study the POI detection algorithm, which con-
sists of (1) VSPD algorithm, (2) stay point algorithm [4] and
(3) online clustering [3]. Next, We evaluate the clustering
method for each stay point detection algorithm using (1)
DBSCAN, (2) K-Means, (3) Hierarchical. It should be
noted, that thek-means clustering’sk is determined using
Davies Bouldin index. The comparison of different stay
point extraction algorithm is presented in Figure 2.

Based on the results, VSPD algorithm and DBSCAN man-
aged to extract POI correctly compared to others. Original
stay point algorithm clustering wrong results are shown in
red solid lined box. It is unable to detect the POI correctly as
it is unable to distinguish the stay points due to poor indoor
GPS accuracy. We manually inspect the GPS points located
in the cluster 10 and found out that indoor low accuracy
led to incorrect stay points extraction. It is observed that
cluster 6 provide incorrect POI compared to ground truth
and we highlighted using dotted grey box. By comparing
the different clustering methods, stay point extraction is
more crucial in term of extracting the correct POI from the
raw database. The clustering technique used after stay point
extraction algorithm yields significant changes afterwards.
However, by comparing the consistency of the algorithm,
we prefer DBSCAN over other clustering techniques due to
its capabilities of forming arbitrary shape cluster, as thedata
collected is never in a consistent shape to begin with.

Effect of Different Clustering Parameters

The next data extraction depends on the duration of stay
time at a particular POI. We adjust the delta t accordingly
to examine the granulated detail of possible stay point. The
highlighted area of solid black box and grey dash lined box
in Figure 3 generates correct POI according to the ground
truth.

However, there is a slight error as framed in black dotted
box which is due to transition of GPS accuracy from high to
low. This causes a gap between two point and the algorithm
treat it as two different location and hence error occurred.
After verifying with the volunteers, the reason for such
occurrence is die to traffic congestion. This led the algorithm
to think the users is at a fixed position as it the time does not
exceed the∆t. They appear to be invalid in the validation
function in VSPD algorithm and does not form a cluster.

Figure 3. Comparison of different time threshold for stay point extraction
algorithm

Effect of Different Mobile Devices
Data collection using different smart phone such as Sam-

sung Tab 7, Galaxy Alpha A8 , LG G-Pro 2 are tested.
Do note that this is the first phase of our works, we have
deployed the application and collected the data more than
100 users in our next works. In 4 same POI are labeled and
colored as same number, where other locations are denoted
differently. Slight drift of POI is observed through all devices
tested in the same POI as highlighted in Grey solid box and
black dash lined box. Despite slight difference in check-in
and check-out time, VSPD algorithm and DBSCAN man-
aged to extract the POI correctly regardless of device vendor.
The VSPD algorithm has the computational complexity

Figure 4. Data collected using different Mobile Devices

of O(N2) where validation function is O(1) step with no
extra computational cost and is able to eliminate wrong stay
points.

IV. SENSORFUSION BASED ENVIRONMENT

CLASSIFICATION

A. Indoor and Outdoor Classification
IO classification have been studied by applying several

different approaches. It is can be divided into two ap-
proaches, which uses image processing and sensor fusion.

In [15], IODetector has been proposed to classify IO
environment using three sensors (cellular module, light sen-
sor, and magnetic sensor). They have combined sensors and
wireless approximation methods to determine whether the
environment belongs to indoor, outdoor out corridor. They
have utilized HMM in conjunction with Viterbi algorithm to
estimate the IO condition. However, Radu et al. [16] claimed
that their supervised methods are far superior by introducing
more features into IO classification. They have applied co-
training methods and managed to achieve 92% of accuracy
compared to GPS and IODetector. Other related work can
be found in [17], [18].



In [19], they have proposed IO classification using image
processing. Waleed T. et al [20] has presented classification
technique that uses GIST descriptor in conjunction with
neural network classifiers to decide whether image is taken
indoor or outdoor. Based on their proposed method, they
managed to achieve 90.8% of accuracy by extracting GIST
features and using feed-forward neural network to feed
training samples.

Since image processing requires training and a camera
to be turned on during data collection, it will end up with
high battery consumption. Hence, it is not suitable for ultra
low sampling rate. Considering the case, mobile device is
in pocket, it might end up in inaccurate representation of
the IO. To overcome such scenario, we applied the notion
of sensor fusion for data collection, in order to achieve
better battery management and more accurate environment
classification.

B. Sensor Fusion based Environment Classification (SFEC)
The stay points are classified as indoor vs. outdoor and

private vs. public, using sensor fusion based environment
classification. An indoor environment is where the average
GPS accuracy for the POI is above a certain threshold, while
an outdoor environment is where the average GPS accuracy
for the POI is below that threshold (here, the GPS accuracy
is returned by Android API, in which, when a higher value
for accuracy is returned, it means the GPS accuracy is
lower). A private environment is where the noise level for
the POI is below a certain threshold and, while a public
environment is where the noise level for the POI is above
that threshold. Since we cannot obtain a100% estimation
to determine the type of environment where the POI is, we
assign percentage confidence levels for determination.

The classifier requires multi-sensor data (i.e. GPS accu-
racy, Noise, Battery Level, Light etc.), from start and end
time of the POI. The duration of POI is divided into 5
minute slots, and each of those slots are given a confidence
percentage for type of above mentioned environments. Each
type of environment is labeled into one of the 4 different
categories, such as indoor, outdoor, private, and public,
which are encoded into{1, 2, 3, 4} respectively.

Total percentage confidence level for a particular type
of environment, for each type of slot, is calculated using
the Equation (8), where,n is number of5 minute slots
in POI, Pc is confidence percentage,Sc

k
is percentage of

kth slot being typec, and c is type of environment where
c = {1, 2, 3, 4}, and(1 ≤ k ≤ n). If there is no data in a slot
for the classification, we useP0 to indicate the environment
type ’Unclassified’.

Pc =
1

n
×

n
∑

k=1

S
c
k ; if n > 0 (8)

The confidence level calculation for the environment type
(1) Indoor and (2) Outdoor, are presented in the Eqn. (9)
and Eqn. (10) respectively.

For P1, percentage contributions from sensors are,90%
by GPS accuracy(G), 5% by battery level (β), whereβ = 1
if battery is charging, andβ = 0 otherwise, and5% by
Activity = ’Still’ (denoted byαs, whereαs = {0, 1}) which
is returned by location API. In Eqn.(9) and Eqn.(10),ThG

is threshold GPS accuracy, andx is average GPS accuracy
in the slot.

P1 =

[

(

x− ThG

ThG

× 0.9
)

+
(

(β + αs)× 0.05
)

]

; if x > ThG

(9)
For P2, percentage contributions from sensors are,90%

by G, and10% by light level (l), wherel = 1 if light level
is above threshold levelThl or l = 0 otherwise.ThG = 30,
ThN = 5, andThl = 1000 based on empirical studies.

P2 =

[

(

ThG − x

ThG

× 0.9
)

+
(

Thl × 0.1
)

]

; if x < ThG (10)

The confidence level calculation for the environment type
(2) Private and (3) Public, are presented in Eqn. (11) and
(12) respectively where,ThN is threshold noise level, and
y is average normalized noise level in the slot.

For P3, percentage contributions from sensors are, 90%
by noise level, and 10% by Activity = ‘Still’(αs).

P3 =

[

(

ThN − y

ThN

× 0.9
)

+
(

αs × 0.1
)

]

; if y < ThN (11)

For P4, percentage contributions from sensors are, 90%
by noise level, and 10% by Activity = ‘Walking’(denoted
by w, whereαw = 0, 1).

P4 =

[

(

y − ThN

ThN

× 0.9
)

+
(

αw × 0.1
)

]

; if y > ThN (12)

C. Evaluation of SFEC

SFEC is evaluated in real-world scenario by collecting
multi-sensor information from mobile device of a volunteer
user. Table I shows calculated percentage confidence levels
of 4 POI along with their ground truth. When there is no
data for a particular environment type, it is labeled as ‘-
’. For POI 1, P2 andP4 have substantial difference when
compared toP1 andP3 respectively. Similarly, for POI2, P1

andP3 have substantial difference in comparison withP2
andP4 respectively. For POI3, P1 andP4 have substantial
difference in contrast withP2 andP3 respectively. For POI
4, no noise data found possibly due to power management
profile of device which causes absence of data and indoor
outdoor classification turned out to be incorrect. Moreover,
P1 andP2 have no substantial difference to distinguish the
environment type. The environment of all POI (except POI
4) were able to estimate correctly, using SFEC method.
However, by comparing the P1 and P2 values of POI4, they
are closed to each another, this may give us hint that the
estimation could be in error.



Table I
CONFIDENCE PERCENTAGES FORSFEC

Classification POI 1 POI 2 POI 3 POI 4

P1 (Indoor) - 83.94 59.78 35.28
P2 (Outdoor) 60 2.42 16.24 23.94
P3 (Private) - 22.35 0.61 -
P4 (Public) 73.12 - 29.66 -

Estimation
Outdoor
Public

Indoor
Private

Indoor
Public

Indoor
Unknown

Ground
Truth

Outdoor
Public

Indoor
Private

Indoor
Public

Outdoor
Public

V. CONCLUSION

In a nutshell, this paper focuses on low sampling and
sensor fusion techniques for POI extraction and environment
classification for smart-phone location data. We introduced
validation function for the POI extraction and clustered
identical POI to generate user trajectory. Furthermore, we
implemented SFEC method to identify the type of environ-
ment using various sensor input. In future, we will expand
the analysis model to study regional mobility and travel
pattern with a large scale crow sourcing / sensing activity,
where ground truth is hard to obtain.
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