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Abstract

A phenomenal increase in the development of Unmanned Aerial Vehicles (UAVs) has been
observed in a broad range of applications across various fields of study in recent years. Mul-
tirotor UAVs enable a broad range of applications due to their special flight characteristics
such as vertical take-off and hovering over the target of interest to perform an action for
different applications. Precision agriculture is one of the emerging fields of interest for UAV
applications for monitoring crop health. UAVs can provide higher spatial resolution at lower
operational costs and have the potential to facilitate site-specific invasive weed control treat-
ments in crop fields, as opposed to manned aircraft or satellite remote sensing.

This thesis describes a framework for off-board and on-board systems which include the
UAV platform, sensor payload and post-processing pipeline customised to detect an ArUco
marker, a colour and ,specifically, invasive spear thistle weed. In the off-board system stage,
the UAV collects the data and a computer vision algorithm checks whether spear thistle weed
can be found in the image. The system creates GPS tabulated locations for weed detection.
Results have shown that the sensitivity and selectivity of the algorithm depends upon both
the flight height and the season of the weed. The sensitivity is the ability of the algorithm
to identify and detect the true positive target while the selectivity is the capability of the
algorithm to filter out the false negatives for detection targets. Furthermore, the system
utilises false positive rates and false negative rates to achieve accurate results. False positives
are when a classification indicates presence, however the weeds are absent, and false negatives
are the point at which a classification demonstrates the weeds are absent, but are truly present.
Results have shown a 95% sensitivity and 98% selectivity when the height above the ground
is 5 m, 90% sensitivity and 94.5% selectivity when the height above the ground is 7 m and
80% sensitivity and 85% selectivity when the height above the ground is 15 m. The task was
complex due to the difficulty in differentiating the spectral properties and general appearance
of the highly correlated invasive spear thistle weeds and zoysia grass at two stages of growth
and difficulties due to seasonal variability and sun angle.

After first applying the system for weed detection off-board, on-board decision making
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was then implemented. A modular and generic system for the UAV using vision based navig-
ation for on-board decision making with a focus on agriculture and remote sensing application
was developed. A decision making approach similar to the Observation, Orientation, Decision
and Action (OODA) loop was implemented. Position control based on the Robotic Operating
System (ROS) was used to ensure the tracking of waypoints. The detection of an object of
interest is facilitated by computer vision functionality. This allows the UAV to change its
planned path accordingly in order to approach the target, apply pesticide or collect additional
images at higher resolution. The results showed that the on-board system using the ROS
operation system is capable of object detection and close the OODA loop framework. Results
showed that the on-board system is capable of detecting an ArUco Marker with 99% sensitivity
and 100% selectivity at a height of 5 metres above ground level. Furthermore, the on-board
system is capable of detecting a red target with 96% sensitivity and 99% selectivity at the same
height. The real time on-board detection and action algorithm for invasive weed needs to be
improved to achieve better sensitivity and selectivity. The system is capable of detecting the
invasive weed to 33% sensitivity and 67% selectivity. The low sensitivity and selectivity for
weed detection is mainly due to limitations in the algorithm related to the sun angle and the
season of the weed. This system has potential applications in the field of precision agriculture
such as crop health monitoring and in particular, plant pest detection, which impacts on crop

yields and results in financial losses if not noticed and addressed at an early stage.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Unmanned Aerial Vehicles (UAVs) are being used in several remote sensing applications in-
cluding search and rescue, ecology, wildlife and precision agriculture [[1}[2[3]. Remote sensing
in precision agriculture can assist farmers to assess plant yield, plant health and disease [[4} 5]
Different types of sensors such as: thermal cameras, multispectral cameras, NIR cameras
and digital cameras have been used on-board UAVs to collect data or monitor plant health
[6.[7,18,9]. Computer vision and image processing have also been applied to remotely sensed
images to make decisions in agricultural applications. These decisions could be carried out
off-board after collecting and processing the data or UAV on-board while the UAV is flying
[Z,[6} [10]]. There are cases where it is desirable to make an on-board decision to minimise the
amount of data that is stored on-board. As an example, the UAV could be flying at a specific
height, decide on a potential issue, descend and capture a high resolution image, or perform
a closer inspection or apply pesticides or release insect bugs. The aim of this research is to
develop and implement off-board and on-board systems for real time precision agriculture
and plant pest detection.

Traditionally, farmers apply pesticides, herbicides or release insect bugs all over the field
which is costly. The motivation for using UAVs with the structure of the OODA (Observation,
Orientation, Decision and Action) loop framework is to detect invasive weed and implement
an action such as applying herbicides. Autonomous on-board detection and action will target
the specific location of the weed or pest for herbicide application instead of applying it on the
whole field.
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1.2 Research Objective

The aim of this research is to develop and flight test a multi-rotor airborne system which
includes: UAV, microcomputer advanced processing interface with camera and GPS with
OODA loop approach for off-board and on-board decision making. The system will be applied
in the context of remote sensing in precision agriculture.

The main objectives for this research are as follows:

1.2.1 Objective 1

To investigate the use of optimisation techniques and develop algorithms which can detect
invasive weeds, and to implement an algorithm for invasive weed detection and mapping for
agricultural purposes. The invasive weed map will provide the geo-location of the detected
weed which can give information to the farmer to assist them to apply the treatment or uproot

the weed.

1.2.2 Objective 2

To apply an OODA loop for on-board decision making to detect a target of interest (a colour
or specific type of weed, for example) and use the developed system to complete an action
such as spraying or capturing high-resolution imagery from a lower height. To develop a
position control based on navigation using the ROS (Robotic Operating System) to ensure a

tracking of waypoints and the target location.

1.3 Research Problem and Research Plan

The use of UAVs for off-board and on-board decision making in precision agriculture is now an
active and developed field of research. There are, however, limitations to supporting off-board
and on-board decision making in the detection algorithm and theoretical framework. There
are several different UAV platforms and computer vision algorithms that have been used and
most of the research works focus on image analysis and classification executed after the UAV
lands. There are, however, cases in which there is a need for rapid assessment with on-board
image analysis and decision-making. The OODA loop method can assist in this effort, but it

is limited by the resources and constraints of on-board computers that make the task more
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challenging. This research experiments will answer the following questions:

1. What are the current limitations of image analysis, classification methods and vision

based navigation with electro-optical sensors for on-board decision making?

2. What are the challenges in the practical applications of off-board and on-board systems
in the context of precision agriculture and plant biosecurity where vegetation charac-
teristics, such as texture, colour or shape, are posing significant challenges for existing

image classification algorithms?

1.4 Research Contribution

The main outcomes and the contribution of this research is as follow:

« Application of computer vision to differentiate and classify a particular species of in-
vasive weeds, i.e. spear thistle, amongst soil and zoysia grass and then provide GPS
locations (geolocation) or weed map information that can assist farmers in determining

weed locations and apply treatment.

+ To develop an Unmanned Aerial System (UAS) capable of on-board target recognition
for invasive weeds and autonomous decision making using PID based position control
with the OODA loop concept. Such a system should be capable of deploying a UAV on
a designated flight plan, detect an object of interest and then autonomously perform
a manoeuvre based on its recognition of the target, such as descend to a lower flying

height and spray the target or to take a high resolution image.

1.5 Research Methodology

The overall research framework can be divided into fives stages to allow for progressive

development. The phases have been planned to span the suggested 1.5-2 years cycle.

1.5.1 Stage 1: Literature Review

The first stage mainly focused on a survey of relevant literature in the field of agriculture
using UAVs, on-board decision making using the OODA loop method for remote sensing and

identifying different computer vision techniques suitable for this research. The concept of an
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OODA loop was also studied to use the method for on-board decision making after the target

is detected.

1.5.2 Stage 2: Initial Data Collection and Algorithm Development for Off-

board System

In this stage, an initial data collection campaign was conducted at Christmas Creek, Beau-
desert in Queensland, Australia. This data was used to develop an algorithm for weed detec-
tion and mapping. After collecting the data, MATLAB was used to process the data and to
develop a suitable weed detection and mapping method. The algorithm checked whether or

not weed is in the image and create GPS tabulated locations of detected weed.

1.5.3 Stage 3: Software System Development for On-board System

This stage was divided into two parts:

A-In the first part, an existing system was modified to include software jointly developed
by the authors of this paper "Open Source Computer-Vision Based Guidance System for UAVs
On-Board Decision Making “[1]]. During this part the software was modified and the algorithm
was refined in order to be used in this research.

B- In the second part, the Robotic Operating System (ROS) was used to build a new system
to provide more flexibility to control the different nodes in the system: a node for navigation,
anode for target detection and one for ultrasonic sensor to control the altitude etc. Moreover,
a simulation through the ROS environment was developed and used to ensure the system

works well before the actual flight tests.

1.5.4 Stage 4: Hardware System Development

This stage consisted of developing and testing all hardware components including a quad
copter UAV (3DR IRIS), an autopilot (Pixhawk), a single board computer (Odroid U3), a camera
and a GPS receiver. AutoCAD is used to design the weed hardware enclosures and spraying
mechanism. During this stage the wiring connection for the electronics devices such as
ultrasonic sensor and the spraying motor was connected to the single board computer. The
spraying tubes and the connection from the tank to the motor was also achieved as part of

this stage.
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1.5.5 Stage 5: Integration and Testing the System

This stage involved the integration of the software system and the detection algorithm from
stage 3 and the physical hardware from stage 4. The complete on-board decision and action
system was implemented on-board with a microcomputer such as (Raspberry Pi 2B or Odroid
U3) for on-board decision making using the concept of OODA loop firmware. The on-board
system was tested through simulation within the ROS and through the actual flight test and
comparisons was made between them multiple times to determine the accuracy of the system

and the type of the environment suitable for this algorithm.

1.6 Publications, Submission and Accepted Papers

Publications stemming from this work and the related works are listed in chronological order

below:

« PUBLISHED PAPERS

1. H. Choi, M. Geeves, B. Alsalam, and F. Gonzalez, “Open Source Computer-Vision
Based Guidance System for UAVs On-Board Decision Making”, IEEE Aerospace

conference, Big Sky, Montana, March 5-12, 2016.

2. S. L. Ward, J. Hensler, B. H. Y. Alsalam, and L. F. Gonzalez, “Autonomous UAVs
Wildlife Monitoring and Tracking Using Thermal Imaging and Computer vision,”

IEEE Aerospace conference, Big Sky, Montana, March 5-12, 2016.
« UNDER -REVIEW PAPER

3. Bilal Alsalam, Duncan Campbell, and Felipe Gonzalez, “Invasive Spear Thistle
Weed Detection and Zoysia grass Mapping Using Aerial Imagery”, Weed Research

Journal, 2017.
« ACCEPTED PAPER

4. B. Alsalam, K. Morton, D. Campbell and F. Gonzalez, “Autonomous UAV with
Vision Based On-board Decision Making for Remote Sensing and Precision Agri-

culture”, IEEE Aerospace conference, Big Sky, Montana, March 4-11, 2017.
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Figure [1.1]illustrates the link between the different papers and the research objectives. The
first two papers helped in generating a low cost system with on-board image processing
using a Raspberry Pi 2B microcomputer interface with a camera [l [2]. The techniques learnt
from this paper helped to understand the process of connecting autopilot through a serial
connection with the Raspberry Pi 2B. This allowed for the full control of the UAV while the
UAV was flying to a target of interest [I]. A deeper understanding of computer vision and
image processing for detecting a target and a method to transfer the target location from the

camera frame to the global location GPS was acquired through the team research covered in

this paper.
H. Choi, M. Geeves, B. Alsalam, and . S. L. Ward, J. Hensler, B. H. Y. Alsalam,
Gonzalez, “Open Source Computer- and L. E Gonzalez, “Autonomous UAVs
Vision Based Guidance System for Wildlife Monitoring and Trackin
Paper 1 ey e ) - & Paper 2
UAVs On-Board Decision Making”, Using Thermal Imaging and Computer
Objective 1 IEEE Aerospace conference, Big sky, vision”, IEEE Aerospace conference, Objective 2
Montana, March 5-12, 2016 Big sky, Montana, March 5-12, 2016
v A
Learnt about image processing Learnt about Autonomous
and computer vision methods flight control and Navigation

Bilal Alsalam, Duncan Campbell, and
Felipe Gonzalez, “Invasive Spear
Thistle Weed Detection and Zoysia

Pa per 3 grass Mapping Using Aerial Imagery”,
. . Weed Research Journal, 2017
Objective 3

B. Alsalam, K. Morton, D.Campbelland F
Gonzalez “Autonomous UAV with Vision Based
Paper 4 On-board Decision Making for Remote Sensing
Objective 4 and Precision Agriculture” , IEEE Aerospace
conference, Big sky, Montana, March 4-11, 2017

Figure 1.1: Papers related to the research.

The second paper on the other hand, assisted in gathering experience developing and cod-
ing the navigation system and autonomous control for the UAV. The paper described a system
that can be used for a prediction dynamic application with a Raspberry Pi 2B microcomputer
and a thermal camera [2]]. The autonomous control algorithm that uses Python and a basic
concept to control the flight path was developed from both papers. The previous papers
assisted in determining suitable methods for navigation and the computer vision application

which are helped to achieve the objectives of the research and used to develop the methods
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presented in Chapter 5 (paper 3) and Chapter 6 (paper 4).

1.7 Outline of Thesis

The thesis presents a framework for off-board and on-board decision making for remote
sensing and precision agriculture applications.

Chapter 2 presents a literature review in relation to using remote sensing, UAVs and
computer vision for agriculture applications. An overview of the theoretical aspects of image
processing and computer vision used for precision agriculture and remote sensing is covered.
The theoretical aspects of the OODA loop and the OODA loop for on-board decision making
are also presented.

Chapter 3 introduces the hardware system architecture for data collection and off-board
analysis and mapping for invasive weed. The Chapter is divided into two parts, the first of
which is the hardware design that includes the physical connection for the system and the 3D
printing hardware for the system. The second part covers software design that includes Mis-
sion Planner software, Python scripts and the invasive weed detection method see Appendix
and

Chapter 4 introduces the hardware system architecture for on-board decision making and
action which is divided into two parts. The first part presents the system architecture (the
hardware and the software) using a Raspberry Pi 2B and MAVProxy see Appendix The
second part covers a system architecture (the hardware and the software) using Odroid U3
and the Robotic Operating System (ROS) see Appendix and

Chapter 5 describes the application of the off-board system for weed mapping and off-
board decision making. This chapter is divided into three parts: (i) covering the type of weed,
study side and the flight imagery; (ii) presenting the results and discussion; and (iii) providing
a summary of the chapter.

Chapter 6 presents the autonomous UAV with vision-based navigation. This chapter is
also divided into three sections: (i) covering the test cases including the marker, colour and
invasive weed detection; (ii) the results analysis and the discussion; and (iii) a summary of
the chapter.

Chapter 7 presents the conclusions of the work conducted, the limitations of this research

and areas for future work.






CHAPTER 2

Literature Review

2.1 Overview

There is growing interest in developing and building UAVs with the capability of on-board
decision making utilising computer vision, waypoint guidance and vision based control tech-
niques [[11} [12] 13]]. Computer vision methods are utilized for civilian, military and farming
applications [14] and this chapter presents a literature review of research in this field. The
first section of the literature review will provide a brief discussion of remote sensing in
precision agriculture as well as the state of art on the use of UAVs for Precision Agriculture.
Computer vision for aerial imagery and OODA theory for on-board decision making will also
be discussed. Furthermore, literature on previous research on invasive weed mapping using
aerial imagery and vision based control will be presented. The literature will research and
summarised on the type of application, the sensors type, microcomputer types and if the

image processing was conducted on-board or off-board the UAV.

2.2 Remote Sensing in Agriculture

Remote sensing is the assembling of data about an object or phenomenon with no physical
contact with the item [15] [16] 17]. Remote sensing in agriculture is a broad area which
includes: crop categorization, crop mapping, weed forecasting, yield predictions, photosyn-
thetic pigment content, etc. [18][19] 20| 21} 22]. A critical necessity for providing reasonable
remote sensing items in agriculture is the capacity to combine high spatial resolution and
speedy turnaround times. There are numerous different types of platforms which can be
used for remote sensing in precision agriculture such as manned aircraft, satellites and UAVs.
Satellite based remote sensing technologies are used to identify agricultural problems because

they have capacity to continuously monitor the Earth’s surface. However, issues such as
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optimum spatial and spectral resolution, the reversal time, repeat cycle and data gaining costs
and sometimes the weather are the main factors influencing the usefulness of the satellite
based techniques. [23] 24} [25]]. Remotely sensed images captured from aeroplane and satellite
platforms have been used to produce several examples of weed mapping in late growing
periods [126] 27, 28] 29]. However, for many crops, the ideal treatment time for weeds is long
before this point in the growth season when both the weeds and the crop are in their seedling
stages [30]. Because of the significant impact of weeds in the agricultural sector, several
researches have explored and used remotely sensed images captured from aircraft or satellite
platforms which has resulted in several examples of weed mapping in late growth periods
(26}, 127, 28] 29]). Identifying small seedlings with airborne and satellite imagery is problematic
due to the typically insufficient spatial resolution of aircraft or satellite platform imagery or
the possible presence of cloud cover in satellite imagery[22} 29} 27].

Manned aircraft or satellite remote sensing platforms are very useful for weed detection
at late phonological stages (e.g. flowering or senescence)[31]][32]. UAV imagery, on the other
hand, is especially useful for very early weed detection (e.g. seedling stage) [33] 34, 35]]. As
such, each platform has its own utility according to the scale of the problem, with UAVs
displaying a remarkable opportunity for pre-emtive weed detection and mapping. Torres-
Sanchez et al. [33]] and Pena et al. [35] discussed an OBIA algorithm method in which their
data was captured using six-band multispectral sensors (visible camera and a multispectral
camera). Their study consisted of weed mapping in sunflower and maize crops, and the results
show the effect of using different segmentation parameters in the detection methods. An
OBIA for weed detection based on machine learning methods and combined with pattern and
feature selection techniques was discussed by Pérez-Ortiz et al. [31]]. Their results showed
that the proposed methods for pattern selection were suitable and could lead to construction
of robust set of data. Moreover, Laliberte and Rango [34] used OBIA with lightweight off the-
shelf digital cameras to classify images of foliage and determine the optimal texture features
for each segmentation scale. The classification results for the image were high, with an overall
accuracy of 90%. Furthermore, Laliberte et al. [22] used image segmentation and object-based
classification to monitor vegetation changes over time. Their study used 11 aerial images that
were taken between 1937 to 2003. Their results show that the shrub cover increased “from
0.9% in 1937 to 13.1% in 2003, while grass cover declined from 18.5% to 1.9%”. Due to the image

resolution obtained, the shrub and grass cover was estimated in sections >2 m2, in which about
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87% of the shrub cover was accurately detected. Laliberte et al. [29]] expanded on this by using
object-based recognition instead of pixel-based image information as input to classify trees
for mapping arid land vegetation, and they used satellite imagery to segment at four different
scales. Their combination of multi-resolution image segmentation and decision tree analysis
facilitated the selection of input variables that helped to determine the appropriate image

analysis scale.

2.3 UAVs for Precision Agriculture

Remote sensing using UAVs is a growing field of research that can assist farmers to assess
plant health [4] 5 36} 37]]. UAVs can fly in a controlled autonomous path at very low heights
and produce images at relatively high spatial resolutions (<2 cm) [3| [1} [2| 38| 39]. Remote
sensing using UAVs can provide a low-cost option to deal with the basic prerequisites of
spatial and dynamic resolutions in contrast to satellite and manned aircraft [18] [19} [20, 40].
A considerable number of studies in the field of precision agriculture have been carried out
with either direct or indirect UAV application of remote sensing and computer vision. As
a result, unmanned aerial platforms represent a remarkable opportunity for weed detection
and mapping. Remote sensing techniques using thermal and multispectral imaging sensors
at different heights were discussed by Han [3]], Gonzalez-Dugo et al. [8], and Salami et al.
[41]]. Their research concentrates on filling the gap between the application prerequisites and
the qualities of the various selected tools, payloads and platforms. A digital camera using
a paraglider UAV was used by Dunford et al. [42] to oversee the evaluation of a riparian
landscape and vegetation units, and furthermore, to distinguish standing dead wood. The
results demonstrated an estimation of standing dead wood units and an average precision
with omission and commission errors of 80% and 65%, respectively. McFadden et al. [43]]
evaluated UAVs for use in plant biosecurity. The research provided recommendations for the
applicability of UAVs and on-board sensor technology for plant biosecurity and pest detection.
Puig E et al. [44] illustrated the combination of UAV, remote sensing and machine learning
techniques for biosecurity and applications in precision agriculture. They implemented an
algorithm based on K-means clustering to control high-frequency components present in the
feature space. Nebiker et al. [45] illustrated the gap between satellite-based remote sensing

and ground-based sensing. Their study showed the benefits of remote sensing applications
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using a very high resolution micro UAV platform. Hung et al. [19] applied high resolution
aerial images from a digital camera for weed classification, collecting images at 5-10 metres.
Their results showed 94% accuracy. A study by Knoth et al. [15] utilised either a panchromatic
or shading infrared calibrated small frame digital camera to generate high resolution images of
the re-established swamp surface utilising. Their system had an overall accuracy of 91% using
UAV. Lelong et al. [[7] focused on the combination of a single digital camera with spectral filters
using four spectral bands matching to red, green, blue (RGB) and near infrared (NIR). The
results of their trials showed an expected precision level of 15% in the biophysical parameters
approximation. Rieke et al. [[6]] described precise position data by integrating the real time
kinematic position of the UAV. The system has the potential to achieve an accuracy of 1-3 cm,
which can be measured for direct geo-referencing for aerial imagery.

Berni et al. [46] focused on the most proficient method to produce quantitative remote
sensing data on agriculture utilising two types of UAVs, rotary-wing and fixed wing, with
thermal and narrowband multispectral sensor cameras. Their research was undertaken using
thermal images in the “7.5-13-pum region (40 cm spatial resolution) and narrow band multis-
pectral images in the 400-800 nm spectral region (20 cm spatial resolution)”. The results
illustrate that a low cost UAV system for vegetation monitoring applications has comparable
estimation capabilities to the traditional manned airborne sensors [46]. Guo et al. [47] used a
micro-helicopter UAV with a multispectral camera to develop a framework to process images
for precision agriculture. Kelly [32] used a md4-1000 quadcopter UAV with a multispectral
camera (MCA-6 camera) for weed mapping. The mini-MCA-6 camera is produced by Tet-
racam company (Chatsworth, CA , USA). Kelly’s outcomes demonstrated that it is possible
to create quantitative mapping products, for example, crop stress maps, from UAV images
[32]. Von Bueren and Yule [10] used a hexakopter and quadcopter (MikroKopter) with dif-
ferent Multispectral Camera Arrays (MCAs) and digital camera sensors (Canon camera) to
detect near objects in infrared light for precision agriculture. Their results demonstrated the
successful application of an UAV with a multispectral imaging system to create high quality
multispectral images [10]]. Bryson et al. [48] used a small UAV with an on-board computer
(PC104) for accurate image registration to detect weeds. Their results demonstrated that their
approach to classification, which depends on generic colour and texture descriptors, can be
utilised to distinguish between various sorts of vegetation. Furthermore, Laliberte et al. [38]]

used a small UAV with a digital camera and a procedure suitable for handling a large number
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of UAV images. Their overall classification accuracies for the two collected image mosaics
were 83% and 88%. The results of their study show that UAVs can be used successfully to
obtain imagery for rangeland monitoring, and that a UAV-based remote sensing approach
can either complement or replace some ground-based measurements. Figure [2.1| shows some

examples of the UAVs which are used in agricultural research.

Figure 2.1: Examples of UAVs used for precision agriculture and plant bio-
security applications [10] [23] [34].

Table [2.1]lists some examples of UAVs used in agricultural applications (detailing authors,
year of implementation, the UAV used, the sensor type, operational efficiency and the com-
puter vision technique). High spatial resolution imaging in near real time and efficient on-
board processing for precision agriculture applications have not been completed [23]. As
a result, designers are continually looking for ways to develop UAV platforms with high
resolution, near to real time imagery and high level decision making over extended periods

of time.

2.4 Vision Based Control

Computer vision is a field which contains numerous methods for obtaining, analysing, pro-

cessing and understanding images and high dimensional information captured in the different
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Table 2.1: Summary of the literature review listing the applications, the UAV, the sensors, operational efficiency (on-board or off-board classification

capacity).
No Author’s Year The application UAYV used Sensor used Operational Computer-Vision
name efficiency Method
1 | Felderhof et al. 2008 Monitoring plant UAV Glider Digital camera (Sony Off-board Panoramic software
9] health CropCam 10MP) AutoPano Pro and
NIR camera PTGui
2 | Lelongetal. [7] 2008 Wheat crop L’Avion Jaune’s Digital camera Off-board Establish relationship
powered glider Canon EOS 350D between: leaf area
and NDVI
3 Nebiker et 2008 Monitoring crop Mini UAV (Zurich) MultiSpectral (MSMS) Off-board NDVI method
al.[[45] status and md4-200 MicroSensor (Canon EOS
quadcopter 20D.)
4 Han [3] 2009 Water AggieAir UAV, Multispectral (Pentax On-board Algorithms based on
management and called GhostFoto Optio E10 camera) & Using NIR imagery and
agriculture thermal infrared (TIR) Gumstix NDVI to detect river
applications (Canon PowerShot computer and vegetation
$X100 IS)
5 Dunford et al. 2009 Classify and map | A paraglider UAV Digital cameras Canon Off-board Object-oriented
[42] riparian vegetation Powershot G5 (5 MP&12 analysis
MP)
6 | Bernietal. [18] 2009 Coffee crops Quanta-H rotary Multispectral camera Off-board SIFT algorithm
monitoring wing UAV and (Model USS-2000C) Leica
Quanta-G fixed thermal camera Photogrammetric
wing UAV (Thermovision A40M) Suite
7 Bryson et al. 2010 Vision Based J3 Cub UAV Colour monocular Off-board Machine learning

(48]

Mapping and
Classification

camera

vision approach
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situation in order to create numerical or typical data [[49],50]. Computer vision methods are
utilised for military, civilian and farming applications [51]]. The main objective of a vision
based control technique in robotics is to control a robot (ground or aerial robot) to perform
a predefined task using visual feedback, such as approaching an object or obstacle avoidance
[12,[13/52]. Liu and Dai [53] discussed visual servo techniques for on-board control for UAVs.
Their research was based on aerial surveillance, “vision based navigation and airborne visual
simultaneous localization and mapping”. An approach for real time vision based landing for
UAVs was designed and implemented by Saripalli S et al. [54]. Their research focused on
navigation based on GPS data and computer vision and demonstrates that their navigation
algorithm with computer vision can produce accurate results. Yang et al. [49] and Raja [55]
discussed landing strategies for UAVs utilising visual control algorithms in order to detect
landmarks. The authors utilised re-enacted flight video to check the precision of the system.
Fu et al. [56] discussed vision based tracking algorithms for UAVs landing on an arbitrary field.
Their real-time vision-based tracking algorithm was assessed with airborne pictures from
auto landing of flights utilising a manually classified ground truth database. Their outcomes
showed that the algorithm is very strong in tracking the helipad and accurate for closing the
loop of vision based control. The Lucas-Kanade technique which is exceptionally useful to
evaluate optical streams or movement between two successive images was utilised by Guo et
al. [47]. An image based visual servo using a tracking parallel linear image feature for vertical
take-off and landing was presented by Robert and Tarek [57]. Their controller designed for a
small UAV is capable of quasi-stationary flight. Markus et al. [58]] presented a framework for
on-board vision based control in unknown environments (indoor and outdoor). Their method
uses monocular vision to solve the estimation of the metric visual scale from an air pressure
sensor. Choi et al. [1] and Ward et al. [2]] discussed using a UAV with “computer vision based
guidance system for on-board decision making”. Their results showed that their algorithm
can accurately recognise “99% of the object of interest” and the UAV is able to navigate and

perform on-board decision making.
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2.5 Off-board and On-board Hardware for Image Processing

and Computer Vision

In order to apply computer vision, either on-board or off-board, the selection of a suitable
computer on which to perform the processing is the main requirement. There are several
types of computers and micro controllers which can be used for computer vision and remote
sensing such as a desktop PC, laptop or FPGA, a GPU or microcomputers such as Odroid,
Raspberry Pi etc. A suitable choice for the computer is based on several factors including:
data type, the speed of processing and ease of use for the farmer. Kelly [32], for instance,
used an off-board OBIA procedure to compute multiple sets of data and statistics derived
from the classification outputs in order to have a suitable process to generate processed
imagery. The results of his research demonstrated 86% overall accuracy, that 23% of the
area was free of weeds, and 47% of the area had low amounts of weed and the resultant
treatment recommendation showed a high potential to reduce herbicide application or other

weed control processes.

2.6 Decision Making using the OODA Loop Framework

There are several approaches for on-board decision making, where one possible approach is
use to the Observation, Orientation, Decision, and Action (OODA) loop method in the context
of UAVs. OODA loop theory was proposed by John Boyd [59] and it has since been applied
in models used in defence to describe decision making [60, [61]]. Parasuraman et al. [62], for
example, discussed a model based on decision making with four classes: data procurement,
data investigation, decision and action choice, and lastly, action implementation. Each class
can be applied as a manual activity or completely autonomous. Peng et al. [63] discussed
the difficulties and the challenges for multiple networked UAVs that were analysed based on
the OODA model. They discussed three key technologies for the UAVs: cooperative control,
cooperative information sensing and the mission decision under a dynamic network, and
multiple autonomous vehicles. Decision making based on the OODA loop method varies
between an off-board and on-board implementation due to the fact that the decision and the
action in the OODA loop will be passive in off-board decision making but active in the on-

board case. Figure [2.2]illustrates the concept of onboard decision making. The OODA loop
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has been applied in the context of UAVs, however, the application of off-board and on-board

decision making for precision agriculture is limited to date.

N N N

3-DECIDE
- 4-ACT
1-OBSERVE 2 ORIENT_ (Send a
(Ground Station

(Sensors) Control) command to act (Perform an
whether off- )
and board or on action whether
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control) board) board)

——

Figure 2.2: Simplified version of Boyd’s OODA Loop.

2.7 Summary

The purpose of this chapter was to review the previous research experiments in this field and
determine the most appropriate methods to achieve the task of on-board decision making
for agricultural applications. This chapter presented a literature review of remote sensing
in precision agriculture as well as materials and methods which include the state-of- the-
art methods for the use of UAVs in precision agriculture. Computer vision and vision based
control have also been discussed for onboard decision making. Furthermore, an investigation
of the OODA loop method has been presented.

In this work, both off-board and on-board, the OODA loop will be implemented and applied
in the context of precision agriculture.

The next chapter describes the system architecture for data collection and off-board ana-
lysis for invasive weed. The chapter will cover the hardware system including electrical

electronic integration and 3D printing as well as the software integration.



CHAPTER 3

System Architecture For Data Collection
and Off-board Analysis and Mapping

3.1 Overview

As described in Chapter 1, the purpose of this research is to investigate and develop a system
for oftf-board and on-board decision making using UAVs in the context of precision agriculture.

Chapter 2 discussed the literature review and research objective and also the materials
and theoretical methods applied in the research such as OODA loop theory and vision-based
control.

This chapter presents the design of the system architecture for data collection and off-
board analysis and mapping. It is divided into two parts, the first of which covers the hardware
design which includes the physical connection for the system and the 3D printing hardware.
The second part covers software design and includes Mission Planner software, Python scripts

and the invasive weed detection method.

3.2 Hardware Design

The system architecture for data collection and off-board analysis consists of two parts as
shown in Figures [3.2]and 3.1} The on-board system consists of a quadcopter UAV (3DR IRIS),
an autopilot (Pixhawk), a microprocessor Raspberry Pi 2B, a 5 MP Raspberry Pi camera and
a GPS 3DR (GPSKIT0003). The Raspberry Pi connected to the ground station uses the Wi-Fi
network. A 915 MHz radio control is also used to connect the ground control station system to

the Pixhawk. The ground station consists of 3DR telemetry, WiFi adapter and FR-Sky receiver.

19
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'Wi-Fi dongle
3DRIRIS
UAV Frame

UBEC Power Module
Raspberry Pi 12V to 5V
enclosure -

. Raspberry Pi camera

Figure 3.1: On-board system for collecting data.

3.2.1 3DR-IRIS UAV Frame

The 3DR IRIS UAV frame is suitable for the purpose and relatively low in cost (< $2000 AUD,
2016) compared to other platforms. The 3D Robotics IRIS UAV has a payload capacity of 425
grams. The airframe is made of strong and resistant plastic for the crash. The dimensions of
the frame are 550 mm from motor to motor and a height of 100 mm from the centre of the

frame .

3.2.2 AC2830-358 850Kv Motors and 10x4.7 propellers

The UAV uses four AC2830-358 850Kv motors and four 10x4.7 propellers to produce thrust.
The AC2830-358 850Kv motor is small in size, and is designed to produce high thrust. Two

motors run counter clockwise and another two run clockwise. Specifically so as to give pitch,

roll and yaw control [[64].

3.2.3 Pixhawk Autopilot

The IRIS uses a Pixhawk flight controller; an open source autopilot designed and manufac-
tured by 3D Robotics which has extensive online documentation and support. This level of

customisation makes it suitable for developing a system that can be modified to suit various



21

3.2 Hardware Design

‘Burddeyy pue sisAjeuy pJeoq-jQ pue uoi3d3]|0) ele( 10} 2INIDUYDIY WIISAG :Z'¢ 9anSi4

2OATT
o e e @ @
o o |
fi L S =
ﬁ Aaneg AZT ..+ " %..MI.%I%D.MWFDFD.[DFD-U.WW.D[HF«W_F&[D[D_WW_ |ouo] olpey
| X 4a-A45H4
{F - Lo =
_ f
Jauue|d UOIsSIA|
Lﬂ TNIY .
un
%3 fi D3dn -o| ( d) ZHIN RQ ..uvv ZHOY'T
s ¢ () (@)
1
LE b 4 38U0p -1 W3QOW 3131 Has uoIe1S puUNoIs
2085
[0J1u0D) eJawe) 1dy
TN 1amogd 1amog q494
uod @sn j
€N Z3=l wod gsn
UONIBUUOD [BLIBS viod gsn
ZIN T3l o _
LN
™ .. mod
ZHIN ST6 oo eiawed dy UONI3UUOD [BLIBS
[ 549 ..
AT dvv .e
(000L1M5dD) N Q_ ‘ dv a|Suop I4-1M
mmw yMmeyxid NITON gz Id Auusqdsey o
ERETRY(ef HOV'L

waisAg pieog-up




CHAPTER 3. SYSTEM ARCHITECTURE FOR DATA COLLECTION AND OFF-BOARD ANALYSIS AND
22 MAPPING

applications. The Pixhawk autopilot includes both software and hardware components to
interface with all other subsystems. Pixhawk contains an in-built accelerometer, gyroscope,

barometer and magnetometer [65].

3.2.4 GPS Compass Module

A 3DR (GPSKIT0003) 6H compass/GPS module is used on the system. This is a stand alone
type GPS operating system at 2.7 to 3.6 voltage. This GPS has sensitivity of -162 dBm, and the
velocity and heading accuracy are 0.1 m/s and 0.5 degrees, respectively [51]]. The GPS can be

used with APM and Pixhawk flight control systems.

3.2.5 4in1ESC/Power Module

The system architecture uses a 4 in 1 ESC/Power module which is inbuilt with the 3D IRIS
UAV. Each ESC is rated at 20amps capacity and is running the SImonK firmware for enhanced
response and stability. The ESC power module provides regulated power to the flight control
board, furthermore it monitors both the voltage and the current. Using 4 in 1 ESC can replace
several components including a power regulation board, a power distribution and four ESCs

compared with similar UAV with 4 ESC [51].

3.2.6 5000 mAh 3S 30C Lipo Pack Battery

The system architecture uses a 5000 mAh 3S 30C, 11.1 V DC Lipo battery which has a capacity
of 5000 mAh and a 30C discharging rate. The battery allows for approximately 15-20 minutes

flight time without any payload which is sufficient to complete the test [51].

3.2.7 FrSky-DF Radio Control (Tx/Rx)

The system can also be controlled manually using a FrSky DF 2.4 GHz transmitter and receiver

link which transmits signals to the autopilot [64]].

3.2.8 3DR TELE Radio Modem and Ground Station Control

The system uses two 3DR radio modems which are responsible for transmitting signals

between the on-board sensor and the ground control station. The telemetry is sent via
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communication between the two units at an operating frequency of 915 MHz. The ground

station computer (GCS) runs using Mission Planner software [64].

3.2.9 W,iFi connection

a wifi network is used to connect the on-board microcomputer (i.e. Raspberry Pi 2B, Odroid
U3™) with the ground control station in order to upload commands via an SSH connection to

the on-board system.

3.2.10 Microcomputer (Raspberry Pi 2B)

The Raspberry Pi 2B is a single board microcomputer of small dimensions (85 x 49 mm).
The board is priced between $40-$55 AUD (July 2016). The Raspberry Pi 2B hardware uses
input/output calls (GPIO) in order to receive/transmit signals from/to the sensor. The micro-
computer can be operated using different software such as: Raspbian, OSMC (Open Source
Media Centre), Linux and Windows 10 IoT. The Raspberry Pi 2B board weighs 45 grams which
makes it suitable to use on an UAV as a small on-board computer (see Appendix[A.1) [66]. A
script running on the Raspberry Pi 2B allows the system to take images every second to collect

data for off-board analysis and mapping.

3.2.11 Raspberry Pi Camera

The Raspberry Pi camera is a 5 megapixel fixed focus camera which supports 1080p 30, 720p
60 and VGA90 video modes. The camera’s dimensions are 25 x 20 x 9 mm and it attaches
via a 15 cm ribbon cable to the CSI port on the Raspberry Pi 2B. The camera can be accessed
through the Picamera Python library or the ROS environment in order to capture frames for

image processing [66]].

3.2.12 Universal Battery Elimination Circuit 5V-3A (UBEC)

A UBEC is a switch mode DC regulator which takes voltage of 12 V DC from the main battery
for the UAV and converts it to 5 V DC in order to power the Raspberry Pi 2B or Odroid U3.
The power input wires of the UBEC are joined into the power input wires of the ESC while the
power yield wires of the UBEC receiver are connected to the required device (the Raspberry

Pi 2B or the Odroid U3).
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3.2.13 Ground Station Computer (GSC)

The ground station consists of a laptop which runs Mission Planner software and via an SSH

shell (PUTTY) allows the system to send and receive commands for the mission.

3.2.14 3D Printing for Off-board System

Figure shows a 3D printing of an enclosure designed to install, secure and protect the
Raspberry Pi 2B, the Raspberry Pi camera and the UBEC. The enclosure was designed using
AutoCAD software. Once each surface has been coated with acetone, the surfaces are brought
and clamped together. The enclosure is mounted as close as possible to the centre of gravity

of the airframe.

Raspberry Pi 28 Bracket
With UBEC

3
L —

Holder Bracket ?
g«

Raspberry Pi Camera
Bracket

A B

Figure 3.3: A: 3D printing design for the Off-board System. B: The enclosure
system for the Off-board System and Data Collection.

3.3 Detection and GPS Mapping Approach

Figure 3.4 describes the process flow of information developed in this work. Steps 1-8 consist
of planning a series of waypoints for a maximum area of coverage with a 40% overlap. The
Raspberry Pi receives commands from the ground station using Putty to record video and to
take images of the region of interest at 1 frame per second. In steps 9 and 10, the images and
videos are uploaded post flight and processed together with the GPS waypoints logs. Once
this is completed, the next step (step 11) compares the time in the image with GPS with the
UAV time logs; the algorithm takes into account the date and time the image was created and

finds the matching date and time from the flight log.
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If the time does not match, the next step is to go to the next line in the log (step 12),
and once a match is found, the geo-location of the point of interest in degrees is converted
into Universal Transverse Mercator (UTM) format and saved (step 13). In step 13, the centre
GPS coordinates of the image which correspond to the UAV relocated coordinates are used
to calculate the x and y distance in metres from the centre of the image to any point on the
image. In steps 14-16, an OBIA and threshold selection method algorithm (see section 3.4.3)
are applied to the image to detect if there are any weeds in the image. After the weeds have
been detected in steps 14-16, the processed single image is displayed (step 17). In steps 18 and
19, the user can via a mouse pointer select any of the detected weeds on each individual or
stitched image to create a weed map with GPS coordinates. In step 20, the UTM coordinates
for each weed are converted into GPS coordinates in degrees. Lastly, in step 21, the GPS

location of the detected weed is displayed in tabular form.

3.4 Software Design

The software used for this system consists of: Mission Planner software to create the waypoint
flight path, Python scripts to record video and take images and a weed detection and mapping

method.

3.4.1 Mission Planner

Mission Planner software is used on the ground control station for the UAV. Mission Planner
is used to select waypoints for the mission for data collection which is then used for off-
board analysis and mapping [[67]. Mission Planner can be also used to load firmware into the
autopilot (Pixhawk), and set up configure and load an autonomous mission into the autopilot.
Furthermore, Mission Planner can be used to save and analyse the mission logs which contain
information about the mission. Figure [3.5|shows an example of waypoints that are used to

cover the area of interest.
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Figure 3.5: Mission Planner software.

3.4.2 Python Script

The second type of software used are Python scripts which run on the Raspberry Pi 2B. The
Raspberry Pi camera takes one image every one second with a 40% overlap in order to cover
the entire area of interest. Before commencing image capture, the clocks in the Raspberry Pi
2B and the GSC need to synchronised and the following script is run (sudo date —s Time) to
achieve this purpose. To capture images from Raspberry Pi camera for 4 minutes, that is from

1 second (1000 ms) to 4 minutes (240000 ms), the following script is run:

raspistill -o Image_name_%d.jpg -tl 1000 -t 240000

3.4.3 Invasive Weed Detection Method

An invasive weed detection algorithm using an OBIA algorithm and a threshold selection
method was developed. Initially, several images of the target (i.e. spear thistle weed) of
different size and/or stages of growth were collected from 1 and 3 metres above the ground.
Each image is analysed using an OBIA algorithm and a threshold selection method with the
true colour and texture image data using RGB triplet (Figure [3.6). Each RGB triplet defines
a colour for one pixel of the image in three layers. The first layer of the 3D array (colours
band) contains red components, the second layer green components and the third layer blue
components. In order to detect the weed, the threshold number must be chosen for each

colour component and a set of colour thresholds is generated. The optimum threshold values
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were achieved followed by manual tuning to obtain the greatest sensitivity and selectivity.

Red Band

Original RGB Image Blue Band

Threshold
Selection

Green Band

Figure 3.6: Image processing stages.

1

Object
Mask

"The target” Spear Thistle Weed

An invasive weed that is mostly green in colour will have the following colour combin-

ation: (green band > green threshold), (blue band < blue threshold) and (red band < red

threshold). The result of these is masked RGB. The channels are combined to give the binary

targeted image. However, an invasive weed that is mostly brown in colour features will have

the following colour combination: (red band > red threshold), (green band < green threshold)

and (blue band < blue threshold). Figures and [3.7B show the images taken at 1 and 3

metres above ground respectively. The data collection process was repeated with a RPi camera

mounted on the UAV at 5, 7 and 15 meters height from the ground level (See 5.5 Results and

Discussion). The algorithm is also capable of detecting weeds in early age as well as when the

part of the weed is senescent. Appendix[B.6|provides the code for the invasive weed detection

algorithm.
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A: 1 metre altitude B: 3 metre altitude

Figure 3.7: Spear thistle weed detection and classification at 1 and 3 metres
height at different stages of growth. (November 2015).

3.5 Summary

This chapter introduced a clear framework for the system architecture design for the off-board
system (analysis and mapping) using a Raspberry Pi 2B. A detailed description of the off-board
decision making including the platform and different subsystems have been presented. An
additional set of software design including Mission Planner, a Python Script and an Invasive
Weed Detection Method were also introduced.

The next chapter describes the system architecture design for on-board decision making
and action (the hardware and the software) using a Raspberry Pi 2B and MAVProxy or using

an Odroid U3 and Robotic Operating System (ROS).






CHAPTER 4

System Architecture Design For On-board
Decision Making and Action

4.1 Overview

As described in Chapter 1, the purpose of this research is to investigate and develop a system
for oftf-board and on-board decision making using UAVs in the context of precision agriculture.

Chapter 2 discussed the literature review and research objective and also the materials
and theoretical methods applied in the research such as OODA loop theory and vision-based
control.

Chapter 3 presented the design of the system architecture for data collection and off-board
analysis and mapping including the hardware and software design.

This chapter covers the design of the system architecture for on-board decision making
and action. The chapter is divided into two sections: The first section will cover hardware
and software system architecture for on-board decision making using Raspberry Pi 2B and
MAVProxy. The second section describes hardware and the software using Odroid U3 and

Robotic Operating System (ROS).

4.2 System Architecture Using Raspberry Pi 2B and MAV Proxy

The system architecture is similar to the system architecture for data collection and off-board
analysis and mapping described in Chapter 3, section 3.2, however, two elements have been
added for on-board decision making.

These two new elements are an ultrasonic sensor (HC-SR04) and a 5 V DC relay (SR-
05VDC) to run the 12 V DC motor for spraying. Figure [4.1{shows the various elements of the
on-board system architecture and the ground station while Figure shows the hardware

elements for on-board decision making and action (chemical spray).

31
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The hardware consists of the same hardware used in Chapter 3 for data collection and off-
board analysis and mapping. It consists of a 3DR-IRIS UAV frame, AC2830-358 850 KV motors
and 10x4.7 propellers, Pixhawk Autopilot, GPS Compass Module, 4 in 1 ESC/Power Module,
5000 mAh 3S 30C Lipo Pack Battery, FrSky-DF Radio Control (Tx/Rx), WiFi connection,

microcomputer (Raspberry Pi 2B), UBEC, and GSC with the following added component:

4.2.1 Ultrasonic Sensor (HC-SR04)

The HC-SR04 ultrasonic sensor is used to measure the flight hight by emitting an ultrasonic
wave in one direction and starting timing from when the ultrasonic wave is launched. The
ultrasonic spread velocity is 340 m/s and is based on the timer. The distance can be calculated
between the obstacle and transmitter [68]. The ultrasonic is connected to the Raspberry Pi 2B
to the GPIO connection pins (see Figure[4.5), or connected to Arduino which is connected to
Odroid U3 in the second system (see Figure [4.13). The HC-SR04 Ultrasonic Sensor Specifica-
tions can be found in Appendix[A.2]

4.2.2 HD Webcam Logitech C270

The HD Webcam Logitech C270 is used to capture frames for image processing. In addition,
the Raspberry Pi camera is used as a backup and to record video. The HD Webcam Logitech
C270 Specifications [69] can be found in Appendix[A.3] The large Signal to Noise Ratio (SNR)

for webcam are based on two factors: the ISO speed and the exposure.

4.2.3 Relay (SRD-05VDC)

The Relay SRD-05VDC has a capacity of 5 A is used to connect the 5 V GPIO Raspberry Pi
terminal to the 12 V spraying pump.

4.2.4 Spraying-Pump

The 12 V DC motor drives a spraying pump to perform an action on the target (see Figure

4.2B).
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Pixhawk autopilot + GPS

(inside)

3DR IRIS
UAV Frame

Raspberry Pi 2B

Raspberry Pi enclosure
3D printing

Webcam

Raspberry Picamera
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1

UBEC Power Module
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Ultrasonic HC-SR04
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Figure 4.2: A: Hardware System Architecture for On-board Decision Making and Action Using a Raspberry Pi 2B and MAVProxy. B: Top view to

the payload.
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4.2.5 Liquid-Tank

A 200 ml capacity tank (4.2B) is used to store the liquid (e.g. pesticide) to be sprayed on the

target.

4.2.6 3D Printing for the On-board System

Figure shows the design for the system requires a 3D printing design for the spraying
system bracket and holder. AutoCAD was used to design the required parts. The 3D printed
parts consist of a holder, an ultrasonic cover, a cover for the Raspberry Pi 2B and the relay,
a cover for the Raspberry Pi camera and for the webcam, and an upper cover is designed to

hold the chemical tank.

Raspberry Pi camera Raspberry Pi 2B Bracket
Bracket

Ultrasonic HC-SR04
Bracket

Shower head
Bracket

Raspberry Pi camera
Bracket

Upper Cover to hold
the spraying tank

A B

Figure 4.3: A: 3D Printing Design for the On-board System. B: The Enclosure
System for On-board Decision Making and Action.

4.2.7 Electrical Integration

4.2.7.1- Pixhawk — Raspberry Pi 2B Serial Interface

A customised serial cable was implemented to interface between the Raspberry Pi 2B
and the autopilot as shown in Figure [64]. The customised cable was a spare telemetry
cable with a 6-Postion DF13 plug which was spliced and soldered with individual PCB female
jumper wires. The DF13 plug is inserted into the secondary telemetry port (Telem2) of the
Pixhawk. Port Teleml remains for the 3DR radio modem such that both Mission Planner
and the Raspberry Pi can receive telemetry data as a fail-safe protocol. After connecting to
the Pixhawk, the female jumper wires are connected to the Raspberry Pi serial port pins and

ground (Tx,Rx,Gnd) [64].
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Figure 4.4: Connecting the Pixhawk to Raspberry Pi 2B using a customised
serial connected cable.

4.2.7.2- Ultrasonic Sensor — Raspberry Pi 2B Serial Interface

Four GPIO pins (1, 16, 18 and 20) from the Raspberry Pi 2B are used to connect the HC-SR04
ultrasonic sensor to the Raspberry Pi: these are Echo Pulse Output (ECHO), ground (GND), 5V
Supply (Vec) and Trigger Pulse Input (TRIG) as shown in Figure[4.5] The ultrasonic sensor can
be powered by the Raspberry Pi 2B to send the signal to the TRIG pin in the ultrasonic sensor.
The pulse waves bounce off any adjacent objects and are reflected back to the ultrasonic
sensor. The sensor recognises these arrival waves and measures the time between the trigger
and returned pulse, and then a 5 V signal will be sent to the ECHO pin [68].

In order to connect the HC-SR04 ultrasonic sensor to the Raspberry Pi 2B, two resistances
(1kQ and 2 kQ) must be connected to increase the voltage from 3.3 V to 5 V for the pin 18 for
GPIO of the Raspberry Pi 2B (Vin). A voltage divider is used because the output signal of the
sensor (ECHO) on the Ultrasonic module (HC-SR04) is evaluated at 5 V, and the input pin 16

on the Raspberry Pi 2B GPIO is evaluated at 3.3 V.
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Figure 4.5: Ultrasonic Sensor — Raspberry Pi Serial Interface.

4.2.7.3- Relay - 12 V DC motor - Raspberry Pi 2B Serial Interface

The circuit shown in Figure 4.6is used for spraying system. The spraying pump uses a 12 V
DC motor which is powered by the same 11.1 V DC battery that powers the UAV. The 5V DC
relay (SRD-05VDC) is used to run the 12 V DC Raspberry Pi 2B as shown in Figure[4.6] The 5
V DC relay isolates the 5 V and 12 V. The GPIO signal voltage is 3.3 V and the motor can be

run at 10-12 V.

VCC(5V)

Pinl
5V DC Relay
(SRD-05VDC)
- a 12V DC from
12v g 5000mAh 35 30C
Lipo Battery

Figure 4.6: Interface Raspberry Pi 2B with Relay and 12 V DC Motor.

4.2.8 Software Design Using Raspberry Pi 2B and MAVProxy

The on-board software system using a Raspberry Pi 2B consists of: a MAVproxy configuration

and a Python script.
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4.2.8.1- MAVProxy Communication

MAVProxy is used to connect the Ground Control Station (GCS) to the UAV. The GCS for the
system supports MAVLink protocol in order to make connection between the Pixhawk (with
APM firmware) and the GCS. The MavProxy commands are written using Python script which
allows MavProxy to be interfaced with other library software such as OpenCV [70]. A WiFi
network is used to connect the Raspberry Pi 2B to the GSC. A remote SSH terminal [[71]] can be
established to initiate serial communications between the Raspberry Pi 2B and the Pixhawk.
The following commands are executed [72] as shown in Figure

sudo -s: This command runs a new shell as root with higher privileges than the standard

runtime environment. The shell user prompt will change to
(root@Raspberrypi:/home/pi#).
Following this, Mavproxy can be executed by typing [72].
MAVProxy.py —master=/dev/ttyAMAO —baudrate 57600 —aircraft MyCopter

After executing this command, the Raspberry Pi 2B starts serial communications with
the Pixhawk through the customised cables discussed in section 4.2.7.1. The prerequisite for
running this command is to set the telemetry band rate for the Pixhawk 57600. If the band
rates do not match between the Raspberry Pi 2B and the autopilot, the information will not
be able to be transferred.

The information related to the Pixhawk autopilot is displayed when the communication
has been successfully established (e.g. Mode STABILIZE), followed by a number of parameters
received (see Figure[4.7). The 3D IRIS UAV was powered on with the mode switched to STB
or “Stabilize” in the RC control. To confirm whether or not the connection with the autopilot
is successful, toggle the mode into LTR or “Loiter” mode and read the output of the terminal;
this is confirm that the Raspberry Pi 2B is successfully connected to the autopilot through

Mavproxy.
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. - =
@ pi@raspberrypi: ~ . = | B |-

S connected to Pixhawk. The
powered on with the mode

Figure 4.7: Remote SSH terminal accessing the Raspberry Pi 2B using SHH
Putty and running sudo -s, Mode STABILIZE executed.

After completing the previous steps, the Raspberry Pi 2B (microcomputer) is connected to
the Pixhawk, similar to connecting Mission Planner on a windows machine to the Pixhawk.

Figure 4.8/ shows arming the UAV through the SSH terminal on the Raspberry Pi 2B.

E® pi@raspberrypi: ~ = | B -

Figure 4.8: Arm the UAV through the SSH terminal on the Raspberry Pi 2B.
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4.2.8.2- Python Scripts

In order to execute any Python scripts using MAVProxy, the DroneKit API must first be
installed and initiated (Figure[4.9). This command (module load droneapi.module.api ) should
be run when the STABILIZE mode is achieved.

After completing the previous steps, a Python script (e.g. spray_weed.py) can be run
through the MAVLink environment by using the following command (Figure[4.9). A complete
copy of the Python code can be found in Appendix[B.2]

api start [The Name of The Code].py

EB pi@raspberrypi: ~ o . =S ﬁ

In order to run Python script
using MAVProxy, This
command line must be run.

1 Waiting for GPS. The test was
: 1 «——— done inside the building where
1 there is no GPS

Figure 4.9: Running the Image Processing Code through MAVProxy.

The software design using Rasperry Pi 2B and MAVProxy was tested in the field at Christ-
mas Creek (Queensland, Australia). Even though the system is useful but it has several

limitations.
1. Along delay (>60 seconds ) to connect the operating computer to the on-board system.

2. The connection between the Raspberry Pi 2B and the MAVproxy frequently crashes

after the Python script runs to fly the UAV, resulting in loss of control of the UAV.

3. The Python code is written as a single script in order to control the entire system which

makes it harder to control each part of the UAV separately.

4. It is hard to store the flight data (such as logs, videos and images) in order to use this

later for analysis.

These drawbacks lead to the necessity look for another more modular system to eliminate

these problems and also to have more freedom to control the system.
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4.3 System Architecture Using Odroid U3"and Robotic Oper-

ating System (ROS)

The system architecture of the second on-board system consists of several components. Figure
shows the entire hardware system. The onboard system consists of the same hardware
used in the system architecture in Chapter 3 for data collection and off-board analysis and
mapping and the system architecture for on-board decision making and action using the
Raspberry Pi 2B as shown in Figure The system hardware comprises a 3DR-IRIS UAV
frame, an AC2830-358 850 KV motor and 10x4.7 propellers, a Pixhawk Autopilot, a GPS
Compass Module, a 4 in 1 ESC/Power Module, a 5000 mAh 3S 30C Lipo Pack Battery, a FrSky-
DF Radio Control (Tx/Rx), a WiFi connection, a UBEC, a GSC, an ultrasonic sensor (HC-SR04),
a HD Webcam Logitech C270, a relay (SRD-05VDC), a spraying pump and a liquid tank, an
Odroid U3 and a micro Arduino. The HC-SR04 ultrasonic sensor is controlled by a micro
Arduino which is connected via a USB cable to the Odroid U3. The micro Arduino has C++

code to run the ultrasonic measurements (see Appendix B.10).

Pixhawk autopilot + GPS
(inside)

UBEC Power Module

3DR IRIS SV, 3A inside

UAV Frame

T

XT-60 connection

Wi-Fi dongle

FIDP cable to
connect Odroid
U3 to Pixhawk

Spraying pump

Odroid U3 enclosure Webcam
3D printing
Ultrasonic HC-SR04 and

Odroid U3 Micro Arduino enclosure

Figure 4.10: On-board system for on-board decision making using an Odroid
U3 and ROS.

The Odroid U3 receives the measurements through the USB cable and uses these measure-
ments to control the system through a node in ROS. The micro Arduino is also responsible

for controlling both the ultrasonic sensor and the relay which controls the motor for the
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spraying system. The Pixhawk is connected to the Odroid U3 through a serial cable called an

FIDP cable.

4.3.1 Odroid U3

The Odroid U3 is a powerful Linux single board microcomputer used for on-board decision
making and action. The Odroid U3 is faster than the Raspberry Pi 2B (2 GB VS 1GB) and
allows near real time image processing (see Appendix[A.4). The Odroid U3 microcomputer
can be run using different software including Android and Linux. The board is priced between

$70-$95 AUD [73]] (July 2016).

4.3.2 Micro Arduino

A micro Arduino is a microcontroller used for building digital devices. The micro Arduino
provide sets of digital and analog input/output pins to interface to various expansion boards
or other circuits. The micro Arduino company provides an “Integrated Development Envir-

onment (IDE)” based on the C++ programming language [74]].

4.3.3 Electrical Integration

4.3.3.1- Pixhawk - Odroid U3 Serial Interface

The Pixhawk is connected to the Odroid U3 using an FTDI cable as shown in Figure
A 6-Postion DF13 plug is soldered to the FTDI cable. The benefit of using the FTDI cable is
to make the connection between the microcomputer and the autopilot faster than the serial

connection with the GPIO.
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RTS (out)
GND
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TX (out) [5 2

To the USB port of N
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T s
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Figure 4.12: Pixhawk Connection to Odroid U3+ through USB serial.

4.3.3.2- Ultrasonic Sensor & Relay — Micro Arduino Serial Interface

Figure shows the physical connection of the ultrasonic sensor (HC-SR04) to the micro
Arduino and also the connection of the motor to the relay (SRD-05VDC) to micro Arduino.
The micro Arduino uses C++ code (see Appendix[B.10) which controls both the motor and the
ultrasonic sensor. The micro Arduino is powered and connected to the Odroid U3 through
a USB connection. A ROS node was also created for the ultrasonic module to receive all the

measurement data from the ultrasonic sensor and to check the UAV flight height.

GND

Signal

Relay
(SRD-05VDC)

USB cable to Odroid-U3+

Figure 4.13: Interface between ultrasonic sensor (HC-SR04), relay (SRD-
05VDC) and micro Arduino.
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4.3.4 Detection and On-board Decision Making Approach

The OODA loop described in Chapter 2 is a closed loop control method used as a framework
for decision making [60./61]]. Figure[4.14/shows the flowchart system in the concept of a OODA
loop for on-board decision making developed in this work. The observation is based on using
the sensors such as ultrasonic sensors and a camera. The ground station receives messages
from the on-board computer to check the status of the mission while the UAV is flying. After
sending the command to start the mission, the different ROS nodes are executed as shown in
Figure While the UAV is flying, the detection algorithm will be checking if the target
is in the frame or not. When the target is detected, the UAV is automatically commanded to
fly to the target. The onboard decision making focuses on the decision and the action part
of OODA loop. After the UAV reaches the new location (above the target), the action will be
for the UAV to descend to a lower height just above the ground (e.g. 45 cm) and to run the
spray pump to spray the target. When the spraying is complete, the UAV either go to the next
waypoint looking for new targets or fly home and land.

The spraying tank was calculated with the payload for the UAV (3D IRIS) for this system
to do spraying task for maximum of two targets. As the experiment in this research for on-
board decision making and action based on OODA loop detecting one target in each flight.
This system can be modified by using bigger UAV platform and bigger tank for longer flight

time and detecting multi-targets.

A: Observation B: Orientation C: Decision D: Action
Start Flight Plan NO | Go to the target

i i

Target
—» Processing Flight Plan detected !
[ YES l Take image
Sensors (Odroid U3. Initiate target
o — 1 o l

Ultrasonic Sensor

Ground Station
Monitoring the mission
by receiving on-board

messages.

Extract Current GPS

|

Target Location
Estimation

NO

| wo
Is the UAV

height above
the target =2?

|_YES

Lower Altitude

Is the last

waypoint

Reached?
YES

Run the Motor to spray
the Target

Finish the Mission and
Land

%t

Z: The height between the UAV and the target

Figure 4.14: OODA loop flowchart for on-board decision making.
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4.3.5 Software Design for On-board Decision Making and Action Using
Odroid U3™

Two different types of software were used for the on-board decision making and action system
running on the Odroid U3. These are Robotic Operating System (ROS) and the JMavSim

Simulation.

4.3.4.1- Robotic Operating System (ROS)

ROS is open source software which provides libraries and tools and an easy environment in
which to develop robotic applications [75]. ROS provides an operating system service with
common functionality, including message transformations between processes, and package
management [[75]. ROS packages consist of several nodes. A node is basically an executable
that when called with rosrun or through roslaunch will start running. In addition, ROS sup-
ports simulations to represent a graph architecture platform to run the processes in nodes
that receive, post and multiplex sensor, control, actuator and other messages.

An on-board downward facing camera attached to the 3D IRIS quad-rotor and connected
to the Odroid U3* microcomputer is used for vision based navigation. Several nodes were
developed including a navigation node, a camera node, a detection node (to detect features
such as ArUco Markers, colours and specific types of weed), a rotation matrix node and a
transfer node. All the nodes connect together (see Figure [4.15). The camera is connected
to the Odroid U3 via a USB cable and the micro Arduino is connected through another USB
cable. The camera node is continuously capturing frames and passing them to the detection
node through OpenCV.cvBrridge. The detection algorithm is progressively checked so see if
the target is in the frame or not. If the target is within frame, the target location in pixels (u,v)
will be passed to the transfer node in order to change the pixels (u,v) location to the target
location in metres (, y). In order to have the camera frame in the same direction as the body
frame, a rotation matrix node was used to correct the direction.

The ultrasonic sensor (HC-SR04) and spraying system are connected to the micro Arduino
as described in Figure The ultrasonic data is received by the Odroid U3 through via a
USB serial connection. The ultrasonic data is used to correct the height (z) of the UAV using
a Python node (see Appendix B.8).

Once the navigation node receives the location of the target from the rotation matrix node
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(%,y) and the height from the ultrasonic node (z), the new local position (x,y,z) is sent to the
autopilot (Pixhawk) through the navigation node to direct the UAV to go to the new location.
When the new location is reached, the navigation node sends a new message to the autopilot
to hover above the target at, for example, a height of 45 cm. Once the target reaches that
height (e.g. 45 cm), the micro Arduino sends a message to the motor to start spraying on the
target for a period of x seconds (e.g. 3 seconds). After completing the task, the UAV resumes
flight and continues to fly to the next waypoint or returns to the starting location. Logs of the
whole operation can be saved using rosbage file and analysed by running it using Rviz (3D
Robot Visualizer).

The algorithms for each of the nodes in the system can be found in Appendix[B.7] [B.8]and
B.9)

The control architecture is depicted in Figure The function of the vision based nav-
igation is to first estimate the position of the target centre in the inertial frame (u,v). The
position controller on-board will control the platform to fly to a position directly above the
target, while the PID tuning is done inside the autopilot (Pixhawk). The pseudo code for the

position estimation needed for the vision based navigation is as follows:

Algorithm 4.1 A pseudo code for position estimation for the vision based navigation.

« Find the centre point of the target perspective projection in pixels (u,v).

u= m“("i);‘mi”(“”, v= ma‘””(”i);mm(”") ... where i= {1,2,3,4}

« Find the centre of the target for normalised coordinates in the camera frame (1, y2).

« Transfer the position of the target from the camera frame to the inertial frame (local
position X,Y,Z).

A) Camera Model and Pixel Distance

The camera model used in the system is assumed to be fixed to the UAV platform. The
camera frame (e.g. u= 640, v=480 pixels) is projected into the image plane as a 2D point
with coordinates (u, v) as shown in Figure Where u and v represent the coordinates in
pixel units of the point in the plane, while x and y represent the distance in metres in the real
world after converting the pixel units to metres. The camera has a 60° field of view (FoV).

The flight height (z) is received from the ROS message (geometry_msgs.msg /PoseStamp)
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as well as from the ultrasonic node which is connected to navigation node. The following

equations are used to calculate the x and y position in the real world.
z=current_pos.z
1=z * tan % ..... where is @=60° ...(1)

y1= z x tan % ... where is @=60° ...(2)

Camera Frame @
u
V UD;VO
@/2
Z
World Frame
Xo,
Yoo X1 y
X

Figure 4.17: Mapping the image frame from the camera to the world frame

B) Rotation Matrix

A rotation matrix is used to rotate the coordinates of points in 2D or 3D. There are different
type of rotation matrices, however, a basic rotation was applied in this system. A fundamental
rotation is a turnover about one of the axes of a direction framework every time. The accom-
panying three fundamental turnover matrices rotate vectors by an angle () about the x; y, or

z axes, in three dimensions [76]].

1 0 0
Rx(@): 0 cos®) —sin@
0 sin@ cos@®
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cos@®) 0 sin®
R, (@) = 0 1 0
—sin@® 0 cos®

cos@®) —sin@® 0

Rz(@): sin@  cos® 0

0 0 1
The main reason for using a rotation matrix is to align the body frame of the UAV, the
camera frame and the world frame. The relationship between the camera velocity vp and the
quadcopter velocity in the body frame v 4 is shown in Figure[4.18and can be established using

the basic rotation matrix from the camera frame to the body frame.
= Rg.v B

The transformation of the position of the target from the camera frame to the inertial frame

is as follows:

X xr
A pA
CXtargetz Y . =CXUAV+RC.RB Y 5
z z
X
1 A
4 /-. 2 ~
P Ya \\‘\ 4
: 3 Fa ~ ke
I ~N
R‘g II‘ le \\ *c
‘\\ Xp \
\‘m/v Fe
Fa T\yB Ye
Zg Ze

Figure 4.18: Rotation matrix for the camera frame to the body frame

Assuming that the camera azimuth angle and the elevation angle, which represent the
orientation of the camera frame with respect to the body frame are small and of an order of
magnitude less than the body displacement from the object, the transition matrix Rg can be

simplified to an identity matrix ¢ [77,[78]]. This was implemented as a node in ROS as shown

in Appendix
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C) Interfacing the Onboard System with the GCS with ROS

In order to connect the the onboard computer to the ground station, a ssh protocol (ssh
username@hostname) is used. The hostname for the system was changed to image-processing
for convenience. An example of how to connect the GCS to the on-board microcomputer

Odroid U3 is shown in Figure
[bilal@sony|~]$ ssh odroid@image-processing

Terminal BmEE

File Edit View Terminal Tabs Help
y|~]$ (ssh_odroid@image-processing | ssh username@hostname
Password

On-board microcomputer environment

Figure 4.19: Example of connecting the GCS to the Odroid U3.

To enable publishing topics, roscore should be started on the onboard computer through
the ground station connected via WiFi. As soon as the roscore is running, the nodes can run

too.

[image-processing@odroid|~]$ screen

[image-processing@odroid|~]$ roscore

The next step is to choose the launch file to start running the nodes onboard the UAV. The

launch file can be found in Appendix

C) JMavSim Simulation

The environment chosen to develop the navigation code for test flight is JMavSim simulation
which is a simulation environment that is supported by ROS for simulation in the loop. The

following commands are needed to run the simulation:
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[bilal@sony|~]$ roscore

[bilal@sony|~]$ roslaunch ~/catkin_ws/launch/px4.launch
[bilal@sony|~]$ cd ~/px4/src/Firmware/

[bilal@sony|~]$ make posix_sitl_default jmavsim

[bilal@sony|~]$ roslaunch ~/catkin_ws/launch/spray_nav spray.launch

[bilal@sony|~]$ roslaunch ~/catkin_ws/launch/red_color red color.launch

After running the commands above, the navigation code can be run to simulate a flight test to
detect a specific target. Figure shows a UAV with on-board decision making in the loop
simulation at different stages. For example, the UAV mission may consist of flying between
two points A and B to detect a red circle target. While the UAV is flying, the image processing
is continually running to detect the red circle target. When the red circle is detected, the UAV
is commanded to fly to the new location (target location) and hover on this location at a height

of 45 cm for 5 seconds (see Figure [4.21).
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Tabs Help
% [home/bilal/catkin_ws/launch/px4.laun... x /home/bilal/catkin_ws/src/spray_nav/la... x

Target found

Target location|
in meters

Hovering above
the target

Figure 4.21: Flight description in the simulation.

D) Flight Test Results Visualisation Using Rviz 3D Robot Visualizer

Rviz is a 3D Robotic visualizer for displaying sensor data such as from a camera, GPS, ultra-
sonic sensor etc. and state information for ROS [79]. Using rviz can help to display the actual
flight test data and check the flight path and correct any possible errors in the ROS nodes
by tuning the Pixhawk parameters if there is an error. The combination of the simulation in
Jmavsim (Figure before the flight and the rviz (Figure after the flight, helps fine the
tune the on-board decision making and reduce the errors in the system. The flight test data

is saved as baglogs using the following command:
[image-processing@odroid|~]$ cd ~/baglogs

[image-processing@odroid|baglogs]$ rosbag record -a
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The following commands are used to visualise the recorded data:

[bilal@sony|~]$ roscore

[bilal@sony|~]$ rosparam set use_sim_time true

[bilal@sony|~]$ rosbag play ~/baglogs/ [the name of the logs].bag

The video link below shows a visualisation of the data using the Rviz 3D Robot Visualizer:

https://www.youtube.com/watch?v=1KngX2N2IMs

File

Panels Help

[Pomterace | move camera  select 6 Focus camera

o Displays

v @ Global Options
Fixed Frame  fcu
Background C... [l48;48;48
FrameRate 32

v @ Global Status: ..
]

37

> & Grid
> Pose v
> @ Marker v
-] Image 2

Image Topic  /ar single_board/re...
Transport Hint  raw

Queue Size 2

Unreliable

»e Views
Type: Orbit (rviz) :|| Zero |
~ Current Vi.. Orbit (rviz)
Near Cli... 0.01
TargetF... <Fixed Frame>
Distance 11.4054
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Pitch 0.539797
» Focal Po... 0;0;0
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v
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save || Remove| Rename |
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Figure 4.22: Rviz 3D visualizer for displaying the flight data after the actual
flight test.

E) Weed Detection Method with ROS

The detection algorithm for the invasive spear thistle weed used the same threshold selection

method that was explained in Chapter 3 (section 3.4.3 ). The code was modified into a Python

ROS script from Matlab. ROS cv_Bridge is used to pass the image frame to the weed detection

node.

Figure shows the weed detection algorithm test before applying it on-board the

UAV with the weed detection method processing frames through the ROS node. There are

several limitations to the implementation of this algorithm on-board for image processing

near real time such as seasonal variations and change in solar incidence angle. An outline of

the image processing node can be found in Appendix [B.6]
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Figure 4.23: Testing weed detection through ROS.

4.4 Summary

This chapter introduced two possible system architectures for an on-board system. The
first system architecture uses a Raspberry Pi 2B microprocessor. A detailed description of
the Raspberry Pi 2B on-board decision making including the platform and the subsystem
was presented. The disadvantages of using Raspberry Pi 2B system in relation to its slow
processing speed and only using a single script to control all actions lead to the development
of a second system.

The second system architecture introduced a framework of an Odroid U3 with a ROS
operating system. A detailed description of the platform and the different subsystems was
presented. The electrical integration (hardware system) and ground station control (software
system) for this system was also detailed. An additional set of software designs were intro-
duced for the on-board decision making and autonomous action using the Odroid U3.

The next chapter, Chapter 5 describes the development of the weed detection and mapping

algorithm after collecting data from the UAV for off-board decision making.






CHAPTER 5

Weed Mapping and Off-board Decision
Making

5.1 Overview

The aim of this research is to investigate and develop a system for off-board and onboard
decision making. Chapter 2 discussed the literature review and the materials and theoretical
methods applied in the research such as OODA loop theory and vision-based control.

Chapter 3 described the system architecture for off-board analysis including hardware and
software. The chapter details the application of the system architecture for data collection and
off-board analysis and mapping for invasive weeds.

Chapter 4 described the design of the system architecture for on-board decision making
and action. The chapter details the application of the system architecture to on-board decision
making and action utilising the concept of an OODA loop.

This chapter presents the specific application of the UAV platform, sensor payload and
post processing pipeline customised to detect and map invasive spear thistle weeds. A de-
scription of the invasive weed type, study side, UAV flight imagery and GPS mapping and

weed detection algorithm are presented. The results and discussion are found in section 5.5.

5.2 Spear thistle invasive weed

Spear thistle was chosen as a target weed to demonstrate the system capabilities. Spear thistle
has dark green leaves and purple flower heads (Figure [5.1). The alternative names are Black
Thistle, Bull Thistle, Scotch Thistle and the scientific name is Cirisium vulgare. This weed
belongs to the Asteraceae family. The flowers heads are 3-5 cm long and the leaves are
typically be 45 cm long; this weed grows in Australia from spring to autumn [80] [81]]. The

seeds are smooth and typically 3-5 mm long and are gray in colour and longitudinal darker
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markings. The weed is spread by movement of seeds, via wind, water or mud [80| 81]]. The
spear thistle weed is widely distributed in the southern and eastern parts of Australia. It is
very common in south-eastern Queensland, and the southern and eastern parts of New South
Wales, Victoria, and Tasmania. It is also common in the south-western parts of Western

Australia and the south-eastern parts of South Australia [0} 81]].

Spear Thistle weed 53 Zoysia grass O

Figure 5.1: Spear thistle weed and zoysia grass.

5.3 Study side

Remotely sensed images were taken between December 21, 2015 and February, 22, 2016
on a field located at Christmas Creek (Queensland, Australia, coordinates 28°12°19.17S,
153°00°08.5”E). The test flights were authorised by a written agreement letter between the
farm owner and Queensland University of Technology (QUT). The field was mainly covered
with zoysia grass but naturally infested with spear thistle weed. The zoysia grass was similar
in size across the field, however, the spear thistle had different distributions in size and in

many cases was bigger than the zoysia grass (Figure 5.2).
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Figure 5.2: Aerial image for the experimental field including: zoysia grass,
invasive weed and dead grass.

An experimental plot of 100x36 metres was delimited within the weed field to perform the
flights (Figure [5.3A). The GPS coordinates of each corner of the flight area were collected to
assist in determining the waypoints needed to plan the UAV flight, image overlap and weed

geo-location.

5.4 UAV flight imagery

The UAV was flown at 5, 7 and 15 m altitude above ground level. The images were taken
at a rate of one image/sec and a UAV velocity of 1.5 m/sec was selected to cover the whole
experimental field with a 40% imagery forward and lateral overlap by using a single battery
within a period of 15 minutes. Figure illustrates the flight test location, showing the
sector where images were taken (blue), complete UAV flight plan (red) and the area covered

by the imagery (yellow). Figure[5.3B shows the UAV in flight above the experimental field.
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Figure 5.3: A: UAV Section where UAV aerial images were taken, image location
in blue and the UAV flight path in red. B: UAV above experimental
field.

5.5 Results and discussion

In order to check the sensitivity and selectivity of the invasive spear thistle weed detection
algorithm, multiple images were collected at 5, 7 and 15 m above the ground level (AGL).
Figures and[5.6A show examples of the original image at 5 and 15 m AGL, respectively,
Figures[5.5B and5.6B illustrate the image after applying the detection algorithm, and Figures
and [5.6C mark the weed location corresponding to its ground coordinates.

Despite the challenges, the classification algorithm managed to provide classification res-
ults with 95% sensitivity and 98% selectivity at 5 m, 90% sensitivity and 94.5% selectivity
at 7 m and 80% sensitivity and 85% selectivity at 15 m AGL, as shown in Table The
sensitivity is the ability of the algorithm to identify and detect the true positive target while
the selectivity is the capability of the algorithm to filter out the false negatives for detection
targets. Furthermore, the system utilises false positive rates and false negative rates to achieve
accurate results. False positives are when a classification indicates presence, however the
weeds are absent, and false negatives are the point at which a classification demonstrates the

weeds are absent, but are truly present.

Table 5.1: Algorithm accuracy at three different altitudes.

Altitude No. Of Camera Resolution Sensitivity | Selectivity
(m) images Ground sampling (%) (%)
Distance (GSD)
5 20 1pixel=0.1625 cm 95 98
7 20 1pixel=0.2275 cm 90 94.5
15 20 1pixel=0.4875 cm 80 85
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Spear thistle weeds mapping with GPS coordinate at 5 metres above ground level.

Figure 5.4
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Spear Thistle weed ﬂ

Dead grass (: :'-

Zoysiagrass

UAV shadow |:|

A B C

Figure 5.5: Spear Thistle weeds before and after detection at 5 metres above
ground level.

Spear Thistle weed

Dead grass ( _‘3

Zoysia grass

uAv shadow |:|

A B

Figure 5.6: Spear thistle weeds before and after detection at 15 metres above
ground level.

Figure [5.4] illustrates the stitching of imagery and mapping of the spear thistle weeds in
step 21 in Chapter 3 section 3.3. The blue dots represent the spear thistle weeds and the red

dots represent the GPS coordinates for the weeds as shown in Table
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Table 5.2: GPS latitude and longitude for detected weeds.

No Latitude Longitude
1 -28.205908014 | 153.0035909
2 -28.205909646 | 153.0035909
3 -28.205910226 | 153.0035910
4 | -28.205910779 | 153.0035922
5 -28.205910503 | 153.0035896
6 | -28.205910116 | 153.0035890
7 | -28.205907765 | 153.0035884
8 -28.205915248 | 153.0035980
21 | -28.205922498 | 153.0036027
22 | -28.205922551 | 153.0036034
23 | -28.205903546 | 153.0035949
24 | -28.205935348 | 153.0036847
25 | -28.20593876 | 153.0036410
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5.6 Summary

This chapter described the application of the system architecture for data collection and off-
board analysis and mapping discussed in Chapter 3, for the purpose of generating invasive
spear thistle weed maps. The task was complex due to the similarities in spectral properties
and general appearance of invasive spear thistle weeds and zoysia grass at two stages of
growth and with difficulties created by variability and changing conditions over time in a
natural environment. The algorithm developed for invasive spear thistle weed detection
is effective at identifying weeds. Results demonstrated that the system is capable of target
detection to 95% sensitivity and 98% selectivity at 5 m above ground level, 90% sensitivity and
94.5% selectivity at 7 m AGL and 80% sensitivity and 85% selectivity at 15 m AGL, with precise
GPS mapping. This, however, highly depends on seasonal variability, stages of growth and
camera resolution. A different camera should be used to cover a large area in order to increase
the flight height (e.g. to 30 or 60 metres). The GPS tabulated locations of weed detected and the
weed map provide useful information that can be used in decision-making systems to calculate
herbicide requirements and estimate the overall cost of weed management operations.

The next chapter will involve the application of on-board system architecture using vision
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based navigation for onboard target detection (such as a marker, a colour or a target invasive

weed) and treatment such as spraying on the target or taking a high resolution image.



CHAPTER 6

Autonomous UAV with Vision Based
On-board Decision Making

6.1 Overview

The main objective of vision based navigation in robotics (ground or aerial robots) is to control
a robot to perform a predefined task using visual feedback [[12] [13]. The technique applies
vision feedback extracted from the camera. Chapter 4 introduced the system architecture
design for the on-board system using an on-board microcomputer.

This chapter extends on that design and presents autonomous vision based on-board de-
cision making and action. The chapter is divided into three sections starting with a description
of detection and on-board decision making with the flowchart within OODA loop theory.
The second section presents results of flight tests for the detection of ArUco Markers, colour
detection and invasive weed detection. The third section discusses the simulation results and
the actual flight test results and a comparison between Root Mean Square Error (RMSE) for

the simulation and the actual flight test.

6.2 Test Cases

Several flight missions were considered. The flight mission can be modified through the
navigation node by adding or deleting waypoints. The mission for this test was taken to
fly between three points: Home, A and B. The microcomputer is connected to the ground-
station through a WiFi network in order to send commands through the ROS environment
as shown in Figure The image processing method is programmed to process a captured
frame in order to search for a target of interest. When the target is detected, the UAV will fly to
new location and hover above the target at a preset altitude of 45 cm and do an action such as

spraying the target with pesticide. The UAV will subsequently climb back to the planned flight
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height and fly back to Home and land. Three different cases were considered to demonstrate
and validate the on-board decision making system: Arco Markers, colour detection and weed

detection and spraying.

6.2.1 ArUco Markers

An ArUco marker is a synthetic square marker composed of a wide black border and an
inner binary matrix which makes up its identifier. The on-board camera detects the “ArUco”
markers arranged in a square pattern as shown in Figure and transmits their position
to the Pixhawk through the navigation node. The camera is connected to the Odroid U3,
which runs a ROS node designed to search for the marker while the UAV is flying and also
calculate the marker position and send it in metres to the Pixhawk as local position (x, y)
[82] through the navigation node. This type of marker is supported by the OpenCV library
[83]. The ROS node for marker detection can be found in Appendix [B.4] The pseudo code for

position estimation needed for the vision based navigation is as follows:

Algorithm 6.1 Pseudo code to find ArUco Marker.

1. Find square shapes in the image that has a feature to be markers.
2. Analyse the inner codification and show the axes (x,y and z).

3. Send the target location in metres to the navigation node in order to send the UAV to the
desired target.

Figure 6.1: ArUco Marker.



6.2 Test Cases 69

ArUco markers are implemented in the first test to ensure the vision based control is
working without any issues. The benefits of using the ArUco marker is that the ROS messages
(geometry_msgs.msg /PoseStamp) are sent directly to the navigation node in metres so that is
no need to rotation matrix node. Figure shows the UAV hovering above the target at
a preset flight height of 45 cm and detecting the target. The ArUco marker detection and
navigation was conducted 10 times. The test produced on-board detection results with 99%

sensitivity and 100% selectivity.

A

Figure 6.2: A: The marker target is detected. B: Detecting target. C: Hovering
above the target after detection.

6.2.2 Colour Detection

A ROS node for red colour detection was implemented and run on-board the UAV with the

help of the on-board computer (Odroid U3™). The position and orientation of the target are
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provided through rosbag recording data. The algorithm uses image processing using the
OpenCV library to scan for the colour red [84]. The camera node publishes image frames
through the CV Bridge in ROS [85]. Figure [6.3|illustrates how the images are passed using
OpenCV.cvBrridge in the ROS library to provide an interface between ROS and OpenCV. A
combination of HSV colour and circle detection were also used to consistently search for red
circular object to verify the vision based navigation. The pseudo code for position estimation

needed for the vision based navigation is as follows:

Algorithm 6.2 Pseudo code for colour detection.

1. Split each image into R,G,B channels and then convert these to H, S, V channels.

2. Threshold the HSV image and keep only the red pixels.

3. Normalise each channel and convert to greyscale images.

4. Use the Hough transform to detect red circles in the threshold image.

5. Find the image feature representation of the centre using the image centre and focal length.

6. Send the image feature in pixels to the transfer node in order to convert from pixels to
metres.

7. Send the target location in metres to the rotation matrix node to orient the UAV body frame
in same direction as the world frame.

8. Send the target location from the rotation matrix node to the navigation node to direct the
UAYV to the desired target.

An outline of the colour detection node can be found in Appendix [B.5]

The test for on-board decision making for colour detection was conducted eight times.
Results shows that the UAV flew from home towards point A and then towards B. While
moving towards B the UAV detects the target colour and descends and hovers 45 cm above
the red circle. Figure[6.4]A and[6.4B shows the UAV is detecting the red circle, and Figure[6.4/C
shows the UAV hovering above the target and spraying it for 3 seconds. The test provides on-

board detection and action results with 96% sensitivity and 99% selectivity.
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Camera node

OpenCV Library

CV Bridge

Detection node

CV Bridge

Figure 6.3: Open-CV Bridge to pass the images in ROS.

Figure 6.4: A: Colour target is detected. B: Detecting target. C: Hovering above
the target at 45 cm.
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6.2.3 Weed Detection and Spraying

The weed mapping and off-board decision making system discussed in Chapter 4 mainly
focuses on the Observation and Orientation aspects of the OODA loop. The Decision and
Action aspects of the OODA loop for weed detection are applied in this section. The control
system for on-board decision making was presented in Figure and the weed detection
method described in Chapter 3. Figure [6.5] shows the results for the mission; Figure
shows the UAV above the weed when the weed is detected; Figure shows the weed
detection and Figure shows the UAV hovering above the weed at 45 cm and spraying on
the target. The test was conducted four times and its based on the sensitivity and selectivity
of the algorithm. The sensitivity is the ability of the algorithm to identify and detect the
true positive target while the selectivity is the capability of the algorithm to filter out the
false negatives for detection targets. Furthermore, the system utilises false positive rates
and false negative rates to achieve accurate results. False positives are when a classification
indicates presence, however the weeds are absent, and false negatives are the point at which a
classification demonstrates the weeds are absent, but are truly present. The system is capable
of detecting the invasive weed to 33% sensitivity and 67% selectivity. The low sensitivity and
selectivity for weed detection is mainly due to the limitations in the algorithm which are
related to several reasons such as different soil types, topography and amonut of background
vegetation and the sun angle and the season in which the test is performed and thus the
growth stage of the weed. Furthermore, the error in the sensitivity and selectivity will also
occur based on the camera settings including the ISO and the exposure. The existing method
can be modified to ensure the weed can be detected accurately at different times of the day
and at different stages of growth by using other methods such as machine learning based on
extensive data collection to train the algorithm for more precise weed detection. The link
below shows the flight tests.

https://www.youtube.com/watch?v=P8YH9cllrcE
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Figure 6.5: A: weed target is detected. B: Detecting target. C: Hovering and
spraying on the target.

6.3 Simulation and Actual Flight Test Results and Analysis

Numerical experiments were simulated in the proposed model to verify the performance of
the vision based navigation for on-board decision making. After recording the flight test data
(as baglogs files) from the simulation test and the actual flight test, the MATLAB program is
used to draw the flight path in order to compare them and analyse the data from the simulation
and the actual flight test.

Figure 6.6/ shows the results for the navigation system (no weed detection or action). The
results shows the ability of the UAV to track the reference trajectory in relatively high winds
(15 km/hour = 8 knots). The quad-copter flight path starts from the initial position (0,0) home
and progresses to waypoint A (5,2) then to waypoint B (-5,2) in the (Jmavsim) simulation

flight test.
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Figure 6.6: Simulation and actual flight test navigation verification, A: Simu-
lation and actual flight trajectory, B: Top view for simulation and
actual flight trajectory.

Figure [6.7| shows vision based navigation results for onboard decision making. Once the
target is detected the control transforms image feature (pixels) to the target location in metres
and directs the UAV to fly to that new location. The flight test results presented in (Figure
confirm the previous description about the on-board system for decision making using

the concept of OODA loop. The MATLAB code for drawing the flight trajectory can be found
in Appendix
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6.4 Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is used to measure the differences between the sample values
and the population values predicted by a model or an estimator of the actual values. The
RMSE represents the sample standard of the differences between the predicted values and
observed values. The following equations were used to calculate the RMSE for the actual and

the simulation flight test. The calculation for RMSE was applied for the x, y and z axes.

RMS_x= % * (x — %) (1) where x is the variable value, x* is the reference point

and N is the number of the points.

RMS_y= % * (y — y*) (2) where y is the variable value, y* is the reference point

and N is the number of the points.

RMS_z= % * (2 — 2%) (3) where z is the variable value, z* is the reference point

and N is the number of the points.

Table 6.1: RMSE for simulation flight and actual flight in metres.

RMS Simulation Flight Test (m) | Actual Flight Test (m)
RMS_x 0.0818 0.4481
RMS_y 0.0796 0.1571
RMS z 0.0646 0.3404
RMS_Euclidean distance 0.13115 0.5842

Table [6.1| shows the RMSE for the simulation and the actual test flight. The RMSE for the
actual test flight is, however, different to the the RMSE for the simulation and that is due to
the weather for the outdoor flight test where the wind speed was 15 km/hour (8 knots). It
is also much harder to control the light conditions in real world. The RMSE for the actual
flight test overall is 58 cm which is small enough to perform the on-board decision making

and action.

6.5 Summary

This chapter described the application of the system architecture for on-board vision based
navigation and decision making and action. The feedback from the image features enabled the

quad-rotor 3D IRIS to move to a desired position based on the OODA loop concept for feedback
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control. The vision based navigation system and on-board decision making were illustrated
in three types of tests: ArUco Marker detection, colour detection and weed detection. Results
demonstrated that the system is capable of detecting ArUco Markers to 99% sensitivity and
100% selectivity at 5 m above the ground level. The system is also capable of detecting a
red target to 96% sensitivity and 99% selectivity at the same height during a test flight at 5
metres. The real time on-board detection and action algorithm for invasive weed needs to be
improved to achieve better sensitivity and selectivity. The system is capable of detecting the
invasive weed to 33% sensitivity and 67% selectivity. This low sensitivity and selectivity for
weed detection is mainly due to the limitations in the algorithm in relation to the sun angle
and the season in which the test is performed and thus the growth stage of the weed.

This chapter also discussed the RMSE values for the flight simulation and the actual flight.
The RMSE for the actual flight test is, however, significantly different to that of the simulation.
The main reason for this is that the wind speed during the flight test was 15 km/hour (8 knots).
The RMSE for actual flight test is nonetheless only 58 cm which is not problematic for on-
board decision making and action.

The next chapter will present the conclusion of the research and further future develop-

ment as well as the limitations of this research and some considerations for future work.






CHAPTER 7

Conclusions

7.1 Research Summary

The full commercial potential of using UAVs for remote sensing in agricultural applications
is yet to be realised. In precision agriculture, for example, UAVs can be developed to assist in
several functions including weed detection, early detection of disease outbreaks and on-board
decision making. Autonomous on-board detection and action will target the specific location
of the weed or pest for pesticide application instead of applying it on the whole field.

The aim of this research was to develop and flight test off-board and on-board systems
for precision agriculture using a multi-rotor UAV. The on-board system includes: a UAV, a
microcomputer with advanced processing interfaced with a RGB camera and a GPS with an
OODA loop framework approach for on-board decision making using computer vision. The
system can be used in the field of precision agriculture in order to access the plant health and
take necessary action such as spraying pesticide. Firstly, a literature review was conducted
on the application of UAVs in remote sensing and precision agriculture based on sensor type
and operational efficiency. Secondly, a system architecture design was presented for both off-
board and on-board vision based navigation for on-board decision making using computer-
vision based context. Thirdly, a weed detection and mapping using the off-board system was
described and tested. An UAV with a digital camera was used to capture images of a grass
field to generate a map of invasive spear thistle weed in the field. The task was complex due
to difficulty in differentiating highly correlated invasive spear thistle weeds and zoysia grass
in their spectral properties and general appearance at two stages of growth and the additional
difficulties due to seasonal variability and sun angle. The algorithm developed for invasive
spear thistle weed detection was found to be effective in identifying weeds and mapping the
GPS location for each weed. Lastly, a method for target detection and action using the vision

based navigation and on-board decision making was presented based on a set of feature points
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on the object to be detected. The feedback of the image features enables the UAV to move to
the desired position based on the OODA loop concept.

This work is an active field of interest for on-board decision making with the frame-
work of the OODA loop. A number of additional inputs were also made in the investigation,

development and implementation of each of the system components.

7.2 Addressing Research Question

This section elaborates how the investigation addresses the research questions and objectives.

Research Question 1: What are the current limitations of image analysis and classification
methods and vision based navigation with electro-optical sensors for on-board decision

making?

To answer this research question, several activities and flight tests were undertaken. To
achieve on-board decision making using vision based navigation with the concept based on
the OODA loop framework, a system architecture was developed (hardware and software)
and tested in a real environment at Christmas Creek, Beaudesert in Queensland Australia
(see Chapter 3, Chapter 4). The task was divided into two stages.

Data collection and off-board analysis and mapping were conducted in the first stage. The
weed detection algorithm for the purpose of generating invasive spear thistle weed maps
demonstrated that the off-board system is capable of target detection to 95% sensitivity and
98% selectivity at 5 m above the ground, 90% sensitivity and 94.5% selectivity at 7 m above
the ground and 80% sensitivity and 85% selectivity at 15 m above the ground with precise
GPS mapping. This is, however, highly dependent upon season variability and stages of plant
growth and camera resolution (see Chapter 5).

The task in the second stage involved on-board flight tests for vision based navigation and
testing it for three different types of targets (see Chapter 6). The results showed that the on-
board system using the ROS operation system is capable of object detection and of closing the
OODA loop. Results demonstrated that the on-board system is capable of detecting ArUco
Markers to 99% sensitivity and 100% selectivity at 5 m above the ground and of detecting red
colour targets to 96% sensitivity and 99% selectivity at the same height. But the real time

on-board detection and action algorithm for invasive weed needs to be improved to achieve
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better sensitivity and selectivity. The system is capable of detecting the invasive weed to
33% sensitivity and 67% selectivity. This low sensitivity and selectivity for weed detection is
mainly due to the limitations in the algorithm, in particular in relation to the sun angle and the
seasonal variabilities in the weed. The evaluation of features for leaf classification presents a
big challenge and achieving 100% accuracy using computer vision is extremely difficult in a

real environment.

Research Question 2: What are the challenges in the practical applications of the off-board
and on-board systems in the context of precision agriculture and plant biosecurity
where vegetation characteristics, such as texture, colour and shape pose significant

challenges for existing image classification algorithms?

To assess performance, the off-board and on-board systems were applied in the context of
precision agriculture in two stages. The first stage consisted of developing and testing the
off-board system by collecting the data and running the algorithm for detecting and mapping
the invasive weed (see section 3.3 and Chapter 3). The main challenges were the difficulty in
differentiating highly correlated invasive spear thistle weeds and zoysia grass in their spectral
properties and general appearance at two stages of growth and the difficulties due to seasonal
variability and sun angle.

The second stage was to develop and flight test the invasive weed detection method on-
board the UAV using vision based navigation (see section 4.3.5, Chapter 4). The main chal-
lenges here were due to the software speed and processing complexity including applying
the weed algorithm on-board with near real time image processing and also the selection and
development of the hardware components of the on-board system given the limited payload

weight capabilty of the UAV.

7.3 Considerations and Future Work

There are a few items that should be considered when applying the on-board system with
the concept of vision based navigation for on-board decision making in precision agriculture

applications.

+ The communication between the ground station and the on-board system uses WiFi

and this limits the UAV to remain within 400 m from GCS.
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The ultrasonic sensor was programmed to hold the UAV at a height of 45 cm while
it performs an action (e.g. spraying on the target). To have more control for the
UAV, the ultrasonic sensor should be connected directly to the autopilot; however, the
functionality of the ultrasonic sensor (HC-SR04) is limited (see [A.2). Therefore, the
existing ultrasonic sensor would be replaced with another sensor for more functionality

in order to control the actual height.

Another issue for large RMSE error and the difficulties in tracking are due to on-board
sensor error also contribute to the sensitivity and selectivity. Future work could focus
on evaluating GPS and on-board uncertainties or installing a more precise RTK GPS

system.

The weed detection method is based on specific characteristics of the weed, which can
be affected by several factors such as soil types, topography and amount of background
vegetation and the sun angle and seasonal variability. Furthermore, the error in the al-
gorithm will also occur based on the camera settings including the ISO and the exposure.
The existing method can be modified to ensure the weed can be detected accurately at
different times of the day and at different stages of growth. Suggestions to improve the

detection method include:

. Using micro multispectral or micro hyperspectral camera spectral bands of near in-

frared ranges to detect weed.

. Using machine learning methods based on extensive data collection to train the al-

gorithm for more precise weed detection.



APPENDIX A

Hardware specifications

A.1 The table below shows the Raspberry Pi 2B microcom-

puter specifications.

Table A.1: Raspberry Pi 2B specifications.

Raspberry Pi 2 Specifications ‘

SoC Broadcom BCM2836 (CPU, GPU, DSP, SDRAM, and single USB port)
CPU 900 MHz quad-core ARM Cortex A7 (ARMv7 instruction set)
GPU Broadcom VideoCore IV @ 250 MHz
OpenGL ES 2.0 (24 GFLOPS)
1080p30 MPEG-2 and VC-1 decoder (with license)
1080p30 h.264/MPEG-4 AVC high-profile decoder and encoder
Memory 1 GB (shared with GPU)

USB ports 4
Video input 15-pin MIPI camera interface (CSI) connector
Video outputs HDMI, composite video (PAL and NTSC) via 3.5 mm jack
Audio inputs I*S
Audio outputs Analog via 3.5 mm jack; digital via HDMI and I*S
Storage MicroSD
Network 10/100 Mbit/s Ethernet
Peripherals 17 GPIO plus specific functions, and HAT ID bus
Weight of 45 grams

83



84 APPENDIX A. HARDWARE SPECIFICATIONS

A.2 The table below shows the HC-SR04 Ultrasonic Sensor spe-

cifications.

Table A.2: HC-SR04 Ultrasonic specifications.

HC-SR04 Ultrasonic Specifications

Working Voltage: DC 5 V
Working Current: 15 mA
Working Frequency: 40 Hz

Max Range: 4 m

Min Range: 2 cm

Measuring Angle: 15 degree
Trigger Input Signal: 10 uS TTL pulse
Echo Output Signal Input TTL lever signal and the range in proportion

Dimension 45 * 20 * 15 mm

A.3 Thetable below shows the HD Webcam Logitech C270 spe-

cifications.

Table A.3: HD Webcam Logitech C270 specifications.

HD Webcam Logitech C270 Specifications
Connection Type: Corded USB
USB Type: High Speed USB 2.0
USB VID_PID: VID_046D&PID_081A
Microphone: Built-in, Noise Supression

Lens and Sensor Type: Plastic
Focus Type: Fixed
Field of View (FOV): 60°
Focal Length: 4.0 mm
Optical Resolution (True): 1280 x 960 1.2 MP
Image Capture (4:3 SD): 320x240, 640x480 1.2 MP, 3.0 MP
Image Capture (16:9 W): 360p, 480p, 720p
Video Capture (4:3 SD): 320x240, 640x480, 800x600
Video Capture (16:9 W): 360p, 480p, 720p,
Frame Rate (max): 30fps @ 640x480
Right Light: Right Light 2
Indicator Lights (LED): Activity/Power
Privacy Shade: No
Clip Size (max): 0 to infinity
Cable Length 5 Feet or 1.5 Metres




A.4 The table below shows the ODROID-U3" specifications.

A.4 The table below shows the ODROID-U3" specifications.

Table A.4: ODROID-U3" specifications.

ODROID-U3" specifications ‘

5V 2A Power
1.7GHz Quad-Core processor and 2GByte RAM
10/100Mbps Ethernet with RJ-45 LAN Jack
3 x High speed USB2.0 Host ports
Audio codec with headphone jack on board
GPIO/UART/12C ports
XUbuntu 13.10 or Android 4.x Operating System
Size : 83 x 48 mm, Weight : 48g including heat sink
Package includes the main board and the heat sink







APPENDIX B

Software algorithms

The following are the algorithms and the codes that used in this research.
« Matlab code for invasive weed detection and mapping.
« Python code for the on-board decision making using Raspberry Pi 2B.

« The ROS nodes for the system is attached as follow:

1. Lunch file for the system using Odroid U3.
2. Marker detection node.

3. Colour detection node.

4. weed detection node.

5. Transfer pixels to local position node.

6. Ultrasonic node.

7. Navigation node.

+ Arduino code for controlling the Ultrasonic (HC-SR04) and the spraying pump.

« Matlab Code for drawing flight trajectory.
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B.1 Matlab code for invasive weed detection and mapping.

Algorithm B.1 Matlab code for invasive weed detection and mapping,.




MATLAB code for weed detection and Mapping

function varargout = Test GUI vl (varargin)

gui Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @Test GUI vl OpeningFcn,
'gui_ OutputFcn', @Test GUI_vl OutputFcn,
'gui LayoutFcn', [1 .,
'gui Callback', (1)

if nargin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

)

% —--- Executes just before Test GUI vl is made visible.
function Test GUI vl OpeningFcn (hObject, eventdata, handles, varargin)

°

)

% Choose default command line output for Test GUI vl
handles.output = hObject;

o

°

guidata (hObject, handles);

UIWAIT makes Test_GUI_vl wait for user response (see UIRESUME)
uiwait (handles.figurel);

o° o\

)

% ——- Outputs from this function are returned to the command line.
function varargout = Test GUI vl OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{l} = handles.output;

% —--- Executes on button press in pushbuttonl.

function pushbuttonl_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global Lat;

global Lon;

global FOV; % Horizontal field of view via https://www.raspberrypi.1
org/documentation/hardware/camera.md

FOV = 53.5;

global Width;

global Height;

[FileName, PathName] = uigetfile('*.jpg', 'Select Image');

file = strcat (PathName,FileName) ;
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image=imread (file);
redBand = image(:,:, 1);
greenBand =image(:,:, 2);
blueBand = image(:,:, 3);
redthreshold = 68;

greenThreshold = 72;

blueThreshold = 74;

redMask = (redBand > redthreshold);

greenMask = (greenBand < greenThreshold);

blueMask = (blueBand < blueThreshold);

redObjectsMask = uintl6 (redMask & greenMask & blueMask);

% imshow (redObjectsMask, [])
Ifill=imfill (redObjectsMask, 'holes");
[ Ilabel num]=bwlabel (Ifill);
Iprops=regionprops (Ilabel) ;

Ibox=[Iprops.BoundingBox];
Ibox=reshape (Ibox, [4 num]) ;
axes (handles.axesl)

finalImage = image;
imageHandle = imshow (finalImage) ;
hold on
for cnt=1:num
rectangle('position',Ibox(:,cnt), '"edgecolor','b', " 'linewidth',1);
end

hold off

[n m p] = size (image);

density =(100*num/ (n*m))*100;

set (findobj ('Tag', 'editd'), 'String', [ num2str (density, '%.20£") 1)
F = getframe (handles.axesl);

finalImage = frame2im(F);

imageHandle = imshow (finalImage) ;

imagedetails= imfinfo(file);

i = exist('imagedetails.GPSInfo');

if (1 ~= 0)
Lat Deg = imagedetails.GPSInfo.GPSLatitude;
Lon Deg = imagedetails.GPSInfo.GPSLongitude;

Lat = Lat Deg(l) + (Lat Deg(2)/60) + (Lat Deg(3)/3600);

Lon = Lon Deg(l) + (Lon Deg(2)/60) + (Lon Deg(3)/3600);
else

Lat = -28.2058929;

Lon = 153.0036092;
end
Width = imagedetails.Width;
Height = imagedetails.Height;
set (imageHandle, 'ButtonDownFcn', @ImageClickCallback) ;
global PointCount;
PointCount = 0;
global La;
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global Lo;

La = zeros(4,1);
Lo = zeros(4,1);
global Xpts;
global Ypts;
Xpts=zeros (17,1);
Ypts=zeros (17,1);

function editl Callback (hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes during object creation, after setting all properties.

function editl CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get¥
(0, '"defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', 'white'");
end

function edit2 Callback (hObject, eventdata, handles)

% hObject handle to edit?2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes during object creation, after setting all properties.

function edit2 CreateFcn (hObject, eventdata, handles)

% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'), get¥
(0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");
end

)

% —--- Executes on button press in pushbutton2.
function pushbutton2 Callback (hObject, eventdata, handles)

close all

function ImageClickCallback ( objectHandle , eventData)

axesHandle = get (objectHandle, 'Parent');
coordinates = get(axesHandle, 'CurrentPoint');
coordinates = coordinates(1,1:2);

global FOV;
global Width;

9]



global Height;
UASHeight = 5;

$set (findobj ('Tag', 'editl'), 'String', [ num2str (coordinates(1))]) % updating X¢
coordinate in the static text box

$set (findobj ('Tag', 'edit2'), 'String', [ num2str (coordinates (2))]) % updating v
coordinate in the static text box

% wvalx = coordinates(1l)*((1.3*107-3)/4)*5;%/3.7796;
% wvaly = coordinates (2)*((1.3*10"-3)/4)*5;%/3.7796;

pixLength = (tand(FOV/2)* UASHeight)/ (Width/2);

valx = coordinates(l)* pixLength;

valy = coordinates (2)* pixLength;

double Lat;double Lon ;

global Lat;

global Lon;

$Lat = -28.204531;
$Lon = 153.003782;
[x,y,utmzone] = deg2utm(Lat,Lon);
if (coordinates(l) < 1296 && coordinates (2) < 972)
XX = X - valx;
yy =y - valy;
elseif (coordinates(l) < 1296)
XX = X - valx;
yy = y + valy;
elseif (coordinates(2) < 972)

XX = X + valx;

yy =y - valy;
else

xx = x + valx;

vy =y + valy;

end
format long
XX;
format long
Yyi
global PointCount;
PointCount = PointCount + 1;
if PointCount > 17
PointCount = 0;
end
[Latf,Lonf] = utm2deg(xx,yy,utmzone) ;
format long
Latf;
format long
Lonf;
set (findobj ('Tag', 'editl"), 'String', [ num2str (Latf, '%.20£")]) % updating X coordinate¥
in the static text box
set (findobj ('Tag', 'edit2"'), 'String', [ num2str (Lonf, '$.20£")])
index = mod(PointCount,10);
if (index== 0)
index=10;
PointCount = 0;
end

global La;
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global Lo;
global Xpts;
global Ypts;

Xpts (index) = coordinates(1l);

Ypts (index) = coordinates(2);

La(index) = Latf;

Lo (index) = Lonf;

Values = [La,Lo];

set (findobj ('Tag', 'uitablel'), 'Data',Values);

hold on

scatter (Xpts, Ypts, 'filled', "red")

hold off

% —--- Executes on button press in btnLoadFL.

function btnLoadFL Callback(hObject, eventdata, handles)

% hObject handle to btnLoadFL (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[FileName, PathName] = uigetfile('*.mat', 'Select Flight Log');
file = strcat (PathName,FileName) ;

test = load(file);

lat test=test.GPS(:,7);

lon test=test.GPS(:,8);

DateTime =test.GPS(:,3);

for i=l:length(DateTime)
value = MStoLT (DateTime (i));
Time (i,1:3)=value(:,4:6);

end

function edit4 Callback (hObject, eventdata, handles)

% hObject handle to editd4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

function edit4 CreateFcn (hObject, eventdata, handles)

if ispc && isequal (get (hObject, 'BackgroundColor'), get¥
(0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white'");
end

93



94 APPENDIX B. SOFTWARE ALGORITHMS

B.2 Python code for the on-board decision making using Rasp-

berry Pi 2B.

Algorithm B.2 Python Code for On-board decision making Using Raspberry Pi 2B.




import time

from droneapi.lib import VehicleMode, Location
from pymavlink import mavutil

import cv2

import re

import numpy as np

import math

import argparse

import RPi.GPIO as GPIO

from time import sleep

api = local connect()
vehicle = api.get vehicles() [0]

def arm and takeoff (aTargetAltitude):
Arms vehicle and fly to aTargetAltitude.

mwuon

print "Basic pre-arm checks"
# Don't let the user try to fly autopilot is booting
if vehicle.mode.name == "INITIALISING":
print "Waiting for vehicle to initialise"
time.sleep (1)
while vehicle.gps 0.fix type < 2:
print "Waiting for GPS...:", vehicle.gps 0.fix type
time.sleep (1)

print "Arming motors"

# Copter should arm in GUIDED mode
vehicle.mode = VehicleMode ("GUIDED")
vehicle.armed = True

vehicle.flush()

while not vehicle.armed and not api.exit:
print " Waiting for arming..."
time.sleep (1)

print "Taking off!"
vehicle.commands.takeoff (aTargetAltitude) # Take off to target altitude
vehicle.flush()

# Wait until the vehicle reaches a safe height before processing the goto (otherwise the
command
# after Vehicle.commands.takeoff will execute immediately).
while not api.exit:
print " Altitude: ", vehicle.location.alt
if vehicle.location.alt>=aTargetAltitude*0.95: #Just below target, in case of
undershoot.
print "Reached target altitude"
break;
time.sleep(1l)

def set speed(speed):
#Send MAV_CMD_ DO CHANGE SPEED to change the current speed when travelling to a point.
# create the MAV _CMD DO CHANGE SPEED command
msg = vehicle.message factory.command long encode (
0, 0, # target system, target component
mavutil.mavlink.MAV CMD DO CHANGE SPEED, #command
0, #confirmation
0, #param 1
speed, # speed
o, 0, 0, 0, 0 #param 3 - 7
)

# send command to vehicle
vehicle.send mavlink (msg)
vehicle.flush()
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def motor (sec):
GPIO.setmode (GPIO.BOARD)
GPIO.setup(40,GPIO.0UT)
GPIO.output (40, True)
print ("The motor is ON'")
time.sleep(sec)
GPIO.output (40,False)
print ("The motor is OFE'")

def Ult (sec):
GPIO.setmode (GPIO.BCM)

TRIG
ECHO

23
24

print "Distance Measurement In Progress"

GPIO.setup(TRIG,GPIO.OUT)
GPIO.setup (ECHO,GPIO.IN)

GPIO.output (TRIG, False)

print "Waiting For Sensor To Settle'
time.sleep(sec)

GPIO.output (TRIG, True)
time.sleep(0.00001)

GPIO.output (TRIG, False)

while GPIO.input (ECHO)==0:
pulse start = time.time ()

while GPIO.input (ECHO)==1:
pulse end = time.time ()

pulse duration = pulse end - pulse start

distance = pulse duration * 17150

distance = round(distance, 2)
print "\n'
print "Distance:",distance,"cm"

return distance

def heading(IRIS Lat,IRIS Lon,Target Lat,Target Lon,xLol,yLol):

IRIS Lat=abs (IRIS Lat);
Target Lat=abs(Target Lat);

Delta Lat=abs(Target Lat)-abs(IRIS Lat);
Delta Lon=abs(Target Lon)-abs(IRIS Lon);
Lat=Delta Lat/132.936
Lon=Delta Lon/132.936
if TRIS Lat > Target Lat and IRIS Lon < Target Lon:
print('l coordination')
target lat=-(IRIS Lat-Lat*xLol)
print target lat
target lon=IRIS Lon-Lon¥*yLol
print target lon
return target lat, target lon

elif IRIS Lat > Target Lat and IRIS Lon > Target Lon:
print('2 coordination')
target lat=-(IRIS Lat-Lat*xLol)
target lon=IRIS Lon-Lon¥*yLol
return target lat, target lon
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elif IRIS Lat < Target Lat and IRIS Lon

elif IRIS Lat < Target Lat and IRIS Lon

print ('3 coordination')

target lat=-(IRIS Lat+Lat*xLol)
target lon=IRIS Lon-Lon¥*yLol
return target lat, target lon

print('4 coordination')

target lat=-(IRIS Lat+Lat*xLol)
target lon=IRIS Lon+Lon*yLol
return target lat, target lon

elif IRIS Lat > Target Lat and IRIS Lon ==

print('N")

target lat=-(IRIS Lat-Lat*xLol)
target lon=IRIS Lon

return target lat, target lon

elif IRIS Lat < Target Lat and IRIS Lon ==

print('s')

target lat=-(IRIS Lat+Lat*xLol)
target lon=IRIS Lon

return target lat, target lon

> Target Lon:

< Target Lon:

Target Lon:

Target Lon:

elif TRIS Lat == Target Lat and IRIS Lon < Target Lon:

print('E")

target lat=-IRIS Lat

target lon=IRIS Lon+Lon*ylLol
return target lat, target lon

elif TRIS Lat == Target Lat and IRIS Lon > Target Lon:

else

print('W')

target lat=-IRIS Lat

target lon=IRIS Lon-Lon*yLol

return target lat, target lon
print('It has not been move')
target lat=-IRIS Lat

target lon=IRIS Lon

return target lat, target lon

a='Location:lat=-27.4564486,10on=153.0122028,alt=0.77,1is_relative=True'

print "
lat=re.s
lon=re.s

Past lat
Past lon

print "U

print "i
time.sle

camera =

def prec
# fi
ret,

# determine which pixels fall within the weed(

# an

b,g,

g_ma

Location: %s
earch ('lat=(
earch ('lon=(

" % vehicle.location
.*?),lon'",a) .group (1l
.*?),alt',a).group (1

=float (lat)
=float (lon)

AVs Past %s" %a

nitial position %s" % vehicle.lo
ep (1)

cv2.VideoCapture (0)

heck () :
nd contours in the image
frame = camera.read()

d then blur the binary image
r = cv2.split (frame)
sk = np.copy(9)

)
)

cation
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g mask[g > 70] = 255
g mask[g <= 70] = 0

r mask = np.copy(r)
r mask[r < 68] = 255
r mask[r >= 68] = 0

b mask = np.copy(b)
b mask[b < 72] = 255
b mask[b >= 72] = 0

mask g mask & r mask & b mask

mask = cv2.medianBlur (mask,7)
kernel = np.ones((4,4) ,np.uint8)

mask = cv2.erode (mask,kernel)
mask = cv2.dilate(mask, kernel)

(cnts, ) = cv2.findContours(mask.copy(), cv2.RETR EXTERNAL, cv2.CHAIN APPROX SIMPLE)

# check to see if any contours were found
if len(cnts) > 0:
check=1
print(' an object has been detected ')
return check
else:
print (' no object has been detected ')
check=0
return check

# capture frames from the camera
def detect():
print "Object detection loop start"
while True:
print 'Object detection loop operative'
## Up-date Current gps location.

Past lat=vehicle.location.lat
Past lon=vehicle.location.lon

#4# print "UAVs Past %s" %vehicle.location

time.sleep(0.025)

## Object detection start from here.
# grab the current frame

ret, frame = camera.read()
# check to see if we have reached the end of the
# video
if not ret:
break

b,g,r = cv2.split(frame)

g mask = np.copy(9g)

g mask[g > 70] = 255

g mask[g <= 70] = 0

r mask = np.copy(r)

r mask[r < 68] = 255

r mask[r >= 68] = 0

b mask = np.copy(b)

b mask[b < 72] = 255

b mask[b >= 72] = 0

mask = g mask & r mask & b mask
mask = cv2.medianBlur (mask,7)
kernel = np.ones((4,4) ,np.uint8)
mask = cv2.erode (mask,kernel)
mask = cv2.dilate(mask, kernel)
# find contours in the image
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(cnts, ) = cv2.findContours(mask.copy(), cv2.RETR EXTERNAL,

cv2.CHAIN APPROX SIMPLE)

# check to see if any contours were found

if len(cnts) > 0:
# sort the contours and find the largest one -- we
# will assume this contour correspondes to the area
# of my phone

cnt = sorted(cnts, key = cv2.contourArea, reverse = True) [0]

# compute the (rotated) bounding box around then

# contour and then draw it

rect = np.int32(cv2.cv.BoxPoints(cv2.minAreaRect (cnt)))
xLo=(rect[0] [1]+rect[2]1[1]1)/2

yLo=(rect[2] [0]+rect[0][0])/2

# cv2.imshow ("Frame", frame)
# cv2.imshow ("Binary", mask)

# Calculate a target location and angle
if yLo < 240:
yLol=240-yLo
elif yLo > 240:
yLol=-(240-yLo)
elif ylLo == 240:
yLol=0

if xLo < 320:
xLol=-(320-xLo)
elif xLo > 320:
xLol=640-xLo
elif xLo == 320:
xLol=0
angle=math.atan2 (yLol,xLol)* (180/math.pi)

if angle > 90:
anglel=90-angle
elif angle < 90:
angle t=180-angle
anglel=-(90-angle t)

location=[ xLol, yLol ]
# Save the image

cv2.imwrite ("Weed Detect"".jpg", frame)
cv2.imwrite("weed Binary"".jpg",mask)

# Current GPS update
print 'Current GPS update syncronization'
a='Location:lat=-27.4564318,10on=153.0121937,alt=30,1s relative=True'

print " location: %s" % a
lat=re.search('lat=(.*?),lon"',a).group(l)
(.*?),alt',a).group(l)

lon=re.search('lon=

UAV lat=float(lat)
UAV lon=float (lon)

print "UAVs Current %s" %a
## Find the target GPS location

[target lat,target lon]=heading(Past lat,Past lon,UAV lat,UAV lon,xLol,yLol)

print "pixels location"
print (xLo, yLo)
print "x-y coordinator=","[",xLol, yLol,"]"

99



#print (xLol, yLol)
#print " angle in degree "
#print (anglel)

return target lat,target lon, xLol,yLol,anglel

break
# print 'Current GPS update syncronization'

UAV lat=vehicle.location.lat #( check it later for flight test)#
UAV lon=vehicle.location.lon

# print "UAVs Current %s" S%Svehicle.location

## Find the target GPS location

[target lat,target lon]=heading(Past lat,Past lon,UAV lat,UAV lon,xLol,yLol)
print 'Target Location found'

target location=[target lat,target lon]

#print "pixels location"

#print (xLo, yLo)

print "x-y coordinator"

print (xLol,yLol)

# #print " angle in degree "

# #print (anglel)

return target lat,target lon,xLol,yLol,anglel
break

def weed(loop,alt,point):
for x in xrange (loop):

time.sleep(0.5)
print x

check=precheck()

print check

if check ==
[target lat,target lon,xLol,yLol,anglel]=detect()
print (" the target location has been found ")
print target lat,target lon
set speed(1)
#find object and fly to target's location
target=Location(target lat,target lon, alt, is relative=True)
vehicle.commands.goto (target)
vehicle.flush()

time.sleep(10)

point=point
print " return to the flight path "
vehicle.commands.goto (point)
vehicle.flush()
time.sleep(5)
# break
elif x==loop-1:
print " no object has been found between point A and B "

break
# #4
# arm _and takeoff (5) # Altitude in meter.
# ##

time.sleep(2)

FHA A A S
print (" set speed to Im/s ")

set speed(1l)
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print ("Going to first point A')

pointl = Location(-27.2334846, 152.9778489,5 , is relative=True)
vehicle.commands.goto (pointl)

vehicle.flush()

(iiddddddsdamdtai

weed (60,2,pointl) #loop, Altitude, location

distance = 0.0

distance = Ult (1)

if distance <= 50.0:

motor (3)

GPIO.cleanup()

else:
print '\n’'
print "Compare the altitude of the Ultrasonic with MAVproxy altitude"
print '\n'

time.sleep(2)

FHA A A A S
print ("Set speed to 1m/s")

set speed(1l)

print "Going to point B"

point2 = Location(-27.2334339,152.9778474, 1, is relative=True)
vehicle.commands.goto (point2)

vehicle.flush()

FHAHH A

weed (60,2 ,pointl) #loop, Altitude, location

distance = 0.0

distance = Ult (1)

GPIO.cleanup()

if distance <= 50.0:

motor (3)
GPIO.cleanup()
else:
print '\n’'
print "Compare the altitude of the Ultrasonic with MAVproxy altitude"
print '\n’'
time.sleep(5)
FHAHH A AR R
print ("Set speed to 5m/s")
set speed(1)
print "Going to Home"
home = Location(-27.2334339,152.9778474, 5, is relative=True)
vehicle.commands.goto (home)
vehicle.flush()

print("mission completed LAND mode...")
vehicle.mode = VehicleMode ("LAND")
vehicle.flush()

vehicle.flush()

camera.release ()
print " Finish"
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102 APPENDIX B. SOFTWARE ALGORITHMS

B.3 The ROS nodes for the system is attached as follow:

B.3.1 Lunch file for the system using Odroid U3.

Algorithm B.3 Robotic Operating System (ROS) System Lunch File.




launch file for the onboard system

<launch>

<!-- USB CAMERA -->
<node name="camera rgb" pkg="usb cam" type="usb cam node"
output="screen" >

<param
<param
<param
<param
<param
<param
<param
<param

</node>

name="video device" value="/dev/video0" />
name="image width" value="640" />
name="image height" value="480" />
name="pixel format" value="yuyv" />
name="framerate" value="10" />
name="camera frame id" value="camera rgb" />
name="camera name" value="camera rgb" />
name="1io method" value="mmap"/>

<!-- MAVROS -->

<!-- vim:

et ft=xml noet : -->

<!-- example launch script for PX4 based FCU's -->

<arg name="fcu url" default="/dev/ttyUSB0:921600" />

<arg name=
<arg name=
<arg name=

"gcs_url" default="" />
"tgt system" default="1" />
“tgt component" default="1" />

<arg name="log output" default="screen" />

<include file="$(find mavros)/launch/node.launch">
<arg name="pluginlists yaml" value="$(find mavros)/launch/
px4 pluginlists.yaml" />
<arg name="config yaml" value="$(find mavros)/launch/
px4 config.yaml" />

<arg name="fcu url" value="$(arg fcu url)" />

<arg name="gcs url" value="$(arg gcs url)" />

<arg name="tgt system" value="$(arg tgt system)" />

<arg name="tgt component" value="$(arg tgt component)" />
<arg name="log output" value="$(arg log output)" />

</include>

<!-- SPRAY

NAV -->

<node name="spray nav" pkg="spray nav" type="spray nav_node"
output="screen" >

<param
<param
<param

<param
<param

name="height takeoff" value="3.0" type="double" />
name="height search" value="3.0" type="double" />
name="height spray" value="0.6" type="double" />

name="waypoint radius" value="0.2" type="double" />
name="vs radius" value="0.1" type="double" />
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<param
<param
<param

<param

name="fov degrees" value="60" type="double" />
name="camera width" value="640" type="double" />
name="camera height" value="480" type="double" />

name="position input" value="/mavros/local position/

pose" type="str" />

<param
</node>
</launch>

name="vs input" value="/target/pose" type="str" />
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B.3 The ROS nodes for the system is attached as follow: 105

B.3.2 Marker detection node.

Algorithm B.4 Robotic Operating System (ROS) Marker detection node.




<?xml "1.0" tutft-8"7>

"ar sys" “single board" "ar single board"
"screen”
"/camera_info" "/camera_rgb/camera_info"
"/image" "/camera_rgb/image raw"
"image is rectified" "bool"” “true"
"marker size" “double” "0.13"
"board config" "string"
"$(find ar_sys)/data/single/board.yml"

"board frame" “string" "/boardl"
"draw markers" "bool" “false"
"draw markers cube" “bool" "true"

"draw_markers axis" “bool" “false"
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B.3 The ROS nodes for the system is attached as follow: 107

B.3.3 Colour detection node.

Algorithm B.5 Robotic Operating System (ROS) Colour detection node.




//Includes all the headers necessary to use the most common public pieces of the ROS system.
#include <ros/ros.h>

//Include geometry msgs for publishing the estimated target pose
#include <geometry msgs/PoseStamped.h>

//Use image transport for publishing and subscribing to images in ROS
#include <image transport/image transport.h>

//Include some useful constants for image encoding.

#include <sensor msgs/image encodings.h>

//Use cv_bridge to convert between ROS and OpenCV Image formats
#include <cv_bridge/cv bridge.h>

//Include headers for OpenCV Image processing

#include <opencv2/imgproc/imgproc.hpp>

//Include headers for OpenCV

#include <cv.h>

#include <math.h>

#include <std msgs/Float64.h>

//Store all constants for image encodings in the enc namespace to be used later.
namespace enc = sensor msgs::image encodings;

//Global Variables

image transport::Publisher debug pub;
ros::Publisher pose out;

double height us = 0;

void us_cb(const std msgs::Float64 msg) {
height us = msg.data;
}

void colorDetectionCallback(const sensor msgs::ImageConstPtr& original image) {
//Convert from the ROS image message to a CvImage suitable for working with OpenCV for
processing
cv_bridge::CvIimagePtr cv_ptr;

try {
//Always copy, returning a mutable CvImage
//0penCV expects color images to use BGR channel order.
cv_ptr = cv_bridge::toCvCopy(original image, enc::BGR8);

}

catch (cv _bridge::Exception& e) {
//1if there is an error during conversion, display it
ROS_ERROR("tutorialROSOpenCV::main.cpp::cv bridge exception: %$s", e.what());
return;

}

//Noise filter
//NOTE: Probably don't need this as a Gaussian blur is applied later on
cv::medianBlur( cv_ptr->image, cv_ptr->image, 3);

//Convert original image to Gray
//NOTE: Not sure if this needs to actually be done...
//IplImage image = cv_ptr->image.operator IplImage(); //convert Mat to IplImage

//Start looking for circle

//Convert input image to hsv

cv::Mat img hsv;

cv::cvtColor (cv_ptr->image,img hsv,CV_BGR2HSV) ;

// Threshold the HSV image, keep only the red pixels

cv::Mat lower red hue range;

cv::Mat upper red hue range;

cv::inRange(img hsv, cv::Scalar(0, 100, 100), cv::Scalar(5, 255, 255),
lower red hue range);

cv::inRange(img hsv, cv::Scalar(175, 100, 100), cv::Scalar(179, 255, 255),
upper_ red hue range);

// Combine the above two images

cv::Mat red hue image;

cv::addWeighted(lower red hue range, 1.0, upper red hue range, 1.0, 0.0, red hue image);
cv::GaussianBlur (red hue image, red hue image, cv::Size(9, 9), 2, 2); // Reduce the
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noise to avoid false circle detection

// Use the Hough transform to detect red circles in the combined threshold image
std::vector<cv::Vec3f> circles;
std::vector<cv::Point> found centers;

//Decide how far away the circles should be from each other
int min dist = red hue image.rows/8;

if(min dist < 8)
min dist = 8;

//Scan the red-filtered image for circles
cv::HoughCircles (red hue image, circles, CV_HOUGH GRADIENT, 1, min dist, 100, 20, 30,
150);
//I1f there was only 1 circle found in the image, publish that data
//NOTE: This is quite poor, all circles should be checked against a desired diameter or
something
if(circles.size() == 1) {

geometry msgs::PoseStamped msg;

//double px ratio = 0.00902;
//double px _ratio = 0.0054;
double px ratio = height us*tan(60/2)/320;

double cam x = (cvRound(circles[0][0]) - 320)*px ratio;
double cam y = (cvRound(circles[0][1]) - 240)*px ratio;
ROS INFO("Target location in the camera frame is: [%0.2f, %0.2f", cam x, cam y);

msg.header.stamp = ros::Time::now() ;
msg.header.frame id = "/camera";

msg.pose.position.x = cam x;
msg.pose.position.y = cam y;

pose out.publish(msg);
}

//I1f there are subscribers, publish debug image
if (debug pub.getNumSubscribers() > 0) {
for( int i = 0; i < circles.size(); i++ ) {
int radius = cvRound(circles[i][2]);

CvPoint red center = {cvRound(circles[i][(0]), cvRound(circles[i][1])};

// circle center

circle( cv_ptr->image, red center, 3, cv::Scalar(255,0,0), -1, 8, 0 );

// circle outline

circle( cv_ptr->image, red center, radius, cv::Scalar(0,255,0), 3, 8, 0 );

}

debug pub.publish(cv_ptr->toImageMsg()) ;

}

int main(int argc, char **argv)

{
//Initialize the original node
ros::init(argc, argv, "red detection");

//Create the handles for both the node and image transport
ros::NodeHandle nh(ros::this node::getName());

image transport::ImageTransport it (nh);

//Initialize the default camera message
std::string camera topic = "/camera/image raw";

if (nh.getParam("image input", camera topic))
ROS INFO("Connecting to camera: %s", camera topic.c_str()):;
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//Subscribers
image transport::Subscriber sub = it.subscribe(camera topic, 1, colorDetectionCallback);

ros::Subscriber us sub = nh.subscribe<std msgs::Float64>
("/us distance"™, 10, us_cb);

//Publishers
debug pub = it.advertise("image processed", 1);

pose out = nh.advertise<geometry msgs::PoseStamped>("target location", 100);

//Lock thread and listen to messages
ros::spin();
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B.3 The ROS nodes for the system is attached as follow:

B.3.4 weed detection node.

111

Algorithm B.6 Robotic Operating System (ROS) Weed detection node.




#!/usr/bin/env python

import rospy

import sys

import cv2

import numpy

import numpy as np

from cv bridge import CvBridge, CvBridgeError
from sensor msgs.msg import Image

from geometry msgs.msg import PoseStamped

class image_converter () :
def init (self):
self.pose pub =
rospy.Publisher (" /weed detection/target location",PoseStamped,queue size=10)

self.debug image pub = rospy.Publisher(7debugi;mage",Image,queueisize=1)
self.bridge = CvBridge ()
self.image sub = rospy.Subscriber("/camera rgb/image raw",Image,self.callback)

self.debug pub = 1;

def callback(self,data):
print "Analysing new image...
try:
cv_image = self.bridge.imgmsg to cv2(data, "rgb8")
except CvBridgeError as e:
print (e)

"

r,g,b=cv2.split(cv_image)

g mask = numpy.copy(g)
g mask[g > 75] = 255
g mask[g <= 75] = 0

r mask = numpy.copy(r)

r mask[r < 68] = 255

r mask[r >= 68] = 0

b mask = numpy.copy (b)

b mask[b < 62] = 255

b mask[b >= 62] = 0

mask = g mask & r mask & b mask
mask = cv2.medianBlur (mask,7)

kernel = numpy.ones((4,4) ,numpy.uint8)

mask = cv2.erode (mask,kernel)
Col = cv2.dilate(mask, kernel)

Col= cv2.GaussianBlur (Col, (3,3),0)

# find contours
(cnts, ) = cv2.findContours(Col.copy() , cv2.RETR EXTERNAL,

cv2.CHAIN APPROX SIMPLE)

if self.debug pub:
cv2.drawContours(cv_image, cnts, -1, (0,255,0), 3)

#check to see if any contours were found
if len(cnts) > 0:
#short
cnt = sorted(cnts, key =cv2.contourArea, reverse = True) [0]

rect = np.int32(cv2.cv.BoxPoints (cv2.minAreaRect (cnt)))

xLo=(rect[0] [1]+rect[2]1[1]1)/2
yLo=(rect[2] [0]+rect[0][0])/2
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print "Found target in image!"

cam x = (xLo - 320)*0.00902
cam y = (yLo - 240)*0.00902

pose_out = PoseStamped()

pose out.header.frame id = "/camera"

pose out.header.stamp = rospy.get rostime ()
pose out.pose.position.x = cam X

pose out.pose.position.y = cam y

self.pose pub.publish(pose out)

if self.debug pub:
try:

self.debug image pub.publish(self.bridge.cv2 to imgmsg
(cv_image, "rgb8"))
except CvBridgeError as e:

print(e)
def main(args):
ic = image converter()
rospy.init node('image converter', anonymous=True)
try:

rospy.spin()
except KeyboardInterrupt:
print("Shutting down'")

if name == ' main ':
main(sys.argv)
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B.3.5 Transfer pixels to local position node.

Algorithm B.7 Robotic Operating System (ROS) Transfer pixels to local position
node.




#!/usr/bin/env python

# license removed for brevity

import rospy

from geometry msgs.msg import PoseStamped
import numpy as np

pub = rospy.Publisher('/target/pose', PoseStamped, queue size=10)
def callback(data):

#rospy.loginfo (data)

pose out = data

pose out.header.frame id = "/uavbody"

R = np.matrix([[O0, 1, 0], [1, O, O], [0, O, -111) # camera to body frame rotation

js) np.matrix([[data.pose.position.x], [data.pose.position.y], [data.pose.position.z]])

p dash = R*p
pose_out.pose.position.x = p dash.item(0)

pose out.pose.position.y = p dash.item(1)
pose out.pose.position.z = p dash.item(2)

pose out.pose.orientation.x
pose out.pose.orientation.y
pose out.pose.orientation.z
pose out.pose.orientation.w =

= O O o

rospy.loginfo(pose out)
pub.publish(pose out)

def listener():

In ROS, nodes are uniquely named. If two nodes with the same
node are launched, the previous one is kicked off. The
anonymous=True flag means that rospy will choose a unique
name for our 'listener' node so that multiple listeners can
run simultaneously.

rospy.init node('FrameTransform', anonymous=True)

e o o o o

#input str = "/ar single board/pose"

#input_str = "/color detection/target location"
input str = "/red detection/target location"
#input str = "/weed detection/target location"

print("Listening to: " + input str)
print ("Outputting on: /target/pose™)

rospy.Subscriber (input str, PoseStamped, callback)

# spin() simply keeps python from exiting until this node is stopped
rospy.spin()

if name == ' main ':
listener ()
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116 APPENDIX B. SOFTWARE ALGORITHMS

B.3.6 Ultrasonic node.

Algorithm B.8 Robotic Operating System (ROS) Ultrasonic node.




#! /usr/bin/env python

import serial

import rospy

import sys

from std msgs.msg import Float64

ser=serial.Serial ('/dev/ttyACMO',115200)
ser.flushInput ()
def ultrasonic():
pub = rospy.Publisher('us distance',Float64,queue size=10)

rospy.init node('ultrasonic', anonymous=True)

while not rospy.is shutdown() :
readdata=ser.readline ()

if readdata[O][:1] !'= '"-':
height = float(readdata)/100

rospy.loginfo(height)
msg Floaté64

msg height
pub.publish (msg)

if name ==' main
try:
ultrasonic()
except rospy.ROSInterruptException:
pass
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B.3.7 Navigation node.

Algorithm B.9 Robotic Operating System (ROS) Navigation node.




/**
* @file offb node.cpp

* @brief offboard example node, written with mavros version 0.14.2,

* stack and tested in Gazebo SITL

*/

#include <string.h>

#include <ros/ros.h>

#include <math.h>

#include <geometry msgs/PoseStamped.h>
#include <geometry msgs/Point.h>
#include <std msgs/Float64.h>
#include <mavros msgs/CommandBool.h>
#include <mavros msgs/SetMode.h>
#include <mavros msgs/State.h>

// == == == == //
// Global Parameters //
// //
enum nav_modes {
NAV_MODE TAKEOFF,
NAV_MODE WAYPOINT A,
NAV_MODE WAYPOINT B,
NAV_MODE_FOUND_ PLANT,
NAV_MODE_SPRAY DESC,
NAV_MODE_SPRAY WAIT,
NAV_MODE_SPRAY ASC,
NAV_MODE_RTL,
}i
// == == == == ====//
// Global Variables //
// //

mavros msgs::State current state;
geometry msgs::Point current pos;
geometry msgs::Point current goal;
unsigned int nav_mode = NAV_MODE_ TAKEOFF;

geometry msgs::Point waypoint home;
geometry msgs::Point waypoint a;
geometry msgs::Point waypoint b;
geometry msgs::Point waypoint plant;

bool ignore ip = true;
bool land mode = false;
double height search = 2.0;
double height takeoff = 2.0;
double height spray = 0.5;
double height us = 0;
ros::Time start spray time;

double waypoint radius = 0.2;
double vs radius = 0.2;

double fov = 0;

double camera height = 480;

double camera width = 640;

//estimated pos.z = current pos.z - real height + 0.5;

// //
// Callback Functions //
// == //

void state cb(const mavros msgs::State::ConstPtr& msg) {
current state = *msg;

}

void us_cb(const std msgs::Float64 msg) {
height us = msg.data;
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}

/*

void ip cb(const geometry msgs::Point msg) {

if (!ignore ip) {

//msg.x —---> pixel X location
//estimate pixel location in meters
//rotate point --- for now, assume you don't have to
//set new goal based on estimate

//Just to do an example
geometry msgs::Point estimated pos; //estimated position of the plant in the world
frame

//double x2 = current pos.z * tan(fov_height/2);
double dpx = current pos.z * tan(fov/2);

estimated pos.x = (msg.x*dpx)/(camera width/2);
estimated pos.y = (msg.y*dpx)/(camera width/2);
estimated pos.z = 0;

//estimated pos.z = current pos.z;

waypoint plant.x = current pos.x + estimated pos.x;
waypoint plant.y = current pos.y + estimated pos.y;
waypoint plant.z = current pos.z + estimated pos.z;

nav_mode = NAV MODE FOUND PLANT;

ROS INFO ("Calculated [du, dv] as: [%0.2f, $0.2f]", estimated pos.x, estimated pos.y);
ROS INFO ("Estimated plant location at: [%0.2f, %0.2f]", waypoint plant.x,

waypoint plant.y);

ROS INFO ONCE ("Guiding center of the plant");

}
*/

void ip cb(const geometry msgs::PoseStamped msg) {
if ('ignore ip){
geometry msgs::Point estimated pos; //estimated position of the plant in the world
frame

estimated pos.x = msg.pose.position.x;
estimated pos.y = msg.pose.position.y;
estimated pos.z 0;

waypoint plant.x = current pos.x + estimated pos.x;
waypoint plant.y = current pos.y + estimated pos.y;
waypoint plant.z = current pos.z + estimated pos.z;

nav_mode = NAV_MODE_FOUND_PLANT;

ROS INFO("Calculated [du, dv] as: [%0.2f, %0.2f]", estimated pos.x, estimated pos.y);
ROS INFO("Estimated plant location at: [%0.2f, 50.2f]", waypoint plant.x,

waypoint plant.y);

ROS_INFO _ONCE("Guiding center of the plant");

}

void local pos_cb(const geometry msgs::PoseStamped msq) {
current pos = msg.pose.position;

double dHeight = 0;
switch(nav_mode) {
case NAV_MODE TAKEOFEF':
ROS INFO ONCE ("Guiding the UAV to takeoff");

current goal = waypoint home;

if ((fabs(current goal.x - current pos.x) < waypoint radius) &&
(fabs (current goal.y - current pos.y) < waypoint radius) &&
(fabs (current goal.z - current pos.z) < waypoint radius)) {

nav_mode = NAV MODE WAYPOINT A;
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ROS INFO("Guiding the UAV to waypoint A");
}

break;
case NAV MODE WAYPOINT A:
current goal = waypoint a;

if ((fabs(current goal.x - current pos.x) < waypoint radius) &&
(fabs (current goal.y - current pos.y) < waypoint radius) &&
(fabs (current goal.z - current pos.z) < waypoint radius)) {

nav_mode = NAV MODE WAYPOINT B;

ignore ip = false;

ROS_INFO("Guiding the UAV to waypoint B");
}

break;
case NAV MODE WAYPOINT B:
current goal = waypoint b;

if ((fabs(current goal.x - current pos.x) < waypoint radius) &&
(fabs (current goal.y - current pos.y) < waypoint radius) &&
(fabs (current goal.z - current pos.z) < waypoint radius)) {

ignore ip = true;
nav_mode = NAV MODE RTL;
ROS INFO("Guiding the UAV to home'");

}

break;
case NAV MODE FOUND PLANT:
current goal = waypoint plant;

if ((fabs(current goal.x - current pos.x) < vs_radius) &é&
(fabs (current goal.y - current pos.y) < vs_radius) &&
(fabs (current goal.z - current pos.z) < waypoint radius)) {
nav_mode = NAV MODE SPRAY DESC;
ignore ip = true;
ROS INFO("Identified the plant...");
}
break;
case NAV MODE SPRAY DESC:
current goal = waypoint plant;

dHeight = height us - height spray;

current goal.z = current pos.z - dHeight;
if ((fabs(current goal.x - current pos.x) < vs_radius) &é&
(fabs (current goal.y - current pos.y) < vs_radius) &&
(fabs (current goal.z - current pos.z) < vs_ radius)) {
nav_mode = NAV MODE SPRAY WAIT;
start spray time = ros::Time::now();
ROS_INFO("Reached spray height, starting spray timer...");
}
break;

case NAV MODE SPRAY WAIT:
current goal = waypoint plant;

dHeight = height us - height spray;
current goal.z = current pos.z - dHeight;

if ((ros::Time::now() - start spray time).toSec() > 5.0) {
nav_mode = NAV MODE SPRAY ASC;
ROS INFO("Finished waiting for spray, returning to waypoint
height...");

}

break;
case NAV MODE SPRAY ASC:
current goal = waypoint plant;
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if ((fabs(current goal.x - current pos.x) < waypoint radius) &&
(fabs (current goal.y - current pos.y) < waypoint radius) &&
(fabs(current goal.z - current pos.z) < waypoint radius)) {
nav_mode = NAV MODE WAYPOINT B;
ROS_INFO("Reached waypoint height, continuing to waypoint B.");

}

break;
case NAV_MODE RTL:
current goal = waypoint home;

if ((fabs(current goal.x - current pos.x) < waypoint radius) &&
(fabs (current goal.y - current pos.y) < waypoint radius) &&
(fabs (current goal.z - current pos.z) < waypoint radius)) {
//land
ROS INFO ONCE ("Reached Home™) ;

land mode = true;

}

break;
default:
ROS_ERROR("Navigation mode unknown");
nav_mode = NAV_MODE_ RTL;
ROS INFO("Guiding the UAV to home");

}

}

// //

// Main Function //

// //

int main(int argc, char **argv)

{
// //
// Initialize node //
// //

ros::init (argc, argv, "spray nav');
ros::NodeHandle nh(ros::this node::getName()) ;

double fov deg = 60;

//Parameters
if (!nh.getParam("height takeoff", height takeoff)){
ROS_WARN("No parameter set for \"height takeoff\"");

}
ROS INFO("Setting takeoff height to: %0.2f", height takeoff);

if (!'nh.getParam("height search", height search)) {
ROS_WARN("No parameter set for \"height search\"");

}
ROS INFO("Setting search height to: %0.2f", height search);

if (!'nh.getParam("height spray", height spray)){
ROS_WARN("No parameter set for \"height spray\"");

}
ROS INFO("Setting spray height to: 50.2f", height spray):;

if (!'nh.getParam("waypoint radius", waypoint radius)) {
ROS_WARN("No parameter set for \"waypoint radius\"");

}
ROS INFO("Setting waypoint radius to: %0.2f", waypoint radius);

if (!nh.getParam("vs radius", vs_radius)){
ROS_WARN("No parameter set for \"vs radius\"");
}

ROS INFO("Setting visual servoing radius to: %0.2f", vs radius);

if (!'nh.getParam("fov degrees", fov_deg)){
ROS_WARN("No parameter set for \"fov degrees\"");

}
ROS INFO("Setting camera width FoV to: %0.2f", fov degq);
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fov = fov_deg*M PI/180.0;

if (!'nh.getParam("camera width", camera width)){
ROS_WARN("No parameter set for \"camera width\"");

}
ROS INFO("Setting camera width: %0.2f", camera width);

if (!'nh.getParam("camera height", camera height)) {
ROS_WARN("No parameter set for \"camera height\"");

}
ROS INFO("Setting camera height: %0.2f", camera height);

std::string position input = "/pose";
if (!'nh.getParam("position input", position input)) {
ROS WARN("No parameter set for \"position input\"");

}
ROS INFO("Setting position input to: %s", position input.c str());

std::string vs_input = "/target location";
if (!'nh.getParam("vs input", vs_ input)) {
ROS_WARN("No parameter set for \"vs input\"");

}
ROS_INFO("Setting visual servoing input to:

o

ss'", vs_input.c str());
fov = fov_deg*M PI/180.0;

//Subscribers

ros::Subscriber ip sub = nh.subscribe<geometry msgs::PoseStamped>
(vs_input, 10, ip cb);

ros::Subscriber state sub = nh.subscribe<mavros msgs::State>
("/mavros/state", 10, state cb);

ros::Subscriber local pos sub = nh.subscribe<geometry msgs::PoseStamped>
(position input, 10, local pos cb);

ros::Subscriber us_sub = nh.subscribe<std msgs::Float64>
("/us distance", 10, us _cb);

//Publishers
ros::Publisher local pos pub = nh.advertise<geometry msgs::PoseStamped>
("/mavros/setpoint position/local", 10);

//Services

ros::ServiceClient arming client = nh.serviceClient<mavros msgs::CommandBool>
("/mavros/cmd/arming") ;

ros::ServiceClient set mode client = nh.serviceClient<mavros msgs::SetMode>
("/mavros/set mode");

//the setpoint publishing rate MUST be faster than 2Hz
ros::Rate rate(20.0);

// wait for FCU connection

while(ros::ok() && current state.connected) {
ros: :spinOnce () ;
rate.sleep();

}

// //
// Initialize setpoint sequence //
/[ ================== == ====//
//Set the takeoff goal

waypoint home.x = 0;

waypoint home.y = 0;

waypoint home.z = height takeoff;

]
oo

waypoint a.x 5;
waypoint a.y ;

waypoint a.z = height takeoff;

waypoint b.x = 5;
waypoint b.y = 2;
waypoint b.z = height search;
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current goal = waypoint home;

//Prepare the pose message

geometry msgs::PoseStamped pose;

pose.header.frame id = "/fcu";

pose.pose.position = current goal;

//send a few setpoints before starting

ROS INFO("Initializing pose stream...");
for(int 1 = 100; ros::o0k() && i > 0; --1){
pose.header.stamp = ros::Time: :now();

local pos pub.publish(pose);

ros::spinOnce () ;
rate.sleep();

}
ROS _INFO("Done!");

//

// Set Parameters

mavros msgs::SetMode offb set mode;

offb set mode.request.custom mode = "OFFBOARD";

mavros msgs: :SetMode landﬁseEﬁmode;

land set mode.request.custom mode = "AUTO.LAND";

mavros_msgs: :CommandBool arm_cmd;

arm cmd.request.value = true;
ros::Time last request = ros::Time::now();
// //
// Main Loop //
/[ ============ == == ====//
while(ros::o0k()) {
// //
// Update Callbacks //
// == == == ====//
ros::spinOnce () ;
// //
// Set Mode //
// == == //
if ( !'land mode) {
if ( current state.mode !'= "OFFBOARD" &&
current state.mode == "AUTO.LOITER" &&

(ros::Time: :now()

ROS_INFO("Current mode is not \"OFFBOARD\"
if ( set mode client.call(offb set mode) &&
offb set mode.response.success) {

- last request > ros::Duration(5.0))){

ROS INFO("Offboard enabled");

}

last request =
} else {

ros::Time: :now() ;

if ( 'current state.armed &&
(ros::Time::now() - last request > ros::Duration(5.0))){

if( arming client.call(arm cmd) &&

arm_cmd.response.success) {
ROS INFO("Vehicle armed");

}

last request

ros::Time: :now() ;
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}

} else {
if ( set mode client.call(land set mode) && land set mode.response.success) {
ROS INFO("Landing...");
break;
}
}
// //
// Send setpoints //
// == //
pose.header.stamp = ros::Time: :now();
pose.pose.position = current goal;

local pos pub.publish(pose);

// == == == == ====//
// Sleep //
// //

rate.sleep();

}

return 0;
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B.4 Arduino code for controlling the Ultrasonic (HC-SR04)

and the spraying pump.

Algorithm B.10 Arduino code for controlling the Ultrasonic (HC-SR04) and the
spraying pump.




/*

HC-SR04 Ping distance sensor:
VCC to arduino 5v

GND to arduino GND

Echo to Arduino pin 7

Trig to Arduino pin 8

*/
#define echoPin 7 // Echo Pin
#define trigPin 8 // Trigger Pin
#define sprayPin 3 // Spray Trigger Pin
#define LEDPin 13 // Onboard LED

int maximumRange = 200; // Maximum range needed

int minimumRange = 0; // Minimum range needed

long duration, distance; // Duration used to calculate distance
bool sprayTrig = 0;

long sprayTime = 0;

void setup () {

Serial.begin (115200);

pinMode (trigPin, OUTPUT) ;

pinMode (sprayPin, OUTPUT) ;

digitalWrite (sprayPin, HIGH);

pinMode (echoPin, INPUT) ;

pinMode (LEDPin, OUTPUT); // Use LED indicator (if required)
}

void loop () {
/* The following trigPin/echoPin cycle is used to determine the

distance of the nearest object by bouncing soundwaves off of it.

digitalWrite (trigPin, LOW) ;
delayMicroseconds (2) ;

digitalWrite (trigPin, HIGH);
delayMicroseconds (10) ;

digitalWrite (trigPin, LOW) ;
duration = pulselIn(echoPin, HIGH) ;

//Calculate the distance (in cm) based on the speed of sound.
distance = duration/58.2;

if (distance >= maximumRange || distance <= minimumRange) {
/* Send a negative number to computer and Turn LED ON
to indicate "out of range" */
Serial.println("-1");
}
else {
/* Send the distance to the computer using Serial protocol, and
turn LED OFF to indicate successful reading. */
Serial.println(distance);
}
if ((distance>40) && (distance<60) &&!sprayTriqg)
{
sprayTrig = 1;
sprayTime = millis();
digitalWrite (sprayPin, LOW) ;
digitalWrite (LEDPin, HIGH);
}

if (sprayTrigé&é& ((sprayTime+2000)<millis()))
{
sprayTrig = 0;
sprayTime = millis();
digitalWrite (sprayPin, HIGH);
digitalWrite (LEDPin, LOW) ;
}

//Delay 50ms before next reading.
delay (50);
}

*/
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B.5 Matlab Code for drawing flight trajectory.

Algorithm B.11 Matlab Code for drawing flight trajectory.




%% Pre-Script
close all;
clear;

clc;

%% Get 2 lots of data

and plot

disp('Select the file containing the pointer position data');

pather
pather

o°
o0

o\

generated from the

NoX
Il

plot3(x,y,z, '+-');
axis('equal');
hold on;

o

5

% generated from the

file name

file name

= str2double (data.simm3m.field pose position x);
str2double (data.simm3m.field pose position y);
str2double (data.simm3m.field pose position_z);

x2 = str2double(data.flightl.field pose position_ x);
y2 = str2double(data.flightl.field pose position y);

z2 = str2double(data.flightl.field pose position z);

plot3(x2,y2,z2, '--');

>

[IE°)
°

o\

grid on

waypoints = [0, 0, O
0, 0, 3;
5, 2, 3
5, 2, 3;
0, 0, 3;
0, 0, 0]

line (waypoints(:,1),

hold off;

’

waypoints (:,2),

waypoints(:,3),
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% File Read

[file,path,~] = uigetfile('*.csv', '"Read Recorded Data');

filePath = [path, file];
if file ==

error ('Please select a file to analyse.');
end

fid = fopen(filePath, 'r'); %Open specified file

C = textscan(fid, repmat('%s',1,12), 'delimiter',',', 'CollectOutput',true);
read data and format

C = C{1l}; %Knock the cell table down a level

C{1,1} = strrep(C{1,1},'s"',""); %STake out the comment if it exists

fclose (fid) ;

%% Phrase Data

vname = matlab.lang.makeValidName (file);

vname = strrep(vname,' csv',''"); $Take out the comment if it exists
for i = l:size(C,2)
tname = matlab.lang.makeValidName (C{1,1i});
data. (vname) . (tname) = cell(size(C,1)-1,1);
for j = 2:size(C,1)
data. (vname) . (tname) {j-1} = C{j,1i};
end

end

%% Clean Up
clearvars vname tname i j C fid file path filePath ans

130

Sscan¥



(1]

(2]

(11]

References

H. Choi, M. Geeves, B. Alsalam, and F. Gonzalez, “Open source computer-vision based
guidance system for UAVs on-board decision making,” [EEE Aerospace Conferece, Big Sk,

Montana, 2016.

S. L. Ward, J. Hensler, B. H. Y. Alsalam, and L. F. Gonzalez, “Autonomous UAVs wildlife
monitoring and tracking using thermal imaging and computer vision,” IEEE Aerospace
conferece, Big Sky, Montana, 2016.

Y. Han, “An autonomous Unmanned Aerial Vehicle-based imagery system development
and remote sensing images classification for agricultural applications,” Graduate Theses
and Dissertations, p. 513, 2009.

H. Xiang and L. Tian, “Method for automatic georeferencing aerial remote sensing (RS)
images from an unmanned aerial vehicle (UAV) platform,” Biosystems Engineering, vol.
108, no. 2, pp. 104-113, 2011,

E. R. Hunt Jr, M. Cavigelli, C. S. Daughtry, J. E. Mcmurtrey III, and C. L. Walthall,
“Evaluation of digital photography from model aircraft for remote sensing of crop
biomass and nitrogen status,” Precision Agriculture, vol. 6, no. 4, pp. 359-378, 2005.

M. Rieke, T. Foerster, J. Geipel, and T. Prinz, “High-precision positioning and real-
time data processing of uav systems,” International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. 38, pp. 1-C22, 2011.

C. C. D. Lelong, P. Burger, G. Jubelin, B. Roux, S. Labbe, and F. Baret, “Assessment of
Unmanned Aerial Vehicles imagery for quantitative monitoring of wheat crop in small
plots,” Sensors, vol. 8, no. 5, pp. 3557-3585, 2008.

V. Gonzalez-Dugo, P. Zarco-Tejada, E. Nicolas, P. A. Nortes, J. J. Alarcon, D. S. Intrigliolo,
and E. Fereres, “Using high resolution UAV-thermal imagery to assess the variability in the
water status of five fruit tree species within a commercial orchard,” Precision Agriculture,
vol. 14, no. 6, pp. 660-678, 2013.

L. Felderhof, D. Gillieson, P. Zadro, and A. Van Boven, “Linking UAV(Unmanned Aerial
Vehicle) technology with precision agriculture,” 2008.

S. Von Bueren and L Yule, “Multispectral aerial imaging of pasture quality and biomass
using unmanned aerial vehicles (UAV),” Accurate and Efficient Use of Nutrients on Farms,
Occasional Report, no. 26, 2013.

N. Hallermann and G. Morgenthal, “Visual inspection strategies for large bridges
using unmanned aerial vehicles (UAV),” in Proc. 7th International Conference on Bridge
Maintenance, Safety and Management, IABMAS 2014, July 7, 2014-July 11, 2014.

131



132

[12]

[15]

REFERENCES

F. Chaumette and S. Hutchinson, “Visual servo control image basic approaches,” IEEE
Robotics Automation Magazine, vol. 13, no. 4, pp. 82-90, 2006.

P. I. Corke, Visual Control of Robots: high-performance visual servoing.  Baldock, UK:
Research Studies Press, 1996.

H. H. A. Kadouf and Y. M. Mustafah, “Colour-based object detection and tracking
for autonomous quadrotor UAV,” in Proc. IOP Conference Series: Materials Science and
Engineering, vol. 53.  IOP Publishing, 2013, p. 012086.

C.Knoth, B. Klein, T. Prinz, and T. Kleinebecker, “Unmanned aerial vehicles as innovative
remote sensing platforms for high-resolution infrared imagery to support restoration
monitoring in cut-over bogs,” Applied Vegetation Science, vol. 16, no. 3, pp. 509-517, 2013.

E. Hunt, W. D. Hively, C. S. Daughtry, G. W. McCarty, S. J. Fujikawa, T. Ng, M. Tranchi-
tella, D. S. Linden, and D. W. Yoel, “Remote sensing of crop leaf area index using
unmanned airborne vehicles,” in Proceedings of the Pecora 17 Symposium, Denver, CO,
2008.

D. Gomez-Candon, F. Lopez Granados, J. Caballero Novella, M. Gomez Fmez Casero,
M. Jurado Exposito, and L. Garca Torres, “Geo-referencing remote images for precision
agriculture using artificial terrestrial targets,” Precision Agriculture, vol. 12, no. 6, pp.
876-891, 2011.

[18] J.Berni, P. Zarco-Tejada, L. Suarez, V. Gonzalez-Dugo, and E. Fereres, “Remote sensing

[20]

(21]

[22]

(23]

of vegetation from uav platforms using lightweight multispectral and thermal imaging
sensors,” Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci, vol. 38, p. 6, 2009.

C. Hung, Z. Xu, and S. Sukkarieh, “Feature learning based approach for weed classifica-
tion using high resolution aerial images from a digital camera mounted on a uav,” Remote
Sensing, vol. 6, no. 12, pp. 12037-12 054, 2014.

E. Honkavaara, H. Saari, J. Kaivosoja, I. Polonen, T. Hakala, P. Litkey, J. Makynen, and
L. Pesonen, “Processing and assessment of spectrometric, stereoscopic imagery collected
using a lightweight uav spectral camera for precision agriculture,” Remote Sensing, vol. 5,
no. 10, pp. 5006-5039, 2013.

S. Candiago, F. Remondino, M. De Giglio, M. Dubbini, and M. Gattelli, “Evaluating
multispectral images and vegetation indices for precision farming applications from UAV
images,” Remote Sensing, vol. 7, no. 4, pp. 4026-4047, 2015.

A. S. Laliberte, A. Rango, K. M. Havstad, J. F. Paris, R. F. Beck, R. McNeely, and A. L.
Gonzalez, “Object-oriented image analysis for mapping shrub encroachment from 1937
to 2003 in southern new mexico,” Remote Sensing of Environment, vol. 93, no. 1, pp. 198-
210, 2004.

S. Herwitz, L. Johnson, S. Dunagan, R. Higgins, D. Sullivan, J. Zheng, B. Lobitz, J. Leung,
B. Gallmeyer, and M. Aoyagi, “Imaging from an unmanned aerial vehicle: agricultural
surveillance and decision support,” Computers and Electronics in Agriculture, vol. 44,
no. 1, pp. 49-61, 2004.



REFERENCES 133

[24]

[25]

(27]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

S.R. Herwitz, L. F. Johnson, J. Arvesen, R. Higgins, J. Leung, and S. Dunagan, “Precision
agriculture as a commercial application for solar-powered Unmanned Aerial Vehicles,”
in AIAA 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, 2002,
Conference Proceedings.

M. Kontitsis, K. P. Valavanis, and N. Tsourveloudis, “A UAV-vision system for airborne
surveillance.” in Proc. Robotics and Automation, 2004. ICRA’04. 2004 IEEE International
Conference on, vol. 1, 2004, pp. 77—-83.

C. H. Koger, D. R. Shaw, C. E. Watson, and K. N. Reddy, “Detecting late-season weed
infestations in soybean (glycine max) 1,” Weed Technology, vol. 17, no. 4, pp. 696704,
2003.

J. M. Pena Barragan, F. Lopez Granados, M. Jurado Exposito, and L. Garcia Torres,
“Mapping ridolfia segetum patches in sunflower crop using remote sensing,” Weed
Research, vol. 47, no. 2, pp. 164-172, 2007.

A. 1. de Castro, M. Jurado Exposito, J. M. Pena Barragan, and F. Lopez Granados,
“Airborne multi spectral imagery for mapping cruciferous weeds in cereal and legume
crops, Precision Agriculture, vol. 13, no. 3, pp. 302-321, 2012.

A. S. Laliberte, E. L. Fredrickson, and A. Rango, “Combining decision trees with hier-
archical object-oriented image analysis for mapping arid rangelands,” Photogrammetric
engineering & Remote sensing, vol. 73, no. 2, pp. 197-207, 2007.

F. Lopez-Granados, “Weed detection for site-specific weed management: mapping and
real-time approaches,” Weed Research, vol. 51, no. 1, pp. 1-11, 2011.

M. Perez-Ortiz, J. M. Pena, P. A. Gutierrez, J. Torres-Sanchez, C. Hervas-Martinez, and
F. Lopez-Granados, “Selecting patterns and features for between-and within-crop-row
weed mapping using UAV-imagery,” Expert Systems with Applications, vol. 47, pp. 85-94,
2016.

M. Kelly, “Weed mapping in early-season maize fields using object-based analysis of
unmanned aerial vehicle (UAV) images,” PLOS One, vol. 8, no. 10, 2013.

J. Torres-Sanchez, F. Lopez-Granados, and J. Pena, “An automatic object-based method
for optimal thresholding in uav images: Application for vegetation detection in herb-
aceous crops,” Computers and Electronics in Agriculture, vol. 114, pp. 43-52, 2015.

A.S. Laliberte and A. Rango, “Texture and scale in object-based analysis of subdecimeter
resolution unmanned aerial vehicle (UAV) imagery,” IJEEE Transactions on Geoscience and

Remote Sensing, vol. 47, no. 3, pp- 761-770, 2009.

J. M. Pena, J. Torres Sanchez, A. L. de Castro, M. Kelly, and F. Lopez Granados, “Weed
mapping in early-season maize fields using object-based analysis of unmanned aerial
vehicle (UAV) images,” PLoS One, vol. 8, no. 10, p. €77151, 2013.

C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for
precision agriculture: a review,” Precision Agriculture, vol. 13, no. 6, pp. 693-712, 2012.



134 REFERENCES

[37] E. R. Hunt, W. D. Hively, S. J. Fujikawa, D. S. Linden, C. S. T. Daughtry, and G. W.
McCarty, “Acquisition of nir-green-blue digital photographs from unmanned aircraft
for crop monitoring,” Remote Sensing, vol. 2, no. 1, pp. 290-305, 2010.

[38] A.S. Laliberte, J. E. Herrick, A. Rango, and C. Winters, “Acquisition, orthorectification,
and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland
monitoring,” Photogrammetric Engineering & Remote Sensing, vol. 76, no. 6, pp. 661-672,
2010.

[39] J. A. Thomasson, Y. Shi, J. Olsenholler, J. Valasek, S. C. Murray, and M. P. Bishop,
“Comprehensive UAV-agricultural remote-sensing research at texas a and m university,”
in SPIE Commercial+ Scientific Sensing and Imaging. International Society for Optics
and Photonics, 2016, pp. 986 602-986 602.

[40] A.S.Laliberte, M. A. Goforth, C. M. Steele, and A. Rango, “Multispectral remote sensing
from unmanned aircraft: Image processing workflows and applications for rangeland
environments,” Remote Sensing, vol. 3, no. 11, pp. 2529-2551, 2011.

[41] E. Salami, C. Barrado, and E. Pastor, “Uav flight experiments applied to the remote
sensing of vegetated areas,” Remote Sensing, vol. 6, no. 11, pp. 11051-11 081, 2014.

[42] R. Dunford, K. Michel, M. Gagnage, H. Piegay, and M. L. Tremelo, “Potential and con-
straints of unmanned aerial vehicle technology for the characterization of mediterranean
riparian forest,” International Journal of Remote Sensing, vol. 30, no. 19, pp. 4915-4935,
2009.

[43] A. Mcfadyen, F. Gonzalez, D. Campbell, and D. Eagling, “Evaluating unmanned aircraft
systems for deployment in plant biosecurity,” Tech. Report, Canberra, Australia, Tech.
Rep., 2014.

[44] E. Puig, F. Gonzalez, G. Hamilton, and G. P, “Assessment of crop insect damage
using unmanned aerial systems: A machine learning approach,” Proc. 21st International
Congress on Modelling and Simulation, pp. 1420-1426, 2015.

[45] S. Nebiker, A. Annen, M. Scherrer, and D. Oesch, “A light-weight multispectral sensor
for micro uav opportunities for very high resolution airborne remote sensing,’ The
international archives of the photogrammetry, remote sensing and spatial information
sciences, vol. 37, pp- 1193-1200, 2008.

[46] J. A. Berni, P. J. Zarco-Tejada, L. Suarez, and E. Fereres, “Thermal and narrowband
multispectral remote sensing for vegetation monitoring from an unmanned aerial
vehicle,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 47, no. 3, pp. 722-
738, 2009.

[47] T. Guo, T. Kujirai, and T. Watanabe, “Mapping crop status from an unmanned aerial
vehicle for precision agriculture applications,” ISPRS-International Archives of the Photo-
grammetry, Remote Sensing and Spatial Information Sciences, vol. 1, pp. 485-490, 2012.

[48] M. Bryson, A. Reid, F. Ramos, and S. Sukkarieh, “Airborne vision based mapping and
classification of large farmland environments,” Journal of Field Robotics, vol. 27, no. 5,
pp. 632-655, 2010.



REFERENCES 135

(49]

[54]

(5]

[56]

(59]

[60]

Y. Fan, S. Haiqing, and W. Hong, “A vision-based algorithm for landing Unmanned
Aerial Vehicles,” in Computer Science and Software Engineering, Proc. 2008 International
Conference on, vol. 1, 2008, pp. 993-996.

S. A. Quintero and J. P. Hespanha, “Vision-based target tracking with a small UAV:
Optimization-based control strategies,” Control Engineering Practice, vol. 32, pp. 28-42,
2014.

C. Anderson, “3DR-robotic,” 2009. [Online]. Available: http://dev.ardupilot.com/
A. Mcfadyen, “Visual control for automated aircraft collision avoidance systems,” 2015.

Y.-c. Liu and Q.-h. Dai, “Vision aided unmanned aerial vehicle autonomy: an overview,’
in Image and Signal Processing (CISP), 2010 3rd International Congress on, vol. 1, 2010, pp.
417-421.

S. Saripalli, J. F. Montgomery, and G. S. Sukhatme, “Vision-based autonomous landing
of an unmanned aerial vehicle,” in Robotics and automation, 2002. Proceedings. ICRA’02.
IEEE international conference on, vol. 3, 2002, pp. 2799-2804.

V. M. Raja, “Vision based landing for unmanned aerial vehicle,” in Prod. Aerospace
Conference, 2011 IEEE. 1EEE, 2011, pp. 1-8.

C. Fu, A. Carrio, M. Olivares-Mendez, and P. Campoy, “Online learning-based robust
visual tracking for autonomous landing of Unmanned Aerial Vehicles,” in Unmanned
Aircraft Systems (ICUAS), 2014 International Conference on, 2014, pp. 649-655.

R. Mahony and T. Hamel, “Image-based visual servo control of aerial robotic systems
using linear image features,” IEEE Transactions on Robotics, vol. 21, no. 2, pp. 227-239,
2005.

M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart, “Onboard imu and monocular
vision based control for mavs in unknown in-and outdoor environments,” in Robotics
and automation (ICRA), 2011 IEEE international conference on, 2011, pp. 3056-3063.

N. Veerasamy, “High-level mapping of cyberterrorism to the ooda loop,” in Proceedings of
the 5th International Conference on Information Warfare and Security, 2010, pp. 352-360.

D. Maccuish, “Orientation: key to the ooda loop the culture factor,” Journal of Defense
Resources Management (JoDRM), no. 02, pp. 67-74, 2012.

[61] J. B. Pullen, “The committee to abolish hell: Strategic culture, OODA-loops, and decision-

[62]

[63]

making by the us national security council during the bosnian war,” M.A. thesis, Univ.
North Carolina, Chapel Hill, NC,, 2014.

R. Parasuraman, T. B. Sheridan, and C. D. Wickens, “A model for types and levels of
human interaction with automation,” Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, vol. 30, no. 3, pp. 286—297, 2000.

H. Peng, M. Huo, Z. Liu, and Y. He, “Challenges and technologies for networked
multiple UAVs cooperative control,” in Electrical and Control Engineering (ICECE), 2011
International Conference on, 2011, pp. 3860-3863.


http://dev.ardupilot.com/

136 REFERENCES

[64] 3DRobotics, “3dr-drone and UAV-technology,” 2015. [Online]. Available: |http:
//3drobotics.com/

[65] pixhawk.org, “Pixhawk autopilot,” 2015-04-19 2015. [Online]. Available: https:
//pixhawk.org/modules/pixhawk

[66] raspberrypi.org, “Raspberry pi 2 - model B,” April, 10,2015 2015. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-2-model-b

[67] A.D. Team, “Mission planner overview;” 2016. [Online]. Available: http://ardupilot.org/
planner/docs/mission-planner-overview.html

[68] Modmypi, “HC-SR04 ultrasonic range sensor on the Raspberry Pi,” 2016. [Online].
Available:  http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-
raspberry-pi

[69] Logitech, “HD-webcam logitech C270.” [Online]. Available: http://support.logitech.com/
en_us/article/17556

[70] QGroundControl, “Ground contral station for small air, land, water autonomous
unmanned system,” 2016. [Online]. Available: http://qgroundcontrol.org/mavlink/
mavproxy_startpage

[71] PUTTY, “Download putty - a free ssh and telnet client for windows,” 2016. [Online].
Available: http://www.putty.org/

[72] A. Dev, “Communicating with raspberry pi via mavlink,” 2016. [Online]. Available:
http://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html

[73] Odroid. [Online]. Available: http://www.hardkernel.com/main/products/prdt_info.php*
g code=g138745696275

[74] Arduino, “Arduino / genuino uno,” 2016. [Online]. Available: https://www.arduino.cc/
en/guide/introduction

[75] Von, “Ros.org,” 2016. [Online]. Available: http://wiki.ros.org/mavros
[76] M. Tonnis, Darstellung virtueller Objekte. ~Springer, 2010, pp. 7-41.

[77] O. Araar and N. Aouf, “Visual servoing of a quadrotor uav for the tracking of linear
structured infrastructures,” in 2013 IEEE International Conference on Systems, Man, and
Cybernetics, 2013, pp. 3310-3315.

[78] O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette, T. Hamel, and L. Eck, “Image-
based visual servo control of the translation kinematics of a quadrotor aerial vehicle,”
IEEE Trans. on Robotics, vol. 25, no. 3, pp. 743-749, 2009.

[79] ROS.com, “rviz,” 2016. [Online]. Available: http://wiki.ros.org/rviz

[80] C. A. Weeds, “National weeds strategy,” 2016. [Online]. Available: http://www.weeds.
org.au/cgi-bin/weedident.cgi?tpl=plant.tpl&state=&s=&ibra=all&card=H71


http://3drobotics.com/
http://3drobotics.com/
https://pixhawk.org/modules/pixhawk
https://pixhawk.org/modules/pixhawk
https://www.raspberrypi.org/products/raspberry-pi-2-model-b
http://ardupilot.org/planner/docs/mission-planner-overview.html
http://ardupilot.org/planner/docs/mission-planner-overview.html
http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
http://support.logitech.com/en_us/article/17556
http://support.logitech.com/en_us/article/17556
http://qgroundcontrol.org/mavlink/mavproxy_startpage
http://qgroundcontrol.org/mavlink/mavproxy_startpage
http://www.putty.org/
http://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g138745696275
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g138745696275
https://www.arduino.cc/en/guide/introduction
https://www.arduino.cc/en/guide/introduction
http://wiki.ros.org/mavros
http://wiki.ros.org/rviz
http://www.weeds.org.au/cgi-bin/weedident.cgi?tpl=plant.tpl&state=&s=&ibra=all&card=H71
http://www.weeds.org.au/cgi-bin/weedident.cgi?tpl=plant.tpl&state=&s=&ibra=all&card=H71

REFERENCES 137

[81] HerbiGuide, “Spear thistle (cirsium vulgare),” 2015. [Online]. Available: |http:
//www.herbiguide.com.au/Descriptions/hg_Spear_Thistle.htm

[82] M. Zurn, A. McFadyen, S. Notter, A. Heckmann, K. Morton, and L. F. Gonzalez, “Mpc
controlled multirotor with suspended slung load: System architecture and visual load
detection,” 2016.

[83] opencv.org, “Opencv;,” 2015. [Online]. Available: http://opencv.org/

[84] G. Bradski et al., “The opencv library,” Doctor Dobbs Journal, vol. 25, no. 11, pp. 120-126,
2000.

[85] P. Mihelich, “CVbridge tutorials using cvbridge to convert between rosimages
and open cv images” [Online]. Available: ttp://wiki.ros.org/cv_bridge/Tutorials/
UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages


http://www.herbiguide.com.au/Descriptions/hg_Spear_Thistle.htm
http://www.herbiguide.com.au/Descriptions/hg_Spear_Thistle.htm
http://opencv.org/
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Statement of Original Authorship
	Acknowledgments
	Chapter 1 Introduction
	1.1 Background and Motivation
	1.2 Research Objective
	1.2.1 Objective 1
	1.2.2 Objective 2

	1.3 Research Problem and Research Plan
	1.4 Research Contribution
	1.5 Research Methodology
	1.5.1 Stage 1: Literature Review
	1.5.2 Stage 2: Initial Data Collection and Algorithm Development for Off-board System
	1.5.3 Stage 3: Software System Development for On-board System
	1.5.4 Stage 4: Hardware System Development
	1.5.5 Stage 5: Integration and Testing the System

	1.6 Publications, Submission and Accepted Papers
	1.7 Outline of Thesis

	Chapter 2 Literature Review
	2.1 Overview
	2.2 Remote Sensing in Agriculture
	2.3 UAVs for Precision Agriculture
	2.4 Vision Based Control
	2.5 Off-board and On-board Hardware for Image Processing and Computer Vision
	2.6 Decision Making using the OODA Loop Framework
	2.7 Summary

	Chapter 3 System Architecture For Data Collection and Off-board Analysis and Mapping
	3.1 Overview
	3.2 Hardware Design
	3.2.1 3DR-IRIS UAV Frame
	3.2.2 AC2830-358 850Kv Motors and 10x4.7 propellers
	3.2.3 Pixhawk Autopilot 
	3.2.4 GPS Compass Module
	3.2.5 4 in 1 ESC/Power Module
	3.2.6 5000 mAh 3S 30C Lipo Pack Battery
	3.2.7 FrSky-DF Radio Control (Tx/Rx)
	3.2.8 3DR TELE Radio Modem and Ground Station Control
	3.2.9 WiFi connection
	3.2.10 Microcomputer (Raspberry Pi 2B)
	3.2.11 Raspberry Pi Camera
	3.2.12 Universal Battery Elimination Circuit 5V-3A (UBEC) 
	3.2.13 Ground Station Computer (GSC)
	3.2.14 3D Printing for Off-board System 

	3.3 Detection and GPS Mapping Approach
	3.4 Software Design
	3.4.1 Mission Planner
	3.4.2 Python Script
	3.4.3 Invasive Weed Detection Method

	3.5 Summary

	Chapter 4 System Architecture Design For On-board Decision Making and Action
	4.1 Overview
	4.2 System Architecture Using Raspberry Pi 2B and MAV Proxy
	4.2.1 Ultrasonic Sensor (HC-SR04)
	4.2.2 HD Webcam Logitech C270
	4.2.3 Relay (SRD-05VDC)
	4.2.4 Spraying-Pump
	4.2.5 Liquid-Tank
	4.2.6 3D Printing for the On-board System
	4.2.7 Electrical Integration
	4.2.8 Software Design Using Raspberry Pi 2B and MAVProxy

	4.3 System Architecture Using Odroid U3+and Robotic Operating System (ROS)
	4.3.1 Odroid U3
	4.3.2 Micro Arduino
	4.3.3 Electrical Integration
	4.3.4 Detection and On-board Decision Making Approach
	4.3.5 Software Design for On-board Decision Making and Action Using Odroid U3+

	4.4 Summary

	Chapter 5 Weed Mapping and Off-board Decision Making 
	5.1 Overview
	5.2 Spear thistle invasive weed
	5.3 Study side
	5.4 UAV flight imagery
	5.5 Results and discussion
	5.6 Summary

	Chapter 6 Autonomous UAV with Vision Based On-board Decision Making 
	6.1 Overview 
	6.2 Test Cases
	6.2.1 ArUco Markers 
	6.2.2 Colour Detection 
	6.2.3 Weed Detection and Spraying

	6.3 Simulation and Actual Flight Test Results and Analysis
	6.4 Root Mean Square Error (RMSE)
	6.5 Summary 

	Chapter 7 Conclusions 
	7.1 Research Summary
	7.2 Addressing Research Question
	7.3 Considerations and Future Work

	Appendix A Hardware specifications
	A.1 The table below shows the Raspberry Pi 2B microcomputer specifications.
	A.2 The table below shows the HC-SR04 Ultrasonic Sensor specifications.
	A.3 The table below shows the HD Webcam Logitech C270 specifications.
	A.4 The table below shows the ODROID-U3+ specifications.

	Appendix B Software algorithms
	B.1 .Matlab code for invasive weed detection and mapping.
	B.2 Python code for the on-board decision making using Raspberry Pi 2B.
	B.3 .The ROS nodes for the system is attached as follow:
	B.3.1 .Lunch file for the system using Odroid U3.
	B.3.2 .Marker detection node.
	B.3.3 .Colour detection node.
	B.3.4 weed detection node. .
	B.3.5 Transfer pixels to local position node..
	B.3.6 .Ultrasonic node.
	B.3.7 .Navigation node.

	B.4 .Arduino code for controlling the Ultrasonic (HC-SR04) and the spraying pump.
	B.5 .Matlab Code for drawing flight trajectory.

	References



