
A Small Autonomous UAV for Detection
and Action in Precision Agriculture

by

Bilal Hazim Younus ALSALAM

B.Sc. in Electrical Engineering (Power & Machines)

Submitted in ful�lment of the requirements for the degree of

Master of Applied Science

School of Electrical Engineering and Computer Science

Queensland University of Technology

2017

Copyright 2017

Bilal Hazim Younus ALSALAM

Keywords

UAV, Remote Sensing, UAS, Remote Piloted Aircraft Systems, Low Altitude Re-

mote Sensing, Weed Mapping, Weed Detection, Airborne Vision System, Vision

Based Navigation, Aerial Robots, Guidance System.

v

Abstract

A phenomenal increase in the development of Unmanned Aerial Vehicles (UAVs) has been

observed in a broad range of applications across various �elds of study in recent years. Mul-

tirotor UAVs enable a broad range of applications due to their special �ight characteristics

such as vertical take-o� and hovering over the target of interest to perform an action for

di�erent applications. Precision agriculture is one of the emerging �elds of interest for UAV

applications for monitoring crop health. UAVs can provide higher spatial resolution at lower

operational costs and have the potential to facilitate site-speci�c invasive weed control treat-

ments in crop �elds, as opposed to manned aircraft or satellite remote sensing.

This thesis describes a framework for o�-board and on-board systems which include the

UAV platform, sensor payload and post-processing pipeline customised to detect an ArUco

marker, a colour and ,speci�cally, invasive spear thistle weed. In the o�-board system stage,

the UAV collects the data and a computer vision algorithm checks whether spear thistle weed

can be found in the image. The system creates GPS tabulated locations for weed detection.

Results have shown that the sensitivity and selectivity of the algorithm depends upon both

the �ight height and the season of the weed. The sensitivity is the ability of the algorithm

to identify and detect the true positive target while the selectivity is the capability of the

algorithm to �lter out the false negatives for detection targets. Furthermore, the system

utilises false positive rates and false negative rates to achieve accurate results. False positives

are when a classi�cation indicates presence, however the weeds are absent, and false negatives

are the point at which a classi�cation demonstrates the weeds are absent, but are truly present.

Results have shown a 95% sensitivity and 98% selectivity when the height above the ground

is 5 m, 90% sensitivity and 94.5% selectivity when the height above the ground is 7 m and

80% sensitivity and 85% selectivity when the height above the ground is 15 m. The task was

complex due to the di�culty in di�erentiating the spectral properties and general appearance

of the highly correlated invasive spear thistle weeds and zoysia grass at two stages of growth

and di�culties due to seasonal variability and sun angle.

After �rst applying the system for weed detection o�-board, on-board decision making

vii

viii

was then implemented. A modular and generic system for the UAV using vision based navig-

ation for on-board decision making with a focus on agriculture and remote sensing application

was developed. A decision making approach similar to the Observation, Orientation, Decision

and Action (OODA) loop was implemented. Position control based on the Robotic Operating

System (ROS) was used to ensure the tracking of waypoints. The detection of an object of

interest is facilitated by computer vision functionality. This allows the UAV to change its

planned path accordingly in order to approach the target, apply pesticide or collect additional

images at higher resolution. The results showed that the on-board system using the ROS

operation system is capable of object detection and close the OODA loop framework. Results

showed that the on-board system is capable of detecting an ArUco Marker with 99% sensitivity

and 100% selectivity at a height of 5 metres above ground level. Furthermore, the on-board

system is capable of detecting a red target with 96% sensitivity and 99% selectivity at the same

height. The real time on-board detection and action algorithm for invasive weed needs to be

improved to achieve better sensitivity and selectivity. The system is capable of detecting the

invasive weed to 33% sensitivity and 67% selectivity. The low sensitivity and selectivity for

weed detection is mainly due to limitations in the algorithm related to the sun angle and the

season of the weed. This system has potential applications in the �eld of precision agriculture

such as crop health monitoring and in particular, plant pest detection, which impacts on crop

yields and results in �nancial losses if not noticed and addressed at an early stage.

Contents

Abstract vii

List of Figures xiii

List of Tables xvii

List of Abbreviations xix

Statement of Original Authorship xx

Acknowledgments xxiii

Chapter 1 Introduction 1
1.1 Background and Motivation . 1

1.2 Research Objective . 2

1.2.1 Objective 1 . 2

1.2.2 Objective 2 . 2

1.3 Research Problem and Research Plan . 2

1.4 Research Contribution . 3

1.5 Research Methodology . 3

1.5.1 Stage 1: Literature Review . 3

1.5.2 Stage 2: Initial Data Collection and Algorithm Development for

O�-board System . 4

1.5.3 Stage 3: Software System Development for On-board System . . . 4

1.5.4 Stage 4: Hardware System Development 4

1.5.5 Stage 5: Integration and Testing the System 5

1.6 Publications, Submission and Accepted Papers 5

1.7 Outline of Thesis . 7

Chapter 2 Literature Review 9
2.1 Overview . 9

2.2 Remote Sensing in Agriculture . 9

2.3 UAVs for Precision Agriculture . 11

2.4 Vision Based Control . 13

2.5 O�-board and On-board Hardware for Image Processing and Computer

Vision . 17

2.6 Decision Making using the OODA Loop Framework 17

2.7 Summary . 18

Chapter 3 System Architecture For Data Collection and O�-board Analysis
and Mapping 19
3.1 Overview . 19

3.2 Hardware Design . 19

ix

x CONTENTS

3.2.1 3DR-IRIS UAV Frame . 20

3.2.2 AC2830-358 850Kv Motors and 10x4.7 propellers 20

3.2.3 Pixhawk Autopilot . 20

3.2.4 GPS Compass Module . 22

3.2.5 4 in 1 ESC/Power Module . 22

3.2.6 5000 mAh 3S 30C Lipo Pack Battery 22

3.2.7 FrSky-DF Radio Control (Tx/Rx) . 22

3.2.8 3DR TELE Radio Modem and Ground Station Control 22

3.2.9 WiFi connection . 23

3.2.10 Microcomputer (Raspberry Pi 2B) 23

3.2.11 Raspberry Pi Camera . 23

3.2.12 Universal Battery Elimination Circuit 5V-3A (UBEC) 23

3.2.13 Ground Station Computer (GSC) 24

3.2.14 3D Printing for O�-board System 24

3.3 Detection and GPS Mapping Approach . 24

3.4 Software Design . 26

3.4.1 Mission Planner . 26

3.4.2 Python Script . 27

3.4.3 Invasive Weed Detection Method 27

3.5 Summary . 29

Chapter 4 System Architecture Design For On-board Decision Making and
Action 31
4.1 Overview . 31

4.2 System Architecture Using Raspberry Pi 2B and MAV Proxy 31

4.2.1 Ultrasonic Sensor (HC-SR04) . 32

4.2.2 HD Webcam Logitech C270 . 32

4.2.3 Relay (SRD-05VDC) . 32

4.2.4 Spraying-Pump . 32

4.2.5 Liquid-Tank . 35

4.2.6 3D Printing for the On-board System 35

4.2.7 Electrical Integration . 35

4.2.8 Software Design Using Raspberry Pi 2B and MAVProxy 37

4.3 System Architecture Using Odroid U3
+

and Robotic Operating System

(ROS) . 41

4.3.1 Odroid U3 . 42

4.3.2 Micro Arduino . 42

4.3.3 Electrical Integration . 42

4.3.4 Detection and On-board Decision Making Approach 45

4.3.5 Software Design for On-board Decision Making and Action Using

Odroid U3
+

. 46

4.4 Summary . 57

Chapter 5 Weed Mapping and O�-board Decision Making 59
5.1 Overview . 59

5.2 Spear thistle invasive weed . 59

5.3 Study side . 60

5.4 UAV �ight imagery . 61

5.5 Results and discussion . 62

5.6 Summary . 65

CONTENTS xi

Chapter 6 Autonomous UAV with Vision Based On-board Decision Making 67
6.1 Overview . 67

6.2 Test Cases . 67

6.2.1 ArUco Markers . 68

6.2.2 Colour Detection . 69

6.2.3 Weed Detection and Spraying . 72

6.3 Simulation and Actual Flight Test Results and Analysis 73

6.4 Root Mean Square Error (RMSE) . 76

6.5 Summary . 76

Chapter 7 Conclusions 79
7.1 Research Summary . 79

7.2 Addressing Research Question . 80

7.3 Considerations and Future Work . 81

Appendix A Hardware speci�cations 83
A.1 The table below shows the Raspberry Pi 2B microcomputer speci�cations. 83

A.2 The table below shows the HC-SR04 Ultrasonic Sensor speci�cations. . . . 84

A.3 The table below shows the HD Webcam Logitech C270 speci�cations. . . . 84

A.4 The table below shows the ODROID-U3
+

speci�cations. 85

Appendix B Software algorithms 87
B.1 .Matlab code for invasive weed detection and mapping. 88

B.2 Python code for the on-board decision making using Raspberry Pi 2B. . . . 94

B.3 .The ROS nodes for the system is attached as follow: 102

B.3.1 .Lunch �le for the system using Odroid U3. 102

B.3.2 .Marker detection node. 105

B.3.3 .Colour detection node. 107

B.3.4 weed detection node. 111

B.3.5 Transfer pixels to local position node.. 114

B.3.6 .Ultrasonic node. 116

B.3.7 .Navigation node. 118

B.4 .Arduino code for controlling the Ultrasonic (HC-SR04) and the spraying

pump. 126

B.5 .Matlab Code for drawing �ight trajectory. 128

References 131

List of Figures

1.1 Papers related to the research. 6

2.1 Examples of UAVs used for precision agriculture and plant bio-security

applications [10] [23] [34]. 13

2.2 Simpli�ed version of Boyd’s OODA Loop. 18

3.1 On-board system for collecting data. 20

3.2 System Architecture for Data Collection and O�-board Analysis and

Mapping. 21

3.3 A: 3D printing design for the O�-board System. B: The enclosure system

for the O�-board System and Data Collection. 24

3.4 Image processing �owchart. 25

3.5 Mission Planner software. 27

3.6 Image processing stages. 28

3.7 Spear thistle weed detection and classi�cation at 1 and 3 metres height at

di�erent stages of growth. (November 2015). 29

4.1 System Architecture for On-board Decision Making and Action Using a

Raspberry Pi 2B and MAVProxy. 33

4.2 A: Hardware System Architecture for On-board Decision Making and

Action Using a Raspberry Pi 2B and MAVProxy. B: Top view to the

payload. 34

4.3 A: 3D Printing Design for the On-board System. B: The Enclosure System

for On-board Decision Making and Action. 35

4.4 Connecting the Pixhawk to Raspberry Pi 2B using a customised serial

connected cable. 36

4.5 Ultrasonic Sensor – Raspberry Pi Serial Interface. 37

4.6 Interface Raspberry Pi 2B with Relay and 12 V DC Motor. 37

4.7 Remote SSH terminal accessing the Raspberry Pi 2B using SHH Putty and

running sudo -s, Mode STABILIZE executed. 39

xiii

xiv LIST OF FIGURES

4.8 Arm the UAV through the SSH terminal on the Raspberry Pi 2B. 39

4.9 Running the Image Processing Code through MAVProxy. 40

4.10 On-board system for on-board decision making using an Odroid U3 and

ROS. 41

4.11 System architecture for on-board decision making using an Odroid U3 and

ROS. 43

4.12 Pixhawk Connection to Odroid U3+ through USB serial. 44

4.13 Interface between ultrasonic sensor (HC-SR04), relay (SRD-05VDC) and

micro Arduino. 44

4.14 OODA loop �owchart for on-board decision making. 45

4.15 ROS nodes for vision based navigation control. 47

4.16 Position control architecture for on-board system. 49

4.17 Mapping the image frame from the camera to the world frame 50

4.18 Rotation matrix for the camera frame to the body frame 51

4.19 Example of connecting the GCS to the Odroid U3. 52

4.20 Hardware in the Loop, Simulation Flight Test With Red Target Detection. . 53

4.21 Flight description in the simulation. 55

4.22 Rviz 3D visualizer for displaying the �ight data after the actual �ight test. 56

4.23 Testing weed detection through ROS. 57

5.1 Spear thistle weed and zoysia grass. 60

5.2 Aerial image for the experimental �eld including: zoysia grass, invasive

weed and dead grass. 61

5.3 A: UAV Section where UAV aerial images were taken, image location in

blue and the UAV �ight path in red. B: UAV above experimental �eld. . . . 62

5.4 Spear thistle weeds mapping with GPS coordinate at 5 metres above

ground level. 63

5.5 Spear Thistle weeds before and after detection at 5 metres above ground

level. 64

5.6 Spear thistle weeds before and after detection at 15 metres above ground

level. 64

6.1 ArUco Marker. 68

6.2 A: The marker target is detected. B: Detecting target. C: Hovering above

the target after detection. 69

LIST OF FIGURES xv

6.3 Open-CV Bridge to pass the images in ROS. 71

6.4 A: Colour target is detected. B: Detecting target. C: Hovering above the

target at 45 cm. 71

6.5 A: weed target is detected. B: Detecting target. C: Hovering and spraying

on the target. 73

6.6 Simulation and actual �ight test navigation veri�cation, A: Simulation and

actual �ight trajectory, B: Top view for simulation and actual �ight

trajectory. 74

6.7 A: Actual �ight trajectory with on-board decision making, B: Top view for

actual �ight trajectory. 75

List of Tables

2.1 Summary of the literature review listing the applications, the UAV, the

sensors, operational e�ciency (on-board or o�-board classi�cation

capacity). 14

5.1 Algorithm accuracy at three di�erent altitudes. 62

5.2 GPS latitude and longitude for detected weeds. 65

6.1 RMSE for simulation �ight and actual �ight in metres. 76

A.1 Raspberry Pi 2B speci�cations. 83

A.2 HC-SR04 Ultrasonic speci�cations. 84

A.3 HD Webcam Logitech C270 speci�cations. 84

A.4 ODROID-U3
+

speci�cations. 85

xvii

List of Abbreviations

AC Alternative Current

AF Air Frame

APS Autopilot System

ARCAA Australian Research Centre for Aerospace Automation

BSD Berkeley Software Distribution

DC Direct Current

ESC Electronic Speed Controller

GUI Graphical User Interface

GCS Ground Control Station

GPS Global Positioning System

HLO High Level Objective

HSV Hue, Saturation and Value

I Current

IDE Integrated Development Environment

IPS Image Processing System

OBIA Object Based Image Analysis

OODA Observation, Orientation, Decision, and Action

OpenCV Open source Computer Vision

PA Precision Agriculture

PPS Power and Propulsion System

QUT Queensland University of Technology

R Resistance

RC Remote Control

RGB Red, Green and Blue

ROS Robotic Operation System

TCS Telecommunications System

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UBEC Ultimate Battery Eliminator Circuit

USB Universal Serial Bus

UTM Universal Transverse Mercator

V Voltage

xix

Statement of Original Authorship

The work contained in this thesis has not been previously submitted to meet requirements

for an award at this or any other higher education institution. To the best of my knowledge

and belief, the thesis contains no material previously published or written by another person

except where due reference is made.

Signed:

Date:

xxi

QUT Verified Signature

3 March 2017

Acknowledgments

First, I would like to acknowledge the continual support from my supervisors and colleagues.

I am grateful to Associate Professor Felipe Gonzalez and Professor Duncan Campbell for

their invaluable insights, guidance and constructive feedback throughout this research. I

would also like to acknowledge my colleague Kye Morton for his support during the system

development and the �ight test. Thank you also to all the students, research colleagues and

administrative sta� at their associated research centres including the Australian Research

Centre for Aerospace Automation (ARCAA). In particular, I would like to acknowledge Dr

Jonathan Kok and Dr Aaron Mcfadyen for their support during this research. I would like

to extend a special thanks to pilot Steven Bulmer for his assistance during data collection

and to Mr Michael Cahill the owner of the farm at Christmas Creek for his assistance while

collecting the data and for allowing the �ight test to occur on his farm. Thank you also to

Chandrama Sarker for your support during the writing of this thesis.

Second, I would like to thank the Australian Research Centre for Aerospace Automation

(ARCAA), Robotic and Autonomous System (RAS) and Queensland University of Technology

(QUT) for the use of all the facilities and the research labs in which I conducted a signi�cant

portion of my research. I would also like to thank the Higher Committee for Educational

Development in Iraq (HCED) for their �nancial support during my research.

Lastly, I would like to acknowledge my family and friends. To my father, my mother,

brothers and sisters, I am grateful and thankful for all your support during my journey with

this research. And to my friends, I am grateful for your support.

Bilal Hazim Younus ALSALAM

Queensland University of Technology

March 2017

xxiii

CHAPTER 1

Introduction

1.1 Background and Motivation

Unmanned Aerial Vehicles (UAVs) are being used in several remote sensing applications in-

cluding search and rescue, ecology, wildlife and precision agriculture [1, 2, 3]. Remote sensing

in precision agriculture can assist farmers to assess plant yield, plant health and disease [4, 5].

Di�erent types of sensors such as: thermal cameras, multispectral cameras, NIR cameras

and digital cameras have been used on-board UAVs to collect data or monitor plant health

[6, 7, 8, 9]. Computer vision and image processing have also been applied to remotely sensed

images to make decisions in agricultural applications. These decisions could be carried out

o�-board after collecting and processing the data or UAV on-board while the UAV is �ying

[7, 6, 10]. There are cases where it is desirable to make an on-board decision to minimise the

amount of data that is stored on-board. As an example, the UAV could be �ying at a speci�c

height, decide on a potential issue, descend and capture a high resolution image, or perform

a closer inspection or apply pesticides or release insect bugs. The aim of this research is to

develop and implement o�-board and on-board systems for real time precision agriculture

and plant pest detection.

Traditionally, farmers apply pesticides, herbicides or release insect bugs all over the �eld

which is costly. The motivation for using UAVs with the structure of the OODA (Observation,

Orientation, Decision and Action) loop framework is to detect invasive weed and implement

an action such as applying herbicides. Autonomous on-board detection and action will target

the speci�c location of the weed or pest for herbicide application instead of applying it on the

whole �eld.

1

2 CHAPTER 1. INTRODUCTION

1.2 Research Objective

The aim of this research is to develop and �ight test a multi-rotor airborne system which

includes: UAV, microcomputer advanced processing interface with camera and GPS with

OODA loop approach for o�-board and on-board decision making. The system will be applied

in the context of remote sensing in precision agriculture.

The main objectives for this research are as follows:

1.2.1 Objective 1

To investigate the use of optimisation techniques and develop algorithms which can detect

invasive weeds, and to implement an algorithm for invasive weed detection and mapping for

agricultural purposes. The invasive weed map will provide the geo-location of the detected

weed which can give information to the farmer to assist them to apply the treatment or uproot

the weed.

1.2.2 Objective 2

To apply an OODA loop for on-board decision making to detect a target of interest (a colour

or speci�c type of weed, for example) and use the developed system to complete an action

such as spraying or capturing high-resolution imagery from a lower height. To develop a

position control based on navigation using the ROS (Robotic Operating System) to ensure a

tracking of waypoints and the target location.

1.3 Research Problem and Research Plan

The use of UAVs for o�-board and on-board decision making in precision agriculture is now an

active and developed �eld of research. There are, however, limitations to supporting o�-board

and on-board decision making in the detection algorithm and theoretical framework. There

are several di�erent UAV platforms and computer vision algorithms that have been used and

most of the research works focus on image analysis and classi�cation executed after the UAV

lands. There are, however, cases in which there is a need for rapid assessment with on-board

image analysis and decision-making. The OODA loop method can assist in this e�ort, but it

is limited by the resources and constraints of on-board computers that make the task more

1.4 Research Contribution 3

challenging. This research experiments will answer the following questions:

1. What are the current limitations of image analysis, classi�cation methods and vision

based navigation with electro-optical sensors for on-board decision making?

2. What are the challenges in the practical applications of o�-board and on-board systems

in the context of precision agriculture and plant biosecurity where vegetation charac-

teristics, such as texture, colour or shape, are posing signi�cant challenges for existing

image classi�cation algorithms?

1.4 Research Contribution

The main outcomes and the contribution of this research is as follow:

• Application of computer vision to di�erentiate and classify a particular species of in-

vasive weeds, i.e. spear thistle, amongst soil and zoysia grass and then provide GPS

locations (geolocation) or weed map information that can assist farmers in determining

weed locations and apply treatment.

• To develop an Unmanned Aerial System (UAS) capable of on-board target recognition

for invasive weeds and autonomous decision making using PID based position control

with the OODA loop concept. Such a system should be capable of deploying a UAV on

a designated �ight plan, detect an object of interest and then autonomously perform

a manoeuvre based on its recognition of the target, such as descend to a lower �ying

height and spray the target or to take a high resolution image.

1.5 Research Methodology

The overall research framework can be divided into �ves stages to allow for progressive

development. The phases have been planned to span the suggested 1.5-2 years cycle.

1.5.1 Stage 1: Literature Review

The �rst stage mainly focused on a survey of relevant literature in the �eld of agriculture

using UAVs, on-board decision making using the OODA loop method for remote sensing and

identifying di�erent computer vision techniques suitable for this research. The concept of an

4 CHAPTER 1. INTRODUCTION

OODA loop was also studied to use the method for on-board decision making after the target

is detected.

1.5.2 Stage 2: Initial Data Collection and Algorithm Development for O�-

board System

In this stage, an initial data collection campaign was conducted at Christmas Creek, Beau-

desert in Queensland, Australia. This data was used to develop an algorithm for weed detec-

tion and mapping. After collecting the data, MATLAB was used to process the data and to

develop a suitable weed detection and mapping method. The algorithm checked whether or

not weed is in the image and create GPS tabulated locations of detected weed.

1.5.3 Stage 3: So�ware System Development for On-board System

This stage was divided into two parts:

A- In the �rst part, an existing system was modi�ed to include software jointly developed

by the authors of this paper "Open Source Computer-Vision Based Guidance System for UAVs

On-Board Decision Making “[1]. During this part the software was modi�ed and the algorithm

was re�ned in order to be used in this research.

B- In the second part, the Robotic Operating System (ROS) was used to build a new system

to provide more �exibility to control the di�erent nodes in the system: a node for navigation,

a node for target detection and one for ultrasonic sensor to control the altitude etc. Moreover,

a simulation through the ROS environment was developed and used to ensure the system

works well before the actual �ight tests.

1.5.4 Stage 4: Hardware System Development

This stage consisted of developing and testing all hardware components including a quad

copter UAV (3DR IRIS), an autopilot (Pixhawk), a single board computer (Odroid U3), a camera

and a GPS receiver. AutoCAD is used to design the weed hardware enclosures and spraying

mechanism. During this stage the wiring connection for the electronics devices such as

ultrasonic sensor and the spraying motor was connected to the single board computer. The

spraying tubes and the connection from the tank to the motor was also achieved as part of

this stage.

1.6 Publications, Submission and Accepted Papers 5

1.5.5 Stage 5: Integration and Testing the System

This stage involved the integration of the software system and the detection algorithm from

stage 3 and the physical hardware from stage 4. The complete on-board decision and action

system was implemented on-board with a microcomputer such as (Raspberry Pi 2B or Odroid

U3) for on-board decision making using the concept of OODA loop �rmware. The on-board

system was tested through simulation within the ROS and through the actual �ight test and

comparisons was made between them multiple times to determine the accuracy of the system

and the type of the environment suitable for this algorithm.

1.6 Publications, Submission and Accepted Papers

Publications stemming from this work and the related works are listed in chronological order

below:

• PUBLISHED PAPERS

1. H. Choi, M. Geeves, B. Alsalam, and F. Gonzalez, “Open Source Computer-Vision

Based Guidance System for UAVs On-Board Decision Making”, IEEE Aerospace

conference, Big Sky, Montana, March 5–12, 2016.

2. S. L. Ward, J. Hensler, B. H. Y. Alsalam, and L. F. Gonzalez, “Autonomous UAVs

Wildlife Monitoring and Tracking Using Thermal Imaging and Computer vision,”

IEEE Aerospace conference, Big Sky, Montana, March 5–12, 2016.

• UNDER -REVIEW PAPER

3. Bilal Alsalam, Duncan Campbell, and Felipe Gonzalez, “Invasive Spear Thistle

Weed Detection and Zoysia grass Mapping Using Aerial Imagery”, Weed Research

Journal, 2017.

• ACCEPTED PAPER

4. B. Alsalam, K. Morton, D. Campbell and F. Gonzalez, “Autonomous UAV with

Vision Based On-board Decision Making for Remote Sensing and Precision Agri-

culture”, IEEE Aerospace conference, Big Sky, Montana, March 4–11, 2017.

6 CHAPTER 1. INTRODUCTION

Figure 1.1 illustrates the link between the di�erent papers and the research objectives. The

�rst two papers helped in generating a low cost system with on-board image processing

using a Raspberry Pi 2B microcomputer interface with a camera [1, 2]. The techniques learnt

from this paper helped to understand the process of connecting autopilot through a serial

connection with the Raspberry Pi 2B. This allowed for the full control of the UAV while the

UAV was �ying to a target of interest [1]. A deeper understanding of computer vision and

image processing for detecting a target and a method to transfer the target location from the

camera frame to the global location GPS was acquired through the team research covered in

this paper.

Figure 1.1: Papers related to the research.

The second paper on the other hand, assisted in gathering experience developing and cod-

ing the navigation system and autonomous control for the UAV. The paper described a system

that can be used for a prediction dynamic application with a Raspberry Pi 2B microcomputer

and a thermal camera [2]. The autonomous control algorithm that uses Python and a basic

concept to control the �ight path was developed from both papers. The previous papers

assisted in determining suitable methods for navigation and the computer vision application

which are helped to achieve the objectives of the research and used to develop the methods

1.7 Outline of Thesis 7

presented in Chapter 5 (paper 3) and Chapter 6 (paper 4).

1.7 Outline of Thesis

The thesis presents a framework for o�-board and on-board decision making for remote

sensing and precision agriculture applications.

Chapter 2 presents a literature review in relation to using remote sensing, UAVs and

computer vision for agriculture applications. An overview of the theoretical aspects of image

processing and computer vision used for precision agriculture and remote sensing is covered.

The theoretical aspects of the OODA loop and the OODA loop for on-board decision making

are also presented.

Chapter 3 introduces the hardware system architecture for data collection and o�-board

analysis and mapping for invasive weed. The Chapter is divided into two parts, the �rst of

which is the hardware design that includes the physical connection for the system and the 3D

printing hardware for the system. The second part covers software design that includes Mis-

sion Planner software, Python scripts and the invasive weed detection method see Appendix

B.1 and B.2.

Chapter 4 introduces the hardware system architecture for on-board decision making and

action which is divided into two parts. The �rst part presents the system architecture (the

hardware and the software) using a Raspberry Pi 2B and MAVProxy see Appendix B.2. The

second part covers a system architecture (the hardware and the software) using Odroid U3

and the Robotic Operating System (ROS) see Appendix B.3, B.4, B.5, B.6, B.7 and B.9.

Chapter 5 describes the application of the o�-board system for weed mapping and o�-

board decision making. This chapter is divided into three parts: (i) covering the type of weed,

study side and the �ight imagery; (ii) presenting the results and discussion; and (iii) providing

a summary of the chapter.

Chapter 6 presents the autonomous UAV with vision-based navigation. This chapter is

also divided into three sections: (i) covering the test cases including the marker, colour and

invasive weed detection; (ii) the results analysis and the discussion; and (iii) a summary of

the chapter.

Chapter 7 presents the conclusions of the work conducted, the limitations of this research

and areas for future work.

CHAPTER 2

Literature Review

2.1 Overview

There is growing interest in developing and building UAVs with the capability of on-board

decision making utilising computer vision, waypoint guidance and vision based control tech-

niques [11, 12, 13]. Computer vision methods are utilized for civilian, military and farming

applications [14] and this chapter presents a literature review of research in this �eld. The

�rst section of the literature review will provide a brief discussion of remote sensing in

precision agriculture as well as the state of art on the use of UAVs for Precision Agriculture.

Computer vision for aerial imagery and OODA theory for on-board decision making will also

be discussed. Furthermore, literature on previous research on invasive weed mapping using

aerial imagery and vision based control will be presented. The literature will research and

summarised on the type of application, the sensors type, microcomputer types and if the

image processing was conducted on-board or o�-board the UAV.

2.2 Remote Sensing in Agriculture

Remote sensing is the assembling of data about an object or phenomenon with no physical

contact with the item [15, 16, 17]. Remote sensing in agriculture is a broad area which

includes: crop categorization, crop mapping, weed forecasting, yield predictions, photosyn-

thetic pigment content, etc. [18, 19, 20, 21, 22]. A critical necessity for providing reasonable

remote sensing items in agriculture is the capacity to combine high spatial resolution and

speedy turnaround times. There are numerous di�erent types of platforms which can be

used for remote sensing in precision agriculture such as manned aircraft, satellites and UAVs.

Satellite based remote sensing technologies are used to identify agricultural problems because

they have capacity to continuously monitor the Earth’s surface. However, issues such as

9

10 CHAPTER 2. LITERATURE REVIEW

optimum spatial and spectral resolution, the reversal time, repeat cycle and data gaining costs

and sometimes the weather are the main factors in�uencing the usefulness of the satellite

based techniques. [23, 24, 25]. Remotely sensed images captured from aeroplane and satellite

platforms have been used to produce several examples of weed mapping in late growing

periods [26, 27, 28, 29]. However, for many crops, the ideal treatment time for weeds is long

before this point in the growth season when both the weeds and the crop are in their seedling

stages [30]. Because of the signi�cant impact of weeds in the agricultural sector, several

researches have explored and used remotely sensed images captured from aircraft or satellite

platforms which has resulted in several examples of weed mapping in late growth periods

[26, 27, 28, 29]. Identifying small seedlings with airborne and satellite imagery is problematic

due to the typically insu�cient spatial resolution of aircraft or satellite platform imagery or

the possible presence of cloud cover in satellite imagery[22, 29, 27].

Manned aircraft or satellite remote sensing platforms are very useful for weed detection

at late phonological stages (e.g. �owering or senescence)[31][32]. UAV imagery, on the other

hand, is especially useful for very early weed detection (e.g. seedling stage) [33, 34, 35]. As

such, each platform has its own utility according to the scale of the problem, with UAVs

displaying a remarkable opportunity for pre-emtive weed detection and mapping. Torres-

Sánchez et al. [33] and Peña et al. [35] discussed an OBIA algorithm method in which their

data was captured using six-band multispectral sensors (visible camera and a multispectral

camera). Their study consisted of weed mapping in sun�ower and maize crops, and the results

show the e�ect of using di�erent segmentation parameters in the detection methods. An

OBIA for weed detection based on machine learning methods and combined with pattern and

feature selection techniques was discussed by Pérez-Ortiz et al. [31]. Their results showed

that the proposed methods for pattern selection were suitable and could lead to construction

of robust set of data. Moreover, Laliberte and Rango [34] used OBIA with lightweight o� the-

shelf digital cameras to classify images of foliage and determine the optimal texture features

for each segmentation scale. The classi�cation results for the image were high, with an overall

accuracy of 90%. Furthermore, Laliberte et al. [22] used image segmentation and object-based

classi�cation to monitor vegetation changes over time. Their study used 11 aerial images that

were taken between 1937 to 2003. Their results show that the shrub cover increased “from

0.9% in 1937 to 13.1% in 2003, while grass cover declined from 18.5% to 1.9%”. Due to the image

resolution obtained, the shrub and grass cover was estimated in sections >2 m
2
, in which about

2.3 UAVs for Precision Agriculture 11

87% of the shrub cover was accurately detected. Laliberte et al. [29] expanded on this by using

object-based recognition instead of pixel-based image information as input to classify trees

for mapping arid land vegetation, and they used satellite imagery to segment at four di�erent

scales. Their combination of multi-resolution image segmentation and decision tree analysis

facilitated the selection of input variables that helped to determine the appropriate image

analysis scale.

2.3 UAVs for Precision Agriculture

Remote sensing using UAVs is a growing �eld of research that can assist farmers to assess

plant health [4, 5, 36, 37]. UAVs can �y in a controlled autonomous path at very low heights

and produce images at relatively high spatial resolutions (<2 cm) [3, 1, 2, 38, 39]. Remote

sensing using UAVs can provide a low-cost option to deal with the basic prerequisites of

spatial and dynamic resolutions in contrast to satellite and manned aircraft [18, 19, 20, 40].

A considerable number of studies in the �eld of precision agriculture have been carried out

with either direct or indirect UAV application of remote sensing and computer vision. As

a result, unmanned aerial platforms represent a remarkable opportunity for weed detection

and mapping. Remote sensing techniques using thermal and multispectral imaging sensors

at di�erent heights were discussed by Han [3], Gonzalez-Dugo et al. [8], and Salami et al.

[41]. Their research concentrates on �lling the gap between the application prerequisites and

the qualities of the various selected tools, payloads and platforms. A digital camera using

a paraglider UAV was used by Dunford et al. [42] to oversee the evaluation of a riparian

landscape and vegetation units, and furthermore, to distinguish standing dead wood. The

results demonstrated an estimation of standing dead wood units and an average precision

with omission and commission errors of 80% and 65%, respectively. McFadden et al. [43]

evaluated UAVs for use in plant biosecurity. The research provided recommendations for the

applicability of UAVs and on-board sensor technology for plant biosecurity and pest detection.

Puig E et al. [44] illustrated the combination of UAV, remote sensing and machine learning

techniques for biosecurity and applications in precision agriculture. They implemented an

algorithm based on K-means clustering to control high-frequency components present in the

feature space. Nebiker et al. [45] illustrated the gap between satellite-based remote sensing

and ground-based sensing. Their study showed the bene�ts of remote sensing applications

12 CHAPTER 2. LITERATURE REVIEW

using a very high resolution micro UAV platform. Hung et al. [19] applied high resolution

aerial images from a digital camera for weed classi�cation, collecting images at 5–10 metres.

Their results showed 94% accuracy. A study by Knoth et al. [15] utilised either a panchromatic

or shading infrared calibrated small frame digital camera to generate high resolution images of

the re-established swamp surface utilising. Their system had an overall accuracy of 91% using

UAV. Lelong et al. [7] focused on the combination of a single digital camera with spectral �lters

using four spectral bands matching to red, green, blue (RGB) and near infrared (NIR). The

results of their trials showed an expected precision level of 15% in the biophysical parameters

approximation. Rieke et al. [6] described precise position data by integrating the real time

kinematic position of the UAV. The system has the potential to achieve an accuracy of 1-3 cm,

which can be measured for direct geo-referencing for aerial imagery.

Berni et al. [46] focused on the most pro�cient method to produce quantitative remote

sensing data on agriculture utilising two types of UAVs, rotary-wing and �xed wing, with

thermal and narrowband multispectral sensor cameras. Their research was undertaken using

thermal images in the “7.5–13-µm region (40 cm spatial resolution) and narrow band multis-

pectral images in the 400–800 nm spectral region (20 cm spatial resolution)”. The results

illustrate that a low cost UAV system for vegetation monitoring applications has comparable

estimation capabilities to the traditional manned airborne sensors [46]. Guo et al. [47] used a

micro-helicopter UAV with a multispectral camera to develop a framework to process images

for precision agriculture. Kelly [32] used a md4-1000 quadcopter UAV with a multispectral

camera (MCA-6 camera) for weed mapping. The mini-MCA-6 camera is produced by Tet-

racam company (Chatsworth, CA , USA). Kelly’s outcomes demonstrated that it is possible

to create quantitative mapping products, for example, crop stress maps, from UAV images

[32]. Von Bueren and Yule [10] used a hexakopter and quadcopter (MikroKopter) with dif-

ferent Multispectral Camera Arrays (MCAs) and digital camera sensors (Canon camera) to

detect near objects in infrared light for precision agriculture. Their results demonstrated the

successful application of an UAV with a multispectral imaging system to create high quality

multispectral images [10]. Bryson et al. [48] used a small UAV with an on-board computer

(PC104) for accurate image registration to detect weeds. Their results demonstrated that their

approach to classi�cation, which depends on generic colour and texture descriptors, can be

utilised to distinguish between various sorts of vegetation. Furthermore, Laliberte et al. [38]

used a small UAV with a digital camera and a procedure suitable for handling a large number

2.4 Vision Based Control 13

of UAV images. Their overall classi�cation accuracies for the two collected image mosaics

were 83% and 88%. The results of their study show that UAVs can be used successfully to

obtain imagery for rangeland monitoring, and that a UAV-based remote sensing approach

can either complement or replace some ground-based measurements. Figure 2.1 shows some

examples of the UAVs which are used in agricultural research.

.

Figure 2.1: Examples of UAVs used for precision agriculture and plant bio-
security applications [10] [23] [34].

Table 2.1 lists some examples of UAVs used in agricultural applications (detailing authors,

year of implementation, the UAV used, the sensor type, operational e�ciency and the com-

puter vision technique). High spatial resolution imaging in near real time and e�cient on-

board processing for precision agriculture applications have not been completed [23]. As

a result, designers are continually looking for ways to develop UAV platforms with high

resolution, near to real time imagery and high level decision making over extended periods

of time.

2.4 Vision Based Control

Computer vision is a �eld which contains numerous methods for obtaining, analysing, pro-

cessing and understanding images and high dimensional information captured in the di�erent

14 CHAPTER 2. LITERATURE REVIEW

Table
2.1:Sum

m
ary

ofthe
literature

review
listing

the
applications,the

U
AV,the

sensors,operationale�
iciency

(on-board
oro�

-board
classification

capacity).

N
o

A
uthor’s
nam

e
Year

T
he

application
U
A
V
used

Sensor
used

O
perational
e�

ciency
C
om

puter-V
ision

M
ethod

1
F
e
ld

e
r
h

o
f

e
t

a
l.

[
9
]

2
0
0
8

M
o

n
ito

r
in

g
p

la
n

t

h
e
a
lth

U
A

V
G

lid
e
r

C
r
o

p
C

a
m

D
ig

ita
l

c
a
m

e
r
a

(S
o

n
y

1
0
M

P
)

N
IR

c
a
m

e
r
a

O
�

-b
o

a
r
d

P
a
n

o
r
a
m

ic
s
o

ftw
a
r
e

A
u

to
P

a
n

o
P

r
o

a
n

d

P
T

G
u

i

2
L

e
lo

n
g

e
t

a
l.

[
7
]

2
0
0
8

W
h

e
a
t

c
r
o

p
L

’A
v
io

n
Ja

u
n

e
’s

p
o
w

e
r
e
d

g
lid

e
r

D
ig

ita
l

c
a
m

e
r
a

C
a
n

o
n

E
O

S
3
5
0
D

O
�

-b
o

a
r
d

E
s
ta

b
lis

h
r
e
la

tio
n

s
h

ip

b
e
tw

e
e
n

:
le

a
f

a
r
e
a

a
n

d
N

D
V

I

3
N

e
b
ik

e
r

e
t

a
l.[

4
5
]

2
0
0
8

M
o

n
ito

r
in

g
c
r
o

p

s
ta

tu
s

M
in

i
U

A
V

(Z
u

r
ic

h
)

a
n

d
m

d
4
-2

0
0

q
u

a
d

c
o

p
te

r

M
u

ltiS
p

e
c
tr

a
l

(M
S
M

S
)

M
ic

r
o

S
e
n

s
o

r
(C

a
n

o
n

E
O

S

2
0
D

.)

O
�

-b
o

a
r
d

N
D

V
I

m
e
th

o
d

4
H

a
n

[
3
]

2
0
0
9

W
a
te

r

m
a
n

a
g
e
m

e
n

t
a
n

d

a
g
r
ic

u
ltu

r
e

a
p

p
lic

a
tio

n
s

A
g
g
ie

A
ir

U
A

V
,

c
a
lle

d
G

h
o

s
tF

o
to

M
u

ltis
p

e
c
tr

a
l

(P
e
n

ta
x

O
p

tio
E

1
0

c
a
m

e
r
a
)

&

th
e
r
m

a
l

in
fr

a
r
e
d

(T
IR

)

(C
a
n

o
n

P
o
w

e
r
S
h

o
t

S
X

1
0
0

IS
)

O
n

-b
o

a
r
d

U
s
in

g

G
u

m
s
tix

c
o

m
p

u
te

r

A
lg

o
r
ith

m
s

b
a
s
e
d

o
n

N
IR

im
a
g
e
r
y

a
n

d

N
D

V
I

to
d

e
te

c
t

r
iv

e
r

a
n

d
v
e
g
e
ta

tio
n

5
D

u
n

fo
r
d

e
t

a
l.

[
4
2
]

2
0
0
9

C
la

s
s
ify

a
n

d
m

a
p

r
ip

a
r
ia

n
v
e
g
e
ta

tio
n

A
p

a
r
a
g
lid

e
r

U
A

V
D

ig
ita

l
c
a
m

e
r
a
s

C
a
n

o
n

P
o
w

e
r
s
h

o
t

G
5

(5
M

P
&

1
2

M
P

)

O
�

-b
o

a
r
d

O
b
je

c
t-o

r
ie

n
te

d

a
n

a
ly

s
is

6
B

e
r
n

i
e
t

a
l.

[
1
8
]

2
0
0
9

C
o

�
e
e

c
r
o

p
s

m
o

n
ito

r
in

g

Q
u

a
n

ta
-H

r
o

ta
r
y

w
in

g
U

A
V

a
n

d

Q
u

a
n

ta
-G

�
x
e
d

w
in

g
U

A
V

M
u

ltis
p

e
c
tr

a
l

c
a
m

e
r
a

(M
o

d
e
l

U
S
S
-2

0
0
0
C

)

th
e
r
m

a
l

c
a
m

e
r
a

(T
h

e
r
m

o
v
is

io
n

A
4
0
M

)

O
�

-b
o

a
r
d

S
IF

T
a
lg

o
r
ith

m

L
e
ic

a

P
h

o
to

g
r
a
m

m
e
tr

ic

S
u

ite

7
B

r
y

s
o

n
e
t

a
l.

[
4
8
]

2
0
1
0

V
is

io
n

B
a
s
e
d

M
a
p

p
in

g
a
n

d

C
la

s
s
i�

c
a
tio

n

J3
C

u
b

U
A

V
C

o
lo

u
r

m
o

n
o

c
u

la
r

c
a
m

e
r
a

O
�

-b
o

a
r
d

M
a
c
h

in
e

le
a
r
n

in
g

v
is

io
n

a
p

p
r
o

a
c
h

2.4 Vision Based Control 15

8
H

u
n

t
e
t

a
l.

[
3
7
]

2
0
1
0

C
r
o

p
M

o
n

it
o

r
in

g
V

e
c
to

r
-P

U
A

V
F
in

e
P

ix
S
3

P
r
o

U
V

IR

c
a
m

e
r
a

O
�

-b
o

a
r
d

G
N

D
V

I

9
G

u
o

e
t

a
l.

[
4
7
]

2
0
1
2

M
a
p

p
in

g
c
r
o

p

s
ta

tu
s

M
ic

r
o

-h
e
li

c
o

p
te

r
U

A
V

M
u

lt
ip

le
s
p

e
c
tr

a
l

c
a
m

e
r
a
s

O
�

-b
o

a
r
d

L
u

c
a
s
-K

a
n

a
d

e

m
e
th

o
d

to
d

e
te

c
t

fe
a
tu

r
e

p
o

in
ts

1
0

V
o

n
B

u
e
r
e
n

a
n

d
Y

u
le

[
1
0
]

2
0
1
3

M
o

n
it

o
r
in

g

a
g
r
ic

u
lt

u
r
a
l

p
a
d

d
o

c
k

s

H
e
x
a
k

o
p

te
r

a
n

d

Q
u

a
d

k
o

p
te

r

(M
ik

r
o

k
o

p
te

r
)

M
u

lt
is

p
e
c
tr

a
l

s
e
n

s
o

r

c
a
m

e
r
a

(M
C

A
)

A
n

d

d
ig

it
a
l

c
a
m

e
r
a

O
n

-b
o

a
r
d

N
/A

1
1

G
o

n
z
a
le

z
-

D
u

g
o

e
t

a
l.

[
8
]

2
0
1
3

W
a
te

r
s
ta

tu
s

fo
r

fr
u

it
tr

e
e
s

m
o

n
it

o
r
in

g

W
in

g
s
p

a
n

�
x
e
d

w
in

g
T

h
e
r
m

a
l

c
a
m

e
r
a

(M
IR

IC
L

E
3
0
7
)

O
�

-b
o

a
r
d

C
r
o

p
w

a
te

r
S
tr

e
s
s

In
d

e
x

(C
W

S
I)

m
e
th

o
d

1
2

K
e
ll

y
[
3
2
]

2
0
1
3

W
e
e
d

m
a
p

p
in

g
in

m
a
iz

e
�

e
ld

s

m
d

4
-1

0
0
0

q
u

a
d

c
o

p
te

r

U
A

V

M
u

lt
is

p
e
c
tr

a
l

c
a
m

e
r
a

M
C

A
-6

c
a
m

e
r
a

O
�

-b
o

a
r
d

O
b
je

c
t

B
a
s
e
d

Im
a
g
e

A
n

a
ly

s
is

(O
B

IA
)

1
3

P
u

ig
e
t

a
l.
[
4
4
]

2
0
1
5

A
s
s
e
s
s
m

e
n

t
o

f

c
r
o

p
in

s
e
c
t

d
a
m

a
g
e

D
JI

S
8
0
0

E
V

O
S
o

n
y

N
E

X
-5

R

h
ig

h
-r

e
s
o

lu
ti

o
n

c
a
m

e
r
a

O
�

-b
o

a
r
d

U
n

s
u

p
e
r
v
is

e
d

m
a
c
h

in
e

le
a
r
n

in
g

K
-m

e
a
n

s

c
lu

s
te

r
in

g

a
lg

o
r
it

h
m

•
N
/A

:
N

o
t

A
v
a
il

a
b
le

16 CHAPTER 2. LITERATURE REVIEW

situation in order to create numerical or typical data [49, 50]. Computer vision methods are

utilised for military, civilian and farming applications [51]. The main objective of a vision

based control technique in robotics is to control a robot (ground or aerial robot) to perform

a prede�ned task using visual feedback, such as approaching an object or obstacle avoidance

[12, 13, 52]. Liu and Dai [53] discussed visual servo techniques for on-board control for UAVs.

Their research was based on aerial surveillance, “vision based navigation and airborne visual

simultaneous localization and mapping”. An approach for real time vision based landing for

UAVs was designed and implemented by Saripalli S et al. [54]. Their research focused on

navigation based on GPS data and computer vision and demonstrates that their navigation

algorithm with computer vision can produce accurate results. Yang et al. [49] and Raja [55]

discussed landing strategies for UAVs utilising visual control algorithms in order to detect

landmarks. The authors utilised re-enacted �ight video to check the precision of the system.

Fu et al. [56] discussed vision based tracking algorithms for UAVs landing on an arbitrary �eld.

Their real-time vision-based tracking algorithm was assessed with airborne pictures from

auto landing of �ights utilising a manually classi�ed ground truth database. Their outcomes

showed that the algorithm is very strong in tracking the helipad and accurate for closing the

loop of vision based control. The Lucas-Kanade technique which is exceptionally useful to

evaluate optical streams or movement between two successive images was utilised by Guo et

al. [47]. An image based visual servo using a tracking parallel linear image feature for vertical

take-o� and landing was presented by Robert and Tarek [57]. Their controller designed for a

small UAV is capable of quasi-stationary �ight. Markus et al. [58] presented a framework for

on-board vision based control in unknown environments (indoor and outdoor). Their method

uses monocular vision to solve the estimation of the metric visual scale from an air pressure

sensor. Choi et al. [1] and Ward et al. [2] discussed using a UAV with “computer vision based

guidance system for on-board decision making”. Their results showed that their algorithm

can accurately recognise “99% of the object of interest” and the UAV is able to navigate and

perform on-board decision making.

2.5 O�-board and On-board Hardware for Image Processing and Computer Vision 17

2.5 O�-board and On-board Hardware for Image Processing

and Computer Vision

In order to apply computer vision, either on-board or o�-board, the selection of a suitable

computer on which to perform the processing is the main requirement. There are several

types of computers and micro controllers which can be used for computer vision and remote

sensing such as a desktop PC, laptop or FPGA, a GPU or microcomputers such as Odroid,

Raspberry Pi etc. A suitable choice for the computer is based on several factors including:

data type, the speed of processing and ease of use for the farmer. Kelly [32], for instance,

used an o�-board OBIA procedure to compute multiple sets of data and statistics derived

from the classi�cation outputs in order to have a suitable process to generate processed

imagery. The results of his research demonstrated 86% overall accuracy, that 23% of the

area was free of weeds, and 47% of the area had low amounts of weed and the resultant

treatment recommendation showed a high potential to reduce herbicide application or other

weed control processes.

2.6 Decision Making using the OODA Loop Framework

There are several approaches for on-board decision making, where one possible approach is

use to the Observation, Orientation, Decision, and Action (OODA) loop method in the context

of UAVs. OODA loop theory was proposed by John Boyd [59] and it has since been applied

in models used in defence to describe decision making [60, 61]. Parasuraman et al. [62], for

example, discussed a model based on decision making with four classes: data procurement,

data investigation, decision and action choice, and lastly, action implementation. Each class

can be applied as a manual activity or completely autonomous. Peng et al. [63] discussed

the di�culties and the challenges for multiple networked UAVs that were analysed based on

the OODA model. They discussed three key technologies for the UAVs: cooperative control,

cooperative information sensing and the mission decision under a dynamic network, and

multiple autonomous vehicles. Decision making based on the OODA loop method varies

between an o�-board and on-board implementation due to the fact that the decision and the

action in the OODA loop will be passive in o�-board decision making but active in the on-

board case. Figure 2.2 illustrates the concept of onboard decision making. The OODA loop

18 CHAPTER 2. LITERATURE REVIEW

has been applied in the context of UAVs, however, the application of o�-board and on-board

decision making for precision agriculture is limited to date.

Figure 2.2: Simplified version of Boyd’s OODA Loop.

2.7 Summary

The purpose of this chapter was to review the previous research experiments in this �eld and

determine the most appropriate methods to achieve the task of on-board decision making

for agricultural applications. This chapter presented a literature review of remote sensing

in precision agriculture as well as materials and methods which include the state-of- the-

art methods for the use of UAVs in precision agriculture. Computer vision and vision based

control have also been discussed for onboard decision making. Furthermore, an investigation

of the OODA loop method has been presented.

In this work, both o�-board and on-board, the OODA loop will be implemented and applied

in the context of precision agriculture.

The next chapter describes the system architecture for data collection and o�-board ana-

lysis for invasive weed. The chapter will cover the hardware system including electrical

electronic integration and 3D printing as well as the software integration.

CHAPTER 3

System Architecture For Data Collection
and O�-board Analysis and Mapping

3.1 Overview

As described in Chapter 1, the purpose of this research is to investigate and develop a system

for o�-board and on-board decision making using UAVs in the context of precision agriculture.

Chapter 2 discussed the literature review and research objective and also the materials

and theoretical methods applied in the research such as OODA loop theory and vision-based

control.

This chapter presents the design of the system architecture for data collection and o�-

board analysis and mapping. It is divided into two parts, the �rst of which covers the hardware

design which includes the physical connection for the system and the 3D printing hardware.

The second part covers software design and includes Mission Planner software, Python scripts

and the invasive weed detection method.

3.2 Hardware Design

The system architecture for data collection and o�-board analysis consists of two parts as

shown in Figures 3.2 and 3.1. The on-board system consists of a quadcopter UAV (3DR IRIS),

an autopilot (Pixhawk), a microprocessor Raspberry Pi 2B, a 5 MP Raspberry Pi camera and

a GPS 3DR (GPSKIT0003). The Raspberry Pi connected to the ground station uses the Wi-Fi

network. A 915 MHz radio control is also used to connect the ground control station system to

the Pixhawk. The ground station consists of 3DR telemetry, WiFi adapter and FR-Sky receiver.

19

20

CHAPTER 3. SYSTEM ARCHITECTURE FOR DATA COLLECTION AND OFF-BOARD ANALYSIS AND

MAPPING

Figure 3.1: On-board system for collecting data.

3.2.1 3DR-IRIS UAV Frame

The 3DR IRIS UAV frame is suitable for the purpose and relatively low in cost (< $2000 AUD,

2016) compared to other platforms. The 3D Robotics IRIS UAV has a payload capacity of 425

grams. The airframe is made of strong and resistant plastic for the crash. The dimensions of

the frame are 550 mm from motor to motor and a height of 100 mm from the centre of the

frame [64].

3.2.2 AC2830-358 850Kv Motors and 10x4.7 propellers

The UAV uses four AC2830-358 850Kv motors and four 10x4.7 propellers to produce thrust.

The AC2830-358 850Kv motor is small in size, and is designed to produce high thrust. Two

motors run counter clockwise and another two run clockwise. Speci�cally so as to give pitch,

roll and yaw control [64].

3.2.3 Pixhawk Autopilot

The IRIS uses a Pixhawk �ight controller; an open source autopilot designed and manufac-

tured by 3D Robotics which has extensive online documentation and support. This level of

customisation makes it suitable for developing a system that can be modi�ed to suit various

3.2 Hardware Design 21

Fi
gu

re
3.

2:
Sy

st
em

A
rc

hi
te

ct
ur

e
fo

r
D

at
a

C
ol

le
ct

io
n

an
d

O
�

-b
oa

rd
A

na
ly

si
s

an
d

M
ap

pi
ng

.

22

CHAPTER 3. SYSTEM ARCHITECTURE FOR DATA COLLECTION AND OFF-BOARD ANALYSIS AND

MAPPING

applications. The Pixhawk autopilot includes both software and hardware components to

interface with all other subsystems. Pixhawk contains an in-built accelerometer, gyroscope,

barometer and magnetometer [65].

3.2.4 GPS Compass Module

A 3DR (GPSKIT0003) 6H compass/GPS module is used on the system. This is a stand alone

type GPS operating system at 2.7 to 3.6 voltage. This GPS has sensitivity of -162 dBm, and the

velocity and heading accuracy are 0.1 m/s and 0.5 degrees, respectively [51]. The GPS can be

used with APM and Pixhawk �ight control systems.

3.2.5 4 in 1 ESC/Power Module

The system architecture uses a 4 in 1 ESC/Power module which is inbuilt with the 3D IRIS

UAV. Each ESC is rated at 20amps capacity and is running the SImonK �rmware for enhanced

response and stability. The ESC power module provides regulated power to the �ight control

board, furthermore it monitors both the voltage and the current. Using 4 in 1 ESC can replace

several components including a power regulation board, a power distribution and four ESCs

compared with similar UAV with 4 ESC [51].

3.2.6 5000 mAh 3S 30C Lipo Pack Ba�ery

The system architecture uses a 5000 mAh 3S 30C, 11.1 V DC Lipo battery which has a capacity

of 5000 mAh and a 30C discharging rate. The battery allows for approximately 15–20 minutes

�ight time without any payload which is su�cient to complete the test [51].

3.2.7 FrSky-DF Radio Control (Tx/Rx)

The system can also be controlled manually using a FrSky DF 2.4 GHz transmitter and receiver

link which transmits signals to the autopilot [64].

3.2.8 3DR TELE Radio Modem and Ground Station Control

The system uses two 3DR radio modems which are responsible for transmitting signals

between the on-board sensor and the ground control station. The telemetry is sent via

3.2 Hardware Design 23

communication between the two units at an operating frequency of 915 MHz. The ground

station computer (GCS) runs using Mission Planner software [64].

3.2.9 WiFi connection

a wi� network is used to connect the on-board microcomputer (i.e. Raspberry Pi 2B, Odroid

U3
+

) with the ground control station in order to upload commands via an SSH connection to

the on-board system.

3.2.10 Microcomputer (Raspberry Pi 2B)

The Raspberry Pi 2B is a single board microcomputer of small dimensions (85 x 49 mm).

The board is priced between $40–$55 AUD (July 2016). The Raspberry Pi 2B hardware uses

input/output calls (GPIO) in order to receive/transmit signals from/to the sensor. The micro-

computer can be operated using di�erent software such as: Raspbian, OSMC (Open Source

Media Centre), Linux and Windows 10 IoT. The Raspberry Pi 2B board weighs 45 grams which

makes it suitable to use on an UAV as a small on-board computer (see Appendix A.1) [66]. A

script running on the Raspberry Pi 2B allows the system to take images every second to collect

data for o�-board analysis and mapping.

3.2.11 Raspberry Pi Camera

The Raspberry Pi camera is a 5 megapixel �xed focus camera which supports 1080p 30, 720p

60 and VGA90 video modes. The camera’s dimensions are 25 x 20 x 9 mm and it attaches

via a 15 cm ribbon cable to the CSI port on the Raspberry Pi 2B. The camera can be accessed

through the Picamera Python library or the ROS environment in order to capture frames for

image processing [66].

3.2.12 Universal Ba�ery Elimination Circuit 5V-3A (UBEC)

A UBEC is a switch mode DC regulator which takes voltage of 12 V DC from the main battery

for the UAV and converts it to 5 V DC in order to power the Raspberry Pi 2B or Odroid U3.

The power input wires of the UBEC are joined into the power input wires of the ESC while the

power yield wires of the UBEC receiver are connected to the required device (the Raspberry

Pi 2B or the Odroid U3).

24

CHAPTER 3. SYSTEM ARCHITECTURE FOR DATA COLLECTION AND OFF-BOARD ANALYSIS AND

MAPPING

3.2.13 Ground Station Computer (GSC)

The ground station consists of a laptop which runs Mission Planner software and via an SSH

shell (PUTTY) allows the system to send and receive commands for the mission.

3.2.14 3D Printing for O�-board System

Figure 3.3 shows a 3D printing of an enclosure designed to install, secure and protect the

Raspberry Pi 2B, the Raspberry Pi camera and the UBEC. The enclosure was designed using

AutoCAD software. Once each surface has been coated with acetone, the surfaces are brought

and clamped together. The enclosure is mounted as close as possible to the centre of gravity

of the airframe.

Figure 3.3: A: 3D printing design for the O�-board System. B: The enclosure
system for the O�-board System and Data Collection.

3.3 Detection and GPS Mapping Approach

Figure 3.4 describes the process �ow of information developed in this work. Steps 1–8 consist

of planning a series of waypoints for a maximum area of coverage with a 40% overlap. The

Raspberry Pi receives commands from the ground station using Putty to record video and to

take images of the region of interest at 1 frame per second. In steps 9 and 10, the images and

videos are uploaded post �ight and processed together with the GPS waypoints logs. Once

this is completed, the next step (step 11) compares the time in the image with GPS with the

UAV time logs; the algorithm takes into account the date and time the image was created and

�nds the matching date and time from the �ight log.

3.3 Detection and GPS Mapping Approach 25

Figure 3.4: Image processing flowchart.

26

CHAPTER 3. SYSTEM ARCHITECTURE FOR DATA COLLECTION AND OFF-BOARD ANALYSIS AND

MAPPING

If the time does not match, the next step is to go to the next line in the log (step 12),

and once a match is found, the geo-location of the point of interest in degrees is converted

into Universal Transverse Mercator (UTM) format and saved (step 13). In step 13, the centre

GPS coordinates of the image which correspond to the UAV relocated coordinates are used

to calculate the x and y distance in metres from the centre of the image to any point on the

image. In steps 14–16, an OBIA and threshold selection method algorithm (see section 3.4.3)

are applied to the image to detect if there are any weeds in the image. After the weeds have

been detected in steps 14–16, the processed single image is displayed (step 17). In steps 18 and

19, the user can via a mouse pointer select any of the detected weeds on each individual or

stitched image to create a weed map with GPS coordinates. In step 20, the UTM coordinates

for each weed are converted into GPS coordinates in degrees. Lastly, in step 21, the GPS

location of the detected weed is displayed in tabular form.

3.4 So�ware Design

The software used for this system consists of: Mission Planner software to create the waypoint

�ight path, Python scripts to record video and take images and a weed detection and mapping

method.

3.4.1 Mission Planner

Mission Planner software is used on the ground control station for the UAV. Mission Planner

is used to select waypoints for the mission for data collection which is then used for o�-

board analysis and mapping [67]. Mission Planner can be also used to load �rmware into the

autopilot (Pixhawk), and set up con�gure and load an autonomous mission into the autopilot.

Furthermore, Mission Planner can be used to save and analyse the mission logs which contain

information about the mission. Figure 3.5 shows an example of waypoints that are used to

cover the area of interest.

3.4 Software Design 27

Figure 3.5: Mission Planner so�ware.

3.4.2 Python Script

The second type of software used are Python scripts which run on the Raspberry Pi 2B. The

Raspberry Pi camera takes one image every one second with a 40% overlap in order to cover

the entire area of interest. Before commencing image capture, the clocks in the Raspberry Pi

2B and the GSC need to synchronised and the following script is run (sudo date –s Time) to

achieve this purpose. To capture images from Raspberry Pi camera for 4 minutes, that is from

1 second (1000 ms) to 4 minutes (240000 ms), the following script is run:

raspistill -o Image_name_%d.jpg -tl 1000 -t 240000

3.4.3 Invasive Weed Detection Method

An invasive weed detection algorithm using an OBIA algorithm and a threshold selection

method was developed. Initially, several images of the target (i.e. spear thistle weed) of

di�erent size and/or stages of growth were collected from 1 and 3 metres above the ground.

Each image is analysed using an OBIA algorithm and a threshold selection method with the

true colour and texture image data using RGB triplet (Figure 3.6). Each RGB triplet de�nes

a colour for one pixel of the image in three layers. The �rst layer of the 3D array (colours

band) contains red components, the second layer green components and the third layer blue

components. In order to detect the weed, the threshold number must be chosen for each

colour component and a set of colour thresholds is generated. The optimum threshold values

28

CHAPTER 3. SYSTEM ARCHITECTURE FOR DATA COLLECTION AND OFF-BOARD ANALYSIS AND

MAPPING

were achieved followed by manual tuning to obtain the greatest sensitivity and selectivity.

Figure 3.6: Image processing stages.

An invasive weed that is mostly green in colour will have the following colour combin-

ation: (green band > green threshold), (blue band < blue threshold) and (red band < red

threshold). The result of these is masked RGB. The channels are combined to give the binary

targeted image. However, an invasive weed that is mostly brown in colour features will have

the following colour combination: (red band > red threshold), (green band < green threshold)

and (blue band < blue threshold). Figures 3.7A and 3.7B show the images taken at 1 and 3

metres above ground respectively. The data collection process was repeated with a RPi camera

mounted on the UAV at 5, 7 and 15 meters height from the ground level (See 5.5 Results and

Discussion). The algorithm is also capable of detecting weeds in early age as well as when the

part of the weed is senescent. Appendix B.6 provides the code for the invasive weed detection

algorithm.

3.5 Summary 29

Figure 3.7: Spear thistle weed detection and classification at 1 and 3 metres
height at di�erent stages of growth. (November 2015).

3.5 Summary

This chapter introduced a clear framework for the system architecture design for the o�-board

system (analysis and mapping) using a Raspberry Pi 2B. A detailed description of the o�-board

decision making including the platform and di�erent subsystems have been presented. An

additional set of software design including Mission Planner, a Python Script and an Invasive

Weed Detection Method were also introduced.

The next chapter describes the system architecture design for on-board decision making

and action (the hardware and the software) using a Raspberry Pi 2B and MAVProxy or using

an Odroid U3 and Robotic Operating System (ROS).

CHAPTER 4

System Architecture Design For On-board
Decision Making and Action

4.1 Overview

As described in Chapter 1, the purpose of this research is to investigate and develop a system

for o�-board and on-board decision making using UAVs in the context of precision agriculture.

Chapter 2 discussed the literature review and research objective and also the materials

and theoretical methods applied in the research such as OODA loop theory and vision-based

control.

Chapter 3 presented the design of the system architecture for data collection and o�-board

analysis and mapping including the hardware and software design.

This chapter covers the design of the system architecture for on-board decision making

and action. The chapter is divided into two sections: The �rst section will cover hardware

and software system architecture for on-board decision making using Raspberry Pi 2B and

MAVProxy. The second section describes hardware and the software using Odroid U3 and

Robotic Operating System (ROS).

4.2 System Architecture Using Raspberry Pi 2B and MAV Proxy

The system architecture is similar to the system architecture for data collection and o�-board

analysis and mapping described in Chapter 3, section 3.2, however, two elements have been

added for on-board decision making.

These two new elements are an ultrasonic sensor (HC-SR04) and a 5 V DC relay (SR-

05VDC) to run the 12 V DC motor for spraying. Figure 4.1 shows the various elements of the

on-board system architecture and the ground station while Figure 4.2 shows the hardware

elements for on-board decision making and action (chemical spray).

31

32 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

The hardware consists of the same hardware used in Chapter 3 for data collection and o�-

board analysis and mapping. It consists of a 3DR-IRIS UAV frame, AC2830-358 850 KV motors

and 10x4.7 propellers, Pixhawk Autopilot, GPS Compass Module, 4 in 1 ESC/Power Module,

5000 mAh 3S 30C Lipo Pack Battery, FrSky-DF Radio Control (Tx/Rx), WiFi connection,

microcomputer (Raspberry Pi 2B), UBEC, and GSC with the following added component:

4.2.1 Ultrasonic Sensor (HC-SR04)

The HC-SR04 ultrasonic sensor is used to measure the �ight hight by emitting an ultrasonic

wave in one direction and starting timing from when the ultrasonic wave is launched. The

ultrasonic spread velocity is 340 m/s and is based on the timer. The distance can be calculated

between the obstacle and transmitter [68]. The ultrasonic is connected to the Raspberry Pi 2B

to the GPIO connection pins (see Figure 4.5), or connected to Arduino which is connected to

Odroid U3 in the second system (see Figure 4.13). The HC-SR04 Ultrasonic Sensor Speci�ca-

tions can be found in Appendix A.2.

4.2.2 HD Webcam Logitech C270

The HD Webcam Logitech C270 is used to capture frames for image processing. In addition,

the Raspberry Pi camera is used as a backup and to record video. The HD Webcam Logitech

C270 Speci�cations [69] can be found in Appendix A.3. The large Signal to Noise Ratio (SNR)

for webcam are based on two factors: the ISO speed and the exposure.

4.2.3 Relay (SRD-05VDC)

The Relay SRD-05VDC has a capacity of 5 A is used to connect the 5 V GPIO Raspberry Pi

terminal to the 12 V spraying pump.

4.2.4 Spraying-Pump

The 12 V DC motor drives a spraying pump to perform an action on the target (see Figure

4.2B).

4.2 System Architecture Using Raspberry Pi 2B and MAV Proxy 33

Fi
gu

re
4.

1:
Sy

st
em

A
rc

hi
te

ct
ur

e
fo

r
O

n-
bo

ar
d

D
ec

is
io

n
M

ak
in

g
an

d
A

ct
io

n
U

si
ng

a
R

as
pb

er
ry

Pi
2B

an
d

M
AV

Pr
ox

y.

34 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

Figure
4.2:A

:H
ardw

are
System

A
rchitecture

for
O

n-board
D

ecision
M

aking
and

A
ction

U
sing

a
R

aspberry
Pi2B

and
M

AV
Proxy.B

:Top
view

to
the

payload.

4.2 System Architecture Using Raspberry Pi 2B and MAV Proxy 35

4.2.5 Liquid-Tank

A 200 ml capacity tank (4.2B) is used to store the liquid (e.g. pesticide) to be sprayed on the

target.

4.2.6 3D Printing for the On-board System

Figure 4.3 shows the design for the system requires a 3D printing design for the spraying

system bracket and holder. AutoCAD was used to design the required parts. The 3D printed

parts consist of a holder, an ultrasonic cover, a cover for the Raspberry Pi 2B and the relay,

a cover for the Raspberry Pi camera and for the webcam, and an upper cover is designed to

hold the chemical tank.

Figure 4.3: A: 3D Printing Design for the On-board System. B: The Enclosure
System for On-board Decision Making and Action.

4.2.7 Electrical Integration

4.2.7.1- Pixhawk – Raspberry Pi 2B Serial Interface

A customised serial cable was implemented to interface between the Raspberry Pi 2B

and the autopilot as shown in Figure 4.4 [64]. The customised cable was a spare telemetry

cable with a 6-Postion DF13 plug which was spliced and soldered with individual PCB female

jumper wires. The DF13 plug is inserted into the secondary telemetry port (Telem2) of the

Pixhawk. Port Telem1 remains for the 3DR radio modem such that both Mission Planner

and the Raspberry Pi can receive telemetry data as a fail-safe protocol. After connecting to

the Pixhawk, the female jumper wires are connected to the Raspberry Pi serial port pins and

ground (Tx,Rx,Gnd) [64].

36 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

Figure 4.4: Connecting the Pixhawk to Raspberry Pi 2B using a customised
serial connected cable.

4.2.7.2- Ultrasonic Sensor – Raspberry Pi 2B Serial Interface

Four GPIO pins (1, 16, 18 and 20) from the Raspberry Pi 2B are used to connect the HC-SR04

ultrasonic sensor to the Raspberry Pi: these are Echo Pulse Output (ECHO), ground (GND), 5V

Supply (Vcc) and Trigger Pulse Input (TRIG) as shown in Figure 4.5. The ultrasonic sensor can

be powered by the Raspberry Pi 2B to send the signal to the TRIG pin in the ultrasonic sensor.

The pulse waves bounce o� any adjacent objects and are re�ected back to the ultrasonic

sensor. The sensor recognises these arrival waves and measures the time between the trigger

and returned pulse, and then a 5 V signal will be sent to the ECHO pin [68].

In order to connect the HC-SR04 ultrasonic sensor to the Raspberry Pi 2B, two resistances

(1 kΩ and 2 kΩ) must be connected to increase the voltage from 3.3 V to 5 V for the pin 18 for

GPIO of the Raspberry Pi 2B (Vin). A voltage divider is used because the output signal of the

sensor (ECHO) on the Ultrasonic module (HC-SR04) is evaluated at 5 V, and the input pin 16

on the Raspberry Pi 2B GPIO is evaluated at 3.3 V.

4.2 System Architecture Using Raspberry Pi 2B and MAV Proxy 37

Figure 4.5: Ultrasonic Sensor – Raspberry Pi Serial Interface.

4.2.7.3- Relay – 12 V DC motor – Raspberry Pi 2B Serial Interface

The circuit shown in Figure 4.6 is used for spraying system. The spraying pump uses a 12 V

DC motor which is powered by the same 11.1 V DC battery that powers the UAV. The 5 V DC

relay (SRD-05VDC) is used to run the 12 V DC Raspberry Pi 2B as shown in Figure 4.6. The 5

V DC relay isolates the 5 V and 12 V. The GPIO signal voltage is 3.3 V and the motor can be

run at 10–12 V.

Figure 4.6: Interface Raspberry Pi 2B with Relay and 12 V DC Motor.

4.2.8 So�ware Design Using Raspberry Pi 2B and MAVProxy

The on-board software system using a Raspberry Pi 2B consists of: a MAVproxy con�guration

and a Python script.

38 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

4.2.8.1- MAVProxy Communication

MAVProxy is used to connect the Ground Control Station (GCS) to the UAV. The GCS for the

system supports MAVLink protocol in order to make connection between the Pixhawk (with

APM �rmware) and the GCS. The MavProxy commands are written using Python script which

allows MavProxy to be interfaced with other library software such as OpenCV [70]. A WiFi

network is used to connect the Raspberry Pi 2B to the GSC. A remote SSH terminal [71] can be

established to initiate serial communications between the Raspberry Pi 2B and the Pixhawk.

The following commands are executed [72] as shown in Figure 4.7.

sudo -s: This command runs a new shell as root with higher privileges than the standard

runtime environment. The shell user prompt will change to

(root@Raspberrypi:/home/pi#).

Following this, Mavproxy can be executed by typing [72].

MAVProxy.py –master=/dev/ttyAMA0 –baudrate 57600 –aircraft MyCopter

After executing this command, the Raspberry Pi 2B starts serial communications with

the Pixhawk through the customised cables discussed in section 4.2.7.1. The prerequisite for

running this command is to set the telemetry band rate for the Pixhawk 57600. If the band

rates do not match between the Raspberry Pi 2B and the autopilot, the information will not

be able to be transferred.

The information related to the Pixhawk autopilot is displayed when the communication

has been successfully established (e.g. Mode STABILIZE), followed by a number of parameters

received (see Figure 4.7). The 3D IRIS UAV was powered on with the mode switched to STB

or “Stabilize” in the RC control. To con�rm whether or not the connection with the autopilot

is successful, toggle the mode into LTR or “Loiter” mode and read the output of the terminal;

this is con�rm that the Raspberry Pi 2B is successfully connected to the autopilot through

Mavproxy.

4.2 System Architecture Using Raspberry Pi 2B and MAV Proxy 39

Figure 4.7: Remote SSH terminal accessing the Raspberry Pi 2B using SHH
Pu�y and running sudo -s, Mode STABILIZE executed.

After completing the previous steps, the Raspberry Pi 2B (microcomputer) is connected to

the Pixhawk, similar to connecting Mission Planner on a windows machine to the Pixhawk.

Figure 4.8 shows arming the UAV through the SSH terminal on the Raspberry Pi 2B.

Figure 4.8: Arm the UAV through the SSH terminal on the Raspberry Pi 2B.

40 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

4.2.8.2- Python Scripts

In order to execute any Python scripts using MAVProxy, the DroneKit API must �rst be

installed and initiated (Figure 4.9). This command (module load droneapi.module.api) should

be run when the STABILIZE mode is achieved.

After completing the previous steps, a Python script (e.g. spray_weed.py) can be run

through the MAVLink environment by using the following command (Figure 4.9). A complete

copy of the Python code can be found in Appendix B.2.

api start [The Name of The Code].py

Figure 4.9: Running the Image Processing Code through MAVProxy.

The software design using Rasperry Pi 2B and MAVProxy was tested in the �eld at Christ-

mas Creek (Queensland, Australia). Even though the system is useful but it has several

limitations.

1. A long delay (>60 seconds) to connect the operating computer to the on-board system.

2. The connection between the Raspberry Pi 2B and the MAVproxy frequently crashes

after the Python script runs to �y the UAV, resulting in loss of control of the UAV.

3. The Python code is written as a single script in order to control the entire system which

makes it harder to control each part of the UAV separately.

4. It is hard to store the �ight data (such as logs, videos and images) in order to use this

later for analysis.

These drawbacks lead to the necessity look for another more modular system to eliminate

these problems and also to have more freedom to control the system.

4.3 System Architecture Using Odroid U3
+

and Robotic Operating System (ROS) 41

4.3 System Architecture Using Odroid U3+and Robotic Oper-

ating System (ROS)

The system architecture of the second on-board system consists of several components. Figure

4.11 shows the entire hardware system. The onboard system consists of the same hardware

used in the system architecture in Chapter 3 for data collection and o�-board analysis and

mapping and the system architecture for on-board decision making and action using the

Raspberry Pi 2B as shown in Figure 4.10. The system hardware comprises a 3DR-IRIS UAV

frame, an AC2830-358 850 KV motor and 10x4.7 propellers, a Pixhawk Autopilot, a GPS

Compass Module, a 4 in 1 ESC/Power Module, a 5000 mAh 3S 30C Lipo Pack Battery, a FrSky-

DF Radio Control (Tx/Rx), a WiFi connection, a UBEC, a GSC, an ultrasonic sensor (HC-SR04),

a HD Webcam Logitech C270, a relay (SRD-05VDC), a spraying pump and a liquid tank, an

Odroid U3 and a micro Arduino. The HC-SR04 ultrasonic sensor is controlled by a micro

Arduino which is connected via a USB cable to the Odroid U3. The micro Arduino has C++

code to run the ultrasonic measurements (see Appendix B.10).

Figure 4.10: On-board system for on-board decision making using an Odroid
U3 and ROS.

The Odroid U3 receives the measurements through the USB cable and uses these measure-

ments to control the system through a node in ROS. The micro Arduino is also responsible

for controlling both the ultrasonic sensor and the relay which controls the motor for the

42 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

spraying system. The Pixhawk is connected to the Odroid U3 through a serial cable called an

FIDP cable.

4.3.1 Odroid U3

The Odroid U3 is a powerful Linux single board microcomputer used for on-board decision

making and action. The Odroid U3 is faster than the Raspberry Pi 2B (2 GB VS 1GB) and

allows near real time image processing (see Appendix A.4). The Odroid U3 microcomputer

can be run using di�erent software including Android and Linux. The board is priced between

$70–$95 AUD [73] (July 2016).

4.3.2 Micro Arduino

A micro Arduino is a microcontroller used for building digital devices. The micro Arduino

provide sets of digital and analog input/output pins to interface to various expansion boards

or other circuits. The micro Arduino company provides an “Integrated Development Envir-

onment (IDE)” based on the C++ programming language [74].

4.3.3 Electrical Integration

4.3.3.1- Pixhawk – Odroid U3 Serial Interface

The Pixhawk is connected to the Odroid U3 using an FTDI cable as shown in Figure 4.12.

A 6-Postion DF13 plug is soldered to the FTDI cable. The bene�t of using the FTDI cable is

to make the connection between the microcomputer and the autopilot faster than the serial

connection with the GPIO.

4.3 System Architecture Using Odroid U3
+

and Robotic Operating System (ROS) 43

Fi
gu

re
4.

11
:S

ys
te

m
ar

ch
it

ec
tu

re
fo

r
on

-b
oa

rd
de

ci
si

on
m

ak
in

g
us

in
g

an
O

dr
oi

d
U

3
an

d
R

O
S.

44 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

Figure 4.12: Pixhawk Connection to Odroid U3+ through USB serial.

4.3.3.2- Ultrasonic Sensor & Relay – Micro Arduino Serial Interface

Figure 4.13 shows the physical connection of the ultrasonic sensor (HC-SR04) to the micro

Arduino and also the connection of the motor to the relay (SRD-05VDC) to micro Arduino.

The micro Arduino uses C++ code (see Appendix B.10) which controls both the motor and the

ultrasonic sensor. The micro Arduino is powered and connected to the Odroid U3 through

a USB connection. A ROS node was also created for the ultrasonic module to receive all the

measurement data from the ultrasonic sensor and to check the UAV �ight height.

Figure 4.13: Interface between ultrasonic sensor (HC-SR04), relay (SRD-
05VDC) and micro Arduino.

4.3 System Architecture Using Odroid U3
+

and Robotic Operating System (ROS) 45

4.3.4 Detection and On-board Decision Making Approach

The OODA loop described in Chapter 2 is a closed loop control method used as a framework

for decision making [60, 61]. Figure 4.14 shows the �owchart system in the concept of a OODA

loop for on-board decision making developed in this work. The observation is based on using

the sensors such as ultrasonic sensors and a camera. The ground station receives messages

from the on-board computer to check the status of the mission while the UAV is �ying. After

sending the command to start the mission, the di�erent ROS nodes are executed as shown in

Figure 4.15. While the UAV is �ying, the detection algorithm will be checking if the target

is in the frame or not. When the target is detected, the UAV is automatically commanded to

�y to the target. The onboard decision making focuses on the decision and the action part

of OODA loop. After the UAV reaches the new location (above the target), the action will be

for the UAV to descend to a lower height just above the ground (e.g. 45 cm) and to run the

spray pump to spray the target. When the spraying is complete, the UAV either go to the next

waypoint looking for new targets or �y home and land.

The spraying tank was calculated with the payload for the UAV (3D IRIS) for this system

to do spraying task for maximum of two targets. As the experiment in this research for on-

board decision making and action based on OODA loop detecting one target in each �ight.

This system can be modi�ed by using bigger UAV platform and bigger tank for longer �ight

time and detecting multi-targets.

Figure 4.14: OODA loop flowchart for on-board decision making.

46 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

4.3.5 So�ware Design for On-board Decision Making and Action Using

Odroid U3+

Two di�erent types of software were used for the on-board decision making and action system

running on the Odroid U3. These are Robotic Operating System (ROS) and the JMavSim

Simulation.

4.3.4.1- Robotic Operating System (ROS)

ROS is open source software which provides libraries and tools and an easy environment in

which to develop robotic applications [75]. ROS provides an operating system service with

common functionality, including message transformations between processes, and package

management [75]. ROS packages consist of several nodes. A node is basically an executable

that when called with rosrun or through roslaunch will start running. In addition, ROS sup-

ports simulations to represent a graph architecture platform to run the processes in nodes

that receive, post and multiplex sensor, control, actuator and other messages.

An on-board downward facing camera attached to the 3D IRIS quad-rotor and connected

to the Odroid U3
+

microcomputer is used for vision based navigation. Several nodes were

developed including a navigation node, a camera node, a detection node (to detect features

such as ArUco Markers, colours and speci�c types of weed), a rotation matrix node and a

transfer node. All the nodes connect together (see Figure 4.15). The camera is connected

to the Odroid U3 via a USB cable and the micro Arduino is connected through another USB

cable. The camera node is continuously capturing frames and passing them to the detection

node through OpenCV.cvBrridge. The detection algorithm is progressively checked so see if

the target is in the frame or not. If the target is within frame, the target location in pixels (u,v)

will be passed to the transfer node in order to change the pixels (u,v) location to the target

location in metres (x, y). In order to have the camera frame in the same direction as the body

frame, a rotation matrix node was used to correct the direction.

The ultrasonic sensor (HC-SR04) and spraying system are connected to the micro Arduino

as described in Figure 4.13. The ultrasonic data is received by the Odroid U3 through via a

USB serial connection. The ultrasonic data is used to correct the height (z) of the UAV using

a Python node (see Appendix B.8).

Once the navigation node receives the location of the target from the rotation matrix node

4.3 System Architecture Using Odroid U3
+

and Robotic Operating System (ROS) 47

Fi
gu

re
4.

15
:R

O
S

no
de

s
fo

r
vi

si
on

ba
se

d
na

vi
ga

ti
on

co
nt

ro
l.

48 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

(x,y) and the height from the ultrasonic node (z), the new local position (x,y,z) is sent to the

autopilot (Pixhawk) through the navigation node to direct the UAV to go to the new location.

When the new location is reached, the navigation node sends a new message to the autopilot

to hover above the target at, for example, a height of 45 cm. Once the target reaches that

height (e.g. 45 cm), the micro Arduino sends a message to the motor to start spraying on the

target for a period of x seconds (e.g. 3 seconds). After completing the task, the UAV resumes

�ight and continues to �y to the next waypoint or returns to the starting location. Logs of the

whole operation can be saved using rosbage �le and analysed by running it using Rviz (3D

Robot Visualizer).

The algorithms for each of the nodes in the system can be found in Appendix B.7, B.8 and

B.9.

The control architecture is depicted in Figure 4.16. The function of the vision based nav-

igation is to �rst estimate the position of the target centre in the inertial frame (u,v). The

position controller on-board will control the platform to �y to a position directly above the

target, while the PID tuning is done inside the autopilot (Pixhawk). The pseudo code for the

position estimation needed for the vision based navigation is as follows:

Algorithm 4.1 A pseudo code for position estimation for the vision based navigation.

• Find the centre point of the target perspective projection in pixels (u,v).

u=
max(ui)+min(ui)

2 , v=
max(vi)+min(vi)

2 where i= {1,2,3,4}

• Find the centre of the target for normalised coordinates in the camera frame (x1, y2).

• Transfer the position of the target from the camera frame to the inertial frame (local
position X,Y,Z).

A) Camera Model and Pixel Distance

The camera model used in the system is assumed to be �xed to the UAV platform. The

camera frame (e.g. u= 640, v=480 pixels) is projected into the image plane as a 2D point

with coordinates (u, v) as shown in Figure 4.17. Where u and v represent the coordinates in

pixel units of the point in the plane, while x and y represent the distance in metres in the real

world after converting the pixel units to metres. The camera has a 60o �eld of view (FoV).

The �ight height (z) is received from the ROS message (geometry_msgs.msg /PoseStamp)

4.3 System Architecture Using Odroid U3
+

and Robotic Operating System (ROS) 49

Fi
gu

re
4.

16
:P

os
it

io
n

co
nt

ro
la

rc
hi

te
ct

ur
e

fo
r

on
-b

oa
rd

sy
st

em
.

50 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

as well as from the ultrasonic node which is connected to navigation node. The following

equations are used to calculate the x and y position in the real world.

z=current_pos.z

x1= z ∗ tan /O
2 where is Ø=60o ...(1)

y1= z ∗ tan /O
2 where is Ø=60o ...(2)

Figure 4.17: Mapping the image frame from the camera to the world frame

B) Rotation Matrix

A rotation matrix is used to rotate the coordinates of points in 2D or 3D. There are di�erent

type of rotation matrices, however, a basic rotation was applied in this system. A fundamental

rotation is a turnover about one of the axes of a direction framework every time. The accom-

panying three fundamental turnover matrices rotate vectors by an angle /O about the x, y, or

z axes, in three dimensions [76].

Rx(/O)=

1 0 0

0 cos /O −sin/O

0 sin/O cos/O

4.3 System Architecture Using Odroid U3
+

and Robotic Operating System (ROS) 51

Ry(/O) =

cos /O 0 sin/O

0 1 0

−sin/O 0 cos /O

Rz(/O)=

cos /O −sin/O 0

sin/O cos/O 0

0 0 1

The main reason for using a rotation matrix is to align the body frame of the UAV, the

camera frame and the world frame. The relationship between the camera velocity vB and the

quadcopter velocity in the body frame vA is shown in Figure 4.18 and can be established using

the basic rotation matrix from the camera frame to the body frame.

vA = RA
B .vB

The transformation of the position of the target from the camera frame to the inertial frame

is as follows:

cXtarget=

x

y

z

C

=
cXUAV +RA

C .RA
B

x

y

z

B

Figure 4.18: Rotation matrix for the camera frame to the body frame

Assuming that the camera azimuth angle and the elevation angle, which represent the

orientation of the camera frame with respect to the body frame are small and of an order of

magnitude less than the body displacement from the object, the transition matrix RA
B can be

simpli�ed to an identity matrix C [77, 78]. This was implemented as a node in ROS as shown

in Appendix B.9.

52 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

C) Interfacing the Onboard System with the GCS with ROS

In order to connect the the onboard computer to the ground station, a ssh protocol (ssh

username@hostname) is used. The hostname for the system was changed to image-processing

for convenience. An example of how to connect the GCS to the on-board microcomputer

Odroid U3 is shown in Figure 4.19.

[bilal@sony|~]$ ssh odroid@image-processing

Figure 4.19: Example of connecting the GCS to the Odroid U3.

To enable publishing topics, roscore should be started on the onboard computer through

the ground station connected via WiFi. As soon as the roscore is running, the nodes can run

too.

[image-processing@odroid|~]$ screen

[image-processing@odroid|~]$ roscore

The next step is to choose the launch �le to start running the nodes onboard the UAV. The

launch �le can be found in Appendix B.3.

C) JMavSim Simulation

The environment chosen to develop the navigation code for test �ight is JMavSim simulation

which is a simulation environment that is supported by ROS for simulation in the loop. The

following commands are needed to run the simulation:

4.3 System Architecture Using Odroid U3
+

and Robotic Operating System (ROS) 53

Fi
gu

re
4.

20
:H

ar
dw

ar
e

in
th

e
Lo

op
,S

im
ul

at
io

n
Fl

ig
ht

Te
st

W
it

h
R

ed
Ta

rg
et

D
et

ec
ti

on
.

54 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

[bilal@sony|~]$ roscore

[bilal@sony|~]$ roslaunch ~/catkin_ws/launch/px4.launch

[bilal@sony|~]$ cd ~/px4/src/Firmware/

[bilal@sony|~]$ make posix_sitl_default jmavsim

[bilal@sony|~]$ roslaunch ~/catkin_ws/launch/spray_nav spray.launch

[bilal@sony|~]$ roslaunch ~/catkin_ws/launch/red_color red color.launch

After running the commands above, the navigation code can be run to simulate a �ight test to

detect a speci�c target. Figure 4.20 shows a UAV with on-board decision making in the loop

simulation at di�erent stages. For example, the UAV mission may consist of �ying between

two points A and B to detect a red circle target. While the UAV is �ying, the image processing

is continually running to detect the red circle target. When the red circle is detected, the UAV

is commanded to �y to the new location (target location) and hover on this location at a height

of 45 cm for 5 seconds (see Figure 4.21).

4.3 System Architecture Using Odroid U3
+

and Robotic Operating System (ROS) 55

Figure 4.21: Flight description in the simulation.

.

.

D) Flight Test Results Visualisation Using Rviz 3D Robot Visualizer

Rviz is a 3D Robotic visualizer for displaying sensor data such as from a camera, GPS, ultra-

sonic sensor etc. and state information for ROS [79]. Using rviz can help to display the actual

�ight test data and check the �ight path and correct any possible errors in the ROS nodes

by tuning the Pixhawk parameters if there is an error. The combination of the simulation in

Jmavsim (Figure 4.20) before the �ight and the rviz (Figure 4.22) after the �ight, helps �ne the

tune the on-board decision making and reduce the errors in the system. The �ight test data

is saved as baglogs using the following command:

[image-processing@odroid|~]$ cd ~/baglogs

[image-processing@odroid|baglogs]$ rosbag record -a

56 CHAPTER 4. SYSTEM ARCHITECTURE DESIGN FOR ON-BOARD DECISION MAKING AND ACTION

The following commands are used to visualise the recorded data:

[bilal@sony|~]$ roscore

[bilal@sony|~]$ rosparam set use_sim_time true

[bilal@sony|~]$ rosbag play ~/baglogs/ [the name of the logs].bag

The video link below shows a visualisation of the data using the Rviz 3D Robot Visualizer:

https://www.youtube.com/watch?v=lKngX2N2lMs

Figure 4.22: Rviz 3D visualizer for displaying the flight data a�er the actual
flight test.

E) Weed Detection Method with ROS

The detection algorithm for the invasive spear thistle weed used the same threshold selection

method that was explained in Chapter 3 (section 3.4.3). The code was modi�ed into a Python

ROS script from Matlab. ROS cv_Bridge is used to pass the image frame to the weed detection

node. Figure 4.23 shows the weed detection algorithm test before applying it on-board the

UAV with the weed detection method processing frames through the ROS node. There are

several limitations to the implementation of this algorithm on-board for image processing

near real time such as seasonal variations and change in solar incidence angle. An outline of

the image processing node can be found in Appendix B.6.

4.4 Summary 57

Figure 4.23: Testing weed detection through ROS.

4.4 Summary

This chapter introduced two possible system architectures for an on-board system. The

�rst system architecture uses a Raspberry Pi 2B microprocessor. A detailed description of

the Raspberry Pi 2B on-board decision making including the platform and the subsystem

was presented. The disadvantages of using Raspberry Pi 2B system in relation to its slow

processing speed and only using a single script to control all actions lead to the development

of a second system.

The second system architecture introduced a framework of an Odroid U3 with a ROS

operating system. A detailed description of the platform and the di�erent subsystems was

presented. The electrical integration (hardware system) and ground station control (software

system) for this system was also detailed. An additional set of software designs were intro-

duced for the on-board decision making and autonomous action using the Odroid U3.

The next chapter, Chapter 5 describes the development of the weed detection and mapping

algorithm after collecting data from the UAV for o�-board decision making.

CHAPTER 5

Weed Mapping and O�-board Decision
Making

5.1 Overview

The aim of this research is to investigate and develop a system for o�-board and onboard

decision making. Chapter 2 discussed the literature review and the materials and theoretical

methods applied in the research such as OODA loop theory and vision-based control.

Chapter 3 described the system architecture for o�-board analysis including hardware and

software. The chapter details the application of the system architecture for data collection and

o�-board analysis and mapping for invasive weeds.

Chapter 4 described the design of the system architecture for on-board decision making

and action. The chapter details the application of the system architecture to on-board decision

making and action utilising the concept of an OODA loop.

This chapter presents the speci�c application of the UAV platform, sensor payload and

post processing pipeline customised to detect and map invasive spear thistle weeds. A de-

scription of the invasive weed type, study side, UAV �ight imagery and GPS mapping and

weed detection algorithm are presented. The results and discussion are found in section 5.5.

5.2 Spear thistle invasive weed

Spear thistle was chosen as a target weed to demonstrate the system capabilities. Spear thistle

has dark green leaves and purple �ower heads (Figure 5.1). The alternative names are Black

Thistle, Bull Thistle, Scotch Thistle and the scienti�c name is Cirisium vulgare. This weed

belongs to the Asteraceae family. The �owers heads are 3–5 cm long and the leaves are

typically be 45 cm long; this weed grows in Australia from spring to autumn [80, 81]. The

seeds are smooth and typically 3–5 mm long and are gray in colour and longitudinal darker

59

60 CHAPTER 5. WEED MAPPING AND OFF-BOARD DECISION MAKING

markings. The weed is spread by movement of seeds, via wind, water or mud [80, 81]. The

spear thistle weed is widely distributed in the southern and eastern parts of Australia. It is

very common in south-eastern Queensland, and the southern and eastern parts of New South

Wales, Victoria, and Tasmania. It is also common in the south-western parts of Western

Australia and the south-eastern parts of South Australia [80, 81].

Figure 5.1: Spear thistle weed and zoysia grass.

5.3 Study side

Remotely sensed images were taken between December 21, 2015 and February, 22, 2016

on a �eld located at Christmas Creek (Queensland, Australia, coordinates 28
o
12’19.1”S,

153
o
00’08.5”E). The test �ights were authorised by a written agreement letter between the

farm owner and Queensland University of Technology (QUT). The �eld was mainly covered

with zoysia grass but naturally infested with spear thistle weed. The zoysia grass was similar

in size across the �eld, however, the spear thistle had di�erent distributions in size and in

many cases was bigger than the zoysia grass (Figure 5.2).

5.4 UAV �ight imagery 61

Figure 5.2: Aerial image for the experimental field including: zoysia grass,
invasive weed and dead grass.

An experimental plot of 100x36 metres was delimited within the weed �eld to perform the

�ights (Figure 5.3A). The GPS coordinates of each corner of the �ight area were collected to

assist in determining the waypoints needed to plan the UAV �ight, image overlap and weed

geo-location.

5.4 UAV flight imagery

The UAV was �own at 5, 7 and 15 m altitude above ground level. The images were taken

at a rate of one image/sec and a UAV velocity of 1.5 m/sec was selected to cover the whole

experimental �eld with a 40% imagery forward and lateral overlap by using a single battery

within a period of 15 minutes. Figure 5.3A illustrates the �ight test location, showing the

sector where images were taken (blue), complete UAV �ight plan (red) and the area covered

by the imagery (yellow). Figure 5.3B shows the UAV in �ight above the experimental �eld.

62 CHAPTER 5. WEED MAPPING AND OFF-BOARD DECISION MAKING

Figure 5.3: A: UAV Section where UAV aerial images were taken, image location
in blue and the UAV flight path in red. B: UAV above experimental
field.

5.5 Results and discussion

In order to check the sensitivity and selectivity of the invasive spear thistle weed detection

algorithm, multiple images were collected at 5, 7 and 15 m above the ground level (AGL).

Figures 5.5A and 5.6A show examples of the original image at 5 and 15 m AGL, respectively,

Figures 5.5B and 5.6B illustrate the image after applying the detection algorithm, and Figures

5.5C and 5.6C mark the weed location corresponding to its ground coordinates.

Despite the challenges, the classi�cation algorithm managed to provide classi�cation res-

ults with 95% sensitivity and 98% selectivity at 5 m, 90% sensitivity and 94.5% selectivity

at 7 m and 80% sensitivity and 85% selectivity at 15 m AGL, as shown in Table 5.1. The

sensitivity is the ability of the algorithm to identify and detect the true positive target while

the selectivity is the capability of the algorithm to �lter out the false negatives for detection

targets. Furthermore, the system utilises false positive rates and false negative rates to achieve

accurate results. False positives are when a classi�cation indicates presence, however the

weeds are absent, and false negatives are the point at which a classi�cation demonstrates the

weeds are absent, but are truly present.

Table 5.1: Algorithm accuracy at three di�erent altitudes.

Altitude
(m)

No. Of
images

Camera Resolution
Ground sampling
Distance (GSD)

Sensitivity
(%)

Selectivity
(%)

5 20 1pixel=0.1625 cm 95 98

7 20 1pixel=0.2275 cm 90 94.5

15 20 1pixel=0.4875 cm 80 85

5.5 Results and discussion 63

Fi
gu

re
5.

4:
Sp

ea
r

th
is

tl
e

w
ee

ds
m

ap
pi

ng
w

it
h

G
PS

co
or

di
na

te
at

5
m

et
re

s
ab

ov
e

gr
ou

nd
le

ve
l.

64 CHAPTER 5. WEED MAPPING AND OFF-BOARD DECISION MAKING

Figure 5.5: Spear Thistle weeds before and a�er detection at 5 metres above
ground level.

Figure 5.6: Spear thistle weeds before and a�er detection at 15 metres above
ground level.

Figure 5.4 illustrates the stitching of imagery and mapping of the spear thistle weeds in

step 21 in Chapter 3 section 3.3. The blue dots represent the spear thistle weeds and the red

dots represent the GPS coordinates for the weeds as shown in Table 5.2.

5.6 Summary 65

Table 5.2: GPS latitude and longitude for detected weeds.

No Latitude Longitude
1 -28.205908014 153.0035909

2 -28.205909646 153.0035909

3 -28.205910226 153.0035910

4 -28.205910779 153.0035922

5 -28.205910503 153.0035896

6 -28.205910116 153.0035890

7 -28.205907765 153.0035884

8 -28.205915248 153.0035980

. . .

. . .

. . .

21 -28.205922498 153.0036027

22 -28.205922551 153.0036034

23 -28.205903546 153.0035949

24 -28.205935348 153.0036847

25 -28.20593876 153.0036410

.

5.6 Summary

This chapter described the application of the system architecture for data collection and o�-

board analysis and mapping discussed in Chapter 3, for the purpose of generating invasive

spear thistle weed maps. The task was complex due to the similarities in spectral properties

and general appearance of invasive spear thistle weeds and zoysia grass at two stages of

growth and with di�culties created by variability and changing conditions over time in a

natural environment. The algorithm developed for invasive spear thistle weed detection

is e�ective at identifying weeds. Results demonstrated that the system is capable of target

detection to 95% sensitivity and 98% selectivity at 5 m above ground level, 90% sensitivity and

94.5% selectivity at 7 m AGL and 80% sensitivity and 85% selectivity at 15 m AGL, with precise

GPS mapping. This, however, highly depends on seasonal variability, stages of growth and

camera resolution. A di�erent camera should be used to cover a large area in order to increase

the �ight height (e.g. to 30 or 60 metres). The GPS tabulated locations of weed detected and the

weed map provide useful information that can be used in decision-making systems to calculate

herbicide requirements and estimate the overall cost of weed management operations.

The next chapter will involve the application of on-board system architecture using vision

66 CHAPTER 5. WEED MAPPING AND OFF-BOARD DECISION MAKING

based navigation for onboard target detection (such as a marker, a colour or a target invasive

weed) and treatment such as spraying on the target or taking a high resolution image.

CHAPTER 6

Autonomous UAV with Vision Based
On-board Decision Making

6.1 Overview

The main objective of vision based navigation in robotics (ground or aerial robots) is to control

a robot to perform a prede�ned task using visual feedback [12, 13]. The technique applies

vision feedback extracted from the camera. Chapter 4 introduced the system architecture

design for the on-board system using an on-board microcomputer.

This chapter extends on that design and presents autonomous vision based on-board de-

cision making and action. The chapter is divided into three sections starting with a description

of detection and on-board decision making with the �owchart within OODA loop theory.

The second section presents results of �ight tests for the detection of ArUco Markers, colour

detection and invasive weed detection. The third section discusses the simulation results and

the actual �ight test results and a comparison between Root Mean Square Error (RMSE) for

the simulation and the actual �ight test.

6.2 Test Cases

Several �ight missions were considered. The �ight mission can be modi�ed through the

navigation node by adding or deleting waypoints. The mission for this test was taken to

�y between three points: Home, A and B. The microcomputer is connected to the ground-

station through a WiFi network in order to send commands through the ROS environment

as shown in Figure 4.19. The image processing method is programmed to process a captured

frame in order to search for a target of interest. When the target is detected, the UAV will �y to

new location and hover above the target at a preset altitude of 45 cm and do an action such as

spraying the target with pesticide. The UAV will subsequently climb back to the planned �ight

67

68 CHAPTER 6. AUTONOMOUS UAV WITH VISION BASED ON-BOARD DECISION MAKING

height and �y back to Home and land. Three di�erent cases were considered to demonstrate

and validate the on-board decision making system: Arco Markers, colour detection and weed

detection and spraying.

6.2.1 ArUco Markers

An ArUco marker is a synthetic square marker composed of a wide black border and an

inner binary matrix which makes up its identi�er. The on-board camera detects the ‘’ArUco”

markers arranged in a square pattern as shown in Figure 6.1 and transmits their position

to the Pixhawk through the navigation node. The camera is connected to the Odroid U3
+

,

which runs a ROS node designed to search for the marker while the UAV is �ying and also

calculate the marker position and send it in metres to the Pixhawk as local position (x, y)

[82] through the navigation node. This type of marker is supported by the OpenCV library

[83]. The ROS node for marker detection can be found in Appendix B.4. The pseudo code for

position estimation needed for the vision based navigation is as follows:

Algorithm 6.1 Pseudo code to �nd ArUco Marker.

1. Find square shapes in the image that has a feature to be markers.

2. Analyse the inner codi�cation and show the axes (x,y and z).

3. Send the target location in metres to the navigation node in order to send the UAV to the
desired target.

Figure 6.1: ArUco Marker.

6.2 Test Cases 69

ArUco markers are implemented in the �rst test to ensure the vision based control is

working without any issues. The bene�ts of using the ArUco marker is that the ROS messages

(geometry_msgs.msg /PoseStamp) are sent directly to the navigation node in metres so that is

no need to rotation matrix node. Figure 6.2 shows the UAV hovering above the target at

a preset �ight height of 45 cm and detecting the target. The ArUco marker detection and

navigation was conducted 10 times. The test produced on-board detection results with 99%

sensitivity and 100% selectivity.

Figure 6.2: A: The marker target is detected. B: Detecting target. C: Hovering
above the target a�er detection.

6.2.2 Colour Detection

A ROS node for red colour detection was implemented and run on-board the UAV with the

help of the on-board computer (Odroid U3
+

). The position and orientation of the target are

70 CHAPTER 6. AUTONOMOUS UAV WITH VISION BASED ON-BOARD DECISION MAKING

provided through rosbag recording data. The algorithm uses image processing using the

OpenCV library to scan for the colour red [84]. The camera node publishes image frames

through the CV Bridge in ROS [85]. Figure 6.3 illustrates how the images are passed using

OpenCV.cvBrridge in the ROS library to provide an interface between ROS and OpenCV. A

combination of HSV colour and circle detection were also used to consistently search for red

circular object to verify the vision based navigation. The pseudo code for position estimation

needed for the vision based navigation is as follows:

Algorithm 6.2 Pseudo code for colour detection.

1. Split each image into R,G,B channels and then convert these to H, S, V channels.

2. Threshold the HSV image and keep only the red pixels.

3. Normalise each channel and convert to greyscale images.

4. Use the Hough transform to detect red circles in the threshold image.

5. Find the image feature representation of the centre using the image centre and focal length.

6. Send the image feature in pixels to the transfer node in order to convert from pixels to
metres.

7. Send the target location in metres to the rotation matrix node to orient the UAV body frame
in same direction as the world frame.

8. Send the target location from the rotation matrix node to the navigation node to direct the
UAV to the desired target.

An outline of the colour detection node can be found in Appendix B.5.

The test for on-board decision making for colour detection was conducted eight times.

Results shows that the UAV �ew from home towards point A and then towards B. While

moving towards B the UAV detects the target colour and descends and hovers 45 cm above

the red circle. Figure 6.4 A and 6.4B shows the UAV is detecting the red circle, and Figure 6.4C

shows the UAV hovering above the target and spraying it for 3 seconds. The test provides on-

board detection and action results with 96% sensitivity and 99% selectivity.

6.2 Test Cases 71

Figure 6.3: Open-CV Bridge to pass the images in ROS.

Figure 6.4: A: Colour target is detected. B: Detecting target. C: Hovering above
the target at 45 cm.

72 CHAPTER 6. AUTONOMOUS UAV WITH VISION BASED ON-BOARD DECISION MAKING

6.2.3 Weed Detection and Spraying

The weed mapping and o�-board decision making system discussed in Chapter 4 mainly

focuses on the Observation and Orientation aspects of the OODA loop. The Decision and

Action aspects of the OODA loop for weed detection are applied in this section. The control

system for on-board decision making was presented in Figure 4.15 and the weed detection

method described in Chapter 3. Figure 6.5 shows the results for the mission; Figure 6.5A

shows the UAV above the weed when the weed is detected; Figure 6.5B shows the weed

detection and Figure 6.5C shows the UAV hovering above the weed at 45 cm and spraying on

the target. The test was conducted four times and its based on the sensitivity and selectivity

of the algorithm. The sensitivity is the ability of the algorithm to identify and detect the

true positive target while the selectivity is the capability of the algorithm to �lter out the

false negatives for detection targets. Furthermore, the system utilises false positive rates

and false negative rates to achieve accurate results. False positives are when a classi�cation

indicates presence, however the weeds are absent, and false negatives are the point at which a

classi�cation demonstrates the weeds are absent, but are truly present. The system is capable

of detecting the invasive weed to 33% sensitivity and 67% selectivity. The low sensitivity and

selectivity for weed detection is mainly due to the limitations in the algorithm which are

related to several reasons such as di�erent soil types, topography and amonut of background

vegetation and the sun angle and the season in which the test is performed and thus the

growth stage of the weed. Furthermore, the error in the sensitivity and selectivity will also

occur based on the camera settings including the ISO and the exposure. The existing method

can be modi�ed to ensure the weed can be detected accurately at di�erent times of the day

and at di�erent stages of growth by using other methods such as machine learning based on

extensive data collection to train the algorithm for more precise weed detection. The link

below shows the �ight tests.

https://www.youtube.com/watch?v=P8YH9cllrcE

6.3 Simulation and Actual Flight Test Results and Analysis 73

Figure 6.5: A: weed target is detected. B: Detecting target. C: Hovering and
spraying on the target.

6.3 Simulation and Actual Flight Test Results and Analysis

Numerical experiments were simulated in the proposed model to verify the performance of

the vision based navigation for on-board decision making. After recording the �ight test data

(as baglogs �les) from the simulation test and the actual �ight test, the MATLAB program is

used to draw the �ight path in order to compare them and analyse the data from the simulation

and the actual �ight test.

Figure 6.6 shows the results for the navigation system (no weed detection or action). The

results shows the ability of the UAV to track the reference trajectory in relatively high winds

(15 km/hour = 8 knots). The quad-copter �ight path starts from the initial position (0,0) home

and progresses to waypoint A (5,2) then to waypoint B (-5,2) in the (Jmavsim) simulation

�ight test.

74 CHAPTER 6. AUTONOMOUS UAV WITH VISION BASED ON-BOARD DECISION MAKING

(A)

(B)

Figure 6.6: Simulation and actual flight test navigation verification, A: Simu-
lation and actual flight trajectory, B: Top view for simulation and
actual flight trajectory.

Figure 6.7 shows vision based navigation results for onboard decision making. Once the

target is detected the control transforms image feature (pixels) to the target location in metres

and directs the UAV to �y to that new location. The �ight test results presented in (Figure

6.7) con�rm the previous description about the on-board system for decision making using

the concept of OODA loop. The MATLAB code for drawing the �ight trajectory can be found

in Appendix B.11.

6.3 Simulation and Actual Flight Test Results and Analysis 75

(A)

(B)

Figure 6.7: A: Actual flight trajectory with on-board decision making, B: Top
view for actual flight trajectory.

76 CHAPTER 6. AUTONOMOUS UAV WITH VISION BASED ON-BOARD DECISION MAKING

6.4 Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is used to measure the di�erences between the sample values

and the population values predicted by a model or an estimator of the actual values. The

RMSE represents the sample standard of the di�erences between the predicted values and

observed values. The following equations were used to calculate the RMSE for the actual and

the simulation �ight test. The calculation for RMSE was applied for the x, y and z axes.

RMS_x=

√
1
N ∗ (x− x∗) (1)where x is the variable value, x∗ is the reference point

and N is the number of the points.

RMS_y=

√
1
N ∗ (y − y∗)(2)..........where y is the variable value, y∗ is the reference point

and N is the number of the points.

RMS_z=

√
1
N ∗ (z − z∗)(3)..........where z is the variable value, z∗ is the reference point

and N is the number of the points.

Table 6.1: RMSE for simulation flight and actual flight in metres.

RMS Simulation Flight Test (m) Actual Flight Test (m)
RMS_x 0.0818 0.4481

RMS_y 0.0796 0.1571

RMS_z 0.0646 0.3404

RMS_Euclidean distance 0.13115 0.5842

Table 6.1 shows the RMSE for the simulation and the actual test �ight. The RMSE for the

actual test �ight is, however, di�erent to the the RMSE for the simulation and that is due to

the weather for the outdoor �ight test where the wind speed was 15 km/hour (8 knots). It

is also much harder to control the light conditions in real world. The RMSE for the actual

�ight test overall is 58 cm which is small enough to perform the on-board decision making

and action.

6.5 Summary

This chapter described the application of the system architecture for on-board vision based

navigation and decision making and action. The feedback from the image features enabled the

quad-rotor 3D IRIS to move to a desired position based on the OODA loop concept for feedback

6.5 Summary 77

control. The vision based navigation system and on-board decision making were illustrated

in three types of tests: ArUco Marker detection, colour detection and weed detection. Results

demonstrated that the system is capable of detecting ArUco Markers to 99% sensitivity and

100% selectivity at 5 m above the ground level. The system is also capable of detecting a

red target to 96% sensitivity and 99% selectivity at the same height during a test �ight at 5

metres. The real time on-board detection and action algorithm for invasive weed needs to be

improved to achieve better sensitivity and selectivity. The system is capable of detecting the

invasive weed to 33% sensitivity and 67% selectivity. This low sensitivity and selectivity for

weed detection is mainly due to the limitations in the algorithm in relation to the sun angle

and the season in which the test is performed and thus the growth stage of the weed.

This chapter also discussed the RMSE values for the �ight simulation and the actual �ight.

The RMSE for the actual �ight test is, however, signi�cantly di�erent to that of the simulation.

The main reason for this is that the wind speed during the �ight test was 15 km/hour (8 knots).

The RMSE for actual �ight test is nonetheless only 58 cm which is not problematic for on-

board decision making and action.

The next chapter will present the conclusion of the research and further future develop-

ment as well as the limitations of this research and some considerations for future work.

CHAPTER 7

Conclusions

7.1 Research Summary

The full commercial potential of using UAVs for remote sensing in agricultural applications

is yet to be realised. In precision agriculture, for example, UAVs can be developed to assist in

several functions including weed detection, early detection of disease outbreaks and on-board

decision making. Autonomous on-board detection and action will target the speci�c location

of the weed or pest for pesticide application instead of applying it on the whole �eld.

The aim of this research was to develop and �ight test o�-board and on-board systems

for precision agriculture using a multi-rotor UAV. The on-board system includes: a UAV, a

microcomputer with advanced processing interfaced with a RGB camera and a GPS with an

OODA loop framework approach for on-board decision making using computer vision. The

system can be used in the �eld of precision agriculture in order to access the plant health and

take necessary action such as spraying pesticide. Firstly, a literature review was conducted

on the application of UAVs in remote sensing and precision agriculture based on sensor type

and operational e�ciency. Secondly, a system architecture design was presented for both o�-

board and on-board vision based navigation for on-board decision making using computer-

vision based context. Thirdly, a weed detection and mapping using the o�-board system was

described and tested. An UAV with a digital camera was used to capture images of a grass

�eld to generate a map of invasive spear thistle weed in the �eld. The task was complex due

to di�culty in di�erentiating highly correlated invasive spear thistle weeds and zoysia grass

in their spectral properties and general appearance at two stages of growth and the additional

di�culties due to seasonal variability and sun angle. The algorithm developed for invasive

spear thistle weed detection was found to be e�ective in identifying weeds and mapping the

GPS location for each weed. Lastly, a method for target detection and action using the vision

based navigation and on-board decision making was presented based on a set of feature points

79

80 CHAPTER 7. CONCLUSIONS

on the object to be detected. The feedback of the image features enables the UAV to move to

the desired position based on the OODA loop concept.

This work is an active �eld of interest for on-board decision making with the frame-

work of the OODA loop. A number of additional inputs were also made in the investigation,

development and implementation of each of the system components.

7.2 Addressing Research �estion

This section elaborates how the investigation addresses the research questions and objectives.

Research Question 1: What are the current limitations of image analysis and classi�cation

methods and vision based navigation with electro-optical sensors for on-board decision

making?

To answer this research question, several activities and �ight tests were undertaken. To

achieve on-board decision making using vision based navigation with the concept based on

the OODA loop framework, a system architecture was developed (hardware and software)

and tested in a real environment at Christmas Creek, Beaudesert in Queensland Australia

(see Chapter 3, Chapter 4). The task was divided into two stages.

Data collection and o�-board analysis and mapping were conducted in the �rst stage. The

weed detection algorithm for the purpose of generating invasive spear thistle weed maps

demonstrated that the o�-board system is capable of target detection to 95% sensitivity and

98% selectivity at 5 m above the ground, 90% sensitivity and 94.5% selectivity at 7 m above

the ground and 80% sensitivity and 85% selectivity at 15 m above the ground with precise

GPS mapping. This is, however, highly dependent upon season variability and stages of plant

growth and camera resolution (see Chapter 5).

The task in the second stage involved on-board �ight tests for vision based navigation and

testing it for three di�erent types of targets (see Chapter 6). The results showed that the on-

board system using the ROS operation system is capable of object detection and of closing the

OODA loop. Results demonstrated that the on-board system is capable of detecting ArUco

Markers to 99% sensitivity and 100% selectivity at 5 m above the ground and of detecting red

colour targets to 96% sensitivity and 99% selectivity at the same height. But the real time

on-board detection and action algorithm for invasive weed needs to be improved to achieve

7.3 Considerations and Future Work 81

better sensitivity and selectivity. The system is capable of detecting the invasive weed to

33% sensitivity and 67% selectivity. This low sensitivity and selectivity for weed detection is

mainly due to the limitations in the algorithm, in particular in relation to the sun angle and the

seasonal variabilities in the weed. The evaluation of features for leaf classi�cation presents a

big challenge and achieving 100% accuracy using computer vision is extremely di�cult in a

real environment.

Research Question 2: What are the challenges in the practical applications of the o�-board

and on-board systems in the context of precision agriculture and plant biosecurity

where vegetation characteristics, such as texture, colour and shape pose signi�cant

challenges for existing image classi�cation algorithms?

To assess performance, the o�-board and on-board systems were applied in the context of

precision agriculture in two stages. The �rst stage consisted of developing and testing the

o�-board system by collecting the data and running the algorithm for detecting and mapping

the invasive weed (see section 3.3 and Chapter 3). The main challenges were the di�culty in

di�erentiating highly correlated invasive spear thistle weeds and zoysia grass in their spectral

properties and general appearance at two stages of growth and the di�culties due to seasonal

variability and sun angle.

The second stage was to develop and �ight test the invasive weed detection method on-

board the UAV using vision based navigation (see section 4.3.5, Chapter 4). The main chal-

lenges here were due to the software speed and processing complexity including applying

the weed algorithm on-board with near real time image processing and also the selection and

development of the hardware components of the on-board system given the limited payload

weight capabilty of the UAV.

7.3 Considerations and Future Work

There are a few items that should be considered when applying the on-board system with

the concept of vision based navigation for on-board decision making in precision agriculture

applications.

• The communication between the ground station and the on-board system uses WiFi

and this limits the UAV to remain within 400 m from GCS.

82 CHAPTER 7. CONCLUSIONS

• The ultrasonic sensor was programmed to hold the UAV at a height of 45 cm while

it performs an action (e.g. spraying on the target). To have more control for the

UAV, the ultrasonic sensor should be connected directly to the autopilot; however, the

functionality of the ultrasonic sensor (HC-SR04) is limited (see A.2). Therefore, the

existing ultrasonic sensor would be replaced with another sensor for more functionality

in order to control the actual height.

• Another issue for large RMSE error and the di�culties in tracking are due to on-board

sensor error also contribute to the sensitivity and selectivity. Future work could focus

on evaluating GPS and on-board uncertainties or installing a more precise RTK GPS

system.

• The weed detection method is based on speci�c characteristics of the weed, which can

be a�ected by several factors such as soil types, topography and amount of background

vegetation and the sun angle and seasonal variability. Furthermore, the error in the al-

gorithm will also occur based on the camera settings including the ISO and the exposure.

The existing method can be modi�ed to ensure the weed can be detected accurately at

di�erent times of the day and at di�erent stages of growth. Suggestions to improve the

detection method include:

1. Using micro multispectral or micro hyperspectral camera spectral bands of near in-

frared ranges to detect weed.

2. Using machine learning methods based on extensive data collection to train the al-

gorithm for more precise weed detection.

APPENDIX A

Hardware specifications

A.1 The table below shows the Raspberry Pi 2B microcom-

puter specifications.

Table A.1: Raspberry Pi 2B specifications.

Raspberry Pi 2 Speci�cations
SoC Broadcom BCM2836 (CPU, GPU, DSP, SDRAM, and single USB port)

CPU 900 MHz quad-core ARM Cortex A7 (ARMv7 instruction set)

GPU Broadcom VideoCore IV @ 250 MHz

OpenGL ES 2.0 (24 GFLOPS)

1080p30 MPEG-2 and VC-1 decoder (with license)

1080p30 h.264/MPEG-4 AVC high-pro�le decoder and encoder

Memory 1 GB (shared with GPU)

USB ports 4

Video input 15-pin MIPI camera interface (CSI) connector

Video outputs HDMI, composite video (PAL and NTSC) via 3.5 mm jack

Audio inputs I2S

Audio outputs Analog via 3.5 mm jack; digital via HDMI and I2S

Storage MicroSD

Network 10/100 Mbit/s Ethernet

Peripherals 17 GPIO plus speci�c functions, and HAT ID bus

Weight of 45 grams

83

84 APPENDIX A. HARDWARE SPECIFICATIONS

A.2 The table below shows the HC-SR04 Ultrasonic Sensor spe-

cifications.

Table A.2: HC-SR04 Ultrasonic specifications.

HC-SR04 Ultrasonic Speci�cations
Working Voltage: DC 5 V

Working Current: 15 mA

Working Frequency: 40 Hz

Max Range: 4 m

Min Range: 2 cm

Measuring Angle: 15 degree

Trigger Input Signal: 10 µS TTL pulse

Echo Output Signal Input TTL lever signal and the range in proportion

Dimension 45 * 20 * 15 mm

A.3 The table below shows the HD Webcam Logitech C270 spe-

cifications.

Table A.3: HD Webcam Logitech C270 specifications.

HDWebcam Logitech C270 Speci�cations
Connection Type: Corded USB

USB Type: High Speed USB 2.0

USB VID_PID: VID_046D&PID_081A

Microphone: Built-in, Noise Supression

Lens and Sensor Type: Plastic

Focus Type: Fixed

Field of View (FOV): 60°

Focal Length: 4.0 mm

Optical Resolution (True): 1280 x 960 1.2 MP

Image Capture (4:3 SD): 320x240, 640x480 1.2 MP, 3.0 MP

Image Capture (16:9 W): 360p, 480p, 720p

Video Capture (4:3 SD): 320x240, 640x480, 800x600

Video Capture (16:9 W): 360p, 480p, 720p,

Frame Rate (max): 30fps @ 640x480

Right Light: Right Light 2

Indicator Lights (LED): Activity/Power

Privacy Shade: No

Clip Size (max): 0 to in�nity

Cable Length 5 Feet or 1.5 Metres

A.4 The table below shows the ODROID-U3
+

speci�cations. 85

A.4 The table below shows the ODROID-U3+ specifications.

Table A.4: ODROID-U3+ specifications.

ODROID-U3+ speci�cations
5V 2A Power

1.7GHz Quad-Core processor and 2GByte RAM

10/100Mbps Ethernet with RJ-45 LAN Jack

3 x High speed USB2.0 Host ports

Audio codec with headphone jack on board

GPIO/UART/I2C ports

XUbuntu 13.10 or Android 4.x Operating System

Size : 83 x 48 mm, Weight : 48g including heat sink

Package includes the main board and the heat sink

APPENDIX B

So�ware algorithms

The following are the algorithms and the codes that used in this research.

• Matlab code for invasive weed detection and mapping.

• Python code for the on-board decision making using Raspberry Pi 2B.

• The ROS nodes for the system is attached as follow:

1. Lunch �le for the system using Odroid U3.

2. Marker detection node.

3. Colour detection node.

4. weed detection node.

5. Transfer pixels to local position node.

6. Ultrasonic node.

7. Navigation node.

• Arduino code for controlling the Ultrasonic (HC-SR04) and the spraying pump.

• Matlab Code for drawing �ight trajectory.

...

..

.

.

.

.

87

88 APPENDIX B. SOFTWARE ALGORITHMS

..

.

.

.

.

.

..

.

.

B.1 .Matlab code for invasive weed detection and mapping.

.

Algorithm B.1 Matlab code for invasive weed detection and mapping.

function varargout = Test_GUI_v1(varargin)

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @Test_GUI_v1_OpeningFcn, ...

 'gui_OutputFcn', @Test_GUI_v1_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Test_GUI_v1 is made visible.

function Test_GUI_v1_OpeningFcn(hObject, eventdata, handles, varargin)

%

% Choose default command line output for Test_GUI_v1

handles.output = hObject;

%

guidata(hObject, handles);

% UIWAIT makes Test_GUI_v1 wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = Test_GUI_v1_OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global Lat;

global Lon;

global FOV; % Horizontal field of view via https://www.raspberrypi.

org/documentation/hardware/camera.md

FOV = 53.5;

global Width;

global Height;

[FileName,PathName] = uigetfile('*.jpg','Select Image');

file = strcat(PathName,FileName);

MATLAB code for weed detection and Mapping

89

image=imread(file);

redBand = image(:,:, 1);

greenBand =image(:,:, 2);

blueBand = image(:,:, 3);

redthreshold = 68;

greenThreshold = 72;

blueThreshold = 74;

redMask = (redBand > redthreshold);

greenMask = (greenBand < greenThreshold);

blueMask = (blueBand < blueThreshold);

redObjectsMask = uint16(redMask & greenMask & blueMask);

% imshow(redObjectsMask,[])

Ifill=imfill(redObjectsMask,'holes');

[Ilabel num]=bwlabel(Ifill);

Iprops=regionprops(Ilabel);

 Ibox=[Iprops.BoundingBox];

 Ibox=reshape(Ibox,[4 num]);

 axes(handles.axes1)

finalImage = image;

imageHandle = imshow(finalImage);

hold on

 for cnt=1:num

 rectangle('position',Ibox(:,cnt),'edgecolor','b','linewidth',1);

 end

hold off

[n m p] = size(image);

density =(100*num/(n*m))*100;

set(findobj('Tag','edit4'),'String',[num2str(density,'%.20f')])

F = getframe(handles.axes1);

finalImage = frame2im(F);

imageHandle = imshow(finalImage);

imagedetails= imfinfo(file);

i = exist('imagedetails.GPSInfo');

if (i ~= 0)

 Lat_Deg = imagedetails.GPSInfo.GPSLatitude;

 Lon_Deg = imagedetails.GPSInfo.GPSLongitude;

 Lat = Lat_Deg(1) + (Lat_Deg(2)/60) + (Lat_Deg(3)/3600);

 Lon = Lon_Deg(1) + (Lon_Deg(2)/60) + (Lon_Deg(3)/3600);

else

 Lat = -28.2058929;

 Lon = 153.0036092;

end

Width = imagedetails.Width;

Height = imagedetails.Height;

set(imageHandle,'ButtonDownFcn',@ImageClickCallback);

global PointCount;

PointCount = 0;

global La;

90

global Lo;

La = zeros(4,1);

Lo = zeros(4,1);

global Xpts;

global Ypts;

Xpts=zeros(17,1);

Ypts=zeros(17,1);

function edit1_Callback(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.

function edit1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function edit2_Callback(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.

function edit2_CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

close all

function ImageClickCallback (objectHandle , eventData)

axesHandle = get(objectHandle,'Parent');

coordinates = get(axesHandle,'CurrentPoint');

coordinates = coordinates(1,1:2);

global FOV;

global Width;

91

global Height;

UASHeight = 5;

 %set(findobj('Tag','edit1'),'String',[num2str(coordinates(1))]) % updating X

coordinate in the static text box

 %set(findobj('Tag','edit2'),'String',[num2str(coordinates(2))]) % updating Y

coordinate in the static text box

% valx = coordinates(1)*((1.3*10^-3)/4)*5;%/3.7796;

% valy = coordinates(2)*((1.3*10^-3)/4)*5;%/3.7796;

 pixLength = (tand(FOV/2)* UASHeight)/(Width/2);

 valx = coordinates(1)* pixLength;

 valy = coordinates(2)* pixLength;

 double Lat;double Lon ;

 global Lat;

 global Lon;

 %Lat = -28.204531;

 %Lon = 153.003782;

 [x,y,utmzone] = deg2utm(Lat,Lon);

 if (coordinates(1) < 1296 && coordinates(2) < 972)

 xx = x - valx;

 yy = y - valy;

 elseif (coordinates(1) < 1296)

 xx = x - valx;

 yy = y + valy;

 elseif (coordinates(2) < 972)

 xx = x + valx;

 yy = y - valy;

 else

 xx = x + valx;

 yy = y + valy;

 end

 format long

 xx;

 format long

 yy;

 global PointCount;

 PointCount = PointCount + 1;

 if PointCount > 17

 PointCount = 0;

 end

 [Latf,Lonf] = utm2deg(xx,yy,utmzone);

 format long

 Latf;

 format long

 Lonf;

 set(findobj('Tag','edit1'),'String',[num2str(Latf,'%.20f')]) % updating X coordinate

in the static text box

 set(findobj('Tag','edit2'),'String',[num2str(Lonf,'%.20f')])

 index = mod(PointCount,10);

 if (index== 0)

 index=10;

 PointCount = 0;

 end

 global La;

92

 global Lo;

 global Xpts;

 global Ypts;

 Xpts(index) = coordinates(1);

 Ypts(index) = coordinates(2);

 La(index) = Latf;

 Lo(index) = Lonf;

 Values = [La,Lo];

 set(findobj('Tag','uitable1'), 'Data',Values);

 hold on

 scatter(Xpts,Ypts,'filled','red')

 hold off

% --- Executes on button press in btnLoadFL.

function btnLoadFL_Callback(hObject, eventdata, handles)

% hObject handle to btnLoadFL (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[FileName,PathName] = uigetfile('*.mat','Select Flight Log');

file = strcat(PathName,FileName);

test = load(file);

lat_test=test.GPS(:,7);

lon_test=test.GPS(:,8);

DateTime =test.GPS(:,3);

for i=1:length(DateTime)

 value = MStoLT(DateTime(i));

 Time(i,1:3)=value(:,4:6);

end

function edit4_Callback(hObject, eventdata, handles)

% hObject handle to edit4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

function edit4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

93

94 APPENDIX B. SOFTWARE ALGORITHMS

..

.

.

.

.

..

.

.

.

.

.

..

.

B.2 Python code for the on-board decision making using Rasp-

berry Pi 2B.

.

Algorithm B.2 Python Code for On-board decision making Using Raspberry Pi 2B.

import time
from droneapi.lib import VehicleMode, Location
from pymavlink import mavutil
import cv2
import re
import numpy as np
import math
import argparse
import RPi.GPIO as GPIO
from time import sleep

api = local_connect()
vehicle = api.get_vehicles()[0]

def arm_and_takeoff(aTargetAltitude):
"""

 Arms vehicle and fly to aTargetAltitude.
 """

print "Basic pre-arm checks"
Don't let the user try to fly autopilot is booting
if vehicle.mode.name == "INITIALISING":

print "Waiting for vehicle to initialise"
time.sleep(1)

while vehicle.gps_0.fix_type < 2:
print "Waiting for GPS...:", vehicle.gps_0.fix_type
time.sleep(1)

print "Arming motors"
Copter should arm in GUIDED mode
vehicle.mode = VehicleMode("GUIDED")
vehicle.armed = True
vehicle.flush()

while not vehicle.armed and not api.exit:
print " Waiting for arming..."
time.sleep(1)

print "Taking off!"
vehicle.commands.takeoff(aTargetAltitude) # Take off to target altitude
vehicle.flush()

Wait until the vehicle reaches a safe height before processing the goto (otherwise the
command
after Vehicle.commands.takeoff will execute immediately).
while not api.exit:

print " Altitude: ", vehicle.location.alt
if vehicle.location.alt>=aTargetAltitude*0.95: #Just below target, in case of
undershoot.

print "Reached target altitude"
break;

time.sleep(1)

def set_speed(speed):
#Send MAV_CMD_DO_CHANGE_SPEED to change the current speed when travelling to a point.
create the MAV_CMD_DO_CHANGE_SPEED command
msg = vehicle.message_factory.command_long_encode(

0, 0, # target system, target component
mavutil.mavlink.MAV_CMD_DO_CHANGE_SPEED, #command
0, #confirmation
0, #param 1
speed, # speed
0, 0, 0, 0, 0 #param 3 - 7
)

send command to vehicle
vehicle.send_mavlink(msg)
vehicle.flush()

95

def motor(sec):
GPIO.setmode(GPIO.BOARD)
GPIO.setup(40,GPIO.OUT)
GPIO.output(40,True)
print("The motor is ON")
time.sleep(sec)
GPIO.output(40,False)
print("The motor is OFF")

def Ult(sec):
GPIO.setmode(GPIO.BCM)

TRIG = 23
ECHO = 24

print "Distance Measurement In Progress"

GPIO.setup(TRIG,GPIO.OUT)
GPIO.setup(ECHO,GPIO.IN)

GPIO.output(TRIG, False)
print "Waiting For Sensor To Settle"
time.sleep(sec)

GPIO.output(TRIG, True)
time.sleep(0.00001)
GPIO.output(TRIG, False)

while GPIO.input(ECHO)==0:
pulse_start = time.time()

while GPIO.input(ECHO)==1:
pulse_end = time.time()

pulse_duration = pulse_end - pulse_start

distance = pulse_duration * 17150

distance = round(distance, 2)
print '\n'
print "Distance:",distance,"cm"
return distance

def heading(IRIS_Lat,IRIS_Lon,Target_Lat,Target_Lon,xLo1,yLo1):

IRIS_Lat=abs(IRIS_Lat);
Target_Lat=abs(Target_Lat);

Delta_Lat=abs(Target_Lat)-abs(IRIS_Lat);
Delta_Lon=abs(Target_Lon)-abs(IRIS_Lon);
Lat=Delta_Lat/132.936
Lon=Delta_Lon/132.936
if IRIS_Lat > Target_Lat and IRIS_Lon < Target_Lon:

print('1 coordination')
target_lat=-(IRIS_Lat-Lat*xLo1)
print target_lat
target_lon=IRIS_Lon-Lon*yLo1
print target_lon
return target_lat, target_lon

elif IRIS_Lat > Target_Lat and IRIS_Lon > Target_Lon:
print('2 coordination')
target_lat=-(IRIS_Lat-Lat*xLo1)
target_lon=IRIS_Lon-Lon*yLo1
return target_lat, target_lon

96

elif IRIS_Lat < Target_Lat and IRIS_Lon > Target_Lon:
print('3 coordination')
target_lat=-(IRIS_Lat+Lat*xLo1)
target_lon=IRIS_Lon-Lon*yLo1
return target_lat, target_lon

elif IRIS_Lat < Target_Lat and IRIS_Lon < Target_Lon:
print('4 coordination')
target_lat=-(IRIS_Lat+Lat*xLo1)
target_lon=IRIS_Lon+Lon*yLo1
return target_lat, target_lon

elif IRIS_Lat > Target_Lat and IRIS_Lon == Target_Lon:
print('N')
target_lat=-(IRIS_Lat-Lat*xLo1)
target_lon=IRIS_Lon
return target_lat, target_lon

elif IRIS_Lat < Target_Lat and IRIS_Lon == Target_Lon:
print('S')
target_lat=-(IRIS_Lat+Lat*xLo1)
target_lon=IRIS_Lon
return target_lat, target_lon

elif IRIS_Lat == Target_Lat and IRIS_Lon < Target_Lon:
print('E')
target_lat=-IRIS_Lat
target_lon=IRIS_Lon+Lon*yLo1
return target_lat, target_lon

elif IRIS_Lat == Target_Lat and IRIS_Lon > Target_Lon:
print('W')
target_lat=-IRIS_Lat
target_lon=IRIS_Lon-Lon*yLo1
return target_lat, target_lon

else:
print('It has not been move')
target_lat=-IRIS_Lat
target_lon=IRIS_Lon
return target_lat, target_lon

a='Location:lat=-27.4564486,lon=153.0122028,alt=0.77,is_relative=True'
print " Location: %s" % vehicle.location
lat=re.search('lat=(.*?),lon',a).group(1)
lon=re.search('lon=(.*?),alt',a).group(1)

Past_lat=float(lat)
Past_lon=float(lon)

print "UAVs Past %s" %a

print "initial position %s" % vehicle.location
time.sleep(1)

camera = cv2.VideoCapture(0)

def precheck():
find contours in the image
ret, frame = camera.read()
determine which pixels fall within the weed(in this case) boundaries
and then blur the binary image

b,g,r = cv2.split(frame)

g_mask = np.copy(g)

97

g_mask[g > 70] = 255
g_mask[g <= 70] = 0

r_mask = np.copy(r)
r_mask[r < 68] = 255
r_mask[r >= 68] = 0

b_mask = np.copy(b)
b_mask[b < 72] = 255
b_mask[b >= 72] = 0

mask = g_mask & r_mask & b_mask

mask = cv2.medianBlur(mask,7)

kernel = np.ones((4,4),np.uint8)

mask = cv2.erode(mask,kernel)
mask = cv2.dilate(mask, kernel)

(cnts, _) = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

check to see if any contours were found
if len(cnts) > 0:

check=1
print(' an object has been detected ')
return check

else:
print(' no object has been detected ')
check=0
return check

capture frames from the camera
def detect():

print "Object detection loop start"
while True:

print 'Object detection loop operative'
Up-date Current gps location.

Past_lat=vehicle.location.lat
Past_lon=vehicle.location.lon

print "UAVs Past %s" %vehicle.location
time.sleep(0.025)

Object detection start from here.
grab the current frame
ret, frame = camera.read()
check to see if we have reached the end of the
video
if not ret:

break
b,g,r = cv2.split(frame)
g_mask = np.copy(g)
g_mask[g > 70] = 255
g_mask[g <= 70] = 0
r_mask = np.copy(r)
r_mask[r < 68] = 255
r_mask[r >= 68] = 0
b_mask = np.copy(b)
b_mask[b < 72] = 255
b_mask[b >= 72] = 0
mask = g_mask & r_mask & b_mask
mask = cv2.medianBlur(mask,7)
kernel = np.ones((4,4),np.uint8)
mask = cv2.erode(mask,kernel)
mask = cv2.dilate(mask, kernel)
find contours in the image

98

(cnts, _) = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

check to see if any contours were found
if len(cnts) > 0:

sort the contours and find the largest one -- we
will assume this contour correspondes to the area
of my phone

cnt = sorted(cnts, key = cv2.contourArea, reverse = True)[0]

compute the (rotated) bounding box around then
contour and then draw it
rect = np.int32(cv2.cv.BoxPoints(cv2.minAreaRect(cnt)))
xLo=(rect[0][1]+rect[2][1])/2
yLo=(rect[2][0]+rect[0][0])/2

cv2.imshow("Frame", frame)
cv2.imshow("Binary", mask)

Calculate a target location and angle
if yLo < 240:

yLo1=240-yLo
elif yLo > 240:

yLo1=-(240-yLo)
elif yLo == 240:

yLo1=0

if xLo < 320:
xLo1=-(320-xLo)

elif xLo > 320:
xLo1=640-xLo

elif xLo == 320:
xLo1=0

angle=math.atan2(yLo1,xLo1)*(180/math.pi)

if angle > 90:
angle1=90-angle

elif angle < 90:
angle_t=180-angle
angle1=-(90-angle_t)

location=[xLo1, yLo1]
Save the image

cv2.imwrite("Weed_Detect"".jpg",frame)
cv2.imwrite("weed_Binary"".jpg",mask)

Current GPS update
print 'Current GPS update syncronization'
a='Location:lat=-27.4564318,lon=153.0121937,alt=30,is_relative=True'
print " location: %s" % a
lat=re.search('lat=(.*?),lon',a).group(1)
lon=re.search('lon=(.*?),alt',a).group(1)

UAV_lat=float(lat)
UAV_lon=float(lon)

print "UAVs Current %s" %a

Find the target GPS location
[target_lat,target_lon]=heading(Past_lat,Past_lon,UAV_lat,UAV_lon,xLo1,yLo1)

print "pixels location"
print(xLo,yLo)
print "x-y coordinator=","[",xLo1, yLo1,"]"

99

#print(xLo1,yLo1)
#print " angle in degree "
#print(angle1)

return target_lat,target_lon, xLo1,yLo1,angle1

break
print 'Current GPS update syncronization'

UAV_lat=vehicle.location.lat #(check it later for flight test)#
UAV_lon=vehicle.location.lon

print "UAVs Current %s" %vehicle.location

Find the target GPS location
[target_lat,target_lon]=heading(Past_lat,Past_lon,UAV_lat,UAV_lon,xLo1,yLo1)
print 'Target Location found'
target_location=[target_lat,target_lon]
#print "pixels location"
#print(xLo,yLo)
print "x-y coordinator"
print(xLo1,yLo1)
#print " angle in degree "
#print(angle1)

return target_lat,target_lon,xLo1,yLo1,angle1

break

def weed(loop,alt,point):
for x in xrange (loop):

time.sleep(0.5)
print x

check=precheck()
print check
if check == 1:

[target_lat,target_lon,xLo1,yLo1,angle1]=detect()
print (" the target location has been found ")
print target_lat,target_lon
set_speed(1)
#find object and fly to target's location
target=Location(target_lat,target_lon, alt, is_relative=True)
vehicle.commands.goto(target)
vehicle.flush()

time.sleep(10)

point=point
print " return to the flight path "
vehicle.commands.goto(point)
vehicle.flush()
time.sleep(5)
break

elif x==loop-1:
print " no object has been found between point A and B "
break

##
arm_and_takeoff(5) # Altitude in meter.
##
time.sleep(2)
##
print (" set speed to 1m/s ")
set_speed(1)

100

print ("Going to first point A")
point1 = Location(-27.2334846, 152.9778489,5 , is_relative=True)
vehicle.commands.goto(point1)
vehicle.flush()
################
weed(60,2,point1) #loop, Altitude, location
distance = 0.0
distance = Ult(1)
if distance <= 50.0:

motor(3)
GPIO.cleanup()
else:

print '\n'
print "Compare the altitude of the Ultrasonic with MAVproxy altitude"
print '\n'

time.sleep(2)
##
print ("Set speed to 1m/s")
set_speed(1)
print "Going to point B"
point2 = Location(-27.2334339,152.9778474, 1, is_relative=True)
vehicle.commands.goto(point2)
vehicle.flush()
##################
weed(60,2,point1) #loop, Altitude, location
distance = 0.0
distance = Ult(1)
GPIO.cleanup()
if distance <= 50.0:

motor(3)
GPIO.cleanup()

else:
print '\n'
print "Compare the altitude of the Ultrasonic with MAVproxy altitude"
print '\n'

time.sleep(5)
###
print ("Set speed to 5m/s")
set_speed(1)
print "Going to Home"
home = Location(-27.2334339,152.9778474, 5, is_relative=True)
vehicle.commands.goto(home)
vehicle.flush()

print("mission completed LAND mode...")
vehicle.mode = VehicleMode("LAND")
vehicle.flush()

vehicle.flush()
camera.release()
print " Finish"

101

102 APPENDIX B. SOFTWARE ALGORITHMS

..

.

.

.

.

..

.

.

.

.

.

..

.

B.3 .The ROS nodes for the system is a�ached as follow:

B.3.1 .Lunch file for the system using Odroid U3.

.

Algorithm B.3 Robotic Operating System (ROS) System Lunch File.

.

launch file for the onboard system

<launch>
<!-- USB CAMERA -->
<node name="camera_rgb" pkg="usb_cam" type="usb_cam_node"

output="screen" >
<param name="video_device" value="/dev/video0" />
<param name="image_width" value="640" />
<param name="image_height" value="480" />
<param name="pixel_format" value="yuyv" />
<param name="framerate" value="10" />
<param name="camera_frame_id" value="camera_rgb" />
<param name="camera_name" value="camera_rgb" />
<param name="io_method" value="mmap"/>

</node>

<!-- MAVROS -->
<!-- vim: set ft=xml noet : -->
<!-- example launch script for PX4 based FCU's -->

<arg name="fcu_url" default="/dev/ttyUSB0:921600" />
<arg name="gcs_url" default="" />
<arg name="tgt_system" default="1" />
<arg name="tgt_component" default="1" />
<arg name="log_output" default="screen" />

<include file="$(find mavros)/launch/node.launch">
<arg name="pluginlists_yaml" value="$(find mavros)/launch/

px4_pluginlists.yaml" />
<arg name="config_yaml" value="$(find mavros)/launch/

px4_config.yaml" />

<arg name="fcu_url" value="$(arg fcu_url)" />
<arg name="gcs_url" value="$(arg gcs_url)" />
<arg name="tgt_system" value="$(arg tgt_system)" />
<arg name="tgt_component" value="$(arg tgt_component)" />
<arg name="log_output" value="$(arg log_output)" />

</include>

<!-- SPRAY NAV -->
<node name="spray_nav" pkg="spray_nav" type="spray_nav_node"

output="screen" >
<param name="height_takeoff" value="3.0" type="double" />
<param name="height_search" value="3.0" type="double" />
<param name="height_spray" value="0.6" type="double" />

<param name="waypoint_radius" value="0.2" type="double" />
<param name="vs_radius" value="0.1" type="double" />

103

<param name="fov_degrees" value="60" type="double" />
<param name="camera_width" value="640" type="double" />
<param name="camera_height" value="480" type="double" />

<param name="position_input" value="/mavros/local_position/
pose" type="str" />

<param name="vs_input" value="/target/pose" type="str" />
</node>

</launch>

104

B.3 .The ROS nodes for the system is attached as follow: 105

..

.

.

.

.

..

.

.

.

.

.

..

.

.

B.3.2 .Marker detection node.

.

Algorithm B.4 Robotic Operating System (ROS) Marker detection node.

<?xml

version="1.0"

encoding="utf-8"?>

<launch>
<node

pkg="ar_sys"

type="single_board"

name="ar_single_board"

output="screen">
<remap

from="/camera_info"

to="/camera_rgb/camera_info"

/>
<remap

from="/image"

to="/camera_rgb/image_raw"

/>

<param

name="image_is_rectified"

type="bool"

value="true"/>
<param

name="marker_size"

type="double"

value="0.13"/>
<param

name="board_config"

type="string"

value=
"$(find ar_sys)/data/single/board.yml"/>

<param

name="board_frame"

type="string"

value="/board1"

/>
<param

name="draw_markers"

type="bool"

value="false"

/>
<param

name="draw_markers_cube"

type="bool"

value="true"

/>
<param

name="draw_markers_axis"

type="bool"

value="false"

/>
</node>

</launch>

106

B.3 .The ROS nodes for the system is attached as follow: 107

..

.

.

.

.

..

.

.

.

.

.

..

.

.

B.3.3 .Colour detection node.

.

Algorithm B.5 Robotic Operating System (ROS) Colour detection node.

.

//Includes all the headers necessary to use the most common public pieces of the ROS system.
#include <ros/ros.h>
//Include geometry_msgs for publishing the estimated target pose
#include <geometry_msgs/PoseStamped.h>
//Use image_transport for publishing and subscribing to images in ROS
#include <image_transport/image_transport.h>
//Include some useful constants for image encoding.
#include <sensor_msgs/image_encodings.h>
//Use cv_bridge to convert between ROS and OpenCV Image formats
#include <cv_bridge/cv_bridge.h>
//Include headers for OpenCV Image processing
#include <opencv2/imgproc/imgproc.hpp>
//Include headers for OpenCV
#include <cv.h>
#include <math.h>
#include <std_msgs/Float64.h>

//Store all constants for image encodings in the enc namespace to be used later.
namespace enc = sensor_msgs::image_encodings;

//Global Variables
image_transport::Publisher debug_pub;
ros::Publisher pose_out;
double height_us = 0;

void us_cb(const std_msgs::Float64 msg) {
height_us = msg.data;

}

void colorDetectionCallback(const sensor_msgs::ImageConstPtr& original_image) {
//Convert from the ROS image message to a CvImage suitable for working with OpenCV for
processing
cv_bridge::CvImagePtr cv_ptr;

try {
//Always copy, returning a mutable CvImage
//OpenCV expects color images to use BGR channel order.
cv_ptr = cv_bridge::toCvCopy(original_image, enc::BGR8);

}
catch (cv_bridge::Exception& e) {

//if there is an error during conversion, display it
ROS_ERROR("tutorialROSOpenCV::main.cpp::cv_bridge exception: %s", e.what());
return;

}

//Noise filter
//NOTE: Probably don't need this as a Gaussian blur is applied later on
cv::medianBlur(cv_ptr->image, cv_ptr->image, 3);

//Convert original image to Gray
//NOTE: Not sure if this needs to actually be done...
//IplImage image = cv_ptr->image.operator IplImage(); //convert Mat to IplImage

//Start looking for circle
//Convert input image to hsv
cv::Mat img_hsv;
cv::cvtColor(cv_ptr->image,img_hsv,CV_BGR2HSV);

// Threshold the HSV image, keep only the red pixels
cv::Mat lower_red_hue_range;
cv::Mat upper_red_hue_range;
cv::inRange(img_hsv, cv::Scalar(0, 100, 100), cv::Scalar(5, 255, 255),
lower_red_hue_range);
cv::inRange(img_hsv, cv::Scalar(175, 100, 100), cv::Scalar(179, 255, 255),
upper_red_hue_range);

// Combine the above two images
cv::Mat red_hue_image;
cv::addWeighted(lower_red_hue_range, 1.0, upper_red_hue_range, 1.0, 0.0, red_hue_image);
cv::GaussianBlur(red_hue_image, red_hue_image, cv::Size(9, 9), 2, 2); // Reduce the

108

noise to avoid false circle detection

// Use the Hough transform to detect red circles in the combined threshold image
std::vector<cv::Vec3f> circles;
std::vector<cv::Point> found_centers;

//Decide how far away the circles should be from each other
int min_dist = red_hue_image.rows/8;

if(min_dist < 8)
min_dist = 8;

//Scan the red-filtered image for circles
cv::HoughCircles(red_hue_image, circles, CV_HOUGH_GRADIENT, 1, min_dist, 100, 20, 30,
150);

//If there was only 1 circle found in the image, publish that data
//NOTE: This is quite poor, all circles should be checked against a desired diameter or
something
if(circles.size() == 1) {

geometry_msgs::PoseStamped msg;

//double px_ratio = 0.00902;
//double px_ratio = 0.0054;
double px_ratio = height_us*tan(60/2)/320;

double cam_x = (cvRound(circles[0][0]) - 320)*px_ratio;
double cam_y = (cvRound(circles[0][1]) - 240)*px_ratio;

ROS_INFO("Target location in the camera frame is: [%0.2f, %0.2f", cam_x, cam_y);

msg.header.stamp = ros::Time::now();
msg.header.frame_id = "/camera";

msg.pose.position.x = cam_x;
msg.pose.position.y = cam_y;

pose_out.publish(msg);
}

//If there are subscribers, publish debug image
if(debug_pub.getNumSubscribers() > 0) {

for(int i = 0; i < circles.size(); i++) {
int radius = cvRound(circles[i][2]);

CvPoint red_center = {cvRound(circles[i][0]), cvRound(circles[i][1])};

// circle center
circle(cv_ptr->image, red_center, 3, cv::Scalar(255,0,0), -1, 8, 0);
// circle outline
circle(cv_ptr->image, red_center, radius, cv::Scalar(0,255,0), 3, 8, 0);

}

debug_pub.publish(cv_ptr->toImageMsg());
}

}

int main(int argc, char **argv)
{

//Initialize the original node
ros::init(argc, argv, "red_detection");

//Create the handles for both the node and image transport
ros::NodeHandle nh(ros::this_node::getName());
image_transport::ImageTransport it(nh);

//Initialize the default camera message
std::string camera_topic = "/camera/image_raw";

if (nh.getParam("image_input", camera_topic))
ROS_INFO("Connecting to camera: %s", camera_topic.c_str());

109

//Subscribers
image_transport::Subscriber sub = it.subscribe(camera_topic, 1, colorDetectionCallback);

ros::Subscriber us_sub = nh.subscribe<std_msgs::Float64>
("/us_distance", 10, us_cb);

//Publishers
debug_pub = it.advertise("image_processed", 1);
pose_out = nh.advertise<geometry_msgs::PoseStamped>("target_location", 100);

//Lock thread and listen to messages
ros::spin();

}

110

B.3 .The ROS nodes for the system is attached as follow: 111

..

.

.

.

.

..

.

.

.

.

.

..

.

.

B.3.4 weed detection node. .

.

Algorithm B.6 Robotic Operating System (ROS) Weed detection node.

#!/usr/bin/env python
import rospy
import sys
import cv2
import numpy
import numpy as np
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
from geometry_msgs.msg import PoseStamped

class image_converter():
def __init__(self):

self.pose_pub =
rospy.Publisher("/weed_detection/target_location",PoseStamped,queue_size=10)
self.debug_image_pub = rospy.Publisher("debug_image",Image,queue_size=1)
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber("/camera_rgb/image_raw",Image,self.callback)
self.debug_pub = 1;

def callback(self,data):
print "Analysing new image..."
try:

cv_image = self.bridge.imgmsg_to_cv2(data, "rgb8")
except CvBridgeError as e:

print(e)

r,g,b=cv2.split(cv_image)

g_mask = numpy.copy(g)
g_mask[g > 75] = 255
g_mask[g <= 75] = 0

r_mask = numpy.copy(r)
r_mask[r < 68] = 255
r_mask[r >= 68] = 0

b_mask = numpy.copy(b)
b_mask[b < 62] = 255
b_mask[b >= 62] = 0

mask = g_mask & r_mask & b_mask

mask = cv2.medianBlur(mask,7)

kernel = numpy.ones((4,4),numpy.uint8)

mask = cv2.erode(mask,kernel)
Col = cv2.dilate(mask, kernel)

Col= cv2.GaussianBlur(Col, (3,3),0)

find contours
(cnts, _) = cv2.findContours(Col.copy() , cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

if self.debug_pub:
cv2.drawContours(cv_image, cnts, -1, (0,255,0), 3)

#check to see if any contours were found
if len(cnts) > 0:

#short
cnt = sorted(cnts, key =cv2.contourArea, reverse = True)[0]

rect = np.int32(cv2.cv.BoxPoints(cv2.minAreaRect(cnt)))

xLo=(rect[0][1]+rect[2][1])/2
yLo=(rect[2][0]+rect[0][0])/2

112

print "Found target in image!"

cam_x = (xLo - 320)*0.00902
cam_y = (yLo - 240)*0.00902

pose_out = PoseStamped()
pose_out.header.frame_id = "/camera"
pose_out.header.stamp = rospy.get_rostime()
pose_out.pose.position.x = cam_x
pose_out.pose.position.y = cam_y

self.pose_pub.publish(pose_out)

if self.debug_pub:
try:

self.debug_image_pub.publish(self.bridge.cv2_to_imgmsg
(cv_image, "rgb8"))

except CvBridgeError as e:
print(e)

def main(args):
ic = image_converter()
rospy.init_node('image_converter', anonymous=True)
try:

rospy.spin()
except KeyboardInterrupt:

print("Shutting down")

if __name__ == '__main__':
main(sys.argv)

113

114 APPENDIX B. SOFTWARE ALGORITHMS

..

.

.

.

.

..

.

.

.

.

.

..

.

.

B.3.5 Transfer pixels to local position node..

.

Algorithm B.7 Robotic Operating System (ROS) Transfer pixels to local position
node.

#!/usr/bin/env python
license removed for brevity
import rospy
from geometry_msgs.msg import PoseStamped
import numpy as np

pub = rospy.Publisher('/target/pose', PoseStamped, queue_size=10)

def callback(data):
#rospy.loginfo(data)
pose_out = data

pose_out.header.frame_id = "/uavbody"

R = np.matrix([[0, 1, 0], [1, 0, 0], [0, 0, -1]]) # camera to body frame rotation

p = np.matrix([[data.pose.position.x],[data.pose.position.y],[data.pose.position.z]])

p_dash = R*p

pose_out.pose.position.x = p_dash.item(0)
pose_out.pose.position.y = p_dash.item(1)
pose_out.pose.position.z = p_dash.item(2)

pose_out.pose.orientation.x = 0
pose_out.pose.orientation.y = 0
pose_out.pose.orientation.z = 0
pose_out.pose.orientation.w = 1

rospy.loginfo(pose_out)
pub.publish(pose_out)

def listener():
In ROS, nodes are uniquely named. If two nodes with the same
node are launched, the previous one is kicked off. The
anonymous=True flag means that rospy will choose a unique
name for our 'listener' node so that multiple listeners can
run simultaneously.
rospy.init_node('FrameTransform', anonymous=True)

#input_str = "/ar_single_board/pose"
#input_str = "/color_detection/target_location"
input_str = "/red_detection/target_location"
#input_str = "/weed_detection/target_location"

print("Listening to: " + input_str)
print("Outputting on: /target/pose")

rospy.Subscriber(input_str, PoseStamped, callback)

spin() simply keeps python from exiting until this node is stopped
rospy.spin()

if __name__ == '__main__':
listener()

115

116 APPENDIX B. SOFTWARE ALGORITHMS

..

.

.

.

.

..

.

.

.

.

.

..

.

.

B.3.6 .Ultrasonic node.

.

Algorithm B.8 Robotic Operating System (ROS) Ultrasonic node.

..

.

#! /usr/bin/env python
import serial
import rospy
import sys
from std_msgs.msg import Float64

ser=serial.Serial('/dev/ttyACM0',115200)

ser.flushInput()

def ultrasonic():
pub = rospy.Publisher('us_distance',Float64,queue_size=10)
rospy.init_node('ultrasonic', anonymous=True)

while not rospy.is_shutdown():
readdata=ser.readline()

if readdata[0][:1] != '-':
height = float(readdata)/100

rospy.loginfo(height)

msg = Float64
msg = height
pub.publish(msg)

if __name__=='__main__':
try:

ultrasonic()
except rospy.ROSInterruptException:

pass

117

118 APPENDIX B. SOFTWARE ALGORITHMS

.

.

.

.

.

.

.

.

.

.

.

B.3.7 .Navigation node.

.

Algorithm B.9 Robotic Operating System (ROS) Navigation node.

/**
* @file offb_node.cpp
* @brief offboard example node, written with mavros version 0.14.2, px4 flight
* stack and tested in Gazebo SITL
*/
#include <string.h>
#include <ros/ros.h>
#include <math.h>
#include <geometry_msgs/PoseStamped.h>
#include <geometry_msgs/Point.h>
#include <std_msgs/Float64.h>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>
#include <mavros_msgs/State.h>

//================================//
// Global Parameters //
//================================//

enum nav_modes {
NAV_MODE_TAKEOFF,
NAV_MODE_WAYPOINT_A,
NAV_MODE_WAYPOINT_B,
NAV_MODE_FOUND_PLANT,
NAV_MODE_SPRAY_DESC,
NAV_MODE_SPRAY_WAIT,
NAV_MODE_SPRAY_ASC,
NAV_MODE_RTL,

};

//================================//
// Global Variables //
//================================//
mavros_msgs::State current_state;
geometry_msgs::Point current_pos;
geometry_msgs::Point current_goal;
unsigned int nav_mode = NAV_MODE_TAKEOFF;

geometry_msgs::Point waypoint_home;
geometry_msgs::Point waypoint_a;
geometry_msgs::Point waypoint_b;
geometry_msgs::Point waypoint_plant;

bool ignore_ip = true;
bool land_mode = false;
double height_search = 2.0;
double height_takeoff = 2.0;
double height_spray = 0.5;
double height_us = 0;
ros::Time start_spray_time;

double waypoint_radius = 0.2;
double vs_radius = 0.2;

double fov = 0;
double camera_height = 480;
double camera_width = 640;
//estimated_pos.z = current_pos.z - real_height + 0.5;

//================================//
// Callback Functions //
//================================//

void state_cb(const mavros_msgs::State::ConstPtr& msg){
current_state = *msg;

}

void us_cb(const std_msgs::Float64 msg){
height_us = msg.data;

119

}
/*
void ip_cb(const geometry_msgs::Point msg){

if(!ignore_ip){
//msg.x ---> pixel X location
//estimate pixel location in meters
//rotate point --- for now, assume you don't have to
//set new goal based on estimate

//Just to do an example
geometry_msgs::Point estimated_pos; //estimated position of the plant in the world
frame

//double x2 = current_pos.z * tan(fov_height/2);
 double dpx = current_pos.z * tan(fov/2);

estimated_pos.x = (msg.x*dpx)/(camera_width/2);
 estimated_pos.y = (msg.y*dpx)/(camera_width/2);

estimated_pos.z = 0;

//estimated_pos.z = current_pos.z;

waypoint_plant.x = current_pos.x + estimated_pos.x;
waypoint_plant.y = current_pos.y + estimated_pos.y;
waypoint_plant.z = current_pos.z + estimated_pos.z;

nav_mode = NAV_MODE_FOUND_PLANT;
ROS_INFO("Calculated [du, dv] as: [%0.2f, %0.2f]", estimated_pos.x, estimated_pos.y);
ROS_INFO("Estimated plant location at: [%0.2f, %0.2f]", waypoint_plant.x,
waypoint_plant.y);
ROS_INFO_ONCE("Guiding center of the plant");

}
}
*/

void ip_cb(const geometry_msgs::PoseStamped msg){
if(!ignore_ip){

geometry_msgs::Point estimated_pos; //estimated position of the plant in the world
frame

estimated_pos.x = msg.pose.position.x;
estimated_pos.y = msg.pose.position.y;
estimated_pos.z = 0;

waypoint_plant.x = current_pos.x + estimated_pos.x;
waypoint_plant.y = current_pos.y + estimated_pos.y;
waypoint_plant.z = current_pos.z + estimated_pos.z;

nav_mode = NAV_MODE_FOUND_PLANT;
ROS_INFO("Calculated [du, dv] as: [%0.2f, %0.2f]", estimated_pos.x, estimated_pos.y);
ROS_INFO("Estimated plant location at: [%0.2f, %0.2f]", waypoint_plant.x,
waypoint_plant.y);
ROS_INFO_ONCE("Guiding center of the plant");

}
}

void local_pos_cb(const geometry_msgs::PoseStamped msg){
current_pos = msg.pose.position;

double dHeight = 0;

switch(nav_mode) {
case NAV_MODE_TAKEOFF:

ROS_INFO_ONCE("Guiding the UAV to takeoff");

current_goal = waypoint_home;

if((fabs(current_goal.x - current_pos.x) < waypoint_radius) &&
(fabs(current_goal.y - current_pos.y) < waypoint_radius) &&
(fabs(current_goal.z - current_pos.z) < waypoint_radius)) {

nav_mode = NAV_MODE_WAYPOINT_A;

120

ROS_INFO("Guiding the UAV to waypoint A");
}

break;
case NAV_MODE_WAYPOINT_A:

current_goal = waypoint_a;

if((fabs(current_goal.x - current_pos.x) < waypoint_radius) &&
(fabs(current_goal.y - current_pos.y) < waypoint_radius) &&
(fabs(current_goal.z - current_pos.z) < waypoint_radius)) {

nav_mode = NAV_MODE_WAYPOINT_B;
ignore_ip = false;
ROS_INFO("Guiding the UAV to waypoint B");

}

break;
case NAV_MODE_WAYPOINT_B:

current_goal = waypoint_b;

if((fabs(current_goal.x - current_pos.x) < waypoint_radius) &&
(fabs(current_goal.y - current_pos.y) < waypoint_radius) &&
(fabs(current_goal.z - current_pos.z) < waypoint_radius)) {

ignore_ip = true;
nav_mode = NAV_MODE_RTL;
ROS_INFO("Guiding the UAV to home");

}

break;
case NAV_MODE_FOUND_PLANT:

current_goal = waypoint_plant;

if((fabs(current_goal.x - current_pos.x) < vs_radius) &&
(fabs(current_goal.y - current_pos.y) < vs_radius) &&
(fabs(current_goal.z - current_pos.z) < waypoint_radius)) {

nav_mode = NAV_MODE_SPRAY_DESC;
ignore_ip = true;
ROS_INFO("Identified the plant...");

}

break;
case NAV_MODE_SPRAY_DESC:

current_goal = waypoint_plant;

dHeight = height_us - height_spray;
current_goal.z = current_pos.z - dHeight;

if((fabs(current_goal.x - current_pos.x) < vs_radius) &&
(fabs(current_goal.y - current_pos.y) < vs_radius) &&
(fabs(current_goal.z - current_pos.z) < vs_radius)) {

nav_mode = NAV_MODE_SPRAY_WAIT;
start_spray_time = ros::Time::now();
ROS_INFO("Reached spray height, starting spray timer...");

}

break;
case NAV_MODE_SPRAY_WAIT:

current_goal = waypoint_plant;

dHeight = height_us - height_spray;
current_goal.z = current_pos.z - dHeight;

if((ros::Time::now() - start_spray_time).toSec() > 5.0) {
nav_mode = NAV_MODE_SPRAY_ASC;
ROS_INFO("Finished waiting for spray, returning to waypoint
height...");

}

break;
case NAV_MODE_SPRAY_ASC:

current_goal = waypoint_plant;

121

if((fabs(current_goal.x - current_pos.x) < waypoint_radius) &&
(fabs(current_goal.y - current_pos.y) < waypoint_radius) &&
(fabs(current_goal.z - current_pos.z) < waypoint_radius)) {

nav_mode = NAV_MODE_WAYPOINT_B;
ROS_INFO("Reached waypoint height, continuing to waypoint B.");

}

break;
case NAV_MODE_RTL:

current_goal = waypoint_home;

if((fabs(current_goal.x - current_pos.x) < waypoint_radius) &&
(fabs(current_goal.y - current_pos.y) < waypoint_radius) &&
(fabs(current_goal.z - current_pos.z) < waypoint_radius)) {

//land
ROS_INFO_ONCE("Reached Home");

land_mode = true;
}

break;
default:

ROS_ERROR("Navigation mode unknown");
nav_mode = NAV_MODE_RTL;
ROS_INFO("Guiding the UAV to home");

}
}

//================================//
// Main Function //
//================================//
int main(int argc, char **argv)
{

//================================//
// Initialize node //
//================================//
ros::init(argc, argv, "spray_nav");
ros::NodeHandle nh(ros::this_node::getName());

double fov_deg = 60;

//Parameters
if(!nh.getParam("height_takeoff", height_takeoff)){

ROS_WARN("No parameter set for \"height_takeoff\"");
}
ROS_INFO("Setting takeoff height to: %0.2f", height_takeoff);

if(!nh.getParam("height_search", height_search)){
ROS_WARN("No parameter set for \"height_search\"");

}
ROS_INFO("Setting search height to: %0.2f", height_search);

if(!nh.getParam("height_spray", height_spray)){
ROS_WARN("No parameter set for \"height_spray\"");

}
ROS_INFO("Setting spray height to: %0.2f", height_spray);

if(!nh.getParam("waypoint_radius", waypoint_radius)){
ROS_WARN("No parameter set for \"waypoint_radius\"");

}
ROS_INFO("Setting waypoint radius to: %0.2f", waypoint_radius);

if(!nh.getParam("vs_radius", vs_radius)){
ROS_WARN("No parameter set for \"vs_radius\"");

}
ROS_INFO("Setting visual servoing radius to: %0.2f", vs_radius);

if(!nh.getParam("fov_degrees", fov_deg)){
ROS_WARN("No parameter set for \"fov_degrees\"");

}
ROS_INFO("Setting camera width FoV to: %0.2f", fov_deg);

122

fov = fov_deg*M_PI/180.0;

if(!nh.getParam("camera_width", camera_width)){
ROS_WARN("No parameter set for \"camera_width\"");

}
ROS_INFO("Setting camera width: %0.2f", camera_width);

if(!nh.getParam("camera_height", camera_height)){
ROS_WARN("No parameter set for \"camera_height\"");

}
ROS_INFO("Setting camera height: %0.2f", camera_height);

std::string position_input = "/pose";
if(!nh.getParam("position_input", position_input)){

ROS_WARN("No parameter set for \"position_input\"");
}
ROS_INFO("Setting position input to: %s", position_input.c_str());

std::string vs_input = "/target_location";
if(!nh.getParam("vs_input", vs_input)){

ROS_WARN("No parameter set for \"vs_input\"");
}
ROS_INFO("Setting visual servoing input to: %s", vs_input.c_str());

fov = fov_deg*M_PI/180.0;

//Subscribers
ros::Subscriber ip_sub = nh.subscribe<geometry_msgs::PoseStamped>

(vs_input, 10, ip_cb);
ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>

("/mavros/state", 10, state_cb);
ros::Subscriber local_pos_sub = nh.subscribe<geometry_msgs::PoseStamped>

(position_input, 10, local_pos_cb);
ros::Subscriber us_sub = nh.subscribe<std_msgs::Float64>

("/us_distance", 10, us_cb);

//Publishers
ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped>

("/mavros/setpoint_position/local", 10);

//Services
ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool>

("/mavros/cmd/arming");
ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode>

("/mavros/set_mode");

//the setpoint publishing rate MUST be faster than 2Hz
ros::Rate rate(20.0);

// wait for FCU connection
while(ros::ok() && current_state.connected){

ros::spinOnce();
rate.sleep();

}

//================================//
// Initialize setpoint sequence //
//================================//
//Set the takeoff goal
waypoint_home.x = 0;
waypoint_home.y = 0;
waypoint_home.z = height_takeoff;

waypoint_a.x = -5;
waypoint_a.y = 2;
waypoint_a.z = height_takeoff;

waypoint_b.x = 5;
waypoint_b.y = 2;
waypoint_b.z = height_search;

123

current_goal = waypoint_home;

//Prepare the pose message
geometry_msgs::PoseStamped pose;
pose.header.frame_id = "/fcu";
pose.pose.position = current_goal;

//send a few setpoints before starting
ROS_INFO("Initializing pose stream...");
for(int i = 100; ros::ok() && i > 0; --i){

pose.header.stamp = ros::Time::now();
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();

}
ROS_INFO("Done!");

//================================//
// Set Parameters //
//================================//
mavros_msgs::SetMode offb_set_mode;
offb_set_mode.request.custom_mode = "OFFBOARD";
mavros_msgs::SetMode land_set_mode;
land_set_mode.request.custom_mode = "AUTO.LAND";

mavros_msgs::CommandBool arm_cmd;
arm_cmd.request.value = true;

ros::Time last_request = ros::Time::now();

//================================//
// Main Loop //
//================================//
while(ros::ok()){

//================================//
// Update Callbacks //
//================================//
ros::spinOnce();

//================================//
// Set Mode //
//================================//

if(!land_mode) {
if(current_state.mode != "OFFBOARD" &&

current_state.mode == "AUTO.LOITER" &&
(ros::Time::now() - last_request > ros::Duration(5.0))){

ROS_INFO("Current mode is not \"OFFBOARD\" [%s]", current_state.mode.c_str());
if(set_mode_client.call(offb_set_mode) &&

offb_set_mode.response.success){
ROS_INFO("Offboard enabled");

}

last_request = ros::Time::now();
} else {

if(!current_state.armed &&
(ros::Time::now() - last_request > ros::Duration(5.0))){

if(arming_client.call(arm_cmd) &&
arm_cmd.response.success){
ROS_INFO("Vehicle armed");

}

last_request = ros::Time::now();
}

124

}
} else {

if(set_mode_client.call(land_set_mode) && land_set_mode.response.success) {
ROS_INFO("Landing...");
break;

}
}

//================================//
// Send setpoints //
//================================//
pose.header.stamp = ros::Time::now();
pose.pose.position = current_goal;

local_pos_pub.publish(pose);

//================================//
// Sleep //
//================================//
rate.sleep();

}

return 0;
}

125

126 APPENDIX B. SOFTWARE ALGORITHMS

..

.

.

.

.

..

.

.

.

.

.

..

.

.

B.4 .Arduino code for controlling the Ultrasonic (HC-SR04)

and the spraying pump.

.

Algorithm B.10 Arduino code for controlling the Ultrasonic (HC-SR04) and the
spraying pump.

/*
 HC-SR04 Ping distance sensor:
 VCC to arduino 5v
 GND to arduino GND
 Echo to Arduino pin 7
 Trig to Arduino pin 8
 */
#define echoPin 7 // Echo Pin
#define trigPin 8 // Trigger Pin
#define sprayPin 3 // Spray Trigger Pin
#define LEDPin 13 // Onboard LED

int maximumRange = 200; // Maximum range needed
int minimumRange = 0; // Minimum range needed
long duration, distance; // Duration used to calculate distance
bool sprayTrig = 0;
long sprayTime = 0;

void setup() {
 Serial.begin (115200);
 pinMode(trigPin, OUTPUT);
 pinMode(sprayPin, OUTPUT);
 digitalWrite(sprayPin, HIGH);
 pinMode(echoPin, INPUT);
 pinMode(LEDPin, OUTPUT); // Use LED indicator (if required)
}

void loop() {
/* The following trigPin/echoPin cycle is used to determine the
 distance of the nearest object by bouncing soundwaves off of it. */
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);
 duration = pulseIn(echoPin, HIGH);

 //Calculate the distance (in cm) based on the speed of sound.
 distance = duration/58.2;

 if (distance >= maximumRange || distance <= minimumRange){
 /* Send a negative number to computer and Turn LED ON
 to indicate "out of range" */
 Serial.println("-1");
 }
 else {
 /* Send the distance to the computer using Serial protocol, and
 turn LED OFF to indicate successful reading. */
 Serial.println(distance);
 }
 if((distance>40)&&(distance<60)&&!sprayTrig)
 {
 sprayTrig = 1;
 sprayTime = millis();
 digitalWrite(sprayPin, LOW);
 digitalWrite(LEDPin, HIGH);
 }

 if(sprayTrig&&((sprayTime+2000)<millis()))
 {
 sprayTrig = 0;
 sprayTime = millis();
 digitalWrite(sprayPin, HIGH);
 digitalWrite(LEDPin, LOW);
 }

 //Delay 50ms before next reading.
 delay(50);
}

127

128 APPENDIX B. SOFTWARE ALGORITHMS

..

.

.

.

.

..

.

.

.

.

.

..

.

B.5 .Matlab Code for drawing flight trajectory.

.

Algorithm B.11 Matlab Code for drawing �ight trajectory.

%% Pre-Script

close all;

clear;

clc;

%% Get 2 lots of data and plot

disp('Select the file containing the pointer position data');

pather

pather

%%

% generated from the file name

x = str2double(data.simm3m.field_pose_position_x);

y = str2double(data.simm3m.field_pose_position_y);

z = str2double(data.simm3m.field_pose_position_z);

plot3(x,y,z, '+-');

axis('equal');

hold on;

%%

% generated from the file name

x2 = str2double(data.flight1.field_pose_position_x);

y2 = str2double(data.flight1.field_pose_position_y);

z2 = str2double(data.flight1.field_pose_position_z);

plot3(x2,y2,z2, '--');

 %%

grid on

 waypoints = [0, 0, 0; ...

 0, 0, 3; ...

 -5, 2, 3; ...

 5, 2, 3; ...

 0, 0, 3; ...

 0, 0, 0];

line(waypoints(:,1), waypoints(:,2), waypoints(:,3), 'color', 'g');

hold off;

129

%%

% File Read

[file,path,~] = uigetfile('*.csv','Read Recorded Data');

filePath = [path, file];

if file == 0

 error('Please select a file to analyse.');

end

fid = fopen(filePath,'r'); %Open specified file

C = textscan(fid, repmat('%s',1,12), 'delimiter',',', 'CollectOutput',true); %scan

read data and format

C = C{1}; %Knock the cell table down a level

C{1,1} = strrep(C{1,1},'%',''); %Take out the comment if it exists

fclose(fid);

%% Phrase Data

vname = matlab.lang.makeValidName(file);

vname = strrep(vname,'_csv',''); %Take out the comment if it exists

for i = 1:size(C,2)

 tname = matlab.lang.makeValidName(C{1,i});

 data.(vname).(tname) = cell(size(C,1)-1,1);

 for j = 2:size(C,1)

 data.(vname).(tname){j-1} = C{j,i};

 end

end

%% Clean Up

clearvars vname tname i j C fid file path filePath ans

130

References

[1] H. Choi, M. Geeves, B. Alsalam, and F. Gonzalez, “Open source computer-vision based

guidance system for UAVs on-board decision making,”IEEE Aerospace Conferece, Big Sky,
Montana, 2016.

[2] S. L. Ward, J. Hensler, B. H. Y. Alsalam, and L. F. Gonzalez, “Autonomous UAVs wildlife

monitoring and tracking using thermal imaging and computer vision,” IEEE Aerospace
conferece, Big Sky, Montana, 2016.

[3] Y. Han, “An autonomous Unmanned Aerial Vehicle-based imagery system development

and remote sensing images classi�cation for agricultural applications,” Graduate Theses
and Dissertations, p. 513, 2009.

[4] H. Xiang and L. Tian, “Method for automatic georeferencing aerial remote sensing (RS)

images from an unmanned aerial vehicle (UAV) platform,” Biosystems Engineering, vol.

108, no. 2, pp. 104–113, 2011.

[5] E. R. Hunt Jr, M. Cavigelli, C. S. Daughtry, J. E. Mcmurtrey III, and C. L. Walthall,

“Evaluation of digital photography from model aircraft for remote sensing of crop

biomass and nitrogen status,” Precision Agriculture, vol. 6, no. 4, pp. 359–378, 2005.

[6] M. Rieke, T. Foerster, J. Geipel, and T. Prinz, “High-precision positioning and real-

time data processing of uav systems,” International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. 38, pp. 1–C22, 2011.

[7] C. C. D. Lelong, P. Burger, G. Jubelin, B. Roux, S. Labbe, and F. Baret, “Assessment of

Unmanned Aerial Vehicles imagery for quantitative monitoring of wheat crop in small

plots,” Sensors, vol. 8, no. 5, pp. 3557–3585, 2008.

[8] V. Gonzalez-Dugo, P. Zarco-Tejada, E. Nicolas, P. A. Nortes, J. J. Alarcon, D. S. Intrigliolo,

and E. Fereres, “Using high resolution UAV-thermal imagery to assess the variability in the

water status of �ve fruit tree species within a commercial orchard,” Precision Agriculture,
vol. 14, no. 6, pp. 660–678, 2013.

[9] L. Felderhof, D. Gillieson, P. Zadro, and A. Van Boven, “Linking UAV(Unmanned Aerial

Vehicle) technology with precision agriculture,” 2008.

[10] S. Von Bueren and I. Yule, “Multispectral aerial imaging of pasture quality and biomass

using unmanned aerial vehicles (UAV),”Accurate and E�cient Use of Nutrients on Farms,
Occasional Report, no. 26, 2013.

[11] N. Hallermann and G. Morgenthal, “Visual inspection strategies for large bridges

using unmanned aerial vehicles (UAV),” in Proc. 7th International Conference on Bridge
Maintenance, Safety and Management, IABMAS 2014, July 7, 2014-July 11, 2014.

131

132 REFERENCES

[12] F. Chaumette and S. Hutchinson, “Visual servo control image basic approaches,” IEEE
Robotics Automation Magazine, vol. 13, no. 4, pp. 82–90, 2006.

[13] P. I. Corke, Visual Control of Robots: high-performance visual servoing. Baldock, UK:

Research Studies Press, 1996.

[14] H. H. A. Kadouf and Y. M. Mustafah, “Colour-based object detection and tracking

for autonomous quadrotor UAV,” in Proc. IOP Conference Series: Materials Science and
Engineering, vol. 53. IOP Publishing, 2013, p. 012086.

[15] C. Knoth, B. Klein, T. Prinz, and T. Kleinebecker, “Unmanned aerial vehicles as innovative

remote sensing platforms for high-resolution infrared imagery to support restoration

monitoring in cut-over bogs,” Applied Vegetation Science, vol. 16, no. 3, pp. 509–517, 2013.

[16] E. Hunt, W. D. Hively, C. S. Daughtry, G. W. McCarty, S. J. Fujikawa, T. Ng, M. Tranchi-

tella, D. S. Linden, and D. W. Yoel, “Remote sensing of crop leaf area index using

unmanned airborne vehicles,” in Proceedings of the Pecora 17 Symposium, Denver, CO,

2008.

[17] D. Gomez-Candon, F. Lopez Granados, J. Caballero Novella, M. Gomez Fmez Casero,

M. Jurado Exposito, and L. Garca Torres, “Geo-referencing remote images for precision

agriculture using arti�cial terrestrial targets,” Precision Agriculture, vol. 12, no. 6, pp.

876–891, 2011.

[18] J. Berni, P. Zarco-Tejada, L. Suarez, V. Gonzalez-Dugo, and E. Fereres, “Remote sensing

of vegetation from uav platforms using lightweight multispectral and thermal imaging

sensors,” Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci, vol. 38, p. 6, 2009.

[19] C. Hung, Z. Xu, and S. Sukkarieh, “Feature learning based approach for weed classi�ca-

tion using high resolution aerial images from a digital camera mounted on a uav,” Remote
Sensing, vol. 6, no. 12, pp. 12 037–12 054, 2014.

[20] E. Honkavaara, H. Saari, J. Kaivosoja, I. Polonen, T. Hakala, P. Litkey, J. Makynen, and

L. Pesonen, “Processing and assessment of spectrometric, stereoscopic imagery collected

using a lightweight uav spectral camera for precision agriculture,” Remote Sensing, vol. 5,

no. 10, pp. 5006–5039, 2013.

[21] S. Candiago, F. Remondino, M. De Giglio, M. Dubbini, and M. Gattelli, “Evaluating

multispectral images and vegetation indices for precision farming applications from UAV

images,” Remote Sensing, vol. 7, no. 4, pp. 4026–4047, 2015.

[22] A. S. Laliberte, A. Rango, K. M. Havstad, J. F. Paris, R. F. Beck, R. McNeely, and A. L.

Gonzalez, “Object-oriented image analysis for mapping shrub encroachment from 1937

to 2003 in southern new mexico,” Remote Sensing of Environment, vol. 93, no. 1, pp. 198–

210, 2004.

[23] S. Herwitz, L. Johnson, S. Dunagan, R. Higgins, D. Sullivan, J. Zheng, B. Lobitz, J. Leung,

B. Gallmeyer, and M. Aoyagi, “Imaging from an unmanned aerial vehicle: agricultural

surveillance and decision support,” Computers and Electronics in Agriculture, vol. 44,

no. 1, pp. 49–61, 2004.

REFERENCES 133

[24] S. R. Herwitz, L. F. Johnson, J. Arvesen, R. Higgins, J. Leung, and S. Dunagan, “Precision

agriculture as a commercial application for solar-powered Unmanned Aerial Vehicles,”

in AIAA 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, 2002,

Conference Proceedings.

[25] M. Kontitsis, K. P. Valavanis, and N. Tsourveloudis, “A UAV-vision system for airborne

surveillance,” in Proc. Robotics and Automation, 2004. ICRA’04. 2004 IEEE International
Conference on, vol. 1, 2004, pp. 77–83.

[26] C. H. Koger, D. R. Shaw, C. E. Watson, and K. N. Reddy, “Detecting late-season weed

infestations in soybean (glycine max) 1,” Weed Technology, vol. 17, no. 4, pp. 696–704,

2003.

[27] J. M. Pena Barragan, F. Lopez Granados, M. Jurado Exposito, and L. Garcia Torres,

“Mapping ridol�a segetum patches in sun�ower crop using remote sensing,” Weed
Research, vol. 47, no. 2, pp. 164–172, 2007.

[28] A. I. de Castro, M. Jurado Exposito, J. M. Pena Barragan, and F. Lopez Granados,

“Airborne multi spectral imagery for mapping cruciferous weeds in cereal and legume

crops,” Precision Agriculture, vol. 13, no. 3, pp. 302–321, 2012.

[29] A. S. Laliberte, E. L. Fredrickson, and A. Rango, “Combining decision trees with hier-

archical object-oriented image analysis for mapping arid rangelands,” Photogrammetric
engineering & Remote sensing, vol. 73, no. 2, pp. 197–207, 2007.

[30] F. Lopez-Granados, “Weed detection for site-speci�c weed management: mapping and

real-time approaches,” Weed Research, vol. 51, no. 1, pp. 1–11, 2011.

[31] M. Perez-Ortiz, J. M. Pena, P. A. Gutierrez, J. Torres-Sanchez, C. Hervas-Martinez, and

F. Lopez-Granados, “Selecting patterns and features for between-and within-crop-row

weed mapping using UAV-imagery,”Expert Systems with Applications, vol. 47, pp. 85–94,

2016.

[32] M. Kelly, “Weed mapping in early-season maize �elds using object-based analysis of

unmanned aerial vehicle (UAV) images,”PLOS One, vol. 8, no. 10, 2013.

[33] J. Torres-Sanchez, F. Lopez-Granados, and J. Pena, “An automatic object-based method

for optimal thresholding in uav images: Application for vegetation detection in herb-

aceous crops,” Computers and Electronics in Agriculture, vol. 114, pp. 43–52, 2015.

[34] A. S. Laliberte and A. Rango, “Texture and scale in object-based analysis of subdecimeter

resolution unmanned aerial vehicle (UAV) imagery,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 47, no. 3, pp. 761–770, 2009.

[35] J. M. Pena, J. Torres Sanchez, A. I. de Castro, M. Kelly, and F. Lopez Granados, “Weed

mapping in early-season maize �elds using object-based analysis of unmanned aerial

vehicle (UAV) images,”PLoS One, vol. 8, no. 10, p. e77151, 2013.

[36] C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for

precision agriculture: a review,” Precision Agriculture, vol. 13, no. 6, pp. 693–712, 2012.

134 REFERENCES

[37] E. R. Hunt, W. D. Hively, S. J. Fujikawa, D. S. Linden, C. S. T. Daughtry, and G. W.

McCarty, “Acquisition of nir-green-blue digital photographs from unmanned aircraft

for crop monitoring,” Remote Sensing, vol. 2, no. 1, pp. 290–305, 2010.

[38] A. S. Laliberte, J. E. Herrick, A. Rango, and C. Winters, “Acquisition, orthorecti�cation,

and object-based classi�cation of unmanned aerial vehicle (UAV) imagery for rangeland

monitoring,” Photogrammetric Engineering & Remote Sensing, vol. 76, no. 6, pp. 661–672,

2010.

[39] J. A. Thomasson, Y. Shi, J. Olsenholler, J. Valasek, S. C. Murray, and M. P. Bishop,

“Comprehensive UAV-agricultural remote-sensing research at texas a and m university,”

in SPIE Commercial+ Scienti�c Sensing and Imaging. International Society for Optics

and Photonics, 2016, pp. 986 602–986 602.

[40] A. S. Laliberte, M. A. Goforth, C. M. Steele, and A. Rango, “Multispectral remote sensing

from unmanned aircraft: Image processing work�ows and applications for rangeland

environments,” Remote Sensing, vol. 3, no. 11, pp. 2529–2551, 2011.

[41] E. Salami, C. Barrado, and E. Pastor, “Uav �ight experiments applied to the remote

sensing of vegetated areas,” Remote Sensing, vol. 6, no. 11, pp. 11 051–11 081, 2014.

[42] R. Dunford, K. Michel, M. Gagnage, H. Piegay, and M. L. Tremelo, “Potential and con-

straints of unmanned aerial vehicle technology for the characterization of mediterranean

riparian forest,” International Journal of Remote Sensing, vol. 30, no. 19, pp. 4915–4935,

2009.

[43] A. Mcfadyen, F. Gonzalez, D. Campbell, and D. Eagling, “Evaluating unmanned aircraft

systems for deployment in plant biosecurity,” Tech. Report, Canberra, Australia, Tech.

Rep., 2014.

[44] E. Puig, F. Gonzalez, G. Hamilton, and G. P, “Assessment of crop insect damage

using unmanned aerial systems: A machine learning approach,” Proc. 21st International
Congress on Modelling and Simulation, pp. 1420–1426, 2015.

[45] S. Nebiker, A. Annen, M. Scherrer, and D. Oesch, “A light-weight multispectral sensor

for micro uav opportunities for very high resolution airborne remote sensing,” The
international archives of the photogrammetry, remote sensing and spatial information
sciences, vol. 37, pp. 1193–1200, 2008.

[46] J. A. Berni, P. J. Zarco-Tejada, L. Suarez, and E. Fereres, “Thermal and narrowband

multispectral remote sensing for vegetation monitoring from an unmanned aerial

vehicle,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 47, no. 3, pp. 722–

738, 2009.

[47] T. Guo, T. Kujirai, and T. Watanabe, “Mapping crop status from an unmanned aerial

vehicle for precision agriculture applications,” ISPRS-International Archives of the Photo-
grammetry, Remote Sensing and Spatial Information Sciences, vol. 1, pp. 485–490, 2012.

[48] M. Bryson, A. Reid, F. Ramos, and S. Sukkarieh, “Airborne vision based mapping and

classi�cation of large farmland environments,” Journal of Field Robotics, vol. 27, no. 5,

pp. 632–655, 2010.

REFERENCES 135

[49] Y. Fan, S. Haiqing, and W. Hong, “A vision-based algorithm for landing Unmanned

Aerial Vehicles,” in Computer Science and Software Engineering, Proc. 2008 International
Conference on, vol. 1, 2008, pp. 993–996.

[50] S. A. Quintero and J. P. Hespanha, “Vision-based target tracking with a small UAV:

Optimization-based control strategies,” Control Engineering Practice, vol. 32, pp. 28–42,

2014.

[51] C. Anderson, “3DR-robotic,” 2009. [Online]. Available: http://dev.ardupilot.com/

[52] A. Mcfadyen, “Visual control for automated aircraft collision avoidance systems,” 2015.

[53] Y.-c. Liu and Q.-h. Dai, “Vision aided unmanned aerial vehicle autonomy: an overview,”

in Image and Signal Processing (CISP), 2010 3rd International Congress on, vol. 1, 2010, pp.

417–421.

[54] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme, “Vision-based autonomous landing

of an unmanned aerial vehicle,” in Robotics and automation, 2002. Proceedings. ICRA’02.
IEEE international conference on, vol. 3, 2002, pp. 2799–2804.

[55] V. M. Raja, “Vision based landing for unmanned aerial vehicle,” in Prod. Aerospace
Conference, 2011 IEEE. IEEE, 2011, pp. 1–8.

[56] C. Fu, A. Carrio, M. Olivares-Mendez, and P. Campoy, “Online learning-based robust

visual tracking for autonomous landing of Unmanned Aerial Vehicles,” in Unmanned
Aircraft Systems (ICUAS), 2014 International Conference on, 2014, pp. 649–655.

[57] R. Mahony and T. Hamel, “Image-based visual servo control of aerial robotic systems

using linear image features,” IEEE Transactions on Robotics, vol. 21, no. 2, pp. 227–239,

2005.

[58] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart, “Onboard imu and monocular

vision based control for mavs in unknown in-and outdoor environments,” in Robotics
and automation (ICRA), 2011 IEEE international conference on, 2011, pp. 3056–3063.

[59] N. Veerasamy, “High-level mapping of cyberterrorism to the ooda loop,” in Proceedings of
the 5th International Conference on Information Warfare and Security, 2010, pp. 352–360.

[60] D. Maccuish, “Orientation: key to the ooda loop the culture factor,” Journal of Defense
Resources Management (JoDRM), no. 02, pp. 67–74, 2012.

[61] J. B. Pullen, “The committee to abolish hell: Strategic culture, OODA-loops, and decision-

making by the us national security council during the bosnian war,” M.A. thesis, Univ.

North Carolina, Chapel Hill, NC„ 2014.

[62] R. Parasuraman, T. B. Sheridan, and C. D. Wickens, “A model for types and levels of

human interaction with automation,” Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, vol. 30, no. 3, pp. 286–297, 2000.

[63] H. Peng, M. Huo, Z. Liu, and Y. He, “Challenges and technologies for networked

multiple UAVs cooperative control,” in Electrical and Control Engineering (ICECE), 2011
International Conference on, 2011, pp. 3860–3863.

http://dev.ardupilot.com/

136 REFERENCES

[64] 3DRobotics, “3dr-drone and UAV-technology,” 2015. [Online]. Available: http:

//3drobotics.com/

[65] pixhawk.org, “Pixhawk autopilot,” 2015-04-19 2015. [Online]. Available: https:

//pixhawk.org/modules/pixhawk

[66] raspberrypi.org, “Raspberry pi 2 - model B,” April,10,2015 2015. [Online]. Available:

https://www.raspberrypi.org/products/raspberry-pi-2-model-b

[67] A. D. Team, “Mission planner overview,” 2016. [Online]. Available: http://ardupilot.org/

planner/docs/mission-planner-overview.html

[68] Modmypi, “HC-SR04 ultrasonic range sensor on the Raspberry Pi,” 2016. [Online].

Available: http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-

raspberry-pi

[69] Logitech, “HD-webcam logitech C270.” [Online]. Available: http://support.logitech.com/

en_us/article/17556

[70] QGroundControl, “Ground contral station for small air, land, water autonomous

unmanned system,” 2016. [Online]. Available: http://qgroundcontrol.org/mavlink/

mavproxy_startpage

[71] PUTTY, “Download putty - a free ssh and telnet client for windows,” 2016. [Online].

Available: http://www.putty.org/

[72] A. Dev, “Communicating with raspberry pi via mavlink,” 2016. [Online]. Available:

http://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html

[73] Odroid. [Online]. Available: http://www.hardkernel.com/main/products/prdt_info.php?

g_code=g138745696275

[74] Arduino, “Arduino / genuino uno,” 2016. [Online]. Available: https://www.arduino.cc/

en/guide/introduction

[75] Von, “Ros.org,” 2016. [Online]. Available: http://wiki.ros.org/mavros

[76] M. Tonnis, Darstellung virtueller Objekte. Springer, 2010, pp. 7–41.

[77] O. Araar and N. Aouf, “Visual servoing of a quadrotor uav for the tracking of linear

structured infrastructures,” in 2013 IEEE International Conference on Systems, Man, and
Cybernetics, 2013, pp. 3310–3315.

[78] O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette, T. Hamel, and L. Eck, “Image-

based visual servo control of the translation kinematics of a quadrotor aerial vehicle,”

IEEE Trans. on Robotics, vol. 25, no. 3, pp. 743–749, 2009.

[79] ROS.com, “rviz,” 2016. [Online]. Available: http://wiki.ros.org/rviz

[80] C. A. Weeds, “National weeds strategy,” 2016. [Online]. Available: http://www.weeds.

org.au/cgi-bin/weedident.cgi?tpl=plant.tpl&state=&s=&ibra=all&card=H71

http://3drobotics.com/
http://3drobotics.com/
https://pixhawk.org/modules/pixhawk
https://pixhawk.org/modules/pixhawk
https://www.raspberrypi.org/products/raspberry-pi-2-model-b
http://ardupilot.org/planner/docs/mission-planner-overview.html
http://ardupilot.org/planner/docs/mission-planner-overview.html
http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
http://support.logitech.com/en_us/article/17556
http://support.logitech.com/en_us/article/17556
http://qgroundcontrol.org/mavlink/mavproxy_startpage
http://qgroundcontrol.org/mavlink/mavproxy_startpage
http://www.putty.org/
http://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g138745696275
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g138745696275
https://www.arduino.cc/en/guide/introduction
https://www.arduino.cc/en/guide/introduction
http://wiki.ros.org/mavros
http://wiki.ros.org/rviz
http://www.weeds.org.au/cgi-bin/weedident.cgi?tpl=plant.tpl&state=&s=&ibra=all&card=H71
http://www.weeds.org.au/cgi-bin/weedident.cgi?tpl=plant.tpl&state=&s=&ibra=all&card=H71

REFERENCES 137

[81] HerbiGuide, “Spear thistle (cirsium vulgare),” 2015. [Online]. Available: http:

//www.herbiguide.com.au/Descriptions/hg_Spear_Thistle.htm

[82] M. Zurn, A. McFadyen, S. Notter, A. Heckmann, K. Morton, and L. F. Gonzalez, “Mpc

controlled multirotor with suspended slung load: System architecture and visual load

detection,” 2016.

[83] opencv.org, “Opencv,” 2015. [Online]. Available: http://opencv.org/

[84] G. Bradski et al., “The opencv library,” Doctor Dobbs Journal, vol. 25, no. 11, pp. 120–126,

2000.

[85] P. Mihelich, “CVbridge tutorials using cvbridge to convert between rosimages

and open cv images.” [Online]. Available: http://wiki.ros.org/cv_bridge/Tutorials/

UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages

http://www.herbiguide.com.au/Descriptions/hg_Spear_Thistle.htm
http://www.herbiguide.com.au/Descriptions/hg_Spear_Thistle.htm
http://opencv.org/
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Statement of Original Authorship
	Acknowledgments
	Chapter 1 Introduction
	1.1 Background and Motivation
	1.2 Research Objective
	1.2.1 Objective 1
	1.2.2 Objective 2

	1.3 Research Problem and Research Plan
	1.4 Research Contribution
	1.5 Research Methodology
	1.5.1 Stage 1: Literature Review
	1.5.2 Stage 2: Initial Data Collection and Algorithm Development for Off-board System
	1.5.3 Stage 3: Software System Development for On-board System
	1.5.4 Stage 4: Hardware System Development
	1.5.5 Stage 5: Integration and Testing the System

	1.6 Publications, Submission and Accepted Papers
	1.7 Outline of Thesis

	Chapter 2 Literature Review
	2.1 Overview
	2.2 Remote Sensing in Agriculture
	2.3 UAVs for Precision Agriculture
	2.4 Vision Based Control
	2.5 Off-board and On-board Hardware for Image Processing and Computer Vision
	2.6 Decision Making using the OODA Loop Framework
	2.7 Summary

	Chapter 3 System Architecture For Data Collection and Off-board Analysis and Mapping
	3.1 Overview
	3.2 Hardware Design
	3.2.1 3DR-IRIS UAV Frame
	3.2.2 AC2830-358 850Kv Motors and 10x4.7 propellers
	3.2.3 Pixhawk Autopilot
	3.2.4 GPS Compass Module
	3.2.5 4 in 1 ESC/Power Module
	3.2.6 5000 mAh 3S 30C Lipo Pack Battery
	3.2.7 FrSky-DF Radio Control (Tx/Rx)
	3.2.8 3DR TELE Radio Modem and Ground Station Control
	3.2.9 WiFi connection
	3.2.10 Microcomputer (Raspberry Pi 2B)
	3.2.11 Raspberry Pi Camera
	3.2.12 Universal Battery Elimination Circuit 5V-3A (UBEC)
	3.2.13 Ground Station Computer (GSC)
	3.2.14 3D Printing for Off-board System

	3.3 Detection and GPS Mapping Approach
	3.4 Software Design
	3.4.1 Mission Planner
	3.4.2 Python Script
	3.4.3 Invasive Weed Detection Method

	3.5 Summary

	Chapter 4 System Architecture Design For On-board Decision Making and Action
	4.1 Overview
	4.2 System Architecture Using Raspberry Pi 2B and MAV Proxy
	4.2.1 Ultrasonic Sensor (HC-SR04)
	4.2.2 HD Webcam Logitech C270
	4.2.3 Relay (SRD-05VDC)
	4.2.4 Spraying-Pump
	4.2.5 Liquid-Tank
	4.2.6 3D Printing for the On-board System
	4.2.7 Electrical Integration
	4.2.8 Software Design Using Raspberry Pi 2B and MAVProxy

	4.3 System Architecture Using Odroid U3+and Robotic Operating System (ROS)
	4.3.1 Odroid U3
	4.3.2 Micro Arduino
	4.3.3 Electrical Integration
	4.3.4 Detection and On-board Decision Making Approach
	4.3.5 Software Design for On-board Decision Making and Action Using Odroid U3+

	4.4 Summary

	Chapter 5 Weed Mapping and Off-board Decision Making
	5.1 Overview
	5.2 Spear thistle invasive weed
	5.3 Study side
	5.4 UAV flight imagery
	5.5 Results and discussion
	5.6 Summary

	Chapter 6 Autonomous UAV with Vision Based On-board Decision Making
	6.1 Overview
	6.2 Test Cases
	6.2.1 ArUco Markers
	6.2.2 Colour Detection
	6.2.3 Weed Detection and Spraying

	6.3 Simulation and Actual Flight Test Results and Analysis
	6.4 Root Mean Square Error (RMSE)
	6.5 Summary

	Chapter 7 Conclusions
	7.1 Research Summary
	7.2 Addressing Research Question
	7.3 Considerations and Future Work

	Appendix A Hardware specifications
	A.1 The table below shows the Raspberry Pi 2B microcomputer specifications.
	A.2 The table below shows the HC-SR04 Ultrasonic Sensor specifications.
	A.3 The table below shows the HD Webcam Logitech C270 specifications.
	A.4 The table below shows the ODROID-U3+ specifications.

	Appendix B Software algorithms
	B.1 .Matlab code for invasive weed detection and mapping.
	B.2 Python code for the on-board decision making using Raspberry Pi 2B.
	B.3 .The ROS nodes for the system is attached as follow:
	B.3.1 .Lunch file for the system using Odroid U3.
	B.3.2 .Marker detection node.
	B.3.3 .Colour detection node.
	B.3.4 weed detection node. .
	B.3.5 Transfer pixels to local position node..
	B.3.6 .Ultrasonic node.
	B.3.7 .Navigation node.

	B.4 .Arduino code for controlling the Ultrasonic (HC-SR04) and the spraying pump.
	B.5 .Matlab Code for drawing flight trajectory.

	References

