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Abstract

Deep Q Networks are a type of deep reinforce-
ment learning algorithm that have been shown
to be particularly adept at learning a variety of
tasks with minimal priors. Specifically, DQN
agents have been shown to learn a variety of
Atari 2600 video games using only raw im-
ages of the game screen and the game score.
To leverage DQNs in real world robotics ap-
plications, we must first understand how ro-
bust these networks are to the perceptual noise
common to all robotics domains. In this pa-
per, we present an analysis of the robustness of
Deep Q Networks to various types of percep-
tual noise (changing brightness, Gaussian blur,
salt and pepper, distractors). We present a
benchmark example that involves playing the
game Breakout though a webcam and screen
environment, like humans do. We present a
simple training approach to improve the per-
formance maintained when transferring a DQN
agent trained in simulation to the real world
(36% vs. 1% maintained performance - see Ta-
ble 1). We also evaluate DQN agents trained
under a variety of simulation environments to
report for the first time how DQNs cope with
perceptual noise, common to real world robotic
applications.

1 Introduction

The ability to learn how to perform tasks, as opposed to
explicitly programming them, is a feature many roboti-
cists seek for their robots. One approach to achieving
this is vision based control. Deep Q Networks (DQNs)
are a type of deep reinforcement learning algorithm that
takes a trial and error approach to learning a mapping
between high-level sensory inputs and low-level actions,
in order to complete specific tasks. To date, DQNs have
demonstrated superior-to-human performance on a num-
ber of Atari 2600 video games [Mnih et al., 2015], raising

(a) Unchanged (b) Sim. Noise (c) Real World

(d) Robot Experiment

Figure 1: Three different game screen environments
were used across the training and testing of both agent
DQN[1] and our agent. 1a is an example of the pristine
game screen images used in [Mnih et al., 2015]. 1b is
an example of the game screen images used to train our
agent. 1c is an example of the noise caused by view-
ing the game screen through a low cost webcam. 1d
shows the Baxter robot playing Atari 2600 game Break-
out through a webcam’s view of the game screen.

the question of deep reinforcement learning’s applicabil-
ity to robotics in real world environments.

The challenge here, is that for an agent to transfer
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from ideal environments to real environments, they must
be able to cope with perceptual variations to their envi-
ronment. We find that even small additions of noise (e.g.
increase all RGB values in range 0 to 1 by 0.1) to DQN’s
game screen inputs are enough to degrade performance
to random chance.

We present a training regime that introduces noise to
the game screen environment that improves the agent’s
ability to maintain the performance it learned in simu-
lation. The agent we trained with noise will be referred
to as ‘ours’ throughout this paper. In our webcam and
screen environment (see right side of Figure 1d), we show
our agent maintains 99% of its performance when tested
in a noise free environment and 36.4% of its performance
when tested in a real environment. The agent we trained
in a noise free environment in alignment with [Mnih et
al., 2015] is referred to as DQN[1]. DQN[1] when tested
in a simulated noise environment maintained less than
1% of its performance. This result remained true when
DQN[1] was tested in our real world webcam and moni-
tor environment.

We extend our result by investigating how DQNs cope
with various types of noise individually and perform
a cross-analysis to find whether training with certain
types of noise improve robustness to other types of noise.
We embody our agent in a Baxter robot and use pre-
scripted trajectories to allow actions to be sent to the
game through a keyboard interface. In particular, we
make the following contributions:

• Development of a multi-noise simulated training
regime to improve maintained game play perfor-
mance of a DQN agent trained in simulation but
tested in a real world environment.

• Introduction of a benchmark example for evaluating
the perceptual robustness of artificial agents to real
world noise introduced by low cost cameras.

• Analysis of the perceptual robustness of DQN to
various types of noise, including background distrac-
tors.

We find that DQN is far less robust to perceptual noise
than initially expected and hope this work is useful for
people working in this area.

2 Related Work

Deep learning in recent years has seen widespread at-
tention in many fields including robotics [LeCun et
al., 2015]. Prominent applications of deep learning
to robotics has entered in the area of robotic vision.
Deep learning has allowed robot perception systems
to be learned directly from raw data, replacing hand-
crafted feature detectors suited to just one environment
or just one task [Levine et al., 2016b; Finn et al., 2016;

Bojarski et al., 2016]. Convolutional Neural Networks
(CNNs) are the most commonly applied tool used for
learning such perception systems [LeCun et al., 2015].
Specifically, CNNs are able to learn a mapping from
high-dimensional image space to a low-dimensional fea-
ture space, providing class labels to image proposals as
a common example [Krizhevsky et al., 2012]. Agent-
based tasks that require vision can be separated into
two key approaches: split approaches and end-to-end ap-
proaches.

2.1 Split Approaches

Within robotics, a popular approach to leveraging deep
learning is to use a neural network to process raw images,
using their outputs as inputs to another system. Auto-
encoder neural networks provide one way of extracting
a low dimensional feature space from high dimensional
images [Rumelhart et al., 1985; Baldi, 2012]. In [Lange
et al., 2012], a deep auto-encoder network was used to
estimate the 2D position of a toy slot car from raw over-
head images to drive it around a track. In [Finn et al.,
2016] a number of robotic manipulation tasks requiring
close hand-eye coordination were performed through the
use of Guided Policy Search on a state representation
learned with a deep spatial auto-encoder. In [Watter et
al., 2015] a deep auto-encoder network allowed linear-
quadratic-Gaussian control to operate on the learned
low-dimensional state representation. To train these net-
works, each work relied on the availability of vision-free
trajectories of the task being performed by the target
robot. Investigations into the robustness of the ap-
proaches to changing lighting conditions were not per-
formed.

CNN’s also provide a way of extracting low dimen-
sional feature spaces though are often limited by a re-
quirement on expensive to obtain ground truth data
[Krizhevsky et al., 2012]. In [Chen et al., 2015], a map-
ping between raw driver-perspective images and a pre-
selected set of driving-specific measurements was learned
but required expensive to obtain ground truth measure-
ments to facilitate supervised training.

In [Yoon et al., 2016], an iterative linear-quadratic-
regulator algorithm was used to control the joint angles
of a Baxter robots arms to play a game on a mobile phone
screen. The CNN component of the DQN algorithm was
replaced by a hand-crafted perception system, distancing
the approach from work herein.

Tzeng et al., [2015] presented a method to bootstrap
simulator to real world transfer of a pose estimation
CNN by exploiting known synthetic-real image pairs.
While a real image with multiple similar simulated im-
ages were explicitly handled by the implemented con-
trastive loss function, it remains unclear how the occur-
rence of multiple visually dissimilar views of the same



state (like changing lighting conditions) would influence
the performance of the approach. Future work could in-
vestigate how the approach might apply to an end-to-end
learning system such as DQN.

2.2 End-to-end Approaches

End-to-end learning for robotics encapsulates systems
that learn vision and control jointly. Joint learning of
perception and control removes the need for hand-crafted
perception systems and hand-crafted controllers, replac-
ing them with a single framework that maps raw images
to control outputs [Pomerleau, 1989].

End-to-end learning systems have been used across a
number of application areas. Some of the areas where
end-to-end learning systems have been presented include
autonomous driving in both simulated and real envi-
ronments [Koutńık et al., 2013; Bojarski et al., 2016],
robot tasks that require close hand-eye coordination
[Levine et al., 2016a] and performing a range of simu-
lated tasks [Mnih et al., 2013; 2015; Nair et al., 2015;
Lillicrap et al., 2015]. Across these applications, how
each system handles perceptual noise, if at all, remains
unclear.

Where end-to-end learning systems have been pre-
sented in real world environments, they often require one
of either supervised pre-training [Levine et al., 2016a],
or a significant amount of data [Levine et al., 2016b]

to work. An ability to handle perceptual noise is even
more crucial in data-driven approaches where training
has been shown to take months even with multiple robots
operating simultaneously [Levine et al., 2016b].

Using DQN in real world environments was initially
investigated in [Zhang et al., 2015] however the results
reported a failure to handle the transfer from simulation
to the real world. To remedy this, a simulated view of
the environment was generated using encoder readings
of the real robot to allow control to take place.

2.3 Summary

Both split and end-to-end learning approaches have been
applied to robotics applications. Reinforcement learning
and especially DQN has much to offer robotics in terms
of its ability to train agents to perform a significant num-
ber of diverse tasks with minimal priors on the task and
capabilities of the agent. Missing across previous work
is focussed investigation into the perceptual robustness
of reported systems which directly influences their appli-
cability to robotics applications. The work in this paper
is motivated by the need to understand and overcome
the limitations of DQN agents in adapting to noisy, real-
world environments. In this way, we present a simple
approach to improve a DQN agents ability to maintain
performance when transferring between the same envi-
ronment exposed to different perceptual noise; ensuring

a robot controlled by a Deep Q Network is able to con-
tinue to complete a task robustly and reliably.

3 Deep Q Network Architecture

Herein we consider a robotic agent interacting with its
environment through a sequence of actions and observa-
tions. The agent aims at finding a policy, i.e. a sequence
of actions, leading to the maximum cumulative future re-
ward. Q learning describes a technique for learning such
an optimal policy based on the reward received at state
s given a specific action was taken [Watkins and Dayan,
1992]. More formally Q learning aims to approximate
the optimal action-value function

Q∗(s, a) = E[rt + γrt+1 + γ2rt+2 + · · · |st = s, at = a, π],
(1)

given the observed state s and taken action a at time t
conditioned by the current policy π [Watkins and Dayan,
1992]. The future reward (rt) is discounted at every
time step t by constant factor γ. We are interested in
representing the state s with visual observations from
camera images only.

Recently [Mnih et al., 2015] have shown the feasibility
to use deep, convolutional networks to approximate this
Q function for playing emulated Atari games. In this
paper we use the same network architecture and hyper-
parameter settings as reported by [Mnih et al., 2015].
The CNN begins with an input size of 84x84x4 (four
grey-scale images) as in Figure 2. Within the network,
each convolutional layer is followed by a rectified linear
unit (ReLU) layer [Nair and Hinton, 2010]. The first
layer convolves 32 filters of size 8x8 with stride 4. The
second layer convolves 64 filters of size 4x4 with stride
2. The third layer convolves 64 filters of size 3x3 with
stride 1. The final hidden layer (second last layer) is a
fully connected layer with 512 units. The output layer
is another fully connected layer with a single output for
each action in the game. For Breakout, the actions in-
cluded no action, move left and move right.

The reward received from the game environment is
used to update the weights of the CNN to better ap-
proximate the Q-function. The weights are changed us-
ing RMSProp stochastic gradient descent [Tieleman and
Hinton, 2012].

The DQN architecture interfaces with the open-source
Atari 2600 emulator, Stella, through the Arcade Learn-
ing Environment (ALE) [Bellemare et al., 2013]. ALE
provides a simple interface between DQN and Stella, al-
lowing a DQN agent to send and receive the information
needed for training and testing. Specifically, training
is informed by retrieval of a reward and corresponding
game screen image for a particular action.
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Figure 2: Deep Q Network wraps a convolutional neural
network (CNN) in a modified Q-learning algorithm.

4 Experimental Setup

We ran two experiments on our benchmark environment
to demonstrate how training our agent with augmented
data improved the agent’s ability to maintain perfor-
mance when it’s environment changed in appearance.
We then embodied our agent within a Baxter robot that
viewed the game through a webcam and performed ac-
tions with a keyboard (see Figure 1d). Further analy-
sis with an additional six training environments cross-
analysed in simulated environments is presented in Sec-
tion 6.

We trained two DQN agents using the framework in
[Mnih et al., 2015]. The first agent was trained on the
Atari 2600 game Breakout with identical hyperparame-
ters to those reported in [Mnih et al., 2015]. This agent
is referred to as DQN[1]. The second agent was also
trained on Breakout however, the game screen images
exposed to this agent during training were subjected
to simulated noise. This agent is referred to as ‘our’
agent or ‘ours’. To evaluate each agent’s performance,
both DQN[1] and our agent were tested on three modi-
fications of the Breakout game environment. These in-
cluded the unchanged game environment as in [Mnih et
al., 2015], the simulated noise environment used to train
our agent and a real world environment as in Figure 1.
The real world environment used a webcam’s view of
the game screen. This view was unseen by both agents
during training. To further demonstrate real world per-
formance, we used the Baxter robot platform to embody
our agent. Here Baxter retrieved game screen images
through the webcam and selected keys on a keyboard to
execute game actions.

4.1 Training

DQN[1] was trained in an unchanged game environment
as a baseline performance measure. An example of the
Breakout game screen that DQN[1] was exposed to dur-
ing training can be seen in Figure 1a.

Specifically, the procedure follows: at each time step,
the agent selects an action based on the preceding four
game screen images. A frame skipping technique is used
whereby the selected action is performed in the game
four times, corresponding with [Mnih et al., 2015]. After
the action has been performed four times, a reward based

Figure 3: Training flow diagram shows key information
transfer between DQN framework sub-systems.

on the current game score is returned. This process con-
tinues for a number of epochs; each epoch composed of
250,000 time steps as in [Mnih et al., 2015].

Our agent was trained in a modified game environment
where the game screen had been subjected to simulated
noise. See Figure 3 for a summary of the training scheme.
To represent the conditions of blurring, sensor noise and
varying lighting conditions that are common in robotic
vision tasks, three representative sources of noise were
introduced during training. Each game screen image was
subjected to a combination of 2% salt and pepper noise,
a uniform random brightness level applied by adding a
scalar (range [-0.25,0.25]) to each RGB pixel and Gaus-
sian blur. The Gaussian blurring was performed using a
5x5 kernel with standard deviation 0.5 and mean 0.5.

Training is monitored at each epoch with the average
action value. The average action value is calculated by
computing the average maximum Q-values on a held-out
set of game states. Briefly, for each of 32 held-out game
states, DQN makes a prediction on the total reward it
would expect to achieve by the end of the game if it
performed a given action. As the agent improves, its
expectation of the total reward it can achieve by the end
of the game increases. To avoid local optima, a balance
must be struck between choosing to act randomly versus
on-policy. Evaluation stages set a 5% chance of choosing
a random action to avoid local optima (consistent with
[Mnih et al., 2015]).

4.2 Testing

The performance of DQN[1] and our agent was quan-
tified in three distinct environments. These included
the unchanged game environment used to train DQN[1]
(Figure 1a), the simulated noise environment used to
train our agent (Figure 1b) and the real world environ-
ment (Figure 1c). Real world environment tests were run
solely with the webcam and monitor (right hand side of
Figure 1d) to increase the speed of agent evaluations.

To compare our agent with DQN[1], we followed a



Figure 4: In our real world test setup, Baxter plays
Breakout in stop-motion. The emulator waits for left
or right actions to be received from Baxter’s interaction
with the keyboard. No-action commands bypass Baxter.

similar approach to that described in [Mnih et al., 2015].
The approach taken allowed each agent to play through
Breakout thirty times. The total score achieved after
each play was then recorded.

4.3 Testing on Baxter

The Baxter robot platform was used to demonstrate real
world performance. Modelled in Figure 4, our agent vi-
sually perceived the Breakout game screen using the we-
bcam. Images captured with the webcam were cropped
to the 210x160 game screen dimensions that the emu-
lator outputs. The webcam was aligned such that the
game screen image on the monitor exactly filled the we-
bcams view. Using this view, our DQN agent would
select an action to perform based on the last four game
screen images captured.

On selecting an action to perform, Baxter was in-
structed to either press the left-side of the keyboard (for
action ‘left’) or the right-side of the keyboard (for ac-
tion ‘right’) with a ROS command. To achieve this, a
path between two manually selected end-effector posi-
tions (key pressed and key not pressed) was calculated
using an inverse-kinematics path planner. On receipt
of keyboard input, the emulated Breakout game was
stepped with the corresponding action. For simplicity,
the action ‘no action’ was directly passed to the emula-
tor, allowing the game to progress more quickly in those
times.

5 Results

We found that training a DQN agent in an environment
with simulated noise improved maintained performance
under perceptually different environments. On aver-
age, our agent was able to maintain 99% performance
when tested in the unchanged noise free environment
and 36.4% in our webcam and screen environment. Note
that these environments were not seen during training.
A DQN agent trained in the unchanged noise free envi-
ronment, named DQN[1], maintained less than 1% per-
formance when tested in the noisy-simulated and real
world environments. The results in this section cover
the training and testing of these two networks. Further
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Figure 5: The addition of simulated noise increased the
training time required to reach a steady level of per-
formance however, the stability of our agent remained
largely unaffected.

analysis on training different DQN agents is presented
in Section 6.

5.1 Training Performance

Plots of the average action value of our agent and
DQN[1] are shown in Figure 5. The average action val-
ues were computed by evaluating each network in their
respective training environment at discrete intervals dur-
ing training. Our agent was noticeably slower to con-
verge than DQN[1] as a result of the confusion on state
introduced by perceptual noise.

5.2 Testing Performance

The game play scores achieved by our agent and DQN[1]
across three environments can be seen in both Figure 6
and Table 1. The performance of our agent in both the
simulated noise environment and the real world envi-
ronment is shown to be superior to the performance of
DQN[1] in the same environments. Note the median
performance of DQN[1] in the simulated noise and real
world environments was 0.0.

Further performance results of our agent and DQN[1]
have been included in Table 1. While our agent’s perfor-
mance is a significant drop from that achieved by DQN[1]
in the unchanged game environment, the maintained
performance of our agent across the three environments
demonstrates a robustness to environmental condition-
variation unseen with DQN[1]. It is important to note
that the noisy training environment makes our agent’s
task fundamentally harder to learn than DQN[1]’s. As
an aside, our experiments also revealed that new game-
play strategies can be learnt after the average action
value asymptotes.



Game Play Performance Results

Agent Environment Mean
Scores
(±std)

Normalised
(% Hu-
man)

DQN Reported Re-
sult [Mnih et
al., 2015]

401.2
(±26.9)

1327.2%

DQN[1] Unchanged Env. 284.4
(±130.0)

939.2%

Ours Unchanged Env. 29.6
(±11.8)

92.7%

DQN[1] Sim. Noise Env. 1.0 (±2.2) -2.3%
Ours Sim. Noise Env. 29.4 (±9.9) 92.0%
DQN[1] Real World Env. 2.5 (±4.4) 2.7%
Ours Real World Env. 10.7 (±5.6) 29.9%

Table 1: While our agent performed poorer than DQN
in the unchanged environment, it is important to note
that our agent was not trained there. Our agent showed
robustness to both the unchanged environment and the
real world environment that were not seen during train-
ing. While the average game scores of DQN in both the
simulated noise and real world environments were just
above zero, the median scores in both were 0.0, indicat-
ing an inability to recognise state in these environments.
The final column normalises the average game score to
scores achieved by random action selection and a profes-
sional human games tester. [Mnih et al., 2015] reports
a score (averaged across 30 episodes of game play) for a
random agent as 1.7, and 31.8 for a professional human
games tester.

5.3 Baxter’s Game Play Performance

Our Baxter robot demonstration resulted in a recorded
thirty minutes of game play. Thirty minutes was a cho-
sen time with tests indicating that game play could con-
tinue for much longer. The performance of our agent on
Baxter matched that of the webcam-only setup as our
approach ensured synchronisation between actions and
webcam images of the game screen was always main-
tained. Specifically, an action was only performed in the
Breakout game after Baxter had successfully selected an
action to perform using the keyboard. The action ‘no
action’ was directly performed on the Breakout game,
bypassing Baxter.

6 Further Analysis

The last section demonstrated how DQN can be success-
fully transferred onto a real world system by augmenting
the training data with simulated noise. In order to in-
crease our understanding and to create more insights into
how exactly noise influences DQN’s performance, we ran
a suite of extensive experiments in simulation. In con-
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Figure 6: We tested both DQN[1] and our agent in a
real world testing environment not seen during training.
The setup used a low-cost webcam directed at an LCD
monitor to capture images of the Breakout game screen.
We find that although you pay a cost in terms of ide-
alistic performance, we can perform in a real world set-
ting better than DQN[1]. Our agent performed near its
peak in its simulated noise training environment whereas
DQN[1] achieved the same median score of 0.0 as with
the real world environment.

trast to the experiments explained in Sections 4 and 5,
we now separate the three noise types (Gaussian blur,
salt and pepper, varying brightness) and add additional
distractors in the form of a real world video sequence (of
moving people) in the background surrounding the game
screen. The background video addition was chosen to
better align with the way humans often play games. In
doing so, the input image dimensions were increased such
that the game screen maintained the original dimensions
of 210x160 px.

We provide answers to the following questions: 1)
How important is cropping the image input for DQN? Is
DQN distracted by moving background objects? This is
important for future robotic applications in a less con-
strained environment than we showed with Baxter be-
fore. 2) How well does DQN generalize when trained
to be robust against one type of noise? This generates
insights about how the data augmentation should be per-
formed and which noise types and individual noise levels
should be included.

All of these experiments ultimately aim at enabling
robotic systems to learn behaviours, instead of relying on
fixed scripted behaviours coded by a human expert. The
additional agents have been provided with short names
that are described in Table 2. Examples of the envi-
ronments in which these agents were trained have been



DQN Agent Name Description

DU uncorrelated distractor video in the background
DC correlated distractor video in the background

TR uniform random game screen position within greater image
BL Gaussian blur, kernel size 9× 9, σ = 0.25, µ = 0.5
SP salt & pepper noise, per-pixel probability 6%
BR brightness change, all rgb pixels changed by uniform random scalar in range [−0.25, . . . , 0.25]

Table 2: DQN agents trained and tested during evaluation. See text for detailed explanation. Noise levels were
selected to show noticeable change (to a human) whilst remaining playable (by a human).

(a) Agent DU (b) Agent DC (c) Agent TR

(d) Agent BL (e) Agent SP (f) Agent BR

Figure 7: Six additional DQN agents were trained under
varying noise and distractor-laden conditions.

included in Figure 7.

6.1 Training Environments

Each of the six additional agents were exposed to differ-
ent environments. Across the six, a commonality was the
introduction of distractors, i.e. visual information that
is unrelated to the task. For a vision-based robot, suc-
cessfully ignoring such distractors is critical for reliably
performing tasks in dynamic, real world environments.
To test how DQN coped with distractors, we bordered
game screen images with frames from a real world video.
The video consisted of one million unique, temporally-
coherent frames. To prevent performance changes aris-
ing from a reduction in game screen dimensions, the
DQN framework was modified to accommodate images
of size 400x304 px.

The details of each agents training environment have
been itemised below.

• Agent DU was trained solely with the additional
background video (see Figure 7a). The background
video was sufficient in length to extend past multiple
plays through the game, reducing the possibility of
feature correlation between the game and the video.

• Agent DC was trained in an environment where
the background video was restarted when the game
ended. This introduced a small correlation between
the state of the background and the state of the
game (see Figure 7b).

• Agent TR was trained in an environment where the
game screen was given a random position within the
background video area on a frame-by-frame basis
(see Figure 7c).

• Agent BL was trained with Gaussian blur of kernel
size 9x9, standard deviation 0.25 and mean of 0.5
(see Figure 7d).

• Agent SP was trained with salt and pepper noise
where every pixel had a 6% chance of being either
salt (1) or pepper (0) (see Figure 7e).

• Agent BR was trained with varying brightness levels
in the range [-0.25,0.25] (see Figure 7f).

6.2 Testing Results

We cross-analysed the performance of each agent in con-
ditions extending those from training. We compare the
robustness of each agent to each type of noise. Agent
TR was excluded from this analysis as it failed to learn
to play Breakout, representing an example of an envi-
ronmental condition too complex to learn in. All scores
shown in Figure 8, Figure 9 and Figure 10 have been
mean normalised to the agents performance in its train-
ing environment, to evaluate the relative impact on per-
formance across all of the agents irrespective of the ab-
solute performance they reached during training.

Figure 8 shows the average score achieved by each
agent against an increasing intensity of Gaussian Blur.



Figure 8: Four agents were tested on game screens with
increasing gaussian blur. Agent BL was trained with
gaussian blur at sigma 0.25 and is shown to no longer
cope in an environment free of blur. Other agents show
small level of robustness to Gaussian blur.

Figure 9: Four agents were tested on game screens with
increasing salt and pepper noise. Agent SP who was
trained with 6% salt and pepper noise performed better
with less of that noise.

Each evaluation increased the sigma of a 9x9 Gaussian
Kernel from 0.05 to 0.45 in intervals of 0.05 (sigma=0 is
no blur). Agent BL was shown to maintain some perfor-
mance directly above and below the sigma 0.25 condition
where it was trained, showing some resilience outside of
training conditions. Agent BL, different to the other
three networks, failed to cope with little to no blurring.

Figure 9 shows the average score achieved by each
agent against an increasing intensity of Salt and Pepper
noise, a distribution which increased from 0% to 18%.

Figure 10: Four agents were tested on game screens with
varying brightness levels. Agent BR who was trained
on under random brightness values within [-0.25,0.25]
performed well.

The most robust agent to the salt and pepper noise was
agent SP, who was trained at 6% salt and pepper noise.
Agent SP’s performance improved with slightly less salt
and pepper noise than was experienced during training.
Salt and Pepper noise of 2% was adequate to reduce the
performance of agents BR and DU to less than 20% of
the performance they reached in their training environ-
ments.

Figure 10 shows the average score achieved by each
agent against a range of brightness. Each test applied a
constant brightness, which was changed by adding value
in the range [-0.6 to 0.3] to every pixel in each image. The
most robust agent to changes in brightness was agent
BR, who was trained with random brightness levels in
the range [-0.25 to 0.25]. Agents BL, DU and SP were
unable to cope with any changes to the brightness.

6.3 Summary

We found that the environment transferability of DQN
agents is not clear cut. In particular, we found that DQN
agents are far less robust to perceptual noise than ini-
tially presumed. Agent BR (trained on images of vary-
ing brightness) was the only agent that showed a sig-
nificant increase in robustness to Gaussian blur; a noise
type it did not experience during training. Agents BL,
SP and BR, all showed some robustness to more and
less of the same type of noise that they were trained
for. In the case of agent BL (trained on blurry images),
performance dropped significantly when provided with
unchanged game screen images (zero noise).

These findings highlight that exposing a DQN agent
to different types of noise during training can lead to



Figure 11: The ‘trick’ refers to a game play strategy
where the player burrows through the brick layers to
bounce the ball into the cavity above. This strategy
leads to a significant increase in score.

different traits in the features being learnt. As such,
care must be made when training such artificial agents
to ensure that the environmental conditions in which you
want it to operate are accommodated with an appropri-
ate data augmentation process.

7 Discussion

We found that our agent trained with three types of
noise was able to cope with changes to the perceptual
environment. On average, our agent was able to main-
tain 99% performance when transferred into a zero noise
environment and 36.4% in our real world environment.
DQN[1] trained in the noise free environment maintained
less than 1% performance when tested in the simulated-
noise and real world environments. The performance of
our agent in our real world environment demonstrates
that Deep Q Networks are capable of training task-
specific agents in simulation, that can successfully make
the jump to a real world environment without any addi-
tional modifications.

While our maintained performance in the real world
environment improved over DQN[1], our agent was both
slower to train and performed poorer overall in terms of
average game score. We believe this can be explained
by the way DQN agents are trained. Specifically, mak-
ing action decisions informed by previous state-action
pairs breaks down when identical states appear differ-
ent. Recall each agent’s state is entirely estimated from
the game screen.

The performance disparity between DQN[1] that we
trained and that reported in [Mnih et al., 2015] can be
explained by the shorter time we trained the agent for.
An advanced game-specific strategy exists with Break-
out that when learnt, leads to a significant boost in game
score. If you have ever played Breakout, you may recall
breaking through the brick layers to bounce the ball into
the cavity above. We refer to this strategy as the ‘trick’
and display a depiction in Figure 11. Where our agent
had only learnt to bounce the ball as often as possible,

DQN[1] had just uncovered the ‘trick’ and in the re-
ported results, their agent had mastered it. We believe
that our agent trained with noisy game screen images
would eventually uncover the ‘trick’ if provided enough
training time.

8 Conclusion

The perceptually-rich, dynamic environments in which
we live are environments largely untested with leading
deep reinforcement learning approaches. This work has
demonstrated the perceptual robustness of DQN agents
and presented a simple approach that improves main-
tained performance from simulation to real world envi-
ronments. We presented a benchmark task for evaluat-
ing how simulated agents can be evaluated under real
world perceptual noise. We also performed an analysis
of DQN agents to various types of noise and distractors
to provide insights into the appropriateness of Deep Q
Networks to robotics applications.

Summary By introducing various types of noise dur-
ing training, it is possible to train a DQN agent in simu-
lation that can transfer to a real world environment with
no modifications. The perceptual robustness of DQN
agents to various types of noise is not clear cut.
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[Koutńık et al., 2013] Jan Koutńık, Giuseppe Cuccu,
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