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Abstract

Frogs play an important role in Earth’s ecosystem, but the decline of their population has

been spotted at many locations around the world. Monitoring frog activity can assist con-

servation efforts, and improve our understanding of their interactions with the environment

and other organisms. Traditional observation methods require ecologists and volunteers to

visit the field, which greatly limit the scale for acoustic data collection. Recent advances in

acoustic sensors provide a novel method to survey vocalising animals such as frogs. Once

sensors are successfully installed in the field, acoustic data can be automatically collected at

large spatial and temporal scales. For each acoustic sensor, several gigabytes of compressed

audio data can be generated per day, and thus large volumes of raw acoustic data are collected.

To gain insights about frogs and the environment, classifying frog species in acoustic data

is necessary. However, manual species identification is unfeasible due to the large amount

of collected data, and enabling automated species classification has become very important.

Previous studies on signal processing and machine learning for frog call classification often

have two limitations: (1) the recordings used to train and test classifiers are trophy recordings (

signal-to-noise ratio (SNR) (≥ 15 dB); (2) each individual recording is assumed to contain only

one frog species. However, field recordings typically have a low SNR (< 15 dB) and contain

multiple simultaneously vocalising frog species. This thesis aims to address two limitations and

makes the following contributions.

(1) Develop a combined feature set from temporal, perceptual, and cepstral domains for im-

proving the state-of-the-art performance of frog call classification using trophy recordings

(Chapter 3).

(2) Propose a novel cepstral feature via adaptive frequency scaled wavelet packet decompo-

sition (WPD) to improve cepstral feature’s anti-noise ability for frog call classification

using both trophy and field recordings (Chapter 4).

v



(3) Design a novel multiple-instance multiple-label (MIML) framework to classify multiple

simultaneously vocalising frog species in field recordings (Chapter 5).

(4) Design a novel multiple-label (ML) framework to increase the robustness of classification

results when classifying multiple simultaneously vocalising frog species in field record-

ings (Chapter 6).

Our proposed approaches achieve promising classification results compared with previous

studies. With our developed classification techniques, the ecosystem at large spatial and tem-

poral scales can be surveyed, which can help ecologists better understand the ecosystem.
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Chapter 1

Introduction

1.1 Motivation

Frogs are greatly important for the Earth’s ecosystem but their populations are rapidly declining.

Frogs are an integral part of the food web and an excellent indicator for biodiversity due to their

sensitivity to the environmental change [Böll et al., 2013]. Over the last two decades, rapid

decline in frog populations has been spotted worldwide. This is regarded as one of the most

critical danger to the global biodiversity. The causes for this decline are many, but global

climate change [Carey and Alexander, 2003] and emerging diseases [Mutschmann, 2015] are

thought as the biggest threats.

Developing techniques for monitoring frogs is becoming ever more important to gain in-

sights about frogs and the environment. Since frogs employ vocalisations for most commu-

nications and have a small body size, they are often easier to be heard than seen in the field

(Figure 1.1). This offers a possible way to study and evaluate frogs by detecting species-specific

calls [Dorcas et al., 2009]. Duellman and Trueb [1994] classified frog vocalisations into six

categories based on the context in which they occur: (1) mating calls, (2) territorial calls, (3)

male release calls, (4) female release calls, (5) distress calls, and (6) warning calls. Among

them, mating calls are now widely termed as advertisement calls. Most existing studies that

using signal processing and machine learning to classify frog species use only advertisement

calls for the experiment [Chen et al., 2012, Gingras and Fitch, 2013, Han et al., 2011, Huang

et al., 2014a, 2009]. This thesis will also use only advertisement calls for the experiment.

Traditional methods for classifying frog species, which require ecologists and volunteers

1
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Figure 1.1: Photos of frogs to indicate that frogs are difficult to be found in the field

to physically visit sites, are costly and time-consuming. Although traditional methods can

provide an accurate measure of daytime species richness, the scale limitation in both spatial

and temporal domains is unavoidable. Recent advances in acoustic sensors provide a novel

way to automatically survey vocal animals such as frogs. The use of acoustic sensors can

greatly extend the spatial and temporal scales. Once acoustic sensors are successfully installed

in the field, frog calls can be continuously collected. Each acoustic sensor can generate several

gigabyte of compressed acoustic data, and so far large volumes of data has been collected and

needs to be analysed. Consequently, enabling automated species classification in acoustic data

has become increasingly important.

1.2 Research challenges

Most previous studies classify frog calls with trophy recordings, which are different from

field recordings. Table 1.1 summarises the differences between trophy recordings and field

recordings. Trophy recordings are collected in constrained environments with a directional

microphone. In contrast, field recordings are collected in unconstrained environments with an

omnidirectional microphone.

Based on these differences, two major challenges must be faced for building an accurate and

robust frog call classification framework for field recordings:

1. Compared to trophy recordings which are collected in constrained environment with a

directional microphone, field recordings tend to be noisy. Very often the desired signal
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Table 1.1: Comparison between trophy and field recordings

Trophy recordings Field recordings
Directional microphone Omnidirectional microphone
High SNR for animals of interest (≥ 15 dB) (Table A.1) Low SNR for animals of interest (Table B.1)
One species per recording Multiple species per recording
Close to animals Far away from animals
Short recordings (seconds/minutes) Long recordings (hours/days)

(frog call) is weak, and there are other overlapping signals such as bird calls and insect

calls over frog calls. Therefore, features used for classifying frogs in field recordings

must have a good anti-noise ability.

2. Most field recordings contain multiple frog species in an individual recording, which

are different from recordings used in previous studies (one species per recording). The

classification framework for studying frogs in field recordings must be able to classify

multiple frog species for each individual recording.

1.3 Scope of PhD

The broad scope of this PhD research is to address the two aforementioned challenges, which

could pave a way to successful classification of multiple simultaneously vocalising frog species

in field recordings. The outcome of the research is of benefit to many applications of bioa-

coustics. Recordings used for the experiment are of two types: (1) trophy recordings, (2) field

recordings. The use of trophy recordings allows our proposed methods to be easily compared to

other published techniques. Successfully classifying frog species in field recordings can extend

our proposed classification framework to address those recordings collected by acoustic sensors

in real ecological investigations.

1.4 Original contributions

A frog call classification system often consists of three parts (Figure 1.2): (1) signal pre-

processing, which includes signal processing, noise reduction, and syllable segmentation; (2)

feature extraction (representing frog attributes into some feature vectors); and (3) classification
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(recognising frog species using machine learning techniques).

Recording 
waveform

Feature  extractionClassification

...
Frog species

Signal pre-
processing

Figure 1.2: Flowchart of frog call classification: pre-processing, feature extraction, and
classification

This research makes important contributions to the domains of syllable segmentation (one

step in pre-processing), feature extraction, and classification.

1. Specifically, this research proposes a novel acoustic event detection (AED) method to

segment frog syllables in field recordings. This method is different from the traditional

syllable segmentation methods, which can only segment frog recordings with only one

frog species.

2. To further improve the classification performance using trophy recordings, a combined

feature set using temporal, perceptual, and cepstral features is constructed. This combi-

nation of different features can greatly improve the features’ discrimination.

3. To increase the anti-noise ability of cepstral features, a novel cepstral feature via adaptive

frequency scaled wavelet packet decomposition (WPD) is developed. Our proposed

cepstral features is calculated based on the data-driven frequency scale rather than pre-

defined frequency scale.
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4. Moreover, two classification frameworks, multiple-instance multiple-label (MIML) clas-

sification and multiple-label (ML) classification, are adopted to cope with field recordings

including multiple vocalising frog species. Those two novel classification frameworks

can successfully classify multiple vocalising frog species, which is totally different from

single-instance single-label classification.

The detailed description of the contribution for each experiment is shown as follows:

1. Most previous studies test the proposed frog call classification methods using trophy

recordings, and each individual recording is assumed to have only one frog species.

The first experiment of this thesis aims to further improve the classification performance

using trophy recordings. A novel feature combination using temporal, perceptual, and

cepstral features is proposed for frog call classification. To reduce the bias of syllable

segmentation, Gaussian filtering is selectively used to remove the temporal gap within

one syllable. Five feature sets are constructed using different combinations of temporal,

perceptual, and cepstral features. Five machine learning algorithms are used for the

classification. Experimental results on trophy recordings show that our proposed feature

set outperforms other widely used feature sets for classifying frog calls.

This research has led to one ISSNIP conference paper and one Applied Acoustics journal

article.

2. Since most field recordings are noisy, features’ anti-noise ability is critical for achieving a

good classification performance. The first experiment demonstrates that cepstral features

used for classifying frog species in trophy recordings often have a high classification

accuracy, but are very sensitive to the background noise. A novel cepstral feature is

proposed via adaptive frequency scaled WPD for classifying frog species in both trophy

and field recordings. Here, the adaptive frequency scale is generated by applying k-means

clustering to the dominant frequencies of training dataset. Previous studies have shown

that dominant frequencies of different frog species are different. A frequency scale, which

fits the frequency distribution of different species, can increase the discriminability of

cepstral features extracted by this scale. Experimental results show that our proposed

cepstral feature not only achieves a higher classification accuracy but also has a better

anti-noise ability.
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This research has led to one ICISP conference paper, one IEEE e-science conference

paper, and one Ecological Informatics journal article.

3. Since most field recordings contain multiple simultaneously vocalising frog species per

recording, the MIML classification framework is a natural fit for those frog recordings,

and enables the classification of multiple simultaneously vocalising frog species. A novel

AED method is proposed for the segmentation of frog syllables in field recordings with

limited annotated data. Compared to other AED methods, our proposed AED method can

achieve the best syllable segmentation results, which is verified by the MIML classifica-

tion results. For each segmented frog syllable, event based features are calculated. Three

MIML classifiers are used for the classification with three feature sets. Experimental

results demonstrate that MIML learning can classify multiple frog species in field record-

ings with a hamming loss of 0.1192, which is 2.7 times better than the non-informative

classifier. Experimental results also show that the proposed MIML classification frame-

work can achieve better performance compared to the SISL classification.

This research has led to one ICISP conference paper.

4. For the MIML classification, the results are highly affected by the AED results. To

further improve the classification performance, one solution is to prepare large volumes

of annotated acoustic data and apply supervised learning algorithms for improving seg-

mentation results. Another is to use a different framework without the need of syllable

segmentation. This thesis examines the latter option and adopts ML learning to classify

multiple simultaneously vocalising frog species in field recordings. Three global features

are first extracted from each individual recordings: linear prediction coefficients (LPCs),

Mel-frequency cepstral coefficients (MFCCs), and adaptive-frequency scaled wavelet

packet decomposition sub-band cepstral coefficients (AWSCCs). Two cepstral features

are constructed using statistical analysis and spectral clustering. A novel feature set of

LPCs and AWSCCs is used for the ML classification. Experimental results show that ML

classification can achieve similar performance with MIML classification.

This research has led to a ICCS conference paper.
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1.5 Associated publications

Below is a list of the publications arising from this PhD research:

Journal Articles

1. Xie, Jie, Towsey, Michael, Zhang, Jinglan, and Roe, Paul, Frog call classification based

on enhanced features and machine learning algorithms, Applied Acoustics, Volume 113,

June 2016, pp. 193-201.

This work corresponds to Chapter 3 in this thesis, which presents a combined feature set

for frog call classification in trophy recordings.

2. Xie, Jie, Towsey, Michael, Zhang, Jinglan, and Roe, Paul (2016) Adaptive frequency

scaled wavelet packet decomposition for frog call classification. Ecological Informatics,

Volume 32, pp. 134-144.

This work corresponds to Chapter 4 in this thesis, which develops a novel cepstral feature

for frog call classification in both trophy and field recordings.

3. Zhang Liang, Towsey Michael, Xie Jie, Zhang Jinglan, Roe Paul, Using multi-label

classification for acoustic pattern detection and assisting bird species surveys, Applied

Acoustics, Volume 110, September 2016, Pages 91-98.

4. Xie, Jie, Towsey, Michael, Zhang, Jinglan, and Roe, Paul, Frog call classification: a

survey, Artificial Intelligence Review, December 2016, pp.1-17.

This work corresponds to Chapter 2 in this thesis, which reviewed the extant literature on

frog call classification.

5. Xie, Jie, Towsey, Michael, Zhang, Jinglan, and Roe, Paul, Classification of Frog Vocal-

izations using Acoustic and Visual Features, Journal of Signal Processing Systems (Under

review with minor revision)

6. Xie, Jie, Towsey, Michael, Zhu Mingying, Zhang, Jinglan, and Roe, Paul, An intelligent

system for estimating frog calling activity and species richness, Ecological indicators.

(Under review)

7. Xie, Jie, Karlina Indraswari, Zhang, Jinglan, and Roe, Paul, Investigation of acoustic

features for frog community interactions, Animal Behaviour. (Under review)
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Conference Papers

1. Xie, Jie, Michael Towsey, Jinglan Zhang, Paul Roe, Detecting Frog Calling Activity

Based on Acoustic Event Detection and Multi-label Learning, Procedia Computer Sci-

ence, Volume 80, 2016, Pages 627-638.

This work corresponds to Chapter 5 in this thesis, which applied ML learning for frog

call classification.

2. Xie, Jie, Towsey, Michael, Zhang, Liang, Yasumiba, Kiyomi and Schwarzkopf, Lin,

Zhang, Jinglan, and Roe, Paul. Multiple-Instance Multiple-Label Learning for the Classi-

fication of Frog Calls with Acoustic Event Detection. International Conference on Image

and Signal Processing. Springer International Publishing, 2016, pp 222-230.

This work corresponds to Chapter 6 in this thesis, which applies MIML learning for frog

call classification.

3. Xie, Jie, Towsey, Michael, Zhang, Liang, Zhang, Jinglan, and Roe, Paul, Feature Extrac-

tion Based on Bandpass Filtering for Frog Call Classification, International Conference

on Image and Signal Processing, Springer International Publishing, 2016, pp 231-239.

4. Xie, Jie, Towsey, Michael, Truskinger, Anthony, Eichinski, Philip, Zhang, Jinglan, and

Roe, Paul (2015) Acoustic classification of Australian anurans using syllable features. In

2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and

Information Processing (ISSNIP), IEEE, Singapore, pp. 1-6.

5. Xie, Jie, Towsey, Michael, Yasumiba, Kiyomi, Zhang, Jinglan, and Roe, Paul (2015)

Detection of anuran calling activity in long field recordings for bio-acoustic monitoring.

In 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks

and Information Processing (ISSNIP), IEEE, Singapore, pp. 1-6.

6. Xie, Jie, Towsey, Michael, Zhang, Jinglan, and Roe, Paul (2015) Image processing and

classification procedure for the analysis of Australian frog vocalisations. InProceedings

of the 2nd International Workshop on Environmental Multimedia Retrieval, ACM, Shang-

hai, China, pp. 15-20.
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7. Xie, Jie, Towsey, Michael, Zhang, Jinglan, Dong, Xueyan, and Roe, Paul (2015)Ap-

plication of image processing techniques for frog call classification. In IEEE Interna-

tional Conference on Image Processing (ICIP 2015), 27-30 September 2015, Qubec City,

Canada.

8. Xie, Jie, Towsey, Michael, Eichinski, Philip, Zhang, Jinglan, and Roe, Paul (2015)Acous-

tic feature extraction using perceptual wavelet packet decomposition for frog call classi-

fication. In 2015 IEEE 11th International Conference on e-Science (e-Science), IEEE,

Munich, Germany, pp. 237-242.

9. Xie, Jie, Zhang, Jinglan and Roe, Paul, Discovering acoustic feature extraction and

selection algorithms for frog vocalization monitoring with machine learning techniques,

2015 Annual Conference of the Ecological Society of Australia. (Abstract accepted for

poster presentation)

10. Xie, Jie, Zhang, Jinglan, and Roe, Paul (2015) Acoustic features for hierarchical clas-

sification of Australian frog calls. In 10th International Conference on Information,

Communications and Signal Processing, 2-4 December 2015, Singapore.

11. Dong, Xueyan, Xie, Jie, Towsey, Michael, Zhang, Jinglan, and Roe, Paul (2015)Gener-

alised features for bird vocalisation retrieval in acoustic recordings. In IEEE International

Workshop on Multimedia Signal Processing, 19-21 October 2015, Xiamen, China.

1.6 Thesis structure

This thesis is organised in the manner outlined as follows:

Chapter 1 provides a brief introduction to the problem of ”Frog call classification using

machine learning algorithms”. The ecological significance of studying frogs is first illustrated.

Then, two methods for frog monitoring are compared, and two challenges are identified. In

the following chapters, we will see that the methods proposed in this thesis are driven by the

motivation of solving those two challenges.

Chapter 2 reviews the significant and latest literature of frog call classification using ma-

chine learning techniques. Three main parts of a frog call classification framework are dis-

cussed: signal pre-processing, feature extraction, and classification. In addition, evaluation
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metrics and previous experimental results are presented. This chapter provides a foundation for

the research problem and necessary information about the state-of-the-art frog call classification

methods. Meanwhile, the research gap is identified, which points out the potential research

direction.

Chapter 3 develops a combined feature set for frog call classification using trophy record-

ings. A combination of temporal, perceptual, and cepstral features is used for frog call classifi-

cation. Classification results of five machine learning algorithms are compared to our combined

feature set.

Chapter 4 investigates WPD for extracting a novel cepstral feature. An adaptive frequency

scale is first generated by applying k-means clustering to dominant frequencies of those frog

species to be classified. Then, adaptive frequency scaled WPD is used for calculating a novel

cepstral feature. Two machine learning algorithms are used for the classification. The propose

cepstral feature will be used in Chapter 6 as well.

Chapter 5 discusses the limitations of traditional SISL classification framework for classi-

fying multiple simultaneously vocalising frog species in field recordings, and adopts the MIML

classification framework to classify frog species in those recordings. A novel AED method is

developed for frog syllable segmentation. Various event based features are extracted from each

individual syllable. A bag generator is used for constructing a bag-level feature. Finally, three

MIML classifiers are used for the classification.

Chapter 6 investigates the shortcomings of the MIML classification framework, and in-

troduces ML learning for classifying multiple frog species in field recordings. Three global

features are calculated without the segmentation process: LPCs, MFCCs, and AWSCCs. Two

cepstral-feature sets are constructed using statistical analysis and spectral clustering. Three ML

classifiers are used for the classification with constructed feature sets.

Chapter 7 summarises the major achievements of this thesis and analyses the limitations of

developed approaches. Some directions of future work are also pointed out.



Chapter 2

An overview of frog call classification

This chapter reviews the extant literature on frog call classification using machine learning

algorithms. To the best of this author’s knowledge, no previous studies focus on frog call

classification using multiple-instance multiple-label (MIML) or multiple-label (ML) learning.

Therefore, this chapter will mainly review the single-instance single-label (SISL) learning for

frog call classification. For MIML and ML learning, some prior work on bird call classification

is reviewed. This review mainly aims to give a quantitative and detailed analysis of related

techniques for frog call classification. Then, several major challenges that have not been

addressed in prior work are identified, and hence the advances in this thesis are necessary and

significant. Detailed information of each part will be described in following sub-section.

2.1 Overview

Three parts play important roles in the performance of frog call classification: signal pre-

processing, feature extraction, and classification. Figure 1.2 depicts the common structure of

frog call classification.

2.2 Signal pre-processing

Signal pre-processing contains signal processing, noise reduction, and syllable segmentation.

11
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2.2.1 Signal processing

Signal processing often denotes the transformation of frog calls from one dimension (recording

waveform) to two dimensions (time-frequency representation). Techniques used for frog signal

processing include STFT [Colonna et al., 2015, Huang et al., 2014a, 2009], WPD [Yen and

Fu, 2002], and DWT [Colonna et al., 2012b]. STFT is the most widely used technique due to

its flexible implementation and better applicability. Given one frog call x(n), its fast Fourier

transform can be expressed as

X(k) =
L−1∑
n=0

x(n)w(n)e−j2πkn/L, 0 ≤ k ≤ L− 1 (2.1)

where X(k) is the frequency domain signal (spectrum) and denotes each frame of the spec-

trogram, and w(n) is the window function. The waveform, spectrum and spectrogram of one

individual syllable for Mixophyes fasciolatus is illustrated in Figure 2.1.
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Figure 2.1: Waveform, spectrum and spectrogram of one frog syllable for Mixophyes
fasciolatus. The window function, size and overlap are Hamming window, 128 samples and
85%, respectively

2.2.2 Noise reduction

Noise reduction is an optional process for frog call classification. Huang et al. [2014a] applied

a de-noise filter for noise reduction. A wavelet threshold function in the one-dimensional signal

was used as the filter kernel function. Bedoya et al. [2014] introduced a spectral noise gating

method for noise reduction. Specifically, the selected frequency band spectrum of the frogs’

call to be detected was estimated and suppressed. Although the aforementioned noise reduction

methods can reduce the background noise, some of the desired signals will be suppressed. Noise

reduction are thus selectively used based on the SNR of acoustic data and the research problem.
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2.2.3 Syllable segmentation

For frog calls, the basic elementary acoustic unit is a syllable, which is a continuous frog

vocalisation emitted by an individual frog [Huang et al., 2009]. The accuracy of syllable

segmentation will directly affect the classification performance, because features for frog call

classification are calculated from each segmented syllable. Frog syllable segmentation methods

in previous studies are summarised and listed in Table 2.1. However, all previous methods

cannot address recordings with multiple simultaneously vocalising frog species. Meanwhile,

those methods, which use temporal features for segmentation, cannot address field recordings.

Table 2.1: Summary of prior work for frog syllable segmentation. Here, E denotes energy,
ZCR denotes zero-crossing rate. Sequential denotes that syllables are segmented using the same
sequence as those syllables in the recording

Authors Features for segmentation Procedure
Han et al. [2011] Spectral entropy Manual
Jaafar et al. [2013b] E and ZCR Sequential
Huang et al. [2009] Amplitude Non-sequential
Härmä [2003] Spectrogram Non-sequential
Colonna et al. [2015] Incremental E and Incremental ZCR Sequential and real time

2.3 Acoustic features for frog call classification

Developing effective acoustic features that show greater variation between rather than within

species is important for achieving a high classification performance [Fox, 2008]. For frog

call classification, acoustic features can be classified into five categories: temporal features,

perceptual features, time-frequency features, cepstral features, and other features.

2.3.1 Temporal and perceptual features for frog call classification

Temporal features for frog call classification have been explored for a long time [Camacho et al.,

2013, Chen et al., 2012, Dayou et al., 2011, Huang et al., 2014a, 2009, 2008]. To achieve a better

classification performance, temporal features are often combined with perceptual features for

frog call classification.
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Huang et al. [2009] used spectral centroid, signal bandwidth, and threshold-crossing rate for

frog call classification with kNN and SVM. In another work, Huang et al. [2014a] combined

spectral centroid, signal bandwidth, spectral roll-off, threshold-crossing rate, spectral flatness,

and average energy to classify frog calls using ANN. Another paper published by [Huang et al.,

2008] used spectral centroid, signal bandwidth, spectral roll-off, and threshold-crossing rate

for frog call classification. Dayou et al. [2011] combined Shannon entropy, Rényi entropy and

Tsallis entropy for frog call classification. Based on this work, Han et al. [2011] improved the

classification accuracy by replacing Tsallis entropy with spectral centroid. To classify anurans

into four genera, a three-parameter model was proposed based on advertisement calls1, which

used mean values for dominant frequency, coefficients of variation of root-mean square energy,

and spectral flux [Gingras and Fitch, 2013]. With this model, three classifiers were employed

for classification: kNN, a multivariate Gaussian distribution model and GMM [Gingras and

Fitch, 2013]. Chen et al. [2012] proposed a method based on syllable duration and a multi-

stage average spectrum for frog call recognition. Their recognition stage was completed by the

Euclidean distance-based similarity measure. Camacho et al. [2013] used the loudness, timbre

and pitch to detect frogs with a multivariate ANOVA test.

2.3.2 Time-frequency features for frog call classification

For frog call classification, one-dimensional recording waveform is often transformed into its

two-dimensional time-frequency representation. Then, features based on the time-frequency

representation are computed for classification. Acevedo et al. [2009] developed two feature

sets for automated animal classification. The first was minimum and maximum frequencies,

call duration, and maximum power; the second was minimum and maximum frequencies, call

duration, and frequency of maximum power in eight segments of duration. With two feature

sets, three classifiers were used for the classification: LDA, DT, and SVM. Brandes [2008]

proposed a method for classifying animal calls using duration, maximum frequency, and fre-

quency bandwidth, and with HMM used as the classifier. Yen and Fu [2002] combined wavelet

transform and two different dimensionality reduction algorithms to produce the final feature.

Then, a NN classifier is used for frog call classification. Grigg et al. [1996] developed a system

to monitor the effect of the introduced Cane Toad on the frog population of Queensland. The

1an advertisement call is produced by a male frog in order to attract females during the breeding season and to
warn other rival males of his presence.
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classification was based on the local peaks in the spectrogram using Quinlan’s machine learning

system, C4.5. Brandes et al. [2006] proposed a method to classify frogs using central frequency,

duration, and bandwidth with a Bayesian classifier. Croker and Kottege [2012] introduced a

novel feature set for detecting frogs with a similarity measure based on Euclidean distance.

The feature set contained dominant frequency, frequency difference between the lowest and

dominant frequencies, frequency difference between the highest and dominant frequencies, time

from the start of the sound to the peak volume, and time from the peak volume to the end of the

sound.

2.3.3 Cepstral features for frog call classification

Cepstral features (MFCCs) are popular for frog call classification. Jaafar et al. [2013a] intro-

duced MFCCs and LPCs as features. Then kNN and SVM were used as classifiers for frog call

identification. Yuan and Ramli [2013] also used MFCCs and LPCs as features. Then kNN was

used as the classifier for frog sound identification. Lee et al. [2006] used the averaged MFCCs

and LDA for the automatic recognition of animal sounds. Bedoya et al. [2014] combined

MFCCs and LAMDA for frog call recognition. Vaca-Castano and Rodriguez [2010] proposed

a method to identify animal species, which consisted of MFCCs, PCA and kNN. Jaafar et al.

[2013b], Tan et al. [2014] published three papers about frog call classification using MFCCs, ∆

MFCC and ∆∆ MFCC calculated as features. Then kNN and SVM were used for classification.

Colonna et al. [2012a] introduced MFCCs for classifying anurans with kNN.

2.3.4 Other features for frog call classification

Besides temporal features, perceptual features, time-frequency features, and cepstral features,

other features are introduced to classify frog calls. Wei et al. [2012] proposed a distributed

sparse approximation method based on `1 minimization for frog call classification. Dang

et al. [2008] extracted the vocalisation waveform envelope as features, then classified calls by

matching the extracted envelope with the original signal envelope. Kular et al. [2015] treated

the sound signal of a frog call as a texture image. Then, texture visual words and MFCCs were

calculated for frog call classification.
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2.4 Classifiers

For frog call classification, numerous pattern recognition methods have been used to construct

the classifier, such as Bayesian classifier [Brandes et al., 2006], kNN [Colonna et al., 2012a,

Dayou et al., 2011, Gingras and Fitch, 2013, Han et al., 2011, Huang et al., 2009, 2008, Jaafar

et al., 2013a,b,b, Vaca-Castano and Rodriguez, 2010, Yuan and Ramli, 2013], SVM [Acevedo

et al., 2009, Gingras and Fitch, 2013, Huang et al., 2009, 2008, Jaafar et al., 2013a, Tan et al.,

2014], HMM [Brandes, 2008], GMM [Gingras and Fitch, 2013, Huang et al., 2008], NN

[Huang et al., 2014a, Yen and Fu, 2002], DT [Acevedo et al., 2009, Grigg et al., 1996], one-

way multivariate ANOVA [Camacho et al., 2013], and LDA [Acevedo et al., 2009, Lee et al.,

2006]. Besides classifiers, other methods for classifying frog species included those based on

the similarity measure [Chen et al., 2012, Croker and Kottege, 2012, Dang et al., 2008] and

those based on the clustering technique [Bedoya et al., 2014, Colombia and del Cauca, 2009,

Wei et al., 2012]. The summary of classifiers for frog call classification is listed in Table 2.2.

kNN is the most commonly used classifier for its simplicity and easy application. However,

kNN is sensitive to the local structure of the data, as well as to the distance and distance

function. Therefore, kNN is often run multiple times based on different initial points. SVM

is another widely used classifier for its good generalisation ability. However, the performance

of SVM is quite sensitive to the selection of the regularisation and kernel parameters, and it is

possible to over-fit when tuning these hyper-parameters. Since selecting suitable parameters for

SVM is very important, most previous studies conducted the parameter setting by grid search

[Hsu et al., 2003].

2.5 MIML or ML learning for bioacoustic signal classification

To the best of this author’s knowledge, there is still no paper that uses MIML or ML learning to

focus on frog call classification. In contrast, some previous research has applied MIML or ML

learning to study bird calls.

For MIML learning, Briggs et al. [2012] introduced the MIML classifiers for acoustic

classification of multiple simultaneously vocalising bird species. In their method, a supervised

learning classifier (random forest) was first employed for segmenting acoustic events. Then

features were extracted from each segmented acoustic event. Before putting features into
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Table 2.2: A brief summary of classifiers in the literature
Reference Classifier Reference Classifier
Brandes et al. [2006] Bayesian classifier Acevedo et al. [2009] Support vector machine
Huang et al. [2008] K-nearest neighbour Huang et al. [2009] Support vector machine
Huang et al. [2009] K-nearest neighbour Tan et al. [2014] Support vector machine
Vaca-Castano and Rodriguez [2010] K-nearest neighbour Gingras and Fitch [2013] Support vector machine
Dayou et al. [2011] K-nearest neighbour Jaafar et al. [2013a] Support vector machine
Han et al. [2011] K-nearest neighbour Xie et al. [2015c] Support vector machine
Gingras and Fitch [2013] K-nearest neighbour Brandes [2008] Hidden Markov model
Jaafar et al. [2013b] K-nearest neighbour Huang et al. [2008] Gaussian mixture model
Jaafar et al. [2013a] K-nearest neighbour Gingras and Fitch [2013] Gaussian mixture model
Yuan and Ramli [2013] K-nearest neighbour Huang et al. [2014a] Neural networks
Jaafar and Ramli [2013] K-nearest neighbour Yen and Fu [2002] Neural networks
Xie et al. [2015b] K-nearest neighbour Grigg et al. [1996] Decision tree
Xie et al. [2015d] K-nearest neighbour Acevedo et al. [2009] Decision tree
Xie et al. [2015a] K-nearest neighbour Camacho et al. [2013] One-way multivariate ANOVA
Colonna et al. [2012a] K-nearest neighbour Acevedo et al. [2009] Linear discriminant analysis
Huang et al. [2008] Support vector machine Lee et al. [2006] Linear discriminant analysis

classifiers, a bag generator was used to construct a bag-level feature. Lastly, three MIML classi-

fiers were experimentally evaluated: MIML-SVM, MIML-RBF, and MIML-kNN. Dufour et al.

[2013b] used MFCCs and three MIML classifiers to classify birds. To be specific, MFCCs were

first calculated for each frame. Then two new feature vectors were computed to represent longer

segments. Lastly, three MIML classifiers were experimentally evaluated: MIML-RBF, MIML-

kNN, and M3MIML (Maximum Margin Method for Multi-instance Multi-label Learning).

For ML learning, several papers have been published in the Neural Information Process-

ing Scaled for Bioacoustics (NIPS4B challenge) [Glotin et al., 2013a], which classified birds,

insects, and amphibians recordings, followed by signal pre-processing, segmentation, feature

extraction, feature selection, and classification [Chen et al., 2013, Lasseck, 2013, Massaron,

2013, Mencıa et al., 2013, Stowell and Plumbley, 2013]. Lasseck [2013] first processed the

recordings via the application of STFT, noise reduction and segmentation. Then, file-statistics,

segment-statistics and segment-probabilities were calculated as features. Finally, an ensemble

of randomised decision trees was used for the classification of each sound class. Stowell and

Plumbley [2013] used either MFCC statistics (52 dimensions), chirplet histograms (up to 20,000

dimensions), or both, as features. Then, random forest was used for ML classification. Mencıa

et al. [2013] proposed a new feature extraction method via an unsupervised generation of an

aleatory number of features, which included random patching, a de-noising auto-encoder unit

and subsequent convolution. For the classification, a pairwise ensemble of SVMs, random

decision trees and a single layer NN were used. Massaron [2013] described an approach
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that involved building an ensemble of generalised linear models and a classification model by

hinge loss and program based on stochastic gradient descent optimisation, and boosted trees

ensembles. Chen et al. [2013] first calculated prominent features from windowed MFCCs,

and leveraged them to build an ensemble classifier which was a blend of different classifiers

(Gradient Boosting Tree models, random forest, Lasso and elastic-net regularized generalised

linear model).

2.6 Deep learning for animal sound classification

During the past years, deep learning techniques have demonstrated great success in voice

recognition and synthesis [Deng et al., 2013, Graves et al., 2013, Ze et al., 2013]. For bird

sound classification, some researchers have explored deep learning techniques [Sprengel et al.,

2016, Tóth and Czeba, 2016]. For frog call classification, Colonna et al. [2016] used a trained

deep learning model to classify frog sounds with MFCCs. This paper investigated deep learning

techniques for frog call classification, but it is still suffer from the problem of computing power,

which can not be well addressed in wireless sensor networks. Moreover, deep learning tech-

niques are especially data hungry, which make it difficult to use them for frog call classification

due to the size of our dataset.

2.7 Classification work for birds, whales, and fishes

For the bioacoustic signal classification, many animals, besides frogs, have been studied, such

as birds, whales, and fishes. Here we mainly review the past three years’ work, because our

thesis focuses on the classification of frog vocalisations.

For birds, Ganchev et al. [2015] developed an automated acoustic recogniser for Southern

Lapwing Vanellus chilensis lampronotus vocalisations, which was used to detect and timestamp

call events of the target species. Sandsten et al. [2016] use the multitapers for the calculation of

the ambiguity spectrum, which gives an increased robustness to jitter and background noise and

a consequent improvement in performance. Raghuram et al. [2016] propose a methodology to

automatically classify birds based on their chirping patterns. Besides, an effort was made to map

characteristics of bird such as size, habitat, and types of calls, on to their sounds. Zhang et al.
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[2016] used the multi-label classification for detecting acoustic pattens, which was subsequently

applied for assisting bird species surveys. Kaewtip et al. [2016] presented a different approach

to birdsong phrase classification using template-based techniques suitable even for limited

training data and noisy environments. Boulmaiz et al. [2016] proposed a tonal region detector

using sigmoid function to detect the tonal regions. Then, the novel features named gammatone

teager energy cepstral coefficients were extracted for the classification using a deep neural

network classifier. Ruiz-Muñoz et al. [2016] uses different dissimilarity measures between

bags and explore whether the subsequent application of metric learning/adaptation methods

and the construction of dissimilarity spaces allowed increasing the classification performance

of birdsong recordings.

For whales, Huang et al. [2014c] used statistical temporal-spectral analysis of the down-

sweep chirps from a localised whale group, which can successfully classify these calls into

six or seven types. Huang et al. [2014b] proposed a method to classification whales using

a combination of k-means clustering and several features: center frequency, upper and lower

frequency limits, as well as amplitude-weighted mean frequency. Xian et al. [2015] applied

the Weyl transform to represent the vocalization of marine mammals, which can capture the

global information of signals. Ou et al. [2015] used the spectrograms generated with the

Pseudo Wigner-Ville Distribution (PWVD) to represent the Ballen whale downsweep calls,

which provided much higher simultaneous time-frequency resolution. The PWVD allowed

bioacousticians to study the fine TF structures of the sound, such as the instantaneous frequency,

instantaneous bandwidth, contour slope, etc. Xian et al. [2016] applied manifold learning

methods, in particular ISOMAP and Laplacian Eigenmap, to examine the underlying geometric

structure of whale vocalisations. The classification accuracy can be consistently improved by

using the intrinsic structure of whale vocalisations.

For fishes, Zhang et al. [2014] proposed a method of fish classification based on the wavelet

packet and bi-spectrum. The sub-band energy of wavelet packet and the bi-spectrum were

combined to classify three fish species by the RBF SVM. Malfante et al. [2016] presented an

automatic fish sounds classification system. Four classes can be detected with an accuracy of

94%. Total 66 features were considered with random forest. Noda et al. [2016] used Linear and

Mel Frequency Cepstral Coefficients, Shannon Entropy (SE) and Syllable Length (SL) for the

classification of 102 different fish species, which achieved an accuracy of 95.58% by SVM.
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2.8 Experiment results of state-of-the-art frog call classification

2.8.1 Evaluation criteria

Accuracy is the most widely used statistical criterion for evaluating frog call classification.

Other evaluation criteria such as precision, recall, sensitivity, specificity, F-measure, and ROC

curves are also used. Before defining these evaluation criteria, we first define true positives (TP),

true negatives (TN), false negatives (FN), and false positives (FP) as described by [Gordon et al.,

2003] (1) TP: correctly recognised positives; (2) TN: correctly recognised negatives; (3) FN:

positives recognised as negatives; (4) FP: negatives recognised as positives. Then, accuracy,

precision, recall (sensitivity), specificity, and false positive rate can be defined as

Accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

Precision =
TP

TP + FP
(2.3)

Recall =
TP

TP + FN
(2.4)

Specificity =
TN

FP + TN
(2.5)

FPR =
FP

FP + TN
(2.6)

2.8.2 Previous experimental results

Table 2.3 shows the list of summarised frog call classification methods, together with the

database they used and corresponding performance. From Table 2.3, we can find that few

studies explored frog vocalisations using signal processing and machine learning techniques

before 2010. Due to the decrease of frog biodiversity, advances in signal processing, machine

learning techniques and acoustic sensors, the research in frogs has been increased in the last

five years. In addition, few datasets are publicly shared with researchers. The classification
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performance of different studies varies a lot. One of the main reasons is the use of different

datasets.

Table 2.3: A brief overview of frog call classification performance
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2.9 Summary of research gaps

This chapter reviews three main parts of a frog call classification system: signal pre-processing,

feature extraction, and classification. The review also points out the research gaps in current

literature as follows:

2.9.1 Database

One major problem for frog call classification is the lack of a universal database. The databases

used in prior work are often related to geographical regions, because researchers from different

countries focus on particular frog species in their specific area (Table 2.3). Therefore, it is diffi-

cult for researchers to compare their particular classification frameworks. More data is needed

to compare the performance and to improve the robustness of the classification frameworks.

2.9.2 Signal pre-processing

Currently, STFT is the most widely used technique for frog call classification. However, STFT

has a trade-off between time and frequency resolution, which restricts the discriminability of

features extracted from the spectrogram.

Noise reduction is an optional processing step for frog call classification. For some databases

used as shown in Table 2.3, frog recordings have a high SNR, where noise reduction is unnec-

essary. However, when studying field recordings, noise reduction is essential for improving the

classification performance [Bedoya et al., 2014, Huang et al., 2014a]. After noise reduction,

both the accuracy of syllable segmentation and feature extraction can be relatively improved.

Frog syllable segmentation based on energy and zero-crossing rate cannot address field

recordings which are very noisy. This method cannot segment frog syllables in field recordings

with multiple frog species. Recent use of unsupervised learning algorithms opens a path for

segmenting frog syllables in field recordings with multiple frog species. However, like other

unsupervised algorithms, this method has a disadvantage that not all segmented syllables are

frog vocalisations [Potamitis, 2015]. Briggs et al. [2012] used a supervised random forest for

bird call segmentation. However, this method required lots of tagged acoustic data to train the

classifier.
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For syllable segmentation, temporal features are more sensitive to the background noise than

perceptual features, because different frequency components can be separated by transforming

the signal from temporal domain to perceptual domain. However, temporal features cannot

segment frog syllables in field recordings with multiple frog species, because temporal features

have no ability to separate different frequency components. Compared to temporal features, the

use of amplitude-frequency information provides a robust method to segment field recordings.

2.9.3 Acoustic features

Most previous studies directly transplant features developed for speech recognition to anal-

yse frog calls, which might not be suitable. For example, MFCCs, which are based on the

calculation of a non-linear Mel-scale filter-bank, are designed for studying speech. The Mel-

scale is designed for the perceptual scale of pitches judged by human listeners. The frequency

distribution might not be suitable for studying frogs. The direct use of speech features will

therefore restrict classification performance.

Most perceptual features are extracted by directly calculating the statistics over frames,

which will loss the temporal information. To add the temporal information of the feature set,

temporal features can be combined with perceptual features and cepstral features to achieve

higher classification accuracy. Transforming audio data into its two-dimensional representation

(such as a spectrogram) for quick visual analysis, has led to increasing attention being given to

image processing techniques for automatically analysing animal calls. Image features derived

from spectrograms are worth investigating for frog call classification. Sparse coding has been

widely applied for feature extraction in other scaled bioacoustics studies [Glotin et al., 2013b,

Razik et al., 2015], which could be a potential direction for frog call classification.

2.9.4 Classifiers

Almost all previous studies assume that each recording has only one frog species, and then

a SISL classification framework is adopted to classify frog calls. However, recent advances

in acoustic sensor techniques have collected large volumes of acoustic data that have multiple

simultaneously vocalising frog species, because different frog species tend to call together to

make a frog chorus (Figure 2.2). Based on this attribute of frog call recordings, the classification

problem can be naturally framed as a MIML classification or a ML classification problem rather
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than SISL classification. In previous studies, MIML and ML learning have been used to solve

bioacoustic problems, but mainly focus on birds.

Cyclorana novaehollandiae Litoria rothiiLitoria rubella

Litoria nasuta

Litoria fallax

Figure 2.2: An example of field recording with multiple simultaneously vocalising frog species.
Five frog species exist in this 10-second recording: Cyclorana novaehollandiae, Litoria rubella,
Litoria nasuta, Litoria rothii, and Litoria fallax

In the following chapters, we mainly aim to address the above identified research gaps in

signal pre-processing, feature extraction, and classification. To do so, four experiments are

designed and organised in the manner outlined in Figure 2.3.
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Chapter 3

Chapter 4

Chapter 5

Chapter 6

1. Review previous work

2. Develop a novel feature set to improve 

current classification performance

1. Proposed fused feature set can achieve a better 

classification performance compared to most previous 

studies. 

2. Cepstral features are effective for classifying frog 

calls, but very sensitive to the background noise

Need to design a novel cepstral feature 

with both good classification performance 

and an excellent anti-noise ability

Use wavelet packet decomposition to 

design a novel feature

1. Wavelet-based cepstral features are effective for 

classifying frog calls, and robust to background noise

2. These features can be used for both trophy and field 

recordings

Use multiple-instance multiple-label (MIML) 

learning to classify frog calls in field 

recordings

Use multiple-label (ML) learning to classify 

frog calls

Trophy recordings have a high SNR and one frog 

specie per recording.

Field recordings have multiple simultaneously 

vocalising frog species. Need to design a suitable 

classification framework

To improve the classification performance, we can  (1) use 

supervised learning to perform event detection but we do not 

have much annotated acoustic data for training  or (2) use 

multiple-label learning

MIML learning can effectively classify frog calls in field 

recordings. However, the classification performance is 

highly effected by acoustic event detection

ML learning can improve the classification performance 

of MIML learning without the segmentation process

Trophy 

recordings

Trophy and 

field 

recordings

Trophy 

recordings

Trophy 

recordings

Goal Outcome

Motivation

Goal

Goal

Goal

Motivation

Motivation

Outcome

Outcome

Outcome

Figure 2.3: Structure of the four main chapters of this thesis
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Chapter 3

Frog call classification based on feature

combination and machine learning algorithms

Research problem

Previous studies classified frog calls in trophy recordings using one or two types of features

from temporal, perceptual, and cepstral features. However, a combined feature set using one or

two types of features cannot classify frog species that share similar characteristics in one or two

domains (temporal domain, perceptual domain, and cepstral domain).

Research sub-question

How to build a feature set for further improving frog call classification performance in trophy

recordings?

3.1 Overview

This chapter aims to compare various feature sets using different machine learning algorithms,

and finds the best feature set for classifying frogs in trophy recordings. Based on the classifica-

tion performance, suggested features can be adapted to study field recordings. In particular, we

want to know which feature can be adopted from classifying frog species in trophy recordings

to field recordings, because the final goal of this thesis is to classify multiple simultaneously

vocalising frog species in field recordings.

The proposed method is evaluated using twenty-four frog species, which are geographically

well distributed through Queensland, Australia. Five feature sets are constructed and evaluated

27
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using five machine learning algorithms.

3.2 Methods

Our frog call classification system contains six modules (Figure 3.1): data description, syllable

segmentation, pre-processing, feature extraction, feature combination, and classification. De-

tailed information of each module is described in following subsections. Different from [Huang

et al., 2009], pre-processing is directly applied to segmented syllables rather than continuous

recordings.

Data 
collection

Pre-processing
Feature 

extraction and 
combination

Syllable 
segmentation

Classification

Acoustic 
sensor

Pre-emphasise 
and

windowing

Temporal feature
Perceptual feature

Cepstral feature

Classifier 
model

Training Testing

Figure 3.1: Flowchart of frog call classification system using the combined feature set

3.2.1 Data description

In this chapter, twenty-four frog species, which are widespread in Queensland, Australia, are

selected for experiments (Table 3.1). All those frog species are collected from trophy recordings

[Stewart, 1999]. All the recordings are two-channel, sampled at 44.10 kHz and saved in MP3

format. Similar with other trophy recordings, used recordings are obtained with a directional

microphone and have a high SNR. Each recording includes one frog species with the duration

ranging from eight to fifty-five seconds.

3.2.2 Syllable segmentation based on an adaptive end point detection

Each recording is made up of multiple continuous calls of one frog species. For frogs, one sylla-

ble is an elementary acoustic unit for classification, which is a continuous vocalisation emitted

from an individual [Huang et al., 2009]. In this chapter, one approach built on the Härmä’s

method is used to perform syllable segmentation for frog calls [Härmä, 2003]. The syllable
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Table 3.1: Summary of scientific name, common name, and corresponding code. Frog species
name with asterisk means that it needs to be smoothed before segmentation

No. Scientific-name Common-name Code
1 Assa darlingtoni Pouched frog ADI
2 Crinia parinsignifera Eastern sign-bearing froglet CPA
3 Crinia signifera Common eastern froglet CSA
4 Limnodynastes convexiusculus Marbled frog LCS
5 Limnodynastes ornatus Ornate burrowing frog LOS
6 Limnodynastes tasmaniensis* Spotted grass frog LTS
7 Limnodynastes terraereginae Northern banjo frog LTE
8 Litoria caerulea Australian green tree frog LCA
9 Litoria chloris Red-eyed tree frog LCS

10 Litoria latopalmata Broad-palmed frog LLA
11 Litoria nasuta Striped rocket frog LNA
12 Litoria revelata Revealed tree frog LEA
13 Litoria rubella Desert tree frog LRA
14 Litoria tyleri Southern laughing tree frog LTI
15 Litoria verreauxii verreauxii Whistling tree frog LVI
16 Mixophyes fasciolatus Great barred frog MFS
17 Mixophyes fleayi Fleay’s barred Frog MFI
18 Neobatrachus sudelli* Painted burrowing frog NSI
19 Philoria kundagungan Mountain frog PKN
20 Philoria sphagnicolus* Sphagnum frog PSS
21 Pseudophryne coriacea Red-backed toadlet PCA
22 Pseudophryne raveni* Copper-backed brood frog PRI
23 Uperoleia fusca* Dusky toadlet UFA
24 Uperoleia laevigata Smooth toadlet ULA

segmentation process is based on the spectrogram, which is generated by applying STFT to each

recording waveform. For STFT, the window function used is Hamming window with the size

and overlap being 512 samples and 25%, respectively. The detail of the segmentation method

is described in Figure 3.2, which is based on the iterative frequency-amplitude information of

the spectrogram. This chapter focuses on the evaluation of combined features, but the accuracy

of segmentation results can greatly affect the classification performance. To reduce the bias

introduced by syllable segmentation, the segmented syllables are further filtered. First, those

syllables whose length are smaller than 300 samples are removed. Then, those syllables whose

averaged energy is smaller than 15% of the maximum energy and larger than 1.5 times the

averaged energy are removed for each frog species experimentally [Gingras and Fitch, 2013].

In this chapter, smoothing spectrogram is optionally applied to the spectrogram before the

Härmä’s algorithm, because some frog species have a large temporal gap within one syllable
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Compute 
spectrogram

Smooth 
spectrogram

Find maximum amplitude of 
spectrogram: A

Bidirectional search of the 
amplitude

A(1)-A >D ENDNo

A-B(t) >D

Remove detected 
syllable

No

Yes

Continuous frog 
calls

Syllable set

Yes

Figure 3.2: Segmentation method based on Härmä’s algorithm. Here, D is the amplitude
threshold for stopping criteria which is set at 20 dB experimentally, and the segmentation result
is sensitive with this value. A is the maximum amplitude value of the spectrogram and we save
the first maximum amplitude as A(1), B(t) is the amplitude of frame t. An asterisk denotes the
optional processing step

(see Figure 3.3). As for the smoothing, a Gaussian filter (7×7) is applied to the spectrogram,

where the size is set by taking into account a trade-off between connecting gaps within one

syllable and separating adjacent syllables. The segmentation result after smoothing is shown

in Figure 3.3. The distribution of number of syllable for all frog species after segmentation is

shown in Figure 3.4.

3.2.3 Pre-processing

Since features play an important role in the classification performance, pre-processing is applied

to each syllable to improve the accuracy of feature extraction. The pre-processing of each

syllable consists of the following steps:
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syllable gap

(a) Before smoothing

(b) After smoothing

Figure 3.3: Syllable segmentation results are marked with a red line for Neobatrachus sudelli
(one syllable)

Pre-emphasise

Some collected frog calls have low amplitude but in the high frequency, which will have an

effect on feature extraction of the spectrum at the high frequency end. To enhance those high-

frequency components and reduce the low-frequency components, a first-order high-pass filter

with finite impulse response is introduced and defined as
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Figure 3.4: Distribution of number of syllable for all frog species. The x-axis is the abbreviation
of each frog species, and the corresponding scientific name can be found in Table 3.1

y(n) = s(n)− αs(n− 1) (3.1)

where s denotes a frog syllable, y is the output of the high-pass filter, α denotes the cut-off

frequency of the high-pass filter and is set at 0.97 here, n is the n-th sample of the syllable.

Windowing

After pre-emphasis, each syllable is segmented into overlapping frames with fixed length. A

Hamming widow is used to minimise the maximum side-lobe in the frequency domain and get

side-lobe suppression, which is defined as

w(n) = 0.54− 0.46cos(
2nπ

L− 1
), 0 ≤ n ≤ L− 1 (3.2)

where L should be a positive integer, and represents the length of the frame. The coefficients

of w(n) are discrete and symmetric. The plot for window size of 512 samples is shown in

Figure 3.5. Because window sizes have an effect on the classification results, different window

sizes are optimised for different features in this chapter. The signal after windowing process is
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expressed as

x(n) = w(n)y(n) (3.3)

Figure 3.5: Hamming window plot for window length of 512 samples.

3.2.4 Feature extraction

After pre-processing of each syllable, various parametric representations are used to represent

the syllable. In the literature, a variety of parametric representations of frog calls can be found,

such as LPCs and MFCCs [Bedoya et al., 2014, Jaafar and Ramli, 2013, Yuan and Ramli,

2013]. MFCCs achieved better performance than LPCs [Yuan and Ramli, 2013]. Different

from the hybrid feature sets using in [Gingras and Fitch, 2013, Han et al., 2011, Huang et al.,

2009], our combined feature set consists of more features, such as oscillation rate [Xie et al.,

2015b], to further improve the classification accuracy. In this chapter, temporal features include

syllable duration, Shannon entropy, rényi entropy, zero-crossing rate, averaged energy, and

oscillation rate. Perceptual features contain spectral centroid, spectral flatness, spectral roll-

off, signal bandwidth, spectral flux, and fundamental frequency. Here the word perceptual is

defined according to [Lei et al., 2014]. MFCCs are used as a cepstral feature. The description

of each feature is listed below.

(1) Syllable duration: Syllable duration [Xie et al., 2015b] is directly obtained from the bounds
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(time domain) of the segmentation results.

Dr = x(ne)− x(ns) (3.4)

where ne and ns are the end and start location of one segmented syllable, respectively.

(2) Shannon entropy: Shannon entropy is the expected information content of a sequence of a

signal. It is often used to describe the average of all the information contents weighted by their

probabilities pi.

Se = −
L∑
i=1

pilog2(pi) (3.5)

where L is the length of a frog syllable.

(3) Rényi entropy: rényi entropy is calculated to obtain the different averaging of probabilities

via the parameter α, and defined as

Re =
1

1− α
log2(

n∑
i

pαi ) (3.6)

where pi is the probabilities of the occurence x(n) in the signal.

(3) Zero-crossing rate: zero-crossing rate denotes the rate of signal changes along a signal.

When adjacent signals have different signs, a zero-crossing occurs. The mathematical expres-

sion of ZCR can be defined as

Zcr =
1

2

L−1∑
n=0

[sgn(x(n))− sgn(x(n+ 1))] (3.7)

(4) Averaged energy: Averaged energy is defined as the sum of intensity of signal.

Ae =
1

L

L−1∑
n=0

x(n)2 (3.8)

(5) Oscillation rate: Oscillation rate is calculated in the frequency boundary around the fun-

damental frequency. First, the power within the frequency boundary is calculated. After

normalising the power, the first and last 20% part of the power vector are discarded due to the
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uncertainty. Next, the autocorrelation is performed by the length of the vector. Furthermore, a

DCT is employed to the vector after mean subtraction, and the position of the highest frequency

is achieved to calculate the oscillation rate.

(6) Spectral centroid: spectral centroid is the centre point of spectrum distribution. In terms

of human audio perception, it is often associated with the brightness of the sound. With the

magnitudes as the weight, it is calculated as the weighted mean of the frequencies.

Sc =

∑N−1
k=0 fkX(k)∑N−1
k=0 X(k)

(3.9)

where X(k) is the discrete Fourier transform (DFT) of the syllable signal of the k-th frame, N

is the half size of DFT.

(7) Spectral flatness: spectral flatness provides a way to quantify the tonality of a sound. A

higher spectral flatness indicates a similar amount of power of the spectrum in all spectral bands.

Spectral flatness is measured by the ratio between the geometric mean and the arithmetic mean

of the power spectrum and defined as

Sf =
exp( 1

N

∑N−1
k=0 InX(k))

1
N

∑N−1
k=0 X(k)

(3.10)

(8) Spectral roll-off: spectral roll-off is often used to measure the spectral shape, and defined

as the frequency H . Here H is the value below which the θ of the magnitude distribution is

concentrated.

H∑
k

X(k) = θ

N−1∑
k=1

X(k) (3.11)

where θ is set at 0.85, experimentally.

(9) Signal bandwidth: signal bandwidth can be used to represent the difference between the

upper and lower cut-off frequencies.

Bw =

√∑N−1
k=0 (k − Sc)2|x(n)|∑N−1

k=0 X(k)
(3.12)
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(10) Spectral flux: spectral flux is used to measure how quickly the power spectrum of a signal

is changing. The spectral flux can be obtained via the power spectrum comparison between one

frame and its previous one. The calculation of spectral flux is denoted as

Sf =

k=N
2∑

k=−N
2

H[|X(n, k)| − |X(n− 1, k)|] (3.13)

where H(x) = (x+ |x|)/2 is a half-wave rectifier function.

(11) Fundamental frequency: fundamental frequency is calculated via averaging peak intensity

of all frames within one frog syllable. If the peak intensity value is higher than an empirically

chosen or specified threshold, the frequency of that peak will be selected to calculate the

fundamental frequency.

(12) Mel-frequency cepstral coefficients (MFCCs): MFCCs, which are obtained by applying

cosine transform to a sub-band Mel-frequency spectrum within a short time, have been widely

used in bird classification [Lee et al., 2006], speech/speaker recognition [Han et al., 2006], and

frog identification [Bedoya et al., 2014]. In this chapter, MFCCs are calculated based on the

method of [Lee et al., 2006].

Step 1: Band-pass filtering: The amplitude spectrum is then filtered using a set of triangular

band-pass filters.

Ej =

N/2−1∑
k=0

φj(k)Ak, 0 ≤ j ≤ J − 1 (3.14)

where J is the number of filters, φj is the jth filter, and Ak is the amplitude of X(k).

Ak = |X[k]|2, 0 ≤ k ≤ N/2 (3.15)

Step 2: Discrete cosine transform: MFCCs for the ith frame are computed by performing DCT

on the logarithm of Ej .

Cj
m =

J−1∑
j=0

cos(m
π

J
(j + 0.5))log10(Ej), 0 ≤ m ≤ L− 1 (3.16)

where L is the number of MFCCs.
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In this chapter, the filter bank consists of 40 triangular filters, that is J = 40. The length of

MFCCs of each frame is 12 (L=12). After calculating MFCCs from each frame, the averaged

MFCCs over all frames within one syllable are calculated as

fm =

∑K
i=1(C

l
m)

K
, 0 ≤ m ≤ L− 1 (3.17)

where fm is the mth MFCCs, K is the number of frames within the syllable.

For all perceptual features and Zcr, the mean values are calculated to characterise the frog

syllable. Then, the L-dimensional MFCC vectors are concatenated with the other 11 feature

vectors to form the hybrid temporal, perceptual and cepstral (TemPerCep) features.

After the formulation of feature vectors, normalisation is conducted as

vi =
vi − µi
σi

(3.18)

where µi and σi are the mean and standard deviation computed for each feature vector i.

Let F1 represent temporal features with length L1, F2 and F3 represent perceptual features

and cepstral features with length L2 and L3, respectively. The hybrid procedure is performed as

FH = w1F1 ⊕ w2F2 ⊕ w3F3 (3.19)

where w1, w2, and w3 are the weights, ⊕ is the concatenation operation.

3.2.5 Classifier description

In this chapter we report the classification results for five classifiers: 1) LDA, 2) kNN, 3)

SVM, 4) RF, 5) ANN. Five feature sets, LPCs, MFCCs, combined temporal feature and MFCCs

(TemCep), combined temporal and perceptual features (TemPer), combined temporal, percep-

tual features, and MFCCs (TemCepPer), are fed into each classifier respectively to test their

classification performance.
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Linear discriminant analysis

After transforming the feature vector into low-dimensional space, the classification accuracy

can be improved for LDA. In LDA, the goal is to find an optimal transformation matrix to

transform the feature vector from an n-dimensional space to a d-dimensional space. A linear

mapping, which maximises the Fisher criterion JF , is used to obtain the transformation matrix

as

JF (A) = tr((ATSwA)−1(ATSBA)) (3.20)

where Sw and SB are the within-class scatter matrix and between-class scatter matrix, respec-

tively. The within-class scatter matrix and between-class scatter matrix are respectively defined

as

SW =
C∑
j=1

Nj∑
i=1

(F j
i − µj)(F

j
i − µj)T (3.21)

SB =
C∑
j=1

(µi − µ)(µi − µ)T (3.22)

where F j
i is the i-th feature vector of frog species j, µj is the mean vector of species j, C is

the number of frog species, and Nj is the number of feature vectors in species j, µ is the mean

vector of all frog species.

The optimisation of the transform matrix can be determined via finding the eigenvectors of

S−1W SB.

Aopt = argmax
tr(ATSBA)

ATSWA
(3.23)

In the recognition stage, the feature vector is first transformed into a lower-dimensional

space viaAopt derived by LDA. Then, the distance between the feature vector of the test syllable

and the feature vector representing this species is calculated. The one with minimum distance

is regarded as the identified species.
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K-nearest neighbour

For the kNN classifier, an object is classified to the majority class of its k nearest neighbours

[Huang et al., 2009]. Specifically, in the training phase, frog feature vectors are stored with

species labels. For the test phase, the simplest classification combination method is the voting

method. The k closet vectors are selected for voting, then the classification for the input feature

vector fi,c is assigned with the majority class.

The second classification combination method is to calculate the average distance between

an input frog feature vector and k closest vectors. For example, the Euclidean distance between

an input feature vector fi,c and one stored feature vector fj,c is calculated as

d(i, j) =

√√√√ n∑
c=1

(fi,c − fj,c)2 (3.24)

where i and j are indices of the feature vector, n means the dimension of the feature vector.

Next, k nearest neighbours of feature vector i are selected based on the Euclidean distance for

voting. If the following equation is satisfied

1

k1

∑
j∈s1

d(i, j(s1)) <
1

k2

∑
j∈s2

d(i, j(s2)) (3.25)

where k = k1 + k2, k1 is the number of frog species s1, k2 is the number of frog species s2.

Here, the input feature vector i will be classified as frog species s2.

The third classification combination method is to calculate the sum of similarity of k closest

feature vectors. For a binary classification task with two classes: k1 and k2. If

∑
j∈s1

d(i, j(s1)) <
∑
j∈s2

d(i, j(s2)) (3.26)

Then the input feature vector i will be classified as belonging to class s2. Following prior work

([Han et al., 2011, Xie et al., 2015b]), the distance function used for kNN is the Euclidean

function, and k is set at 1.
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Support vector machines

Due to the high accuracy and superior generalisation properties, SVM has been widely used

for classifying animal sounds [Huang et al., 2009] [Acevedo et al., 2009]. In this chapter, the

feature set obtained is first selected as training data. Then, the pairs (F n
l , L

n
l ), l = 1, 2, ..., Cl

are constructed using the selected training data, where Cl is the number of frog instances in the

training data, F n
l is the feature vector obtained from the l-th frog instance in the training data,

Lnl is the frog species label. Furthermore, the decision function for the classification problem

based on SVM [Cortes and Vapnik, 1995] is defined by the training data as

f(v) = sgn(
∑
sv

αnl L
n
l K(v, vnl ) + bnl ) (3.27)

where K(., .) is the kernel function, αnl is the Lagrange multiplier, and bnl is the constant

value. In this work, the Gaussian kernel is selected as the kernel function. Parameters α and

v are selected independently for each feature vector by grid search using cross-validation [Hsu

et al., 2003].

Random forest

RF is a tree-based algorithm, which builds a specified number of classification trees without

pruning. The nodes are split on a random drawing of m features from the entire feature set M .

A bootstrapped random sample from the training set is used to build each tree. The advantage

of RF is its ability to generate a metric to rank predictors based on their relative contribution to

the model’s predictive accuracy [Bao and Cui, 2005]. The prediction is defined as

Pred =
1

K

K∑
n=1

Ti (3.28)

where Ti is the n-th tree response of the RF. In this work, the number of trees K is set at 300

trees to characterise frog calls. As for the predictor variables m, it is set at
√
N , where N is the

feature dimension in a syllable.
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Artificial neural network

ANN is a non-linear, adaptive, machine learning tool with great capabilities for learning, gen-

eralisation, non-linear approximation, and classification. An ANN architecture often consists

of many interconnected neurons organised in successive layers: pattern layer, summation layer,

and decision layer. The neuron in class is often computed by a Gaussian function. Then, the

summation layer uses summation units to memorise the class conditional probability density

functions of each class through a combination of Gaussian densities. Lastly, the decision layer

unit classifies the pattern in accordance with the Bayesian decision rule based on the output of

all summation layer neurons as

D(F ) = argmaxpi(F ), i = 1, ..., N (3.29)

where i is the species index, N is the total number of frog species.

pi(F ) =

mi∑
j=1

βijφij(F ) (3.30)

where mi is the number of Gaussian components, βij and φij(F ) can be represented as

mi∑
j=1

βij = 1 (3.31)

φij(F ) =
1

(2π)(d/2)σd
exp[−(F − µij)T (F − µij)

2σ2
] (3.32)

where i = 1, ..., N , j = 1, ...,mi, d denotes the dimension of the input vector F , σ is the

smoothing parameter, µij is the mean vector and the central of the classification. In this chapter,

one ANN classifier named MLP is used to classify frog calls.

3.3 Experiment results

In this experiment, performance statistics is evaluated using 5-fold cross-validation for testing

the robustness of our proposed feature set. The performance of the proposed frog call classifica-

tion system is evaluated by quantitatively expressed detection metrics, such as average accuracy,
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precision, and specificity. The definition of accuracy, precision, and specificity can be found in

Chapter 2.8.1.

3.3.1 Effects of different feature sets

Figure 3.6 illustrates the classification accuracy with different feature sets: LPCs, MFCCs

(Cep), temporal features and MFCCs (TempCep), temporal features and perceptual features

(TemPer), and temporal features, perceptual features and MFCCs (TemPerCep). It can be seen

that cepstral features (Cep, TempCep, TemPerCep) have more stable performance than LPCs and

perceptual features. It is evident that our proposed combined feature set (TemPerCep) shows

outstanding performance of all proposed feature sets of all the machine learning techniques.

The reason for the high classification accuracy is that frog calls are of short duration and cover a

small spectral band. Our proposed combined feature set, TemPerCep, can better characterise the

content of frog calls. Although the classification performance of TemPerCep is not significantly

higher than other feature sets, the difference does show that our proposed feature set is suitable

and effective for the classification of frog calls.

Machine learning techniques

LDA K-NN SVM RF MLP

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1

LPC

Cep

TemCep

TemPer

TemPerCep

Figure 3.6: Classification results with different feature sets using the window size of 64 samples

3.3.2 Effects of different machine learning techniques

Figure 3.7 shows the frog call classification performance of TemPerCep with different ma-

chine learning techniques. The high classification results in term of the accuracy, sensitivity

and specificity measure of different classifiers indicates good classification performance. It

can be observed that RF achieves the best classification performance, while the classification
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performance of LDA is the lowest. Meanwhile, the classification performance of SVM and

MLP is very good, which might be that the features and classifiers are quite suitable. It can be

seen from Figure 3.7 that frog call classification with different machine learning techniques can

achieve good performance with our combined feature set, because the classification accuracy is

very high. It can also be noted that RF can be highly recommended for classification of frog

calls due to the highest classification accuracy.
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Figure 3.7: Results of different classifiers

3.3.3 Effects of different window size for MFCCs and perceptual features

As we know, the window size has an effect on the MFCCs and perceptual features. Therefore,

a different window size will lead to different classification performance (Figures 3.8 and 3.9).

The window size used for the test is 32, 64, 128, 256, because the syllable length of some

frog species is less than 512 samples. It is found that the best classification performance for

MFCCs is achieved with window size of 64 samples. For TemPer, the window size of 64

obtains the best classification performance. It also can be observed that SVM here achieves the

best classification performance, which might be the best match between MFCCs of different

window sizes and SVM. Since RF shows the best classification performance when using the

combined feature sets (Figures 3.6 and 3.7) and this chapter focuses on the feature combination,

we will still use RF for the subsequent experiment. Moreover, different window sizes of MFCCs

have a larger variation than TemPer features, which might be because temporal features have a

high weight in TemPer for the classification task.
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Figure 3.8: Classification results of MFCCs with different window sizes
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Figure 3.9: Classification results of TemPer with different window sizes

3.3.4 Effects of noise

To further evaluate the robustness of our proposed feature set, white noise with different SNRs

of 40 dB, 30 dB, 20 dB, 10 dB, 0dB, and -10 dB is added to the frog calls. Because this

chapter focuses on the evaluation of features rather than the segmentation method, the artificial

noise is added after syllable segmentation. Since RF has shown good performance for frog call

classification in Figures 3.8 and 3.9, we only use RF to test the effects of different levels of

artificial noise. The classification results of different levels of noise contamination are shown in

Figure 3.10. It is found from Figure 3.10, that MFCCs (Cep) are very sensitive to background
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noise, compared to other feature sets. Comparing TemCep with TemPer, it can be observed that

perceptual features have a better anti-noise ability than the cepstral feature. It is also found

that LPCs have a good anti-noise ability when SNR is larger than 10 dB, but the classification

accuracy quickly decreases when SNR is smaller than 10 dB.

Figure 3.10: Sensitivity of different feature sets for different levels of noise contamination

3.4 Discussion

Table 3.2 shows the classification performance of previous methods. Since previous studies

often used different datasets to perform the classification task, this research implements all

those features and apples them to the used dataset with the same classifier (SVM). Compared

to those previous methods, this proposed combined feature set significantly outperforms other

methods. Therefore, it can be concluded that the results of this research stand above the current

classification performance. From Table 3.2, we can also observe that MFCCs are the most

popular feature that has been used for frog call classification. Among all used machine learning

techniques, RF shows the superior performance and is widely used for the classification task. It

can be found that the classification accuracy of TemPerCep does not show significant improve-

ment when compared to MFCCs. However, combining temporal and perceptual features with

cepstral features greatly improves the anti-noise ability of MFCCs.
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Table 3.2: Comparison with previous used feature sets
Ref. Feature Accuracy (%)
[Juan Mayor, 2009, Yuan and Ramli, 2013] LPCs 93.5
[Bedoya et al., 2014, Jaafar and Ramli, 2013, Lee et al., 2006, Xie et al., 2015b] MFCCs 94.9

[Han et al., 2011]
Spectral centroid, Shannon entropy,
Rényi entropy

75.6

[Xie et al., 2015b]
Syllable duration, dominant frequency,
oscillation rate, frequency modulation,
energy modulation

92.3

[Huang et al., 2014a]
Spectral centroid, signal bandwidth,
spectral roll-off, threshold-crossing rate,
spectral flatness, and average energy

95.8

Our feature set TemPerCep 99.1

3.5 Summary

In this chapter, a novel combined feature set was proposed to classify frog calls in trophy

recordings with five machine learning algorithms. After segmenting continuous recordings

into individual syllables, a variety of acoustic features are extracted from each syllable. Then,

different features are combined to construct different feature sets. Finally, five machine learn-

ing techniques are used to classify frog calls in trophy recordings with different feature sets.

Classification accuracy for 24 frog species in trophy recordings is 99.1%, which is much higher

than other feature sets. The results demonstrate that a combination of temporal, spectral and

cepstral features outperforms the state-of-the-art features used for frog call classification in tro-

phy recordings. Compared to temporal and spectral features, cepstral features achieve a higher

classification accuracy when used individually. However, they are sensitive to the background

noise. Therefore, we aim to develop a novel cepstral feature with a good anti-noise ability in

the subsequent analysis.



Chapter 4

Adaptive frequency scaled wavelet packet

decomposition for frog call classification

Research problem

Following the summary of Chapter 3, cepstral features have been widely used for classifying

frog species in trophy recordings with a high classification accuracy. However, they are very

sensitive to background noise.

Research sub-question

How to develop robust cepstral features to classify frog species in both trophy and field record-

ings?

4.1 Overview

This chapter presents a novel cepstral feature based on adaptive frequency scaled wavelet

packet decomposition (WPD), whose goal is to develop a novel feature with a good anti-

noise ability. Since both trophy and field recordings are studied in this chapter, developing

features with a good anti-noise ability is important for dealing with field recordings. Different

from most previous studies that extracted features via Fourier transform, WPD is employed for

feature extraction. The classification performance is evaluated with two different datasets from

Queensland, Australia (high SNR: 18 frog species from trophy recordings and low SNR: field

recordings of eight frog species from James Cook University recordings). Although trophy

recordings are used in this chapter, each recording is assumed to have only one frog species and

the classification framework is regarded as a SISL classification problem.

47
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4.2 Methods

The architecture of the proposed classification method contains five modules: syllable segmen-

tation, syllable feature extraction, adaptive frequency scale generation, WPD feature extraction

and classification (see Figure 4.1). Each module is described in the following sections.

(3) Adaptive frequency scale 

generation 

Track duration Dominant frequencyOscillation rate

K-means 
clustering

Wavelet packet 
decomposition

AWSCCs

Spectrogram
Spectral peak 

track extraction

Adaptive frequency 
scale

Syllable 
waveforms

STFT(2)

Syllable 
waveforms

k-NN or SVM Frog speciesFeature set 1 or 2

Spectrogram
Recording 
waveform

Pre-processing STFT(1)
Syllable 

segmentation
Syllablles

Feature set 1

Feature set 2

Figure 4.1: Block diagram of the frog call classification system. The line of dashes indicates the
extracted feature set. AWSCCs is the abbreviation of adaptive wavelet packet decomposition
sub-band cepstral coefficients. STFT is short-time Fourier transform. For STFT(1), the window
function, size and overlap are Kaiser window, 512 samples and 25%. For STFT(2), the window
function, size and overlap are Hamming window, 128 samples and 90%. In this diagram, two
feature sets are extracted, the description of other feature sets is shown in Figure 4.6

4.2.1 Sound recording and pre-processing

Two datasets obtained from a trophy recording [Stewart, 1999] and James Cook University

(JCU) were selected for this chapter. Recordings, which were collected from the CD, are two-

channel, sampled at 44.10 kHz and saved in MP3 format. All recordings were obtained with

a directional microphone and have a high SNR. Each recording includes one frog species, and

has a duration ranging from twenty-one to fifty-four seconds. The calls of eighteen frog species

recorded in Queensland, Australia were used to develop the detailed methodology described in
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Figure 4.1. To reduce the subsequent computational burden, all the recordings selected from the

CD were re-sampled at 16 kHz per second, mixed down to mono, and saved in WAV format.

The JCU recordings were obtained from Kiyomi dam (S 19◦ 22
′

16.0
′′ , E 146◦ 27

′
31.3

′′)

BG Creek dam (S 19◦ 27
′

1.23
′′ , E 146◦ 24

′
5.65

′′ ) and Stony Creek dam (S 19◦ 24
′

07.0
′′ , E

146◦ 25 51.3) in Townsville, using acoustic sensors. The recordings were stored on 16 GB SD

cards in 64 kbps MP3 mono format and have a low SNR compared to the trophy recording. The

sample rate is 16.00 kHz. All the JCU recordings started around sunset, finished around sunrise

every day and have 12 hour duration. In this chapter, JCU recordings are field recordings.

4.2.2 Spectrogram analysis for validation dataset

In this chapter, three syllables for each frog species are set aside and used as a reference data set.

For the trophy recording, three parameters including syllable duration, dominant frequency, and

oscillation rate, are manually calculated for those three syllables of each species and averaged,

as listed in Table 4.1. The reference data set is excluded from the data used in the testing stage.

Table 4.1: Parameters of 18 frog species averaged of three randomly selected syllable samples
in the trophy recording. These selected samples make the reference data set

No. Scientific name Abbreviation
Syllable duration
(millisecond)

Peak
frequency (Hz)

Oscillation rate
(cycle/second)

1 Assa darlingtoni ADI 80 3200 160
2 Crinia parinsignifera CPA 250 4300 350
3 Litoria caerulea LCA 500 500 50
4 Litoria chloris LCS 800 1700 220
5 Litoria fallax LFX 430 4700 70
6 Litoria gracilenta LGA 1400 2700 100
7 Litoria latopalmata LLA 30 1400 2100
8 Litoria nasuta LNA 100 2800 160
9 Litoria revelata LRA 160 4100 70
10 Litoria rubella LUA 500 2900 60
11 Litoria verreauxii verreauxii LVV 270 3100 125
12 Mixophyes fasciolatus MFS 200 1200 140
13 Mixophyes fleayi MFI 50 1000 140
14 Philoria kundagungan PKN 170 430 95
15 Pseudophryne coriacea PCA 300 2400 80
16 Pseudophryne raveni PRI 370 2500 45
17 Rheobatrachus silus RSS 510 1500 60
18 Uperoleia laevigata ULA 450 2400 150
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For the JCU recordings2, the corresponding parameters are described in Table 4.2. Com-

pared to the trophy recordings from the CD, peak frequency shows a smaller variation than

syllable duration and oscillation rate.

Table 4.2: Parameters of eight frog species obtained by averaging three randomly selected
syllable samples from recordings of James Cook University. NA indicates there is no oscillation
structure in the spectrogram for the background noise and frog chorus. Since syllable durations
of Rhinella marina (Commom name: Canetoad) are very different from each other, we manually
set the duration of Canetoad using the maximum duration of other frog species, which is 500
milliseconds

No. Scientific name Abbreviation
Syllable duration
(millisecond)

Peak
frequency (Hz)

Oscillation rate
(cycles/second)

1 Rhinella marina RMA 500 680 12
2 Cyclorana novaehollandiae CNE 350 600 NA
3 Limnodynastes terraereginae LTE 80 630 NA
4 Litoria fallax LFX 120 4100 50
5 Litoria nasuta LNA 100 2700 NA
6 Litoria rothii LRI 350 1150 15
7 Litoria rubella LUA 500 2400 NA
8 Uperolela mimula UMA 120 2400 40

4.2.3 Syllable segmentation

The syllable segmentation process is described in Chapter 3.2.2. To further improve the seg-

mentation result, the averaged energy of which is less than 15% of the maximum energy, are

removed [Gingras and Fitch, 2013]. The distribution of syllable numbers after segmentation for

all frog species is shown in Figure 4.2.

For the JCU recordings, bandpass filtering is applied to each recording before using the

Härmä’s method [Härmä, 2003]. A bandpass filter is first used to filter specific frog species,

because different frog species tend to call simultaneously. The filtering is

S
′
(t, f) =


S(t, f) Flower ≤ f ≤ Fupper

0

Here, S ′
(t, f) is the filtered spectrogram, the Flower and Fupper are lower and upper cutoff

2https://www.ecosounds.org/
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frequency and calculated as

Fupper = Fpeak + β

Flower = Fpeak − β
(4.1)

where Fpeak is the peak frequency (Table 4.2), β is a threshold for determining the frequency

bandwidth and set at 300 Hz based on the reference data set.

After bandpass filtering, noise reduction is essential for improving the segmentation result

for the low signal to noise ratio in JCU recordings. Here, we use the method of Towsey et al.

[2012] for noise reduction. Finally, we use the Härmä’s method to detect individual syllables

(Figure 4.3).

For the JCU recordings, eight frog species were used for the experiment. After syllable

segmentation of continuous recordings, for each frog species, we randomly selected 30 syllables

from segmentation results for subsequent analysis.
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Figure 4.2: Distribution of syllable number for all frog species. The x-axis is the abbreviation
of each frog species, and the corresponding scientific name can be found in Table 4.1

4.2.4 Spectral peak track extraction

Spectral peak tracks (SPT) (also called frequency tracks) have been explored for studying birds

[Heller and Pinezich, 2008, Jancovic and Kokuer, 2015] and whales [Roch et al., 2011]. In

this chapter, the spectral peak track is used to represent the trace of a frog advertisement call,

because frogs that are genetically related share more similar advertisement calls than distantly
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(a) Spectrogram.

(b) Segmentation results with marked red lines.

Figure 4.3: Segmentation results for Uperolela mimula using bandpass filtering, noise
reduction and Härmä’s method. The red line in (b) indicates the start and stop location of
each segmented syllable

related frogs [Gingras and Fitch, 2013]. The reasons for using SPT are (1) to isolate the desired

frog calls from the background noise; (2) to extract corresponding SPT features. Here, the SPT

method is reported in [Xie et al., 2015b].

For the SPT extraction algorithm, seven parameters need to be set (Table 4.3). The process

for determining those parameters is explained in Section 3.

Before applying the SPT extraction algorithm, each syllable is transformed to a spectrogram

with the following parameter settings (Hamming window, frame size is 128 samples, and

window overlap is 90%). For the generated spectrogram, the maximum intensity (real peak) is

selected from each frame with a minimum required intensity, I . Then, the time and frequency

domain intervals between two successive peaks are calculated. If the time and frequency
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Table 4.3: Parameters used for spectral peak extraction

Parameter Description
I (dB) Minimum intensity threshold for peak selection
Tc (s) Maximum time domain interval for peak connection
Ts (s) Minimum time interval for stopping growing tracks
fc (Hz) Maximum frequency domain interval for peak connection
dmin (s) Minimum track duration
dmax (s) Maximum track duration
β (0∼1) Minimum density value

intervals are smaller than Tc and fc respectively, one initial track (SPT1) will be generated.

After that, linear regression is applied to the generated track for calculating the position of the

next predicted peak. Based on peaks p1(t1, f1) and p2(t2, f2) within the initial track (SPT1), a

and b in Equation (4.2) can be solved.

f = at+ b (4.2)

Based on a and b, the predicted peak p̂n of the following frame tn can be calculated. Next,

the time and frequency domain intervals between predicted peak (p̂n) and the real peak of the

successive frame are recalculated. If the time and frequency intervals are smaller than Tc and

fc respectively, the real peak will be added to the initial track. After each peak is added to the

initial track, linear regression is repeated to recalculate the next predicted peak using at most

the last 10 included peaks. This iterative process continues until Ts is no longer satisfied. When

no more peaks will be added to one track, the next step is to compare the duration and density

of the track with dmin, dmax, and β. If all conditions are satisfied, then the track will be saved

to the track list. The SPT results for Neobatrachus sudelli are shown in Figure 4.4. During

the process of track extraction, time domain gaps are generated where the intensity threshold

I is not reached. These gaps can be filled by predicting the correct frequency bin using linear

regression, as illustrated in Figure 4.4.
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(a) selected peaks below the intensity threshold I are
set to zero.
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(b) spectral peak track with predicted peaks using
linear regression.

Figure 4.4: Spectral peak track extraction results for Neobatrachus sudelli. By filling the gaps
within the track, the dominant frequency can be more accurately calculated

4.2.5 SPT features

After SPT extraction, each SPT is expressed in the following format: (1) track start time ts; (2)

track stop time te; (3) frequency bin index for each of the peaks within the track ft (ts ≤ t ≤ te).

Then, syllable features including track duration, dominant frequency, and oscillation rate are

calculated based on the SPT.

a) Track duration (second): Track duration (Dt) is directly obtained from the bounds of the

track.

Dt = (te − ts) ∗ rx (4.3)
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where rx is the time domain resolution in unit second per frame.

b) Dominant frequency (Hz): Dominant frequency (f̄ ) is calculated by averaging the frequency

of all peaks within one track

f̄ =
te∑
t=ts

ft/(te − ts + 1) ∗ ry (4.4)

where ry is the frequency domain resolution with unit frequency per bin, ft is the frequency bin

index of peak t.

c) Oscillation rate (Hz): Oscillation rate (Or) represents the number of pulses per second. The

algorithm for extracting oscillation rate is introduced and summarised as follows. First, the

frequency domain boundary is defined based on the dominant frequency, and the power within

the boundary is calculated. Then, the power vector is normalised, and the first and last 20% part

of the vector is discarded, because of the uncertainty in the start and end of the syllables. Next,

the autocorrelation with the length of the vector is calculated. Furthermore, a DCT is applied to

the vector after subtracting the mean, and the position of the highest frequency (Pf ) is achieved.

Finally, the oscillation rate is defined as

Or =
Pf
Ldct
∗ rx ∗ γ (4.5)

where Pf is the position of the highest frequency values of the DCT result, Ldct is the length for

applying DCT to the power vector set as 0.2 second in this experiment.

4.2.6 Wavelet packet decomposition

WPD is a powerful tool for the analysis of non-stationary signals, which includes multiple bases

and different basis [Selin et al., 2007]. With WPD, an original acoustic signal can be split into

two frequency bands such as lower and higher frequency band. Then, both lower and higher

frequency bands can be further continuously decomposed into two sub-bands, which produce a

complete wavelet packet tree [Farooq and Datta, 2001]. Due to its ability for analysing a non-

stationary signal, WPD has been used to analyse acoustic signals [Ren et al., 2008, Selin et al.,

2007]. Here, WPD is used to obtain features for frog call classification.
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4.2.7 WPD based on an adaptive frequency scale

To obtain robust features for frog call classification, the frequency scale used for WPD is crucial.

In prior work [Biswas et al., 2014, Litvin and Cohen, 2011, Zhang and Li, 2015], different

frequency scales have already been proposed for WPD. Bark-scaled WPD was proposed by

Litvin and Cohen to separate blind source from a single channel audio source [Litvin and

Cohen, 2011]. Biswas et al. [2014] used features based on ERB-scaled (Equivalent rectangular

bandwidth) WPD for Hindi consonant recognition. Zhang and Li [2015] developed a method

based on Mel-scaled WPD for bird sound detection with the SVMs classifier. However, most

frequency scales used for WPD are developed for studying speech rather than frogs. Therefore,

finding a suitable frequency scale for frogs to perform the WPD is important for obtaining

features with strong discriminatory power. In this chapter, an adaptive frequency scale for WPD

for frog calls is proposed, based on the dominant frequency of frog species to be classified.

Specifically, the k-means clustering algorithm is used to cluster the dominant frequency of all

syllables. Then, the centroids of the clustering result are used to generate the frequency scale.

Here, the value of k for the k-means clustering algorithm is the same as the number of frog

species to be classified, the distance function used is city block [Melter, 1987].

Based on the obtained frequency scale, an adaptive frequency scaled WPD method is pro-

posed, which is described in Algorithm 1. The wavelet packet tree used for classifying 18 frog

species is shown in Figure 4.5.

4.2.8 Feature extraction based on adaptive frequency scaled WPD

In previous studies [Bedoya et al., 2014, Xie et al., 2015b], MFCCs have been used for studying

bioacoustic data, and it is used as the baseline for feature comparison in this chapter. Besides

MFCCs, another feature set called Mel-scaled wavelet packet decomposition sub-band cepstral

coefficients (MWSCCs) is also included in the comparison experiment [Zhang and Li, 2015],

because it shows better performance than MFCCs for bird detection in a complex environment.

In this chapter, we propose a novel feature set named adaptive frequency scale wavelet packet

decomposition sub-band cepstral coefficients (AWSCCs) for frog call classification. The ex-

traction procedure of AWSCCs is similar to MWSCCs. However, the frequency scale used for

our AWSCCs is based on an adaptive frequency scale rather than the Mel-scale for MWSCCs.

Meanwhile, after performing DCT, temporal feature integration is used for calculating the
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Algorithm 1: Adaptive frequency scale for WPD
Data: ci(i = 1, 2, ..., K), fs, where K is the number of frog species to be classified, ci is

the centroid of the clustering results, fs = sr/2 where sr is the sample rate of the
audio recordings, which is 16 kHz here.

Result: Adaptive wavelet packet tree
begin

Step 1: Sort the centroid ci(i = 1, 2, ..., K), and calculate the difference between the
consecutive vectors of c, sort the difference and save it as dj(j = 1, 2, ..., K − 1)
Step 2: Calculate the decomposition level L based on the following rule
fs/min(d) ≤ 2L−1

where L is the minimum integer that satisfies that equation.
Step 3: Perform the wavelet packet decomposition
for l = 1 : L do

1. Calculate the frequency resolution of level l
for i = 1 : K do

1: Put the ci into the right frequency band
2: Count the number of ci in each band (n)

if n ≥ 2 then
perform further decomposition to that particular node

else
stop decomposition

statistics of feature vectors which generates different statistical types of AWSCCs. (see in

Figure 4.6).

After syllable segmentation, the signal of one syllable is represented as y(n), n = 1, ..., N ,

where N is the length of one syllable of frog calls. Based on the y(n), steps for AWSCCs

extraction are described as follows:

1). Add Hamming window to the signal y(n).

x(n) = w(n)y(n) (4.6)

where w(L) is the Hamming window function and defined as w(n) = 0.54− 0.46cos( 2nπ
L−1), L

is the length of Hamming window and set as 128 samples here.

2). Perform wavelet packet decomposition spaced in adaptive frequency scale as described in

Section 4.2.7.

WP (i, j) =
M∑
i=1

x(n)ψ(a,b)(n) (4.7)

where WP (i, j) is the wavelet coefficients of the decomposition, i is the sub-band index, j

is the index of wavelet coefficients, ψ(a,b)(n) is the wavelet base function, and we use ’Db 4’
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Figure 4.5: Adaptive wavelet packet tree for classifying twenty frog species. The upper image
is the wavelet packet tree; the lower image is the histogram of dominant frequency for twenty
frog species
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Figure 4.6: Description of three feature extraction methods including MFCCs, MWSCCs, and
different statistical types of AWSCCs

experimentally. Here, a and b are the scale and shift parameters, respectively. ’Db 4’ represents

the Daubechies wavelet transform which has four scaling and wavelet function coefficients.
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3). Calculate the total energy of each sub-band.

WPi =

Mi∑
j=1

[WP (i, j)]2 (4.8)

where i = 1, 2, ..., T , and T is the total number of sub-band, and j = 1, 2, ...,Mi, Mi is the total

number of wavelet coefficients.

4). Normalise the energy of each sub-band.

SEi =
WPi
Mi

(4.9)

where i = 1, 2, ..., T .

5). Perform DCT on the logarithm sub-band energy for dimension reduction and obtain the

feature AWSCCs.

AWSCCs(d) =
T∑
i=1

logSEicos(
d(i− 0.5)

T
π) (4.10)

where d = 1, 2, ..., d
′ , 1 ≤ d

′ ≤ T , here d′ is the dimension of AWSCCs, and set as 12 here. To

keep the feature dimension consistency, the dimensions for MFCCs and MWSCCs are also set

as 12 in this chapter, and the detailed steps for extraction can be found in [Bedoya et al., 2014]

and [Zhang and Li, 2015].

6). Temporal feature integration

Here, the statistics of all feature vectors over each windowed signal are calculated, which in-

clude sum, average, standard deviation, and skewness. With randomly selected five instances for

each frog species, the classification accuracy of averaged AWSCCs is higher than other statistics

of AWSCCs. Therefore, only averaged AWSCCs are used in the subsequent experiment. To

capture the dynamic information of the frog calls, the delta-AWSCCs are also calculated based

on the averaged AWSCCs.

4.2.9 Classification

In this chapter, kNN and SVM classification algorithms are used for frog call classification.

The input parameters for each classifier are syllable features (SFs), MFCCs, MWSCCs, and

different AWSCCs, and the output is the frog species. The descriptions of those two classifiers

can be found in Chapter 3.2.5.



60
CHAPTER 4. ADAPTIVE FREQUENCY SCALED WAVELET PACKET DECOMPOSITION

FOR FROG CALL CLASSIFICATION

4.3 Experiment result and discussion

Several experiments are described for evaluating our proposed frog call classification system.

First, the parameter tuning is discussed based on the reference data set. Then, the comparisons

between all proposed features are studied. Finally, the classification results under different

SNRs are described.

4.3.1 Parameter tuning

There are five modules that require parameter tuning: syllable segmentation, spectral peak track,

feature extraction, and classification (Figure 5.1).

For syllable segmentation, the window size and overlap are 512 samples and 25%, but the

intensity thresholds are 10 dB and 5 dB for the trophy recordings and the JCU recordings,

respectively.

In the spectral peak track determination, there are seven parameters (see in Table 4.3). The

parameter settings are shown in Table 4.4.

Table 4.4: Parameter setting for calculating spectral peak track
Parameter Trophy recordings JCU recordings

I (dB) 3 3
Tc (s) 0.005 0.1
Ts (s) 0.05 0.2
fc (Hz) 800 800
dmin (s) 0.01 0.05
dmax (s) 2 2
β (0∼1) 0.8 0.6

With a random parameter setting start, an iterative loop is performed for a fixed range of

each parameter as seen in Table 4.1 to optimise those parameters.

For feature extraction, the window size and overlap are the same for MFCCs, MWSCCs,

and AWSCCs using Hamming window, which are 128 samples and 90%, respectively. The

dimensions of MFCCs, MWSCCs and AWSCCs are 12. For SFs and delta-AWSCCs, the

dimensions are 3 and 24, respectively.
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Following prior work [Han et al., 2011, Huang et al., 2009, Xie et al., 2015b], the distance

function used for kNN is the Euclidean distance, and k is set as 3. As for the SVM classifier,

the Gaussian kernel is used. Parameters α and v are selected independently for each feature set

by grid-search using cross validation [Hsu et al., 2003].

4.3.2 Feature evaluation

All experiments are carried out in Matlab R2014b. Performance statistics are estimated with

ten-fold cross validation. Totally, five feature sets including SFs, MFCCs, MWSCCs, and

averaged AWSCCs, and delta-AWSCCs, are fed to two classifiers, which are the kNN and

SVM classifiers. Due to the non-uniform distribution of the number of syllables for different

frog species in the trophy recordings, a weighted classification accuracy is define as

weightedAcc =
N∑
i=1

Acc(i) ∗ ni
N

(4.11)

where ni is the number of syllables for frog species i, N is the number of syllables for all frog

species, Acc is the classification accuracy for that particular frog species.

4.3.3 Comparison between different feature sets

The classification accuracy comparison for 18 frog species using five feature sets and two

classifiers is shown in Table 4.5.

Table 4.5: Weighted classification accuracy (mean and standard deviation) comparison for five
feature sets with two classifiers

Feature set
Classification accuracy (%)
kNN SVM

SFs 82.2 ± 11.2 84.2 ± 10.5
MFCCs 90.8 ± 8.6 92.8 ± 11.0
MWSCCs 95.0 ± 7.7 97.6 ± 5.7
Averaged AWSCCs 98.8 ± 4.2 99.0 ± 3.6
Delta-AWSCCs 99.2 ± 2.1 99.6 ± 1.8

In this experiment, the best classification accuracy is 99.6%, which is achieved by the delta-

AWSCCs with the SVM classifier. Compared to the average AWSCCs, the delta-AWSCCs
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achieved slightly better performance. One may conjecture that the delta-AWSCCs can capture

the dynamic information of the frog calls. For MWSCCs, the averaged classification accuracy

of both classifiers is about 2% lower than that of averaged AWSCCs and delta-AWSCCs with

96.3%. The improvement shows that the proposed adaptive frequency scale can capture more

information about frog calls than the Mel-scale (Figure 4.7).
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Figure 4.7: The feature vectors for 31 syllables of the single species, Assa darlingtoni. The
x-axis is the feature index and y-axis is the feature value. Note that the feature vectors for
averaged AWSCCs (c) and delta-AWSCCs (d) are more highly correlated than for the other two
methods (a) and (b)

As for SFs and MFCCs, the averaged classification accuracy is much lower than AWSCCs,

which is 83.2% and 91.8%, respectively. To explore the reason for the improvement of the

proposed feature, the frog call classification accuracy of all frog species is shown in Table 4.6.

However, only the features that use the SVM classifier are shown, because averaged accuracy

of the kNN classifier (93.2%) is lower than the SVM classifier (94.64%).
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Table 4.6: Classification accuracy of five features for the classification of twenty-four frog
species using the SVM classifier. Here, Avg AWSCCs means the averaged AWSCCs

Code
Classification accuracy (%)

SFs MFCCs MelCCs Avg AWSCCs Delta-AWSCCs
ADI 76.7 ± 15.3 80.0 ± 22.1 83.3 ± 16.7 100.0 ± 0.0 100.0 ± 0.0
CPA 86.7 ± 16.3 100.0 ± 0.0 93.3 ± 13.3 100.0 ± 0.0 100.0 ± 0.0
LCA 93.3 ± 15.3 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
LCS 70.0 ± 23.3 63.3 ± 27.7 96.7 ± 10.0 93.3 ± 13.3 96.7 ± 10.0
LFX 91.7 ± 8.3 93.3 ± 8.2 93.3 ± 8.2 100.0 ± 0.0 100.0 ± 0.0
LGA 30.0 ± 45.8 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
LLA 92.7 ± 8.1 98.7 ± 2.7 98.0 ± 4.3 100.0 ± 0.0 100.0 ± 0.0
LNA 78.6 ± 14.6 94.3 ± 9.5 95.7 ± 9.1 100.0 ± 0.0 100.0 ± 0.0
LRA 40.0 ± 30.0 10.0 ± 20.0 100.0 ± 0.0 90.0 ± 20.0 98.2 ± 6.5
LUA 60.0 ± 20.0 100.0 ± 0.0 86.7 ± 22.1 100.0 ± 0.0 100.0 ± 0.0
LVV 100.0 ± 0.0 96.7 ± 10.0 80.0 ± 22.1 93.3 ± 13.3 100.0 ± 0.0
MFS 90.0 ± 15.3 76.7 ± 21.3 90.0 ± 15.3 100.0 ± 0.0 100.0 ± 0.0
MFI 90.0 ± 30.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
PKN 90.0 ± 20.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
PCA 72.5 ± 20.8 77.5 ± 20.8 95.0 ± 10.0 92.5 ± 11.5 100.0 ± 0.0
PRI 45.0 ± 35.0 80.0 ± 33.2 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
RSS 50.0 ± 50.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
ULA 93.3 ± 13.3 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Table 4.6 lists the classification accuracy of all 18 frog species with five features. It can

be seen from the table that delta-AWSCCs have an accuracy greater than 95% for all frog

species. Compared to averaged AWSCCs, the classification accuracy of Pseudophryne coriacea

(PCA) and Litoria verreauxii verreauxii (LVV) are improved to 100%; it might be that the delta-

AWSCCs include the dynamic information of frog calls. For Litoria revelata (LRA), both the

classification accuracy of averaged AWSCCs and delta-AWSCCs are lower than 100%; this

is because the dominant frequency is quite similar with multiple frog species including Assa

darlingtoni (ADI), Litoria nasuta (LNA) and Litoria verreauxii verreauxii (LVV). However,

the classification of Litoria revelata (LRA) is 100% using Mel-scale based techniques, because

the Mel-scale has a better frequency resolution for Litoria chloris (LCS) within its dominant

frequency range. In Table 4.8, the classification accuracy of SFs and MFCCs is lower than the

other three features, at only 84.2% and 92.8%, respectively.
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The statistical significance of the results is shown in Table 4.7. The classification accuracy of

average AWSCCs is not significantly lower than the delta-AWSCCs. However, the classification

accuracy of MWSCCs, MFCCs and SFs is significantly lower than delta-AWSCCs.

Table 4.7: Paired statistical analysis of the results in Table 4.6. For the classification accuracy
of each frog species, the paired Student t-test was conducted [Tanton, 2005]

Pairs t-test results
Delta-AWSCCs - Avg AWSCCs t=1.95 (not significant)
Delta-AWSCCs - MWSCCs t=3.41 (significant at p <0.01, df =17)
Delta-AWSCCs - MFCCs t=2.91 (significant at p <0.01, df =17)
Delta-AWSCCs - SFs t=5.52 (significant at p <0.001, df =17)

Since our wavelet packet tree for feature extraction is obtained based on the frog species to

be classified, two more experiments are used for further evaluation. The first experiment is to

classify first ten frog species (No.1-10); the second is to classify the first fourteen frog species

(No.1-14) (see Table 4.1). The wavelet packet tree for classifying ten and fourteen frog species

is shown in Figure 4.8, which is different from the tree for classifying eighteen frog species.

However, the Mel-scaled wavelet packet tree is the same for all experiments (see Figure 4.9).

The classification results are shown in Table 4.8. Since the classification accuracy with averaged

AWSCCs is very high for classifying ten and fourteen frog species, the delta-AWSCCs is not

included in this experiment. Table 4.8 shows that averaged AWSCCs can achieve the highest

classification accuracy for classifying different numbers of frog species. Since the averaged

AWSCCs is adaptively extracted based on the data, more frog species do not cause a large

decrease in the classification accuracy.

Table 4.8: Classification accuracy (%) for different number of frog species with four feature
sets

Number of frog species SFs MFCCs MWSCCs Averaged AWSCCs
18 frog species 84.2 ± 10.5 92.8 ± 11.0 97.6 ± 5.7 99.0 ± 3.6
14 frog species 89.6 ± 9.7 94.4 ± 8.5 99.2 ± 2.6 100.0 ± 0.0
10 frog species 94.6 ± 8.7 95.8 ± 8.6 100.0 ± 0.0 100.0 ± 0.0
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Figure 4.8: Wavelet packet tree based on adaptive frequency scale for classifying ten and fifteen
frog species

Figure 4.9: Mel-scaled wavelet packet tree for frog call classification

4.3.4 Comparison under different SNRs

To further evaluate the robustness of the proposed feature, a Gaussian noise signal, with SNR of

40 dB, 30 dB, 20 dB, and 10 dB, is added to the original signal. The noise is added after syllable

segmentation, because this chapter focuses on the development of novel features for classifica-

tion rather than the segmentation method. The classification accuracy with five features under

different SNRs is shown in Figure 4.10. Compared to MFCCs and MWSCCs, SFs has stronger

anti-noise performance, because the dominant frequency of SFs has a small variation under low

SNR. For AWSCCs, it is calculated by our adaptive frequency scale. Compared with Mel-scale,
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our adaptive frequency scale can better reflect the frequency information distribution, because it

is generated by means of applying the k-means clustering algorithm to the dominant frequency.

For different frog species, they often have different dominant frequencies, which is highly robust

to the background noise. With this generated scale, the frequency components of different frog

species can be given suitable weights to calculate the Cepstral coefficients. Therefore, our

proposed feature has stronger anti-noise performance than other cepstral features (MFCCs and

MWSCCs).
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Figure 4.10: Sensitivity of five features for different levels of noise contamination

4.3.5 Feature evaluation using the real world recordings

Table 4.9 shows the classification accuracy comparison using our proposed feature to classify

eight frog species obtained from the JCU recordings. Since calls of some frog species in the

JCU recordings do not have oscillation structure, SFs are not included for the comparison.

Compared to other referred features, our proposed feature also achieves the best classification

performance. Since the JCU recordings often have multiple calls from different frog species,

spectral peak track occasionally can not capture the specific frog species (labelled species for

that syllable), but other frog species to be classified; however, applying k-mean clustering

to the dominant frequency calculated from the spectral peak track can reduce this deviation.

Therefore, the frequency scale used for the WPD can be accurately achieved, which still leads

to a high classification accuracy with the proposed feature.
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Table 4.9: Classification accuracy using the JCU recordings

Feature set
Classification accuracy (%)
kNN SVM

MFCCs 67.5 ± 13.2 70.8 ± 14.1
MWSCCs 90.4 ± 9.2 91.6 ± 8.7
Averaged AWSCCs 94.1 ± 6.3 94.5 ± 5.8
Delta-AWSCCs 97.0 ± 5.2 97.4 ± 5.4

4.4 Summary

In this chapter, a novel feature extraction method for frog call classification is developed using

the adaptive frequency scaled WPD. With segmented syllables, spectral peak track is first

extracted from each syllable. Then, track duration, dominant frequency, and oscillation rate are

calculated based on each track. Next, a k-means clustering algorithm is applied to the dominant

frequency, which generates the frequency scale for WPD. Finally, a new feature, AWSCCs, is

calculated. Since the feature extraction method is developed based on the data itself, the wavelet

packet tree varies according to the frog species to be classified. Compared to the Mel-scaled

WPD tree, the proposed adaptive wavelet packet tree can better fit the dominant frequency

distribution of the frog species to be classified. With the proposed frequency scale, the call

characteristics of those frog species to be classified can be enhanced, while the background

noise and calls from other animals will be suppressed. Therefore, the proposed feature sets

can achieve a higher accuracy for the classification of frog calls than others. Meanwhile, since

the frequency scale is calculated based on the dominant frequency of those frog species to be

classified, our proposed wavelet tree structure is more accurate and efficient in classifying the

frog calls when compared to Mel-scale (Figures 4.8 and 4.9).

Although both trophy and field recordings are used in this chapter, all the recordings are

assumed to contain only one frog species per recording. In the next chapter, this limitation will

be solved.
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Chapter 5

Multiple-instance multiple-label learning for the

classification of frog calls with acoustic event

detection

Research problem

In Chapters 3 and 4, each individual recording is assumed to contain only one frog species.

However, most field recordings collected by acoustic sensors have multiple frog species and a

low SNR.

Research sub-question

How to classify multiple simultaneously vocalising frog species in field recordings?

5.1 Overview

This chapter proposes a method for the classification of multiple simultaneously vocalising

frog species in field recordings. In Chapters 3 and 4, frog call classification is solved using

a SISL classification framework, which cannot reflect the nature of automatically collected

field recordings. Most field recordings have a low SNR and contain multiple simultaneously

vocalising animals including frogs, birds, insects, and so on. This attribute makes MIML

learning a natural fit for studying field recordings. Specifically, frog syllables in one audio

clip (such as 10-second) are regarded as multiple instance, and frog species included in that

audio clip denotes multiple labels. First, AED is used to segment frog syllables of each audio

clip. Then, acoustic features are extracted from each segmented syllable. Lastly, three MIML

69
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classifiers are used for classifying each 10-second recording.

5.2 Methods

Our MIML frog call classification framework contains four modules: signal processing, acous-

tic event detection, feature extraction, and classification (Figure 5.1). Detailed description of

each module is listed in the following sections.

Acoustic event 
detection

Mask descriptors 
(MD)

MIML-RBF Frog species
Profile statistics 

(PS)

Combination of 
MD and PS 

MIML-SVM

MIML-kNN

Spectrogram

Signal 
processing Segmentation Feature 

extraction
Classification

Figure 5.1: Flowchart of a frog call classification system using MIML learning

5.2.1 Materials

All recordings were obtained from three sites in Queensland, Australia: Kiyomi dam, Stony

creek dam and BG creek dam. A battery-powered acoustic sensor (stored in a weather proof

metal box) with an external microphone is used for the data collection. Collected recordings

were stored on 16 GB SD cards in 64 kbps MP3 mono format. The recordings were collected

from February, 2014 to April, 2014, because it is the breeding season in Queensland when

male frogs make calls to attract females for the purpose of reproducing. Each recording starts

around sunset, finishes around sunrise every day and has a duration of 12 hours. To evaluate our

proposed MIML classification framework, a representative sample of 342 10-second recordings

was prepared. The prepared recordings were manually labelled by an ecologist with eight frog

species. Some recordings contains bird calls, insect calls, and numerous sounds, but all those

sounds are regarded as the background noise. Each recording includes between one and six frog

species. Following the prior work of [Briggs et al., 2012], we assume that recordings without

frog vocalisations can be filtered out during the segmentation process. Acoustic parameters of
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eight frog species averaged over three randomly selected syllables are shown in Table 4.2 of

Chapter 4. Here, the acoustic parameters are used as the prior knowledge for event filtering.

5.2.2 Signal processing

Each recording was re-sampled at 16 kHz for generating a spectrogram using STFT. Specif-

ically, each recording was divided into frames of 512 samples with 50% frame overlap. A

fast Fourier transform was performed on each frame with a Hamming window, which yielded

amplitude values for 256 frequency bins, each spanning 31.25 Hz. The final decibel values (S)

were calculated as

Stf = 20 ∗ log10(Atf ) (5.1)

where A denotes the amplitude value, t = 0, ..., T − 1 and f = 0, ..., F − 1 represent time and

frequency index, T and F are 256 frequency bins and 625 frames, respectively.

5.2.3 Acoustic event detection for syllable segmentation

The aim of AED is to detect a specified acoustic event in audio data. In this chapter, we use AED

for frog syllable segmentation. Since all recordings are collected from the field, there are many

simultaneously vocalising frog species. Traditional methods for frog syllable segmentation

are based on temporal information [Huang et al., 2009, Somervuo et al., 2004], which cannot

address those environmenal recordings. Here, we modified the AED method developed by

Towsey et al. [2012] for syllable segmentation. The detail of our AED method is described as

follows.

Step 1: Wiener filtering

A 2-Dimensional Wiener filter is applied to the spectrogram image. A 5 × 5 pixel window

is found to offer a satisfactory compromise between removal of background graininess and

blurring of acoustic events. Wiener filtering aims to reduce the number of very small randomly

distributed acoustic events appearing in the final output.

Step 2: Spectral subtraction

Wiener filtering can successfully remove the graininess, but some noises, such as wind, insect,

motor engine that cover the whole recording, cannot be addressed. Here, spectral subtraction is

used to deal with those noises (see Algorithm 2).
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Algorithm 2: Spectral Subtraction

Data: Ŝtf , spectrogram after Wiener filtering.
Result: Ŝ ′

tf = Ŝtf , noise reduced spectrogram.
begin

Construct an array of the modal noise values for all frequency bins;
for f ∈ F do

1. calculate the histogram of the intensity value over each frequency bin
2. smooth the histogram array with a moving average window of size 7
3. regard the modal noise intensity at the position of maximal bin in the left-side
of the histogram

Smooth the array with a moving average filter with window of size 5;
for f ∈ F do

1. subtract the modal noise intensity
2. truncated negative decibel values to zero

Step 3: Adaptive thresholding

After noise reduction, the next step is to convert a noise reduced spectrogram Ŝ
′
tf into the

binary spectrogram Sbtf for the event detection. Here, an adaptive thresholding method named

Otsu thresholding [Otsu, 1975] is employed to find an optimal threshold.

φ2
b(k) = w1(k)w2(k)[µ1(k)− µ2(k)]2 (5.2)

where w1(k) =
∑k

0 p(j) is calculated from the histogram as k, p(j) = n(j)/N are the values

of the normalised gray level histogram, n(j) is the number of values in level j, N is the total

number of values over the whole spectrogram image, µ1(k) = [
∑k

0 p(j)x(j)]/w1, x(j) is the

value at the center of the j-th histogram bin. Then, the threshold, T0, is calculated as

T0 = (φ2
b1(k) + φ2

b2(k))/2 (5.3)

Step 4: Events filtering using dominant frequency and event area

Since not all detected events correspond to frog vocalisations, those events that are not from the

listed frog species in Table 4.2 of Chapter 5.2.1, dominant frequency (F0) and area of the event

(Ar) are used for filtering.

Step 5: Region growing

A region growing algorithm is to obtain the contour of each segmented acoustic event [Mallawaarachchi

et al., 2008]. To get the accurate boundary of each acoustic event and improve the discrimination
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of extracted features, a 2-dimensional region growing algorithm is used to obtain the accurate

event shape for each segmented event. First, the point with the maximal intensity value within

the event area is selected as the seed. Then, the neighbourhood pixels of the seed(s) above

the threshold are located and assigned to the output image, and new added pixels are used as

seeds for further processing. Finally, when all the pixels that satisfy the criteria are added to the

output image, the recursive algorithm will stop and get the final results (Figure 5.3). Here, the

threshold value is empirically set as 5 dB.

Algorithm 3: Event filtering based on dominant frequency and event area
Data: Sbtf , spectrogram; ts(n), te(n), fl(n), fh(n), location of each acoustic event n;

F0(i), dominant frequency of frog species i.
Result: S̃tf , spectrogram after events filtering.
begin

Calculate the area of each acoustic event n.
Area(n) = (te(n)− ts(n)) ∗ (fh(n)− fl(n))
for n ∈ Ne1 do

if Ar(n) ≥ Arl then
split event n into small events

where Arl is set as 2000 pixels.
Filter events using dominant frequency fd(n) =

∑te(n)
t=ts(n)

F (t)/te(n)− ts(n)

where F (t) is the peak frequency of each frame within the event area
for n ∈ Ne2 do

for i ∈ I do
if fd(n) ≥ F0(i) + θ; fd(n) ≤ F0(i)− θ then

fd(n) = 0;

where θ is frequency range and set as 300 Hz.
Remove small acoustic events except frequency band between θl and θh
for n ∈ Ne2 do

if Ar(n) ≤ Ars then
remove event n

where Ars is set as 200 pixels, θl and θh are set as 300 Hz and 800 Hz, respectively.
Because the area of LTE is smaller than Ars.

5.2.4 Feature extraction

To compute features for each segment, the spectrogram and mask will be first cropped to contain

just one segment. Figures 5.3(c) and 5.3(d) show a cropped image of the spectrogram and mask

based on the highlighted segment. To describe the segment features, notation will be used as

follows: Let Mt,f be the cropped, binary mask for a segment, and let S̄t,f be the cropped,

original spectrogram. Note that t ranges from 1 to the duration of the segment in frames, T .
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Figure 5.2: Acoustic event detection results before (Left) and after (Right) event filtering based
on dominant frequency. Here, blue rectangle denotes the time and frequency boundary of each
detected event

Two feature sets are calculated to describe each segment (syllable): mask descriptors and

profile statistics [Briggs et al., 2012]. Here, we exclude histogram of orientation (HOG) from

our feature set for its poor classification performance in previous studies [Briggs et al., 2012,

Ruiz-Munoz et al., 2015].

Mask descriptors

Mask descriptors for a segment are based on only the mask, and describe the shape of the

segment. The features are

(1) Min-frequency = min {f: Mt,f = 1 }

(2) Max-frequency = max {f: Mt,f = 1 }

(3) Bandwidth = max-frequency - min-frequency

(4) Duration = T

(5) Area =
∑

tf Mtf

(6) Perimeter = 1
2
× ( # of pixels in Mt,f such that at least one pixel in the surrounding 3 × 3

box is 1 and at least one pixel is 0)

(7) Non-compactness = perimeter2/area

(8) Rectangularity = area/(bandwidth× duration)

Profile statistics

Profile statistics are calculated based on statistical properties of the time and frequency profiles

of each segment. To compute the time or frequency file, the columns or rows of the spectrogram

are first summed. The time profile is pt(t) =
∑

f Ŝt,f and the frequency profile is pf (f) =∑
t Ŝt,f . The profiles are normalised to sum to 1, and are further interpreted as probability mass
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(a)

(b)

(c)

(d)

Figure 5.3: Acoustic event detection results after region growing. (a) binary segmentation
results, (b) segmented frog syllables. (c) The masked and cropped spectrogram corresponding
to the highlighted segment. (d) A cropped mask of the highlighted segment

functions. The normalised profile densities are p̂t and p̂f . Two features measure the uniformity

of the densities according the Gini index are

(1) Freq-gini = 1 -
∑

f p̂f (f)2

(2) Time-gini = 1 -
∑

t p̂t(t)
2

Several more features are calculated by computing the k-th moments of the time and fre-

quency profiles. Since different segments have different durations, all those features are cal-

culated in a re-scaled coordinate system, where time is from 0 to 1 over the duration of the

segment, and frequency is from 0 to 1.

(3) Freq-mean = µf =
∑fmax

f=1 p̂f (f)(f/fmax)

(4) Freq-variance =
∑fmax

f=1 p̂f (f)(µf − f/fmax)2
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(5) Freq-skewness =
∑fmax

f=1 p̂f (f)(µf − f/fmax)3

(6) Freq-kurtosis =
∑fmax

f=1 p̂f (f)(µf − f/fmax)4

(7) Time-mean = µt =
∑tmax

t=1 p̂t(t)t/T )

(8) Time-variance = µt =
∑tmax

t=1 p̂t(t)t/T )2

(9) Time-skewness = µt =
∑tmax

t=1 p̂t(t)t/T )3

(10) Time-kurtosis = µt =
∑tmax

t=1 p̂t(t)t/T )4

Also, the maxima of the time and frequency profiles are calculated

(11) Freq-max = (argmaxp̂f (f))/fmax

(12) Time-max = (p̂f (t))/T

The mean and standard deviation of the spectrogram within the masked region are further

calculated.

(13) Mask-mean = µtf = (1/area)
∑

tf Ŝtf

(14) Mask-stddev =
√

(1/area)
∑

tf (µtf − Ŝtf )2

Besides mask descriptors (MD) and profile statistics (PS), a third feature set is constructed

with all features.

All of the features used to describe the segment are concatenated to form a single feature

vector, but the values differ widely from each other. This property will affect the classification

performance especially the distance-based classifier, where more weight will be placed on

features with larger magnitudes. To prevent this bias, all those features are rescaled to [0,1]

independently.

5.2.5 Multiple-instance multiple-label classifiers

After feature extraction, three MIML algorithms are evaluated for the classification of multi-

ple simultaneous vocalising frog species: MIML-SVM, MIML-RBF, and MIML-kNN. These

algorithms reduce the MIML problem to single-instance multiple-label problem by associating

each bag (10-second recording) with a bag-level feature, which aggregates information from the

instances in the bag [Briggs et al., 2012]. Each algorithm constructs different bag-level features,

but all use some form of bag-level distance measure. Here, the maximal and average Hausdorff

distances between two syllables are used by MIML-SVM and MIML-RBF, respectively. For

MIML-kNN, the nearest neighbour is used to assign bag-level features. The definition of the

maximal and average Hausdorff distances are described as follows:
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Dmax
H (X,X

′
) = max{maxmin

a∈Xb∈X′
||a− b||,maxmin

b∈X′a∈X
||b− a||} (5.4)

Davg
H (X,X

′
) =

∑
a∈X

min
b∈X′
||a− b||+

∑
b∈X′

min
a∈X
||b− a||

(|X|+ |X ′ |)
(5.5)

MIML-SVM applied k-medoids clustering too the training dataset of bags usingDmax
H ,

which will generate k mediods bags Mt(t = 1, 2, ..., k). Here k is randomly selected and

repeated until all Mt do not change. For each bag (Xi, Yi), a bag-level feature is computed

as zi = (Dmax
H (Xi,M1), ..., D

max
H (Xi,Mk)). The resulting multi-label problem is solved using

ML-SVM algorithm, which consists of building one SVM for each class.

Different from MIML-SVM, Davg
H is used by MIML-RBF. The MIML-RBF applies k-

mediods clustering once for each class on the set of bags including that class as a label. It is

worth noting that k is different for each class. Next, q mediod bags are obtained by concatenat-

ing the medoids in each clustering. Each bag is associated with a feature zi = (1, K(Xi, B1), ..., K(Xi, Bq)),

whereK(X,X
′
) = exp(−Davg

H (X,X
′2/2φ2)). The resulting multi-label classification problem

is solved using one linear model per class, trained by minimising sum square error.

Different from the clustering used by MIML-SVM and MIML-RBF, MIML-kNN assigns

bag-level features by nearest-neighbours. For each training bag Xi, its k nearest neighbours

and k′ citers are first selected by MIML-kNN, (other bags that consider Xi to be one of their k′

nearest neighbours), using Davg
H . Then each bag Xi is associated with a bag-level feature vector

zi = (t1, ..., tc), where tj is the number of bags in the neighbours and citers of Xi that include

class j in their label set. The resulting multi-label problem is solved using the same approach

as MIML-RBF.

5.3 Experiment results

5.3.1 Parameter tuning

There are three modules, the parameters of which need to be discussed: signal processing,

acoustic event detection, and classification. For signal processing, the window size and overlap

are 512 samples and 50%, respectively. During the process of acoustic event detection, four
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thresholds for event filtering need to be determined, which are small and large area threshold,

and frequency boundary for events filtering. All those thresholds were determined empirically

by applying various combinations of thresholds to the constructed validation dataset. For

MIML-SVM classifiers, the parameters used are (C, γ, r) and set as (0.1, 0.6, 0.2) experimen-

tally. For MIML-RBF, the parameters are (r, µ) and set as (0.1,0.6). For MIML-kNN, the

number of references (k) and citers (k′) are 10 and 20, respectively. Note that the dataset used

for parameter setting is excluded from the testing dataset.

5.3.2 Classification

In this chapter, all the algorithms are programmed in Matlab 2014b. Each MIML algorithm is

evaluated with five-fold cross-validation on the collection of 342 species-labelled recordings.

Five evaluation metrics are used for comparing the performance with the combination of three

feature sets and three MIML algorithms: Hamming loss, Rank loss, One error, coverage, and

average precision [Madjarov et al., 2012a, Zhou et al., 2008]. The value range of all five

evaluation rules is between 0 to 1. The definition of each evaluation rule is described as follows:

(1) Hamming loss is defined as the fraction of labels that are incorrectly predicted for an instance

and the normalised Hamming loss which is normalised over instances is reported. This metric

is defined as

hammingLoss =
1

N

N∑
i=1

1

Q
|h(xi)∆yi)| (5.6)

where ∆ denotes the symmetric difference between two instances, N is the number of instances

andQ is the total number of possible labels. yi denotes the ground truth of instance xi, and h(xi)

denotes the predictions for the same instance.

(2) Ranking loss evaluates the average fraction of label pairs that are reversely ordered for the

particular instance given by

rankingLoss =
1

N

N∑
i=1

|Di|
|yi||ȳi|

(5.7)

where Di = (λm, λn)|f(xi, λm) ≤ f(xi, λn), (λm, λn) ∈ yi × ŷi, while ȳ denotes the comple-

mentary set of y in L, and L = λ1, λ2, λ3, ..., λQ, λ represents the label.

(3) One error evaluates how many times the top-ranked label is not in the set of relevant labels

of the instance. This evaluation metric is defined as
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oneError =
1

N

N∑
i=1

[[argmaxλ∈yf(xi, λ)] 6∈ yi] (5.8)

(4) Coverage evaluates how far, on average, we need to go down the list of ranked labels in

order to cover all the relevant labels of the example. The definition of this metric is shown as

coverage(f) =
1

N

N∑
i=1

maxrankf (xi, λ)− 1 (5.9)

where rankf (xi, λ) maps the outputs of f(xi, λ) for any λ ∈ L to λ1, λ2, ..., λQ, so that

f(xi, λm) ≤ f(xi, λn) implies rankf (xi, λm) ≤ rankf (xi, λn)

(5) Average precision is the average fraction of labels that are ranked higher than an actual label

belonging to an instance.

avgPrecision =
1

N

N∑
i=1

h(xi) ∩ yi
|yi|

(5.10)

The values for hamming loss, rank loss, one-error, coverage, and average precision range

from 0 to 1. For hamming loss, rank loss, one-error, and coverage, 0 denotes the perfect

result, and 1 means the wrong prediction of all labels over every instance, whereas for average

precision, the values have the completely opposite meanings.

5.3.3 Results

The classification results are shown in Figure 5.4. To obtain a base line for hamming loss,

a non-informative classifier is always considered to predict the empty set. The baseline of

hamming loss is thus calculate as m/c, where c is the number of frog species to be classified,

m is calculated as (1/n)
∑n

i=1 |Yi|. Here, the value of baseline of hamming loss is 0.3220. It

can be found that the hamming loss for MIML-RBF with AF is 2.70 times better than the non-

informative classifier. With a rank loss of 0.0831, MIML-RBF with AF is 6.01 times better

than the non-informative classifier. A one error of 0.1438 means that if we only predict the

highest scoring species in each recording, it will truly be present 85.62% of the time. The

positive/negative is defined as 1 − hammingLoss and it is 88.08% for MIML-RBF with

AF. Compared to MIML-kNN and MIML-SVM, MIML-RBF is found to achieve the best
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classification performance. For those three feature sets, the hamming loss for AF is always

better than PS and MD.
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Figure 5.4: Evaluation metrics for MIML classifiers with three different feature sets

To give a concrete view of predictions, the results of five randomly selected recordings

using MIML-RBF are shown in Table 5.1. From the table, we can see that recordings of No.4

are accurately predicted. Recordings of No.1, No.2, and No.3 are partially accurate. Recording

of No.5 is wrongly predicted.

Table 5.1: Example predictions with MIML-RBF using AF

No. Ground truth Predicted labels
1 LNA, UMA LNA,LRA
2 UMA LNA, UMA
3 UMA LNA, UMA
4 LNA, UMA LNA, UMA
5 UMA LNA
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In this chapter, all the features are directly calculate based on AED results. It is obviously

that different AED results will lead to different classification results. A comparison of three

AED methods is shown in Table 5.2, where features and classifier used are the same. The

results show that our proposed AED method can achieve the best classification performance.

Table 5.2: Effects of AED for the MIML classification results. Here, ↓ indicates that smaller
values imply higher accuracy, while ↑ has the completely opposite meanings

AED Feature Classifier Hamming loss ↓ Coverage ↓ Average Precision ↑
Ours AF MIML-RBF 0.1192 ± 0.0112 2.1614 ± 0.1516 0.8793 ± 0.0213
Michael AF MIML-RBF 0.1275 ± 0.0090 2.2690 ± 0.1177 0.8529 ± 0.0217
Fodor AF MIML-RBF 0.1777 ± 0.0131 2.5471 ± 0.1339 0.8265 ± 0.0287

5.4 Discussion

Since most recordings in this chapter contain multiple simultaneously vocalising frog species,

the traditional SISL classification framework is no longer suitable. A novel framework for the

classification of multiple simultaneous vocalising frog species in field recordings is proposed,

which is adopted from [Briggs et al., 2012], a study on birds. Different from their work,

this research designs a new AED method for frog syllable segmentation rather than using a

supervised learning algorithm. It is because that there are few annotated frog recordings. Since

all the features in this study are calculated from the segmented syllables, the accuracy of the

segmentation results directly affects the final classification performance. Compared to other two

AED methods, extracting features based on our AED results can achieve better classification

performance (Table 5.2).

We also investigate SISL classification results using a small dataset. Total 176 10-second

recordings are annotated using eight frog species. On the average, each 10-second recording

has 19.5 frog syllables. For SISL classification, MFCCs and AWSCCs are used as the features,

respectively. The window size and overlap for calculating MFCCs and AWSCCs are 128

samples and 50%, which are selected according to Chapter 3. RF is used as the classifier for

its best classification performance in Chapter 3. The MIML classification results are achieved

using the combination of AF and MIML-RBF. The precision and recall for MIML and SISL

classification are shown in Figure 5.5. Generally, MIML can achieve better performance than

SISL for all frog species except for RMA. The high classification performance for RMA using
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SISL might be that frequency structure of RMA is much clearer than other frog species. Among

all frog species, precision and recall are higher than 0.6 for MIML. Both precision and recall of

LNA and UMA are 1, which are much higher than other frog species. The reasons for this high

classification performance might be that the cepstral domain information of LNA and UMA

can be better described by MFCCs. For SISL, LUA and LFX has the poorest classification

performance. The reasons for poor classification accuracy of LFX might be insufficient training

instances and inappropriate features for this frog species. Compared to MFCCs, our propose

AWSCCs in Chapter 4.
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Figure 5.5: Comparisons of precisions and recalls between SISL and MIML classification for
eight frog species
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5.5 Summary

In this chapter, we propose a novel MIML classification framework for classifying multiple

simultaneously vocalising frog species in field recordings. To the best of this author’s knowl-

edge, this is the first study that focuses on frog recordings using MIML learning. Since multiple

frog species tend to call simultaneously, MIML learning is a natural fit for dealing with those

recordings than SISL learning. For frog syllable segmentation, our propose AED method can

achieve the best performance, which can be reflected by the classification results. Compared to

SISL classification, MIML classification can achieve higher classification performance. Current

classification results are found to be highly affected by the syllable segmentation results, and the

use of AED cannot accurately segment all the syllables. One solution is to prepare an annotated

dataset and apply supervised learning algorithms for the segmentation task. Another is to use

a different classification framework, which does not need the segmentation process, and we

examine this option in the next chapter.
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Chapter 6

Frog call classification based on multi-label

learning

Research problem

In Chapter 5, the classification performance is highly affected by the syllable segmentation

results, which is realised by acoustic event detection (AED).

Research sub-question

How to reduce the effect of AED results and classify multiple simultaneously vocalising frog

species in low SNR recordings?

6.1 Overview

This chapter describes the research conducted for classifying multiple simultaneously vocalis-

ing frog species. In Chapter 5, acoustic features are calculated based on acoustic event detection

(AED) results, but the multiple-instance multiple-label (MIML) classification performance is

highly affected by the accuracy of AED results. To reduce the bias introduced by AED, this

chapter uses global feature sets for classifying multiple frog species in field recordings. To

be specific, three features are calculated: linear prediction coefficients (LPCs), Mel-frequency

cepstral coefficients (MFCCs), and adaptive-frequency scaled wavelet packet decomposition

sub-band cepstral coefficients (AWSCCs). Here, each feature is extracted from the whole 10-

second recording without syllable segmentation. Two cepstral feature sets are constructed by

statistical analysis and spectral clustering. Since each 10-second recording is represented by

a whole feature set and has multiple frog species, the classification process can be naturally

85
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framed as a multiple-label (ML) learning framework.

6.2 Methods

6.2.1 Acquisition of frog call recordings

To evaluate the proposed algorithm, the same dataset with Chapter 5 is used. The description

of this dataset can be found in Chapter 5.2.1. We first manually inspect spectrograms of ten

randomly selected call examples for each frog species. Dominant frequency of each frog species

as listed in Table 4.2 is used as prior information for subsequent analysis.

6.2.2 Feature extraction

Extracting discriminating features, which maximise between-group (inter-specie) dissimilarity

and minimise within-group (intra-specie) dissimilarity, is very important for achieving high

classification performance [Bedoya et al., 2014, Huang et al., 2009]. In this chapter, three

global features are calculated to classify multiple simultaneously vocalising frog species in

each 10-second recording: LPCs, MFCCs, and AWSCCs.

LPCs: Linear prediction coding (LPCs) is often used to represent the spectral envelope of

speech sounds [Itakura, 1975]. LPCs coefficients can be calculated using a linear predictive

filter.

X(n) =

p∑
i

aix(n− i) (6.1)

where p is the order of the polynomial ai. In the proposed study, the value of p is set at 12

(12th-order polynomial), and 13 LPCs coefficients are calculated. For those frog vocalizations

with different spectral envelopes, LPCs can obtain a high classification accuracy, and has been

widely used in previous studies Jaafar and Ramli [2015], Jaafar et al. [2013a], Yuan and Ramli

[2013].

MFCC: The description for calculating MFCCs can be found in Chapter 3.

AWSCCs: To calculate AWSCCs, constructing a suitable frequency scale for a WP tree

based on the dominant frequency of each frog species is the first step, because different frog
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species tend to have different dominant frequencies [Gingras and Fitch, 2013]. In Chapter 4, k-

means clustering was first applied to the extracted dominant frequencies of training data. Then,

the frequency scale was built by sorting clustering centroids to construct the WP tree. In this

chapter, the prior information for dominant frequency (F0) (see Table 4.2) is directly used to

construct the WP tree. Then, the steps for calculating AWSCCs are the same with Chapter 4.

6.2.3 Feature construction

Cepstral features are calculated of each frame, where each windowed signal contains n 12-

dimensional feature vectors. Then, two methods are used to compute a reduced set of features.

The first method is to compute six statistical values for representing n 12-dimensional

MFCCs [Dufour et al., 2013a]. Let MFCCs of each windowed signal be Vii = 1, ..., 12, d

and D are used to represent the velocity and acceleration of V .

then the six statistical values are calculated as follows:

f1 =

∑n
i=1 Vi
n

(6.2)

f2 =

√√√√ 1

n− 1

n∑
i=1

(Vi − f1)2 (6.3)

f3 =

√√√√ 1

n− 2

n∑
i=1

(d− d2i (6.4)

f4 =

√√√√ 1

n− 3

n∑
i=1

(D −Di)2 (6.5)

f5 =

∑n−1
i=1 |di|
n− 1

(6.6)

f6 =

∑n−2
i=1 Di

n− 2
(6.7)
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Finally, each windowed signal is represented as the concatenation of the six above features

for the 12 cepstral coefficients, where the dimension of our feature set is 72.

The second method first clusters the 12 cepstral coefficients of all the windowed signal.

Here, k-means clustering is used to reduce the preliminary dimension of all 12 cepstral coef-

ficients. Then, dynamic time warping is used to calculate the distance between each clustered

cepstral coefficients. Finally, spectral clustering is applied for further dimension reduction and

getting the final feature vector. In this chapter, the value of k for k-means clustering is 50, and

the number of clusters for spectral clustering is experimentally set at 2. Finally, the dimension

of our constructed feature set is 24.

Original MFCCs Clustered MFCCs

Distance matrix Feature vector

K-means 
clustering

Dynamic Time Warping

Spectral
clustering

Figure 6.1: Procedure for extracting cepstral based feature vectors
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6.2.4 Multi-label classification

Since many sampled recordings consist of calls from multiple frog species, frog call classifi-

cation can be framed as a ML learning problem. However, previous studies have not adopted

ML learning to classify frog calls. Therefore, it is worth investigating different ML learning

algorithms for the classification of multiple vocalising frog species in field recordings for its

scalability and flexibility [Read et al., 2011]. The principle of the BR method is to solve a

multi-label classification problem using multiple binary classifiers respectively. Similar to our

previous work [Zhang et al., 2016], three classic single-label learning algorithms, k-nearest

neighbour, decision tree, and random forest, are investigated in this chapter. Here, random

forest is selected as the base classifier, since our previous study of classifying frog species has

already demonstrated its comparable performance [Xie et al., 2016].

For ML-kNN, the basic idea of this algorithm is to adapt k-nearest neighbour techniques

to deal with multi-label data, where maximum a posteriori (MAP) rule is utilized to make

prediction by reasoning with the labelling information embodied in the neighbours.

For ML-DT, the basic idea is to adopt decision tree algorithm to deal with multi-label data.

Here, and information gain criterion based on multi-label entropy is utilised to build the decision

tree recursively [Clare and King, 2001]. Starting from the root node, ML-DT identifies the

feature and the corresponding splitting value which maximises the information gain, and then

generate two child nodes. This process treats one split node as the new root node, and terminated

until some stopping rules are met.

For ML-RF, an ensemble of randomised trees is learnt. Nodes are partitioned into a left and

a right child by brute force optimisation of a ML variant of the Gini index defined over the set of

positive labels in the node. Trees are grown until each leaf node has only a few labels present.

During testing, a novel point is passed down each tree and predictions are made by aggregating

all the leaf node label distributions.

6.3 Experiment results

Each 10-second recording is divided into frames of 512 samples and 50% frame overlap for

STFT. For MFCCs and AWSCCs, window size and overlap are 512 samples and 50%, the
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window function is a Hamming window. All algorithms were programmed in Matlab 2014b

except ML learning, which was implemented in Meka 1.7.74.

6.3.1 Evaluation metrics

For multi-label classification, the performance evaluation differs from the classic single-label

classification systems. The multi-label classification results often have a situation where partial

labels are correctly predicted, but the prediction of single-label classification is either correct

or incorrect. Therefore, some traditional evaluation metrics for the single-label classification,

such as precision, recall, and accuracy, are no longer suitable for the multi-label classification

system. In this study, three evaluation metrics, hamming loss, accuracy, and subset accuracy,

are used, where all the three are example based measures [Madjarov et al., 2012b].

The definition of Hamming loss can be found in Chapter 5.

Accuracy for a single instance xi is defined by the Jaccard similarity coefficients between

the ground truth yi and the prediction h(xi). Accuracy is micro-averaged across all examples:

accuracy =
1

N

N∑
i=1

|h(xi ∩ yi)
h(xi ∪ yi

| (6.8)

where N is the number of instances, yi denotes the ground truth of instance xi, and h(xi)

denotes the predictions for the same instance.

Subset accuracy is defined as follows:

subsetAccuracy =
1

N

N∑
i=1

I(h(xi) = yi) (6.9)

where I(true) = 1 and I(false) = 0. This is a very strict evaluation measure as it requires the

predicted set of labels to be an exact match of the true set of labels.

The values for hamming loss, accuracy, and subset accuracy range from 0 to 1. For hamming

loss, 0 denotes the perfect result, and 1 means the wrong prediction of all labels over every

instance, whereas for accuracy and subset accuracy, the values have the completely opposite

meanings.

4http://meka.sourceforge.net/
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6.3.2 Classification results

Experiment results are shown in Table 6.1. The combination of LPCs, MFCCs, and AWSCCs,

can achieve the best performance with ML-random forest. Using only cepstral coefficients,

the best classification performance is achieve by AWSCCs(2), of which the accuracy is 0.662.

After adding the temporal feature (LPCs), the accuracy is improved to 0.694. The reason for

this improvement might be that this combination can achieve both temporal and frequency

information of the recording. Compared to other classifiers, the classification performance of

ML-RF is better than both ML-kNN and ML-DT (Table 6.2).

Table 6.1: Comparison of different feature sets for ML classification. Here, MFCCs-1 and
MFCCs-2 denote cepstral features are calculated via first and second methods, respectively

Feature set Base Classifier Hamming loss ↓ Accuracy ↑ Subset accuracy ↑
MFCCs-1

Random forest

0.143 ± 0.015 0.64 ± 0.035 0.354 ± 0.052
MFCCs-2 0.139 ± 0.01 0.659 ± 0.019 0.362 ± 0.036
AWSCCs-1 0.139 ± 0.011 0.656 ± 0.009 0.371 ± 0.038
AWSCCs-2 0.138 ± 0.012 0.662 ± 0.01 0.38 ± 0.031
AWSCCs-2 + LPCs 0.117 ± 0.011 0.694 ± 0.027 0.424 ± 0.027

Table 6.2: Comparison of different ML classifiers

Feature set Base classifier Hamming loss ↓ Accuracy ↑ Subset accuracy ↑
AWSCCs-2 + LPCs ML-kNN 0.139 ± 0.023 0.679 ± 0.039 0.362 ± 0.065
AWSCCs-2 + LPCs ML-Decision Tree 0.171 ± 0.012 0.593 ± 0.018 0.272 ± 0.036
AWSCCs-2 + LPCs ML-Random forest 0.117 ± 0.011 0.694 ± 0.027 0.424 ± 0.027

6.3.3 Comparison with MIML

In this chapter, ML learning is used to classify frog calls without syllable segmentation. Com-

pared to the MIML learning (Figure 5.4 in Chapter 5), the ML classification has a slightly better

classification performance. For ML classification, LPCs, MFCCs, and AWSCCs are combined

for the classification. MFCCs and AWSCCs are calculated by averaging cepstral features in

the temporal direction. Although this process will compress the information in the temporal

direction, the information of the cepstral domain is obtained. Since most frog species tend to

continuously make calls, the compression of the temporal information will not greatly affect

the discriminability of the ceptral features. LPCs are added to get the temporal information.



92 CHAPTER 6. FROG CALL CLASSIFICATION BASED ON MULTI-LABEL LEARNING

In contrast, features used for MIML classification are calculated from each segmented syllable.

However, current AED often cannot accurately segment frog calls with low energies, which

greatly affects the classification performance.

6.4 Summary

In this chapter, ML learning is used to classify multiple simultaneously vocalising frog species

in field recordings. A combination of AWSCCs-1 and LPCs can achieve the best classification

performance, which is similar with MIML classification results reported in Chapter 5. To

construct the final feature set, a novel method is proposed based on spectral clustering. Although

the classification performance is similar with the statistical method, the feature dimension

is greatly decreased from 72 to 24. Compared to MIML learning, ML learning does not

need to segment frog syllables, which can increase the robustness of the classification results.

Compared to other classifiers, ML-RF can achieve the best classification performance with a

hamming loss of 0.117.

Since this proposed classification model can successfully recognise multiple frog species, it

can be applied to monitor frog species richness over long-term. Besides, the correlation between

frog species richness and climate data can be investigated for revealing the ecological meaning

of acoustic data. However, this work can not be finished due to the limitation of acoustic data.

Meanwhile, this thesis mainly focus on the research of designing the classification system rather

than the ecology issue. All those research can be regarded as the future work.



Chapter 7

Conclusion and future work

This thesis has addressed frog call classification using both trophy and field recordings. For

trophy recordings, a combined feature set using temporal, perceptual and cepstral features is

proposed. A novel cepstral feature with good anti-noise performance is proposed using wavelet

packet decomposition (WPD). To classify multiple simultaneously vocalising frog species in

field recordings, two classification frameworks are adopted: multiple-instance multiple-label

(MIML) learning and multiple-label (ML) learning.

Challenges of this thesis lie in designing effective feature extraction algorithms and adopting

classification frameworks. Key contributions of this research to the challenges are summarised,

and useful avenues of inquiry for improving the methods described in this thesis are explored.

7.1 Summary of contributions

In Table 7.1, the proposed algorithm of each chapter is listed.

Table 7.1: The list of algorithms used in this thesis
Algorithm ID Data Segmentation Fature Classifier Contribution Chapter

1
Trophy
recordings

Amplitude frequency
information

Various
kNN, SVM,
RF, and NN

feature and
integration

3

2
Trophy and field
recordings

Amplitude frequency
information

AWSCCs kNN and SVM feature 4

3 Field recordings AED Various
MIML-kNN,
MIML-SVM,
and MIML-RBF

segmentation
and integration

5

4 Field recordings No segmentation
LPCs, MFCCs,
and AWSCCs

ML-kNN, ML-DT,
and ML-RF

feature and integration 6
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Detailed contributions of this thesis are summarised below:

(1) An enhanced acoustic feature set for frog call classification in trophy recordings.

Effectively modelling frog vocalisations has significant impact on the performance of frog call

classification systems. A novel feature set is proposed to represent frog calls using temporal,

perceptual, and cepstral information. A combination of temporal, perceptual, and cepstral

features can greatly increase the discriminability of the combined feature set. Evaluations of the

propose feature set are based on 24 frog species from trophy recordings. Five machine learning

algorithms are compared to the proposed feature set. Background noise with SNR from -10 dB

to 40 dB is added to test the anti-noise ability of the proposed feature set. Experimental results

show that (1) Compared to previous feature sets, an enhanced feature set including can achieve

the best classification performance. (2) The best classification performance is achieved by SVM

and RF, in comparison with LDA, K-NN, and MLP. (3) The cepstral feature is very sensitive to

the background noise, but can achieve high classification accuracy for high SNR recordings.

(2) A novel feature via adaptive WPD for frog call classification in both trophy and field

recordings.

Cepstral features are widely used for classifying frog calls. Although cepstral features have

shown high classification performance for classifying frog species in trophy recordings, the per-

formance is quickly decreased when classifying frog species in field recordings. A novel cep-

stral feature via WPD is proposed to increase the anti-noise ability. An adaptive frequency scale

is generated by applying k-means clustering to all dominant frequencies of training datasets.

Compared to other frequency scales, the adaptive frequency scale can better reflect the fre-

quency distribution of frog calls. Evaluations of the propose feature set are based on 18 frog

species from trophy recordings and eight frog species from field recordings. Experimental

results in both trophy and field recordings show that the propose cepstral feature can achieve the

best classification performance when compared to other cepstral features using trophy record-

ings. For field recordings, the classification performance of our cepstral features does not

greatly decrease unit the SNR is 10 dB.

(3) Design a MIML classification framework for frog call classification in field recordings.

Most field recordings contain multiple simultaneously vocalising frog species, a single-instance

single-label (SISL) classification framework might be unfit for classifying frog species in those

field recordings. Compared to SISL learning, MIML learning is a natural fit for field recordings
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of frogs. A novel MIML classification framework is adopted to focus on frog calls. To segment

individual frog syllables, a novel AED algorithm is designed based on event filtering. The

propose classification framework is evaluated using 342 10-second recordings including eight

frog species. Experimental results show that MIML-RBF achieves the best classification results

with shape based feature sets. Compared to SISL learning, MIML learning can significantly

increase the classification results for all eight frog species.

(4) Design a ML classification framework for long-term monitoring of frogs in field record-

ings.

Compared to SISL learning, MIML learning shows a better performance for classifying multi-

ple simultaneously vocalising frog species in field recordings. However, MIML classification

performance is highly affected by the AED method. To reduce the effect of AED, a novel

ML classification framework is adopted. A new method for constructing cepstral features is

proposed. Evaluations of the ML classification framework are based on the same dataset with

MIML learning. The ML classification performance is slightly better than MIML learning, but

non-use of the segmentation process can greatly increase the classification efficiency.

7.2 Limitations and future work

Although our proposed frog call classification framework shows promising classification per-

formance, there is still much work that can be done to help scientists and researchers in data

collection and analysis of the bio-acoustics communities.

• For one frog species, calling parameters of different areas might have some variations.

It is necessary to investigate our proposed classification framework for classifying frog

vocalisations from different areas.

• Since field recordings often contain much background noise, it is important to develop

effective noise reduction algorithms to reduce the background noise and improve the

classification performance.

• For each frog, there are many types of frog calls: (1) mating calls, (2) territorial calls,

(3) male release calls, (4) female release calls, (5) distress calls, and (6) warning calls.

Among them, almost all studies that use machine learning algorithm to classify frog calls
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select mating calls (advertisement calls) as the research targets. It it worthwhile to classify

frog calls into different species and further classify different types of calls for one frog

species.

• Deep learning techniques have received increasingly attention due to its success in vari-

ous research areas. Once we obtain enough annotated frog recordings, it is worthwhile

applying this technique to for classifying frog vocalisations.

• One aspect that requires further improvement is the need for an advanced frog syllable

segmentation method for the field recordings so as to extract more accurate event-based

features and conduct more thorough analysis on frog vocalisations. The problem of

syllable segmentation is very complicated, because field recordings often have many

simultaneous overlapping calling activities from birds, frogs, insects, and many other

sources.

• Our developed frog call classification framework aims to help ecologists to study frogs

over larger spatial and temporal scales. However, there is still no a generic platform for

running frog recordings. It is necessary to develop a toolbox with an easy user interface

for frog call classification, and then ecologists can conduct the analysis on their own. We

focus on efficacy in this research, however efficiency is also very important in big data

analysis. For this purpose, the MATLAB code corresponding to feature extractors and

classifiers needs to be optimised to perform real-time frog call classification in the field.



Appendix A

Waveform, spectrogram and SNR of frog species

from trophy recordings

Table A.1: Waveform, spectrogram, and SNR of selected six frog species from trophy
recordings. The SNR is calculated as SNR = 10 × log10[(

∑m+L
i=m S2

i )/(
∑n+L

j=n N
2
j )] , where

L is the length of the signal and noise used for calculating SNR, and set at 6000 samples, n and
m are manually selected start location in the waveform for noise and signal, respectively

Waveform Spectrogram SNR (dB)

Bufo marinus 19.35

Litoria caerulea 15.78

Litoria fallax 43.7
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APPENDIX A. WAVEFORM, SPECTROGRAM AND SNR OF FROG SPECIES FROM

TROPHY RECORDINGS

Litoria gracillenta 25.8

Litoria latopalmata 35.85

Litoria rubella 36.2



Appendix B

Waveform, spectrogram and SNR of six frog

species from field recordings

Table B.1: Waveform, spectrogram, and SNR of eight frog species (field recordings)
Waveform Spectrogram SNR (dB)

Bufo marinus 1.86

Cyclorana novaehollandiae -0.13

Limnodynastes terraereginae -2.88

Litoria fallax 1.52
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APPENDIX B. WAVEFORM, SPECTROGRAM AND SNR OF EIGHT FROG SPECIES

FROM FIELD RECORDINGS

Litoria nasuta 2.14

Litoria rothii 10.24

Litoria rubella 1.08

Uperolela mimula 10.28
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