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ABSTRACT 

 

To investigate alternative mechanisms generating artificial circulation during cardiopulmonary 

resuscitation (CPR), an electrical model of the circulation was developed. Heart and blood 

vessels were modeled as resistive-capacitive networks; pressures in the chest, abdomen, and 

vascular compartments as voltages; blood flow as electric current; blood inertia as inductance; 

and the cardiac and venous valves as diodes. External pressurization of thoracic and abdominal 

vessels, as would occur in CPR, was simulated by application of half-sinusoidal voltage pulses. 

Three modes of creating artificial circulation were studied: cardiac pump (CP), in which the atria 

and ventricles of the model were pressurized simultaneously; thoracic pump (TP), in which all 

intrathoracic elements of the model were pressurized simultaneously; and abdominal pump (AP), 

in which the abdominal aorta and inferior vena cava of the model were pressurized 

simultaneously. Flow was greatest with the CP, less with the TP, and least with the AP 

mechanism. However, the AP could be practically combined with either the CP or TP by 

interposition of abdominal compressions between chest compressions (IAC-CPR). Our model 

predicts that this combined method can substantially improve artificial circulation, especially 

when cardiac compression does not occur and chest compression invokes only the thoracic pump 

mechanism. 

 

Key words: blood flow, CPR, IAC-CPR sudden cardiac death, ventricular fibrillation 
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INTRODUCTION 

 

Any study of improved cardiopulmonary resuscitation (CPR) is complicated by the existence of 

at least two distinct mechanisms for the generation of forward blood flow by chest compression 

during cardiac arrest[1-3]. One is the cardiac pump mechanism, which is similar to that of open 

chest CPR in that the heart is presumed to be squeezed between the sternum and the spine. With 

the chest closed, however, the pressure is applied both to the cardiac ventricles and to other 

mediastinal structures including the atria, the esophagus, and some of the great vessels. In this 

sense, even idealized closed chest cardiac massage is less selective than open chest ventricular 

massage and in particular causes high venous pressure spikes during the compression phase [4-

7], which are absent during open chest CPR [6,7]. Considerable evidence published over the last 

five years suggests that pressure pulses developed during chest massage are even more widely 

distributed throughout the thorax. In the limiting case, the pressure throughout the chest is 

uniformly elevated by chest compression, invoking the thoracic pump mechanism of CPR. 

 

The thoracic pump mechanism of closed chest CPR [1,3,8] is believed to involve pressurization 

of the entire pulmonary vascular bed in such a way as to squeeze blood from the lungs, through 

the left side of the heart, and into the periphery, even in the absence of direct heart compression. 

Venous valves, collapse of veins entering the thorax, and a competent pulmonic valve prevent 

retrograde flow. Compression of the left side of the heart is not required, and the left side of the 

heart is said to function as a passive conduit [9]. 

 

Yet a third mechanism for generation of blood flow during CPR has been suggested by the work 

of Rosborough [10] who showed that abdominal compression and ventilation alone can produce 

significant perfusion during ventricular fibrillation in dogs. Concurrently, Ralston et al. [11] and 

Voorhees et al. [12] found that abdominal counterpulsation during otherwise standard CPR 

essentially doubled cardiac output [11], diastolic arterial pressure, and oxygen uptake [12] in 

anesthetized dogs with ventricular fibrillation. The technique was termed IAC-CPR to indicate 

interposed abdominal compressions, which can be applied in the field with the bare hands of an 

additional rescuer. Hence, abdominal compression may provide a third means to generate 

artificial circulation during CPR. 

 

To study the interactions of chest and abdominal compression in CPR, we developed a simple 

resistive-inductive- capacitive model of the circulation, in which flow can be generated by 

compression of either the heart, the entire thorax, the abdominal aorta, or the abdominal veins 

(by applying voltage pulses to particular sets of capacitors), and in which phased chest and 

abdominal compression can be simulated. Such electrical models of the circulation permit easy 

testing of assumptions and manipulation of system parameters to test hypotheses. Such models 

can serve as a guide to experimentation, suggesting certain interesting experiments and 

eliminating the need for others. Because such models are much simpler than intact animals, it is 

easier to evaluate and understand their behavior and the contribution of individual components to 

the observed results. 
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In a previous article [13] we described the influence of compression force and peripheral 

vascular resistance when abdominal counterpulsation is combined with thoracic pump CPR in 

such a model. This subsequent research was conducted with the following objectives: 

 

1. To characterize the artificial circulation developed by cardiac compression, generalized 

thoracic compression, and abdominal compression in a simple electronic model of the human 

circulatory system. 

 

2. To identify the effects of compression frequency for each of the three pump mechanisms. 

 

3. To compare the effects of IAC when combined with cardiac compression versus generalized 

thoracic compression. 

 

4. To identify the importance of abdominal aortic versus abdominal venous compression in the 

efficacy of IAC. 

 

 

MATERIALS AND METHODS 

 

Development of a Circulatory Model 

 

We constructed a simplified electrical analog of the circulation, shown in Figure 1. The great 

vessels and cardiac chambers are modeled as capacitors, and capillary beds are modeled as 

resistors. The flow of electric current around the circuit (arrows) represents the flow of blood, 

and the action of the arterial and venous inductors models the inertia of the blood columns in 

these larger, longer vessels. Normal cardiac and venous valves are modeled as diodes, which 

permit flow of current in only one direction. Definitions of the symbols for circuit elements are 

provided in the figure legend. 

 



4 

 

 

 

 
 

FIGURE 1. Circuit diagram of the model. Elements corresponding to vessels in the 

head, thorax, abdomen, and legs are identified. Capacitors (-||-) model large vessel 

compliance; inductors (-eeee-) model blood inertia; resistors (-/\/\/\/\-) model capillary 

beds; and diodes (-|>|-) model valves. Voltage sources (-O-) are applied between earth 

ground and the thoracic and abdominal capacitors to model chest and abdominal 

compression. Arrows indicate direction of current flow. Abbreviations identifying 

specific vascular elements in alphabetical order are as follows: AA, abdominal aorta; 

A, aortic valve; ABD, abdominal capillaries; AO, thoracic aorta; CAR, carotid artery; 

CR, cranial capillaries; COR, coronary capillaries; LA, left atrium; LO EXT, lower 

extremity capillaries; LV, left ventricle; M, mitral valve; N, Niemann’s valve at the 

thoracic inlet; P, pulmonic valve: PA, pulmonary artery; PUL, pulmonary capillaries; 

PV, pulmonary veins; RA, right atrium; SVC, superior vena cava; T, tricuspid valve; 

V, venous valves in legs. 
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Application of external pressure to blood-containing structures is modeled by the application of 

voltage pulses between specific capacitors and ground potential, which represents zero (ambient 

atmospheric) pressure. Table 1 lists the conversion factors for pressure to voltage, flow to 

current, compliance to capacitance, and inertance to inductance. The conversion factors for 

capacitance and inductance were further scaled so that the time course of current flow in the 

model during one-tenth millisecond simulated the flow of blood through the vascular tree in one 

second. Thus, a compression rate of 1/sec is represented by a frequency of 10 kHz in the model. 

This frequency transformation by a factor of 10,000 permitted the use of routinely available 

electronic hardware, avoiding the need for either extremely large capacitances or extremely high 

voltages. Monitoring of pressure and flow in the model could still be accomplished with the aid 

of a storage oscilloscope. 

 

 

TABLE 1. Cardiovascular Variables and Their Electrical Analogs 

 

 
 

 

Current leaving the right side of the heart passes through the pulmonary system, first through the 

pulmonary artery capacitance, then the pulmonary capillary resistance, and then the pulmonary 

venous and left atria1 capacitance before entering the left ventricle (Figure 1). Current leaving 

the left side of the heart through the aortic valve can return to the right atrium via one of four 

pathways, representing the vascular beds of the head and neck, myocardium, abdomen, and 

lower extremities. The coronary circulation is modeled as a simple resistive pathway between the 

thoracic aorta and the right atrium. Separate, pulsatile voltage sources can be applied between 

ground and any of the vascular capacitors to mimic external compression of these structures 

during CPR. 
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A particular value of blood volume was simulated by charging all of the parallel vascular 

capacitances to a chosen DC voltage, corresponding to the equilibrium, zero-flow pressure in the 

circulatory system (20 mm Hg) that would exist during cardiac arrest without CPR. Because of 

the linear relationship between charge and voltage across a simple capacitor, the simulated blood 

volume (charge) could be determined from the relationship, zTB0 PCV  , where V0 is the zero 

pressure (unstressed) volume of the circulatory system--3,500 ml in most stimulations,  

CTB is total body capacitance--74 ml/mm Hg in most stimulations, and Pz is zero flow mean 

circulatory pressure during cardiac arrest--about 20 mmHg. This simulated volume was held on 

the vascular capacitors for the 120 milliseconds needed to simulate 20 minutes of CPR. Similar 

electrical models of the circulation have been described by Guyton and coworkers [14] and by 

others [15-18] (Granick JL Personal communication, March 10, 1976). 

 

To maintain simplicity of design and allow straightforward interpretation of results, many 

important aspects of classic physiology were specifically not included in the model. For 

example, the influence of myocardial wall tension of coronary vascular resistance was omitted, 

since there are no data available to specify such an effect during operation of any of the three 

mechanisms. Although the dynamic compliance of arteries and veins is known to decrease 

measurably as the vessels become more distended, the model included constant compliances 

during any one stimulation. (Reduced venous compliance with volume loading has been 

stimulated separately by changing the venous capacitance and zero-flow pressure and repeating 

the simulation [13].) Instead, this simple model was limited to the “plumbing aspects” of the 

circulation--the movement of blood through resistive elements connected by elastic conduits in a 

closed circuit similar to the circulatory system--in order to determine how these primary physical 

elements can be compressed to produce an artificial circulation. 

 

 

Operation of the Model 

 

To simulate closed chest CPR, similar scaled pressure pulses were applied either to the four 

cardiac chambers (cardiac pump mechanism); to the four cardiac chambers, superior vena cava, 

thoracic aorta, and the pulmonary arterial and venous capacitances together (thoracic pump 

mechanism); or to the abdominal aorta and inferior vena cava of the model (abdominal pump 

mechanism). For convenience, half-sinusoidal voltage waveforms were used to approximate the 

rise, peak, and fall in pressure caused by external compressions. When abdominal compression 

was combined with cardiac or thoracic compression, it was always 180 degrees out of phase with 

chest compression. 
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TABLE 2. Initial “Normal” Values of 25 Passive Components of the Model 
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Table 2 shows the initial values of the 25 passive components used to simulate the three modes 

of CPR. Typical values of resistance and capacitance of vascular beds were selected with 

reference to published literature and scaled to represent a hypothetical 70-kg man with a normal, 

resting cardiac output of 5 L/min, arterial blood pressure of 120/80 mm Hg, and pulmonary 

artery pressure of 25/10 mm Hg. Other assumptions that were made in selecting initial values of 

resistance, capacitance, and inductance of the model were as follows for normal, resting 

conditions: 

 

1. For the purpose of computing normal peripheral resistance, pulmonary vascular resistance, 

and ventricular compliances, normal right atrial pressure is 0 mm Hg and normal left atria1 

pressure is 5 mm Hg. 

 

2. Heart rate is 80/min (so that stroke volume is 62.5 ml). 

 

3. Cardiac output in mL/min is distributed as follows: head and neck 1,000; myocardium 350; 

lower extremities 650; kidneys, skin, and abdominal viscera, 3,000. 

 

4. Total systemic and pulmonary arterial compliances are equal to stroke volume divided by left- 

or right-sided pulse pressure. 

 

5. Systemic arterial compliance is distributed as follows: thoracic aorta 50%, abdominal aorta 

25%, carotids 15%, femorals 10%. 

 

6. Systemic venous capacitance is 30 times aortic capacitance and distributed as follows: 

superior vena cava 15%; inferior vena cava, abdominal veins, liver and spleen 50%; jugular and 

cranial veins 25%; femoral veins 10%. 

 

7. Pulmonary venous compliance is 1/6 of systemic venous compliance. 

 

8. Inertance of longer arteries and veins is computed by the expression L = l/(nr
2
);  

where  = blood density (1 g/ml), 1 is vessel length in cm, n is the number of parallel vessels 

(e.g., 2 carotids), and r is vessel radius. 

 

9. Right atrial compliance is twice that of right ventricular compliance and equal to left atria1 

compliance. 

 

The exact magnitudes of these quantities during actual cardiac arrest and CPR in human beings 

are not known at present. As a working approach to the modeling problem, therefore, we have 

begun with the presumed normal values indicated in Table 2, and then performed simulations 

with other values to answer specific questions concerning variations in venous capacitance, 

arterial capacitance, and peripheral vascular resistance [13]. 
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Because we have previously reported that flows in such a model are linearly related to both chest 

and abdominal pressure by an expression of the form  

 

flow =  Pchest +  Pabdomen , 

 

the pressure applied to the chest was typically standardized at 80 mm Hg (40 volts) and the 

pressure applied to the abdomen was typically standardized at 100 mm Hg, values we regard as 

being clinically reasonable. The duty cycle of chest and/or abdominal compression was always 

50%. Compression frequencies ranging from 0 to 120/min were simulated. 

 

The intravascular pressures developed in the model were determined by measuring the voltage 

with respect to ground potential, using a Tektronics Model D-15 storage oscilloscope and a 

Tektronics P6015 high voltage probe. In a typical experiment, the model was “charged” by 

setting the arterial and venous beds to an electrical potential representing 20 mm Hg zero flow 

equilibrium pressure. Then, thoracic and/or abdominal voltage sources were activated, and the 

stimulated pressure was recorded on the storage oscilloscope. 

 

Flow in the cranial, coronary, and caudal circuits could be determined by measuring the mean, 

steady-state voltage developed across peripheral resistance elements and then applying Ohm’s 

law. Cardiac output was determined as the sum of flows in the four peripheral vascular circuits. 

 

 

RESULTS 

 

Figure 2 illustrates waveforms for simulated aortic and central venous blood pressures during 

operation of the cardiac, thoracic, and abdominal pumps. In these figures the full horizontal scale 

represents one compression cycle. The left half of the tracing represents the compression phase. 

In this comparison the peak applied pressure was 80 mm Hg for all three pumps. During cardiac 

pump CPR (Fig. 2, top) a positive arteriovenous pressure difference exists through both 

compression and relaxation phases. During thoracic pump CPR (Fig. 2, center) aortic and central 

venous pressure rise together during the compression phase, and there is significant systemic 

perfusion pressure only during the relaxation phase. 
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FIGURE 2. Oscilloscope traces showing pressures in the thoracic aorta (Ao) and 

superior vena cava (SVC) during simulation of cardiac pump CPR (top), thoracic 

pump CPR (center), and abdominal pump CPR (bottom). Peak extravascular pressure 

was 80 mm Hg in all cases. The horizontal time base represents one compression 

relaxation cycle. 
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During abdominal compression only (Fig. 

2, bottom) pressure in the thoracic aorta 

rises above the zero flow, mean systemic 

pressure more than does the central 

venous pressure. As a result, positive 

systemic perfusion pressure is generated 

by abdominal compression alone. 

Comparing the three pump mechanisms, 

one sees that at the same driving pressure 

(80 mm Hg) the arteriovenous pressure 

difference generated is greatest with the 

cardiac pump only, intermediate with the 

thoracic pump only, and less still with the 

abdominal pump only. 

 

Figure 3 illustrates artificial cardiac output 

and flows to the heart and brain generated 

by each of the three pump mechanisms as 

a function of compression frequency. In 

general, the cardiac pump is more 

effective than the thoracic pump, which is 

in turn more effective than the abdominal 

pump. Interestingly, outputs of the 

thoracic and abdominal pumps are 

relatively independent of compression 

frequency, unlike the output of the cardiac 

pump. The small differences in flow in the 

plateau regions of these curves were 

consistently reproducible, and seem to 

represent resonance effects. 

 

 

 

FIGURE 3. Flow generated by 

three mechanisms at various 

frequencies. Top, total flow, 

center, myocardial flow, bottom, 

cranial flow. 
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Because the abdominal pump can be 

combined at will with either of the 

other two mechanisms, these 

combinations were studied. Interposed 

abdominal compression (IAC) at 100 

mm Hg, combined with thoracic pump 

CPR, improves total flow, myocardial 

flows, and cranial flow at all 

compression frequencies (Fig. 4). When 

IAC at 100 mm Hg is added to cardiac 

pump CPR, there is improved flow for 

all compression frequencies except 100-

120/min, as shown also in Figure 4. 

Since the flow generated by thoracic 

pump CPR is substantially less than that 

generated by cardiac pump CPR, the 

percentage improvement in flow by 

IAC is greater when combined with the 

thoracic pump mechanism. In the case 

of flow to the head (Fig. 4, bottom) the 

effect of thoracic pump CPR is more 

similar to that of cardiac pump CPR, 

because of the action of Niemann’s 

jugular venous valves [13]. 

 

 

FIGURE 4. Effects of 

adjunctive abdominal pumping 

in cardiopulmonary 

resuscitation (CPR) by means 

of abdominal counterpulsation 

combined with cardiac and 

with thoracic pumps. Top, total 

flow, center, myocardial flow, 

bottom, cranial flow, as 

functions of rate for a 

simulated circulation. CP = 

cardiac pump mechanism, TP 

= thoracic pump mechanism, 

STD = standard CPR, IAC = 

CPR with interposed 

abdominal compressions. 
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The data in Table 3 compare the effects of abdominal venous compression versus abdominal 

aortic compression combined with thoracic pump CPR, using cardiac output and coronary 

perfusion as end-points. In these simulations, counterpressure was either applied or not applied 

to the abdominal aorta and inferior vena cava of the model in the four possible combinations: 

aortic counterpressure only, caval counterpressure only, both, and neither. The results in Table 3 

suggest that the flow augmentation by IAC is caused in part by aortic and in part by caval 

counterpulsation, with the greatest flow occurring when counterpressure is applied to both 

vessels. Coronary flow, however, is nearly as great with abdominal aortic counterpulsation alone 

as with combined aortic and caval counterpulsation during thoracic pump CPR. Venous 

counterpulsation alone, however, does slightly increase coronary perfusion in comparison with 

that achieved by unassisted thoracic pump CPR. 

 

 

TABLE 3. Flows in ml/min for Thoracic Pump CPR (Pchest = 80 mm Hg) 

with Various Combinations of Abdominal Aortic and 

Caval Counterpulsation at 100 mm Hg 

 

 
 

 

DISCUSSION 

 

By modeling a complex biological system appropriately, an investigator can explore the 

consequences of certain fundamental assumptions about how the system operates. In the present 

study we assumed that external pressures can impel blood to flow through resistive-capacitive 

networks forming a closed circuit similar to the mammalian circulatory system. 

 

The investigation revealed three specific mechanisms for generating an artificial circulation, 

which we have called the cardiac, thoracic, and abdominal pumps. The artificial circulation 

produced by cardiac pump CPR is substantially better than the artificial circulation produced by 

thoracic pump CPR, which is in turn substantially better than the artificial circulation produced 

by abdominal pump CPR, when all three pumps are tested at the same driving pressure (80 mm 

Hg). It seemed most practical, then, to employ the abdominal pump as an adjunct to either the 

cardiac or thoracic pump mechanism, whichever is operative during chest compression. The 

result is a type of “three-man” CPR in which chest and abdomen are alternately compressed--a 

technique we have termed IAC-CPR to indicate interposed abdominal compressions. The 

abdominal contribution to flow seems to add independently to flow generated by either chest 
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pump mechanism with which it is combined, and is relatively greater when combined with 

thoracic pump than with cardiac pump CPR, because flows generated by the thoracic pump (TP) 

are relatively less. The model predicts that TP-IAC-CPR at 80/min will generate about 40% (2 

liters/min) of normal resting cardiac output in human beings. This value is nearly identical to that 

obtained by Voorhees et al. [4] in dogs (approx 40 ml/kg/min), assuming a value for normal 

resting cardiac output in the dog of 100 ml/kg/min. 

 

One message that seems to emerge from the present research is that every reasonable attempt 

should be made to invoke a cardiac pump mechanism in order to achieve better perfusion. The 

available approaches, however, carry identifiable risks. One possible way to increase the 

likelihood of cardiac compression is to increase the force of chest compression. A recent report 

from our laboratory [19] demonstrated the neglected importance of chest compression force in 

generating forward flow during ventricular fibrillation in dogs. In this study, the depth of chest 

compression had to exceed a critical threshold value, averaging 2.3 cm, before measurable 

cardiac output (greater than 0) was obtained. It is possible that the increase in cardiac output as 

compression exceeded this threshold value was due, in part, to increasing amounts of cardiac 

compression. One might speculate, therefore, that the chances of invoking a cardiac pump 

mechanism are increased when greater compression force is applied to the sternum in the 

midline. 

 

One certain way of establishing a cardiac pump CPR is to open the chest surgically and perform 

direct manual cardiac massage. This approach has been advocated recently, much more strongly 

than in the past [7,20] because of accumulating evidence that standard CPR may generate 

inadequate perfusion of the heart in animals [21,22] and that present CPR techniques produce 

little improvement in resuscitation rates and long-term survival in human beings [23,24]. 

 

Either of these methods of invoking a cardiac pump mechanism, however, is associated with 

increased risk as well as increased benefit, and the optimum parameters of the benefit/risk 

equation are far from being well defined. Increased sternal compression force, which is though 

probably desirable, can result in trauma to abdominal organs, especially the liver [19]. More 

research is needed to delineate the risk/benefit tradeoffs of augmented compression force. Open 

chest CPR, of course, is a surgical procedure requiring subsequent repair in an operating room, 

and the number of rescuers presently trained to do open chest CPR is quite small. Accordingly, 

we are left at present with no safe and certain way of performing cardiac pump CPR in most 

cardiac arrest victims. 

 

Indeed, most available evidence suggests that CPR as currently performed in adult human beings 

works by the thoracic pump mechanism. In this regard, the ultrasonic studies of Rich [25] and his 

co-workers reveal either that the heart is not compressed by closed chest massage or that the 

right ventricle is compressed somewhat but the left ventricle is not. Thus, closed chest cardiac 

compression seems to be a distant and elusive goal rather than an everyday clinical reality. 

 

Granted that we must live with thoracic pump CPR under most conditions, the contribution of 

abdominal pumping provided by IAC may be crucial in maintaining the viability of the heart and 

brain during prolonged resuscitation attempts. This conclusion is especially pertinent to survival 

if it can be demonstrated in vivo that abdominal counterpulsation improves coronary perfusion 
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during CPR. Recent work by Ralston and her co-workers [11] in our laboratory indicates that 

return of circulation after 20 minutes of experimental CPR is almost certain if myocardial 

perfusion is greater than 25 ml/min/100 g and almost impossible if myocardial perfusion is less 

than 15 ml/min/100 g. One might therefore conceive of a “survival threshold” for myocardial 

perfusion near 20 ml/min/100 g that must be exceeded if the heart is to withstand prolonged 

resuscitation efforts. Under these circumstances, even modest improvements in flow generated 

by the abdominal pump mechanism may be lifesaving. 

 

The efficacy of IAC-CPR in the electronic model is similar to that reported in canine models. 

[11,12,26]. Such agreement tends to confirm an assumption underlying much published 

resuscitation research that the cardiovascular systems of dogs and human beings are 

fundamentally similar, despite overall differences in scale and certain relative differences in 

linear dimensions such as those of the hind legs. Canine models of CPR are occasionally 

criticized for a variety of anatomical differences that are thought to be important in resuscitation, 

including a high-riding liver, keel-shaped chest, narrow sternum, and mobile mediastinum [27], 

and one might argue that such species-specific features are responsible for the favorable results 

of IAC that have been obtained in dogs [11,12], (White BC, personal communication, fall 1983). 

However, if this proposition were true, one would not expect to observe flow augmentation by 

IAC in an electrical model, which is completely independent of such anatomic subtleties. Indeed, 

a major motivation for creating such a model was to determine whether or not the benefits of the 

abdominal pump mechanism produced by IAC were explained by the fundamental resistive, 

capacitive, and inertial properties of circulatory systems. The answer to this question appears to 

be “yes,” and one may expect to observe benefits of IAC-CPR in the circulatory systems of both 

dogs and human beings. 

 

 

CONCLUSIONS 

 

Three known mechanisms can be employed to generate an artificial circulation during cardiac 

arrest and CPR. In order of effectiveness they are the cardiac pump, the thoracic pump, and the 

abdominal pump. The cardiac pump mechanism is invoked in a minority of cases by actual 

closed chest cardiac massage. It differs from the action of the normally beating heart in that right 

ventricular pressures are equal to or greater than left ventricular pressures, there is no Starling 

mechanism, and pulmonary venous pressures are high. Nonetheless, the cardiac pump 

mechanism can generate positive central arteriovenous pressure differences and vital organ 

perfusion approximately half normal. The thoracic pump mechanism is invoked by maneuvers 

that generate generalized intrathoracic pressure pulses, including cough-CPR, CPR with 

simultaneous chest compression and ventilation at high airway pressure (SCV-CPR), and 

probably most cases of ordinary clinical CPR in adults as currently practiced. The thoracic pump 

mechanism is substantially less efficient than the cardiac pump mechanism (although cerebral 

perfusion tends to be maintained when Niemann’s valve is operative) [4,13]. With thoracic pump 

CPR, central arteriovenous pressure differences and coronary perfusion occur only during chest 

recoil.  

 

The abdominal pump mechanism can function independently, but it is best used as an adjunct to 

thoracic pump CPR. During IAC-CPR, compression of the abdominal aorta helps to perfuse the 
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heart and the brain by raising the central arteriovenous pressure difference. Counterpulsation of 

abdominal venous elements helps to prime either of the chest pump mechanisms in a manner 

presumably analogous to the action of the cardiac atria when the heart is beating normally. When 

on the basis of clinical judgment there is no practical or safe way to invoke cardiac pump CPR, 

and one is left with the thoracic pump mechanism, the addition of interposed abdominal 

compressions may substantially improve perfusion and in selected cases could make the critical 

difference necessary for immediate survival. 
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