
Purdue University
Purdue e-Pubs
School of Engineering Education Graduate Student
Series School of Engineering Education

6-26-2017

Understanding the impact of strategic team
formation in early programming education
Tony A. Lowe
Purdue University, lowe46@purdue.edu

Sean B. Brophy
Purdue University - Main Campus

Follow this and additional works at: http://docs.lib.purdue.edu/enegs

Part of the Engineering Education Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Lowe, Tony A. and Brophy, Sean B., "Understanding the impact of strategic team formation in early programming education" (2017).
School of Engineering Education Graduate Student Series. Paper 65.
http://docs.lib.purdue.edu/enegs/65

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fenegs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/enegs?utm_source=docs.lib.purdue.edu%2Fenegs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/enegs?utm_source=docs.lib.purdue.edu%2Fenegs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ene?utm_source=docs.lib.purdue.edu%2Fenegs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/enegs?utm_source=docs.lib.purdue.edu%2Fenegs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1191?utm_source=docs.lib.purdue.edu%2Fenegs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages

Understanding	the	impact	of	strategic	team	formation	in	early	

programming	education	

Abstract
This evidence based research looks at the impact of a team-based instruction on learning to
program in a first year engineering course designed under the Bauhaus studio model. Each team
is formulated with a “more knowledgeable other” [1], or for this paper the “ringer” based on self-
reported prior learning. The ringer is intended to support the team through early programming
challenges. In addition to the professor and teaching assistants, having a peer mentor can yield
higher satisfaction and confidence in learners [2]. Our analysis evaluates learning outcomes as
student progress through the term, comparing performance based on the performance and prior
knowledge reported by the ringer. The major research questions investigate the role of the ringer
in the success of the team, as well looking to see if teams that include a low performing student
have any common characteristics. Findings include data from 2013, 2014, and 2015 with trends
apparent in each of the years across major topics.

This study shows that the formulation of teams around a carefully selected more knowledgeable
other can improve the learning of the entire team. In general, ringer score correlates to an
increase in the rest of the team’s average. The ringer score only supports learning to a certain
degree where if the gap in score is too larger compared to the rest of the team, lower performing
members can suffer. In general the formation of teams using prior programming experience
seems to do no harm and even possibly improve learning outcomes, and the data may also
suggest additional improvements on the use of teams.

Introduction
 Students learning to program tend to persist and perform better when they are paired with
their peers to complete coursework. Students fail in programming classes at rates starting at 20%
[3], [4] up to 50% [5]. Pair Programming suggests grouping a student with a peer, employing the
“two heads are better than one” philosophy shown to improve the output of projects [6] and
perhaps learning outcomes [2]. Students placed in teams may also gain the benefits of peer
programming, while also providing more authentic industry working conditions and supporting
ABET student outcome (d), working in multidisciplinary teams [7]. This paper looks at how
using teams in the Bauhaus studio model impacts student outcomes within a programming-
centric Honor First Year Engineering (HFYE) course at a large Midwestern research University.
We will start by looking at how teams are formulated and move into the general theoretical
frameworks behind peer learning. Based on these frameworks we propose two research
questions on how well the teaming paradigm supports student learning.

Curricular and Team Construction

 Engineers with programming skills can be radically more productive than their
counterparts. The ability to automate mundane calculations and create simulations and models
can both open up the creative process as well as accelerating daily work [8], [9]. Most engineers
will not have the time to dedicate to fully learning to code, but basic concepts of Computational
Thinking (CT) [10] as well as Computer Science (CS) can be taught to engineers alongside
Engineering Design, teamwork and problem solving challenges. This is a core pedagogy driver
behind the HFYE course of the study. Students are taught programming and given course credit
in Computer Science while being introduced to Engineering practices and processes taught in
many first year curricula.

 The instructional design team structured the entire HFYE course around the Bauhaus
Studio Model, creating a classroom that is active, team-driven and engaging. The Studio model
formulates learning through the use of team driven projects [11], [12]. Part of the original
Bauhaus concept was to bring together craftsman and designers from multiple disciplines to
share ideas and to work collaboratively. The Bauhaus model translates well into HFYE as
students are destined for all Engineering disciplines, bringing a wide variety of prior learning.
HFYE’s course objectives look beyond specific domain knowledge instead to fundamental
engineering skills such as teamwork, problem solving and communication. How the Bauhaus
model builds approaches coursework naturally facilitates these skills.

 Students learn best in a team when the team is carefully constructed. The best learning
teams can be formulated intentionally using empirical data collected from the students. Teams
should be balanced across a variety of factor such as gender and diversity, but should also
include more strategic factors [13]. The teams for this study were formulated using the CATME
tool used by Layton et al., using further customized criteria. One of the factors Layton et al.
notes as important is student scheduling. Scheduling is deemed to be less of an issue in HFYE
as, being members of the Honors College, students literally live and attend classes under the
same roof and generally have a common schedule. Instead, teams are formulated around prior
programming experience first and then balanced for diversity and other demographic factors.

Teams matched around skill level are predicted to both balance capabilities and improve
learning. The course is fundamentally an engineering course that solves problems using coding,
not a coding course. The first goal is to teach and practice the engineering design process.
Projects are designed to stretch students, so by planting at least one team member who has
signified they have strong prior programming experience the team should be more able to
successfully tackle complex problems. This chosen student, which we will call the “ringer”, is
the first placed on each team. The team as a whole is both expected to contribute to the design or
projects and the coding, but the ringer may best be positioned to implement the “tricky parts” the
most advanced code. This team formulation allows more challenging design projects in general
but, as we will discuss in the next section, should foster greater learning across the entire team.

Team Learning Theoretical Frameworks

 Peer learning is a widely used in general education but strongly advocated in several
programming pedagogies. We will touch on three methodologies including the Bauhaus Studio
Model, Pair Programming, Peer-led team learning (PLTL). These three frameworks provide
insight how the HFYE pedagogy was designed, how it can help students learn and potential
improvements for future consideration.

The Bauhaus philosophy is rooted in the experiential learning of John Dewey [14],
looking to challenge and motivate students through active learning. Not all engineering students
may consider programming to be an essential skill, and thus may not be intrinsically motivated to
dedicate time to such a finicky and abstract skill. Engineering and programming share common
design skills, so programming challenges can be wrapped in engineering design problems
challenging students to learn both simultaneously. Learning to code, though perhaps distasteful
for some “lies in the direction of the agent's own growth, and is, therefore, imperiously
demanded, if the agent is to be himself.” [15, p. 13] Dewey is making the point that some facts
are perhaps not attractive to learn on their own, but in this case by framing the skill of coding
within the larger context of engineering design, students learn both design and coding while
participating in an active learning team on a realistic project. The studio model provides a way
of engendering intrinsic motivation for programming within the context of engineering work.

Beyond being motivated to learn coding, students need support in learning a
programming language. An interesting problem does not guarantee a student fully engages in
coding when they hit the steep learning curve comes with a programming language. Pair
Programming creates partners who work collectively to overcome hurdles in coding. Industry
uses Pair Programming to improve code quality [6] while in the classroom it is found to improve
satisfaction and motivation of students [2]. Within HYFE, true Pair Programming activities are
used occasionally in the classroom and the model is extended to the team as a whole working
with 3-4 students. By seeding each team with a ringer, novice programmers are not only
supported by the instructional team, but also by a “more knowledgeable other” [1] inside each
team. According to Vygotsky’s theory, individuals learn best within their Zone of Proximal
Development, so teammates are more likely to be successful when their actual skill levels are
compatible [16], [17]. For this reason, teams are constructed so the ringer’s prior experience
does not too far exceed those of their peers. Pair Programming is being deployed in HFYE to
teams, using Vygotsky as a guide toward careful formulation of teams by their skill levels.

Peer-Led Team Learning provides students with a team working environment in which
students work together under the guide of a facilitator. The core of most PLTL experiences
includes 1.) small teams which meet regularly, 2.) tie-ins to course materials 3.) a trained
facilitator for each team, 4.) appropriate and challenging problems and 5.) a proper space to
facilitate group discussion [18]. The facilitator is not required to be a subject matter expert
(some of the best facilitator are not!) and is not given answers to any of the challenges, but is to
encourage the team and guide towards learning. The teams act as a network of support in

collaborative learning. Students participating in PLTL activities are shown to perform better
than their peers [19], [20]. PLTL was not used as a foundational framework for formulating
HFYE, but in includes a source for future enhancements to be described later.

Research Questions

 The theoretical frameworks for team learning have demonstrated improved student
experience, but not always learning outcomes. There is little or no literature on how the Bauhaus
model impacts learning, and while pair programming can be shown to improve retention and
performance on individual assignments, evidence shows no impact on each individual’s long-
term learning [21], [22]. Retention of students is certainly valuable, but HFYE is a blended
course without this core retention issue. For us it is important to understand how team formation
impacts learn CT and CS concepts as well as overall grades. To better understand the student
experiences and outcomes, we are looking to answer the following questions:

1. How does the relative skill level of the “ringer” impact the team’s learning?
2. Are there any common characteristics of teams which include a lower performing

student?

Methods
We have conducted a retrospective corollary study on student outcomes based on the

grade received. The pedagogical design of the class was created using empirically researched
practices, as well as considerations facilitating educational research, but was not designed
specifically for this study. This section will outline the nature of the participants, the available
data, the general approach of our analysis, as well as limitations of this methodology.

Research Participants

 The participants in this study are from a Freshman Honors First Year Engineering class at
a large Midwestern Research University between 2013 and 2015 (three terms total). The course
focuses on early concepts of engineering and design. The Honors sections grant Computer
Science credit, adding on extensive programming activities.

 Students are assigned into teams of four and complete in-class homework and project
challenges with their team. Teams are assigned using a survey (discussed later) in order to
balance out multiple individual characteristics such as gender mix and self-reported efficacy and
prior learning. The exact ‘formula’ by which the team assignments are made varies slightly in
year, but generally uses the same categories of data later discussed in Table 1. The methodology
for forming team attempts to pick a ‘ringer’ for each team, based on self-reported self-efficacy in
programming. The ringer is chosen based on the reported programming skills, but is balanced
across the demographic factors mentioned earlier as well as ensuring a balance of experienced,
somewhat experienced and novice programmers. The formula for calculating the ringer was
generated by one of the instructional staff and contains the following:

 Self-Efficacy = {General Programing Rating*}/ 2 +

 2/7 x Average {(Sequencing**), (Conditionals and loops**), (Complex problems**)}

*Ranked on a sale of 1-4, 1 low and 4 high ability
** Ranked on a scale of 1-7, 1 low and 7 high ability

Students rank themselves in their perceived General Programming Rating as well as specific
categories of programming including the ability to code Sequences, Conditionals and Loops and
generally Complex Problems. The final ranking is based on the formula above, which is
primarily used to choose the ringers.

Research Data

 This study leverages two sources of data: a background survey given the first week of
class and the student’s grades (quizzes, homework and exams). The survey is a tool to assign
teams including information shown in Table 1. All data is self-reported and thus perception-
based, with some students not completing the survey or providing a full response. In some cases
statistical analysis must excludes students/teams that do not have full survey data as it would be
impossible to categorize their prior knowledge. This brings variability to some team data as the
team may have been formulated with a student who has high self-efficacy and prior learning, but
was not chosen as a ringer by the CATME tool. We chose to eliminate many teams from the
analysis that included members with incomplete data to ensure a clearer picture at the cost of a
lower team count.

Table 1 Background survey categories

Survey Category Description
Expected Outcomes Anticipated GPA, Grade in class
Workload Number of hours spent on this and other classes as well as paid

workload
Programming skills A self-ranking of general programming skills (the ability to program

sequences, decisions, loops, etc)
Specific Languages The number of courses and their self-rating in languages such as

Basic, C, Python, Java, Ruby, Swift, Matlab…)
Non-coding Learning Prior coursework and grades in Math, Physics, Chemistry, as well as

specialized topics like Statistics, Drafting, Manufacturing…
Team experiences Whether the student has been asked to work in a team, of what size

and nature and how they perceive that experience.

 Student outcomes include robust data set in the form of exams, in-class assignments and
homework. This study is focusing on Computational Thinking aspects of this class, thus all
reported grades are filtered to assignments that reflect CT and/or CS topics, unless otherwise
stated. An example of topics omitted include questions about the general engineering design
process, aspects of teamwork, or work that is not deemed to use or be a direct precursor to CT
concepts (e.g. statistics). The pedagogical approach used a semi-flipped classroom wherein

students are expected to engage in the materials and come to class prepared. The typical
sequence of assessment is shown in Figure 1 and as follows.

Figure 1 Pedagogical overview of HFYE

1. Reading – The course is supported by an online textbook which includes programming
exercises. Problems are assigned from the text book weekly.

2. Q&A – Each class starts with a question and answer session based on the readings to
focus the class session.

3. Readiness Assessment Test (RAT) - Students take this initial quiz to assess their self-
guided learning and set expectations for the class session.

4. In-class Activities – The team is challenged to complete in-class activities on
programming, engineering, technical, and professional skills.

5. Check for Understanding (CFU) –The last 20 minutes of class are used for students to
work individually on problem targeting the main topic of the day’s activities. This
performance task involves generating and submitting individualized code, but the grade
may sometimes be assessed as a team rather using the team high grade, low grade, or
average as well as individual scores.

6. Post Activities (PA) – Each individual is expected to complete their own program, but is
allowed to leverage their team or other resources to assist.

7. Projects – These are completed by the team and cannot reflect individual learning and
thus are not considered in this study.

8. Exams – The course consists of two midterm exams and one final exam. The exam asks
questions on a variety of topics, but as stated, only those containing CT or CS concepts
are included here. The included questions include both conceptual questions as well as
practical programming work.

The order presented here is typically the order students would experience the assessment. The
RAT provides a ‘pretest’ of learning, the CFU drives further understand using peer instruction,
which is practiced as part of the PAs. After several cycles of RAT/CFU/PA a test is given to
provide a summative assessment before transitioning to a new topic area. Since we have
multiple assessments around pedagogical interventions, we can see some impact of each of the
different approaches.

Data Analysis and Limitations

 The course objectives are not limited to CT/CS topics, so exclusions were taken from the
data. Exercises and exam question not related to CT/CS concepts are removed from analysis.
Thus when we talk about ‘failing’ or ‘low performing’ students, this may not mean they failed
the class, but simply that they are falling behind their peers on the CT/CS ideas being explored in
this paper. It is possible that a student in the D/F category does well overall the class! It is
improbable, but possible a student performing well in CS/CT concepts failed the class. Our
objective here is conceptual understanding in CT/CS alone, thus we are not tracking actual
grades or withdrawals. The count of students/teams in the data may be less than the full
registration, as we only included students will a full comparable data set in the analysis.

 The research questions guided our initial look at data analysis, but we understood there
was an opportunity for data mining for additional insights so a software platform was built to
facilitate specific data mining efforts. Given that the course varies in content and approach each
year, the software framework aids in normalizing the data to a common model for data analysis.
This common model can then be explored using specific extracts of data that can be exported or
reported upon directly. This technique allows for quick access to structured data, enabling
analysis of emergent questions and insights. The dynamic nature of the data analysis can present
limitations. Specifically mining within a single data set may lead to external validity issues if the
pattern only applies to a given cohort. We curbed this risk by limiting data mining activities to a
single cohort year (2015) and then analyzed other years to see if the pattern is confirmable.

 The nature of the students may have limitations on the generalizability of our findings.
Being accepted to the Honors College, this cohort is already cultivated from general college
bound population. This study might be looking at ‘the best of the best’ or at least the “most
motivated” amongst college students. It is possible that the data set is already looking at such a
limited ban of student profiles, that the benefits or lack thereof seen in the data would not appear,
or have a greater impact in a different population. As an example, perhaps teamwork is more
effective here as most students in HFYE have prior teaming experience (100% of students in
2015). Or perhaps the benefits of peer learning underrepresented as all of our students have
shown academic success in Math (92% report a 4.0 in 2015). We will attempt to consider some
of these options as part of the discussion, though the generalizability of the data may be limited
and require further studies to show greater range of impact.

Results

Overall Data Context

The amount of data and resulting statistics is vast, so to aid in context we will start with
an overview of the students and teams. The data set does not contain specific demographics
(age, gender, race, etc.) so we cannot report past describing “general college students in HFYE”.
Table 2 shows descriptive statistics describing the nature of the team and student performance.

The overall self-efficacy of each class (Row 3) varies year-by-year hovering just above the
lowest level (1) of no professed skill. The ringer’s average self-efficacy (Row 4) is statistically
stable across years with the ringers on average are close to a 3 on the 4 point scale. The formula
for deriving teams seems to keep the ‘self-efficacy gap’ consistent across years (Row 5).

 The team performance varies across the years, but this does not impact our analysis. For
instance, the teams in 2014 performed significantly lower than those in 2013 and 2015 (rows 6
and 7). The ringer’s scores also vary across years (rows 8 and 9) as does the gap between the
ringer’s score and that of their teammates on average (row 10). We are not comparing years but
trends within a year to see if the trend is repeated across years, so the variance of raw scores
across the years does not impact our analysis. Overall the number of students receiving 55% or
less (which would be failing the course) in CT/CS assessments is very low (row 11), and in line
with the fail rates for the course in general, but not aligning CT/CS failure to course failure.

Table 2 Descriptive statistics by year

 2013 2014 2015 Cross-
Year

ANOVA
1 N (Teams/Students) 66/263 50/206 65 272 -
2 Worked in Teams

(All/Ringers)
97%(100%) 98% (98%) 95% (97%) -

3 Average Self-Efficacy
(SE)

1.62 (σ=0.26) 1.55 (σ=0.22) 1.69 (σ=0.23) p=0.011

4 SE Ringer 2.75 (σ=0.68) 2.68 (σ=0.66) 2.86 (σ=0.56) p=0.34
5 Ringer SE Delta 1.54 (σ=0.65) 1.53 (σ=0.72) 1.6 (σ=0.62) p=0.81
6 Team Percentage* 76.7% (σ=0.04) 66.5% (σ=0.04) 74.1% (σ=0.05) p=0.0
7 Team Score* 418.5 (σ=23.8) 381 (σ=18.6) 399.5 (σ=26.6) -
8 Ringer Percent* 78.1% (σ=0.05) 68.7% (σ=0.06) 78.9% (σ=0.07) p=0.0
9 Ringer Score* 427.6 (σ=30.0) 395.9 (σ=34.5) 426.5 (σ=34.6) -
10 Ringer Score Delta 10.4 (σ=30.75) 20.01 (σ=33.42) 37.1 (σ=42.6) p=0.0
11 Grade of D/F** 2.3% 3% 2.3% p=0.004

*Scores are for CT/CS topics only, not full course grades
** D/F grade is in CT/CS scores only, not actual DWF

Relationships between the ringer and the team

 The first research question investigates the relationship between the ringer and the
performance of their team. At the macro level there is no strong linear regression correlation
between the ringer’s self-efficacy as shown in Table 3 (row 1). The belief in a ringer’s ability
does not seem to translate into improved performance. In two of the years, however, the ringer’s
average score shows a statistically significant positive relationship to the average score of the
rest of the team (row 2). When the ringer scores better, so does the rest of the team. For instance
in 2013 for each 50 points the ringer score improved, the rest of the team averaged 15.6 points
better. Neither the ringer self-efficacy nor their score had any significant effect on the deviation
of the scores within the team. The ringer may help the rest of the team’s average, but does not
seem to reduce the variation of scores within the rest of the team members (rows 3 and 4).

Table 3 Ringer relationship to the team’s performance

 2013 2014 2015
 Relationship R2 p R2 p R2 p
1 Ringer SE to Team Average Score* - 0.45 - 0.89 - 0.997
2 Ringer Score to Team Average Score* 0.15 0.001 0.13 0.009 0.03 0.14
3 Ringer SE to Team Score Deviation* - 0.76 - 0.8 - 0.88
4 Ringer Score to Team Score Deviation* - 0.47 - 0.64 - 0.69
5 Ringer Score Gap to Team Average* 0.18 0.000 0.08 0.04 0.36 0.000

* Not including the Ringer’s score

Teams with low scoring members

The next research question seeks characteristics of teams which includes a member who
falls behind in CT/CS assessments (no team had more than one such student in any year). For
this analysis the teams who included a low scoring member were compared to the rest using
ANOVA to look for statistically significant differences. Neither the ringer, nor the team’s
average self-efficacy show any variance (Table 4 rows 1 and 2). The initial perception of
programming ability does not seem to indicate coming struggles. Teams containing a failing
member have a lower average than their counterparts (row 4) and the deviation of scores within
the team (row 6) is larger. Yet having a failing member does not seem to significantly hurt the
performance (row 5) or the deviation (row 7) of the remainder of the non-failing team members.

Table 4 Analysis of teams with D/F members

 2013 2014 2015
 Relationship f p f p f p
1 Ringer SE by D/F occurrence - 0.16 - 0.62 - 0.95
2 Team SE by D/F occurrence - 0.24 - 0.77 - 0.95
3 Ringer Score by D/F occurrence - 0.77 7.27 0.01* - 0.51
4 Full Team Average by D/F occurrences 5.46 0.02 45.6 0.000 22.5 0.000
5 Rest of Team Average by D/F occurrence - 0.94 9.13 0.004* - 0.42
6 Full Team Deviation by D/F occurrence 35.2 0.000 26.4 0.000 54.8 0.000
7 Rest of Team Deviation by D/F occurrence - 0.93 - 0.62 - 0.41

*One 2014 ringer was also D/F, likely skewing this statistic

Discussion
The theoretical basis of how teams are formulated in HFYE seems supported by the

results of the analysis. The data cannot compare student performance in team versus non-team
settings, but the dramatically low rates of failure (Table 2 row 11) and the general improvement
of learning outcomes (Table 3 row 2) suggest the teaming does no harm yet puts student in more
authentic working environments which also supports ABET student outcome (d). Teamwork is
typically already common for most students and is not a statistical predictor of performance or
D/F rates. In fact, only one student who scored D/F in all three years (n=741) also reported
having never worked on a team. Our analysis is not comparing the breadth or depth of learning,

but does seem to show that for the materials and approach chosen teaming does not show harm
and may show great benefit.

Research Question 1: Ringer Impact

 The method by which ringers are selected and teams are formed seems to be beneficial.
The self-efficacy reported by the ringer is not perhaps the best indicator of actual team
performance (Table 3 row 1) but when the ringer does perform well in the class the team seems
to benefit as well (Table 3 row 2), if only at a fraction of the gains of the ringer. We cannot
pinpoint the root cause of this improvement, but looking at Vygotsky’s theory of the “more
knowledgeable other” (MKO), it suggests the ringer may be acting in this capacity. Learning to
program involves both general problem solving as well as very specific understanding of syntax
and logic. The ringer may support the entire team as they unpack the engineering based
problems of the course and then stages of the programming task. The data suggests the ringer
may be acting as a MKO to their peers, but not without limitations.

Neither the ringer’s self-efficacy nor their actual score seems to impact the variation of
the team. One hope of using teams rather than pairs is that the ringer could stabilize the variation
of learning across three peers. It would be uncommon for half of any students to possess
significant prior CT/CS experience, so using teams of four not only creates a natural team size,
but also requires half as many ringers. The skill of the ringer does not show reduction in the
variability of the scores however (Table 3 rows 3 and 4). This may be due to what Vygotsky
suggests is the “zone of proximal development” (ZPD) within which a student is capable of
comprehending new material. For instance, a student may be struggling to comprehend loops,
where the ringer has long mastered that skill and forgotten what it was like to struggle with
loops. If a student’s and the ringer’s ZPD do not overlap enough, then the student will be
missing out on the benefits of working with an MKO as the ringer cannot relate. On the flip
side, if the team’s ZPDs overlap too much, the ringer can only stretch the team so far. Vygotsky
might suggest that a team must be formed so that the ZPD of each member overlaps that of at
least some of the other members.

Using the ZPD model, teams must be carefully matched in order to gain the maximum
success. We can see reflections of this in the data by looking in more detail at the gap between
the ringer’s score and the team average compared against the team’s score average not including
the ringer (Table 3 row 5). In all years there is a significant negative correlation. Figure 2 shows
2013 data plotted where the x axis shows the gap between the ringer score and the team average
(for negative values, the ringer’s score was lower than the team; the more positive the value the
greater the gap between the ringer and the team) and the y axis shows the team’s average score
excluding the ringer’s score. The rest of the team loses 15 points for each 50 points the gap
grows, supporting the idea that gap in ZPD between the ringer and the team. An overlapping in
ZPD (Shown as ZPD1 in Figure 2) means the ringer scores the same or lower as the rest of the
team. When the ZPD is moderate (ZPD 2 in Figure 2) the ringer does slightly better while still
supporting the team, but as the ZPD grows so does the gap (ZPD 3 in Figure 2) and the rest of

the team’s average drops. The team’s score might grow with the ringer’s ability, as suggested in
Table 3 row 2, but that growth would likely tail off as the gap between ZPDs grows too large.
This brings up interesting questions and suggestions covered in the conclusion.

Figure 2 ZPD analysis for ringers

Research Question 2: D/F Teams

 The ringer does not seem to impact the student fail rate. When a member of the team
falls behind, the average and deviation is noticeable (Table 4 rows 4 and 6) but does not seem to
be impacting the rest of the team (Table 4 rows 5 and 7). The rest of the team’s perceived or
actual skill does not seem to help or hurt students receiving D/F grades in CT. The exception in
the statistics is for 2014, which seems to be caused by the failure of a ringer, thus skewing the
significance. The very low fail rate (n=18 across 3 years) may make it difficult to generalize if
the constitution of the team impacts the fail rate from this study though.

 Vygotsky’s theory would imply that mismatch within the respective ZPDs could lead to
the ringer being an unsuccessful MKO for the D/F students. If the ringer’s skill level is too low,
they may be too consumed with their own learning, while if their skill is too high they may not
be able to ‘look back’ at the basic concepts in order to help. We can look for a potential
gap/overlap by comparing the gap between the ringer’s score and the D/F student against the
ringer’s score and the full team’s average as shown in Figure 3. The three bars on the left
represent the range of the gaps for each year between the ringer and the rest of the team. Teams
which do not include a failing member are graphed at the X value of 0. All other values show
the size of the gap between the ringer and the failing team member.

Figure 3 Analysis of the ZPD between the ringer and D/F students

 The teams which contain a D/F student all contain a ringer which is more likely to be
higher in score than their team. Only one team contains a ringer who scored lower than the team
average, and the majority scored much better. Thus we can reject the idea that any team
included a ringer unable to provide some level of expertise in CT/CS concepts. It would seem
nobody failed from the lack of an MKO on the team. It seems more possible that some of the
ringers were unable to ‘reach back’ to help the D/F students due to an insufficient overlap of
ZPDs. The trend shows that the gap between the ringer and the D/F student grows faster than the
gap between the ringer and the rest team as a whole. In 2014 a ringer who scored 20 points
higher than the D/F team member would only have scored 16.6 points higher than the rest of the
team and in 2015 it would only be 9.4! This seems to confirm the theory that when the ringer’s
ZPD does not overlap with one of the teammates they are less able to help them.

Conclusion

Research Findings

 The use of teams organized around prior experience in programming seems to have a
positive impact on learning outcomes. We were able to look back at three terms of student
survey and outcome data to test theoretical approaches and mine for data to support the research
questions. Our first research question looked at the impact of including a ringer on each team.
The inclusion of the ringer seems to have a mild to moderately positive impact on the ability to
program, in that ringers with a higher score tend to lead to teams that score higher as well.

The second research question looked for any trends in teams including a member with
lower scores. One concern could be a ‘weaker’ ringer could harm a student with less prior
knowledge, but in fact we seem to show that students who scored lower in CT/CS assessments
were among teams of better scoring ringers. It is also important to note, that individuals are not
seemingly harmed when they are placed on teams with individuals who do not succeed. We
have no way of discerning the causes of low performance, but also did not find any trends in
teams either causing lower score or impacting the rest of the team’s scores.

Implications and Future Research

The Bauhaus studio model can be successfully deployed to teach engineering and
programming at the first year level. A ringer can act as a more knowledgeable other and we can
see benefits within learning outcomes that are not always apparent in pair programming studies.
These finding must be taken with the caveat that the nature of this classroom is unique, in that all
of the students are members of the Honors College and thus likely already come in with better
prior success in school and potentially are more motivated. That being said there are some
recommendations which could be used to enhance the teaming model even further.

The use of self-reported efficiency alone is not the most reliable measure. While
generally the ringers do perform well, there are cases where their self-efficacy is overstated, or
they simply do not live up to the predicted score. It would seem that a tradeoff must be made
between forming the teams quickly versus getting an accurate assessment of who are the best
ringers. Perhaps the inclusion of a pre-test in addition to or instead of a self-report survey could
better identify possible ringers. By either delaying the team formation, or getting proven
performance metrics for selecting ringers, teams can be better balanced and maximize the
diversity of skills.

One oversight may be a trust that the team members understand how to learn as a team.
At no time in HFYE are the ringers explicitly identified as such, though the team is given
training on how to act as a team as part of the course content. Looking at the literature from the
Peer-led team learning methodology, the team can be formed with ”a leader who serves as a
facilitator, but not as a content expert” [23, p. 1440]. By training teams specifically in how to
work collaboratively and ensure all team members are learning at the same pace, the facilitator
could be a team member at any level of prior learning, and ringers are not expected to always be
the expert. This is not to say that the HFYE would ever exactly implement a PLTL
methodology, but certainly the principles of facilitated team problem solving could be presented
to form a community of learning where each member is expected to grow and participate in
collaborative work.

The findings in this study hint at possible future studies. Within this HFYE curriculum
the instructional team can now track changes in pedagogy and approach against a baseline of
data to see how new interventions impact student learning. For instructors not using a studio
model of learning, they could baseline their student performance data and perhaps begin to

introduce elements of the studio model, Peer Programming or even PLTL to see how it impacts
student perceptions and most important, learning outcomes. There is a wealth of literature to
show benefits to the retention and outlook of students who engage with their peers as part of Pair
Programming but less evidence of learning outcomes. The research on PLTL shows promising
data, but many of the studies are potentially limited because they primarily engage self-selecting
students in extra-curricular study groups, and thus may include be selecting motivated students
who rather than simply effects of PLTL. One of the additional hopes of this paper is to inspire
empirical research, perhaps even retrospective views of courses such as this study, to further the
understanding of peer learning in the classroom.

References
[1] L. Vygotsky, Thought and language. Cambridge, MA: MIT Press, 1962.

[2] N. Salleh, E. Mendes, and J. Grundy, “Empirical Studies of Pair Programming for CS/SE
Teaching in Higher Education: A Systematic Literature Review,” IEEE Trans. Softw.
Eng., vol. 37, no. 4, pp. 509–525, 2011.

[3] L. Porter, C. Bailey-Lee, and B. Simon, “Halving Fail Rates using Peer Instruction : A
Study of Four Computer Science Courses,” Proceeding 44th Tech. Symp. Comput. Sci.
Educ. (SIGCSE ’13), pp. 177–182, 2013.

[4] D. Teague, “Neo-Piagetian theory and the novice programmer,” 2014.

[5] A. B. Woszczynski and C. Guthr, “Per sonality and Pr ogr amming,” vol. 16, no. 3, pp.
293–300, 2000.

[6] A. Cockburn and L. Williams, “The Costs and Benefits of Pair Programming,” Extrem.
Program. Examined, pp. 223–243, 2001.

[7] ABEEK, “Criteria for Accrediting Engineering Program,” Accredit. Board Eng. Educ.
Korea, pp. 1–8, 2005.

[8] W. J. Rasdorf, “Computer Programming in the Civil Engineering Curriculum,” J. Prof.
Issues Eng., vol. 111, no. 4, pp. 141–148, 1985.

[9] P. Guo, “Why scientists and engineers must learn programming,” Communications of the
ACM, 2013. [Online]. Available: http://cacm.acm.org/blogs/blog-cacm/166115-why-
scientists-and-engineers-must-learn-programming/fulltext. [Accessed: 02-Jul-2017].

[10] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no. 3, pp. 33–35, 2006.

[11] K. Lynch, A. Carbone, D. Arnott, and P. Jamieson, “Studio-Based Approach to Teaching
Information Technology,” vol. 8, no. April 2013, pp. 75–79, 2002.

[12] M. Woodley and S. N. Kamin, “Programming Studio : A Course for Improving
Programming Skills in Undergraduates,” 1971.

[13] R. A. Layton, M. L. Loughry, M. W. Ohland, and G. D. Ricco, “Design and validation of

a web-based system for assigning members to teams using instructor-specified criteria,”
Adv. Eng. Educ., vol. 2, no. 1, pp. 1–28, 2010.

[14] J. Dewey, Experience & education. New York, NY: Touchstone, 1938.

[15] J. Dewey, Interest and effort in education. Houghton Mifflin, 1913.

[16] N. Katira, L. Williams, and J. Osborne, “Towards increasing the compatibility of student
pair programmers,” Proceedings. 27th Int. Conf. Softw. Eng. 2005. ICSE 2005., pp. 3–4,
2005.

[17] L. Williams, L. Layman, J. Osborne, and N. Katira, “Examining the compatibility of
student pair programmers,” Proc. - Agil. Conf. 2006, vol. 2006, pp. 411–420, 2006.

[18] D. K. Gosser, “The Journal of Peer-led Team Learning,” vol. 14, no. 1, 2011.

[19] M. C. Loui, B. A. Robbins, S. D. Johnson, and N. Venkatesan, “Assessment of Peer-Led
Team Learning in an Engineering Course for Freshman,” Int. J. Eng. Educ., vol. 29, no. 6,
pp. 1440–1455, 2013.

[20] J. R. Reisel, M. R. Jablonski, E. Munson, and H. Hosseini, “Peer-led team learning in
mathematics courses for freshmen engineering and computer science students,” J. STEM
Educ., vol. 15, no. 2, pp. 7–16, 2014.

[21] L. Madeyski, “Is external code quality correlated with programming experience or
feelgood factor?,” 7th Int. Conf. Extrem. Program. Agil. Process. Softw. Eng. (XP 2006),
vol. 4044 LNCS, pp. 65–74, 2006.

[22] C. McDowell, L. Werner, H. Bullock, and J. Fernald, “The effects of pair-programming
on performance in an introductory programming course,” ACM SIGCSE Bull., vol. 34, no.
1, p. 38, 2002.

[23] M. C. Loui and B. A. Robbins, “Work-in-progress - Assessment of peer-led team learning
in an engineering course for freshmen,” Proc. - Front. Educ. Conf. FIE, vol. 29, no. 6, pp.
1440–1455, 2008.

	Purdue University
	Purdue e-Pubs
	6-26-2017

	Understanding the impact of strategic team formation in early programming education
	Tony A. Lowe
	Sean B. Brophy

	

