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Exercise-Induced Interleukin-6 and Metabolic Responses in Hot,
Temperate, and Cold Conditions

Nicholas E. Dinan,1 Roksana B. Zak,l Robert J. Shute,1 Terence L. Laursen,l
Matthew P. Bubak,! D. Taylor La Salle,! Matthew W.S. Heesch,? and Dustin R. Slivka'

!School of Health and Kinesiology, Exercise Physiology Laboratory, University of Nebraska—Omaha
2Kinesiology Department, Washburn University

Abstract

The purpose of this study was to determine the effects of exercise in hot, cold, and temperate environments on plasma interleukin-6
(IL-6). Eleven recreationally trained males (age = 25 + 4 years, height = 178 + 5 cm, weight = 79.4 + 13.5 kg, body fat = 14.7 + 3.6%,
VO, peak = 54.6 + 11.5ml kg7l min~ Y performed a 1 hr cycling bout in hot (33 °C), cold (7 °C), and temperate (20 °C) environments at
60% of Wp,.x followed by 3 hr of supine recovery in temperate conditions. Expired gases were measured every 15 min during exercise and
once every hour during recovery. Heart rate was continuously measured throughout the trials. Blood samples were obtained from the
antecubital vein pre-exercise, immediately post-exercise, and 3 hr post-exercise. Blood samples were analyzed for plasma concentrations of
IL-6 using a commercial ELISA kit. Plasma IL-6 concentrations were significantly higher immediately post-exercise (14.8 + 1.6 pg ml™ ",
p = 0.008) and 3 hr post-exercise (14.8 + 0.9 pg ml~', p = 0.018) compared to pre-exercise (11.4 + 2.4 pg ml~ "), across all trials. There
were no differences in plasma IL-6 concentrations (p = 0.207) between temperature conditions. Oxygen consumption and heart rate were
higher and respiratory exchange ratio was lower in the hot compared to other conditions (p < 0.05). These data indicate that the temperature
in which exercise occurs does not affect acute plasma IL-6 response despite differences in metabolic state.

Keywords: cytokines, myokines, heat, cold, exercise, inflammation

Introduction

An effective method to treat and prevent a multitude of metabolic and low-grade inflammatory chronic diseases is
through regular exercise (Booth, Roberts, & Laye, 2012). During exercise, a cascade of myokines are released from skeletal
muscle that mediate the health benefits and protect against diseases including, but not limited to, obesity, cardiovascular
disease, type 2 diabetes, rtheumatoid arthritis, and cancer (Pedersen & Febbraio, 2008). The most prevalent myokine
produced during exercise is interleukin-6 (IL-6) (Pedersen, 2000). IL-6 is a complex myokine that has multiple roles, such
as stimulating the immune system, maintaining metabolic homeostasis, and acting with both pro- and anti-inflammatory
properties (Scheller, Chalaris, Schmidt-Arras, & Rose-John, 2011).

Acute increases in IL-6 increase the oxidation of fat and uptake of glucose, and exert anti-inflammatory effects (Pedersen
& Febbraio, 2008). Conversely, chronic increases or overproduction of IL-6 can lead to fatigue, depression, and low-grade
fever (Fonseca, Santos, Canhao, & Choy, 2009). Additionally, those with high levels of IL-6 are 2-5 times more likely to
have a heart attack, stroke, or other cardiovascular event (Cesari et al., 2003). The pro- and anti-inflammatory roles of IL-6
make it an interesting target to investigate disease protection of exercise and negative consequences of a sedentary lifestyle.

Exercise is a physical stress that stimulates many hormonal and immunological responses (Fischer, 2006). Contracting
skeletal muscle has been shown to produce IL-6 during exercise (Pedersen & Febbraio, 2008). Plasma IL-6 levels have been
shown to increase with exercise dependent on duration, mode, and intensity. Peak plasma concentrations occur immediately
post-exercise or shortly thereafter with a rapid decrease to pre-exercise levels (Fischer, 2006). The acute increases in IL-6
concentrations from exercise have typically been classified as inducing an anti-inflammatory environment known as the
acute-phase response (Heinrich, Castell, & Andus, 1990). Thus, IL-6 may be an indicator of overall acute cellular stress and
possibly influence recovery (Lee et al., 2012).
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The response of IL-6 to different temperature environ-
ments has been investigated but much discrepancy still
exists. Heat exposure (42 °C) has been shown to elicit an
increased stress response that increases the expression of
IL-6 mRNA in mouse skeletal muscle (Welc et al., 2012).
When endurance cycling exercise was performed in a hot
(35 °C) and room temperature (15 °C) environment, the cir-
culating plasma IL-6 levels were higher following exercise,
but no effect of temperature was observed (Cosio-Lima,
Desai, Schuler, Keck, & Scheeler, 2011). The response of
IL-6 when exercise is performed in a cold environment is
also not clearly defined. Specifically, plasma IL-6 levels
did not change with three days of cold exposure (4 °C) in
wild type mice (Knudsen et al., 2014) or two-hour whole-
body cold exposure in humans (Iwen et al., 2011). How-
ever, it has been reported that plasma IL-6 might be higher
during exercise in cold or wet conditions, although no con-
trol trial was performed (Rhind et al., 2001). More recen-
tly, it has been demonstrated that plasma IL-6 levels were
not different among cyclists during exercise in a cold (0 C)
and control (20 °C) trial (Patterson, Reid, Gray, & Nimmo,
2008). Furthermore, no studies have directly compared
the response of plasma IL-6 with exercise in hot, cold, and
temperate room temperature environments in a human model.

Therefore, the purpose of this study was to determine the
effects of exercise in hot, cold, and temperate environmental
conditions on circulating levels of IL-6. The hypotheses of
this study were that (1) plasma IL-6 levels will be elevated
immediately post-exercise due to the acute-phase response
and decrease 3 hr post-exercise because of the short half-life
of IL-6 and (2) IL-6 concentration will be elevated in the heat
due to an increased stress response and not changed in the
cold when compared to a temperate environment.

Materials and Methods
Farticipants

Eleven recreationally trained males served as participants
in this study (Table 1). Participants completed a physical acti-
vity questionnaire (PAR-Q) and were informed of their rights
as a research participant and possible risks associated with
the protocol prior to signing written informed consent. All
procedures were approved by the University Institutional
Review Board (University of Nebraska at Omaha).

Table 1.

Participant characteristics (n = 11).

Characteristic Mean +SD
Age, years 25+4
Height, cm 178 +5
Weight, kg 79.44+13.5
Body fat, % 14.7+3.6
VO,peak, 1-min " 4.29+0.86
VO,peak, ml-kg ™ '-min~" 546+11.5

Maximal Aerobic Exercise Capacity

Maximal oxygen consumption (VO,peak) and workload
associated with VO,peak (W,,.x) were measured during the
initial visit for each participant by performing a graded
exercise protocol on an electronically braked cycle ergo-
meter (Velotron, RacerMate Inc., Seattle, WA, USA). The
initial 95 W workload was increased 35 W every 3 min until
subjects reached volitional exhaustion. W, was determined
by taking the sum of the highest stage completed (in watts)
and the proportion of time in the last stage multiplied by
the 35 W increment. Each participant exercised at 60% of
their maximum workload for each trial. Expired gases were
collected using a calibrated metabolic cart (ParvoMedics
TrueOne Metabolic System, Sandy, UT, USA) and analyzed
in 15 s intervals.

Protocol

Each participant completed three trials, using a rando-
mized, counterbalanced cross-over design. Trials consisted
of exercise in a hot (33 °C, 60% humidity), cold (7 °C, 60%
humidity), and temperate (20 °C, 60% humidity) environment.
All trials were performed in a temperature- and humidity-
controlled environmental chamber (Darwin Chambers
Company, St Louis, MO, USA) and were separated by at
least 4 days but no more than 7 days. Participants were
dressed in a gym shirt and shorts and wore the same clothing
for each trial. Participants kept an exercise log for 2 days
prior and dietary log for 24 hr prior to the initial trial and
repeated the recorded exercise and diet before the ensu-
ing trials. Additionally, participants refrained from alcohol,
caffeine, and exercise 24 hr prior to each trial. On the day of
the trial, subjects arrived after a 12 hr fast and performed 1 hr
of cycling at 60% of W,,.x in the environmental chamber at
the designated temperature. Participants were required
to consume 500 ml of water throughout each cycling trial.
A 3 hr recovery period in temperate conditions began imme-
diately once cycling was completed. Subjects were asked to
remain in a supine position throughout this recovery period.

Body Composition

Body density was determined using hydrodensitometry
and was corrected for estimated residual lung volume and
gastrointestinal air volume. Net underwater weights were
recording using an electronic load cell-based custom system
(Exertech, Dresbach, MN, USA). Body density was then
converted to body composition (% fat) using the Siri equa-
tion (Siri, 1961).

Core Temperature and Heart Rate

Core temperature was continuously measured during
exercise and recovery. An hour prior to the experimental
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trial, each participant ingested a Jonah Core Body Temp-
erature Capsule (JCBC, Hidalgo Limited, Cambridge, UK)
followed with 125 ml of water and a fiber bar. The ingested
capsule sent a signal to an EQO2 LifeMonitor Sensor
Electronics Module (SEM, Hidalgo Limited, USA). This
module also measured heart rate using a chest strap sensor
and chest skin temperature using an infrared sensor. The
infrared thermistor logged skin temperature every 15 s.

Substrate Utilization

Expired gases were measured during the exercise and
recovery periods to determine whole-body carbohydrate
and fat utilization. Gases were collected in 5 min intervals
at 10, 25, 40, and 55 min of exercise and 25, 85, and 145
min into recovery. The four collections during exercise
were averaged to represent the exercise bout and the three
collections during recovery were averaged to represent the
3 hr of recovery. Only the last 3 min of the 5 min collection
period were averaged to represent the steady-state sample
period. Expired VO, and VCO, were used to calculate the
respiratory exchange ratio (RER) and were further analyzed
to examine carbohydrate and fat oxidation (Jeukendrup &
Wallis, 2005).

Measurement of IL-6

Blood draws were taken at room temperature pre-
exercise, immediately post-exercise, and after 3 hr post-
exercise for each trial. Blood draws were taken from the
antecubital vein into EDTA vacutainer tubes. Hematocrit
and hemoglobin levels were measured immediately after
collection to correct for any plasma volume shifts known to
occur with exercise and heat exposure (Dill & Costill,
1974). If not corrected, an artificial increase in plasma
concentration may be observed due to the decreased blood
volume associated with sweating. Briefly, 120 ul of whole
blood was used to fill two hematocrit tubes (50 ul each) and
one hemoglobin micro cuvette (20 pl). The hematocrit
tubes were spun for 5 min (Zipocrit LW Scientific Inc.,
Lawrenceville, GA, USA) to separate whole blood from
plasma. Hemoglobin was measured using a Hemocue HB
201+ Analyzer (Angelholm, Sweden). The remaining
sample was centrifuged at 1000 rpm at 7 °C for 10 min
and then stored at —80 C until analyses were performed.
For IL-6 measurement, enzyme-linked immunosorbent
assay (ELISA) kits were used according to the manufac-
turer’s protocol (Biosource, MA, USA). Absorbance was
read with a spectrophotometric plate reader (Fischer
Scientific, Pittsburg, PA, USA) at 450 nm in duplicate to
quantify the amount of IL-6 in the blood. According to
Biosource, the IL-6 ELISA kits observed no interference
with the soluble receptors (sIL-6 and sgp-130). The intra-
assay coefficient of variation between duplicate samples
was 5.8 + 2.3%.

Statistical Analysis

Differences in environmental temperatures, core and
skin temperature, heart rate, VO,, substrate utilization, and
plasma concentration of IL-6 were analyzed throughout
each time point among the three trials using a repeated
measures two-way ANOVA (time x trial). If the F-ratio
values were significant, a Fisher’s protected least signi-
ficant difference post hoc was performed to determine
where significance occurred. A probability of type I error of
less than 5% was considered significant (p << 0.05). The
Statistical Package for Social Sciences software (SPSS
23.0, Chicago, IL, USA) was used to analyze all statistical
data. Data are reported as means + SD.

Results
IL-6

Plasma concentrations of IL-6 were similar (p > 0.05)
before exercise but increased from pre-exercise to imme-
diately post-exercise and remained elevated 3 hr post-
exercise regardless of temperature (p = 0.004 and p = 0.017,
respectively; Figure 1). No statistically significant effect
of temperature was observed (p = 0.178); however,
Cohen’s effect size value (d = 0.88) suggests a greater
response of IL-6 in the hot compared to temperate
conditions.

Oxygen Consumption

During exercise, absolute and relative oxygen consump-
tion were higher in the hot condition and lower in the
cold condition when compared to the temperate condition
(p < 0.001; Table 2). Oxygen consumption was also diffe-
rent between hot and cold conditions (p < 0.001; Table 2).

Heart Rate

Heart rate during exercise was higher in the hot condi-
tion when compared to the cold and room temperature
conditions (p < 0.001; Table 2). There were no differen-
ces between the cold and room temperature conditions
(p = 0.308).

Substrate Utilization

During exercise, the RER was lower in the hot condition
compared to the cold and room temperature conditions
(p = 0.007 and p = 0.001, respectively; Table 2). There
was no difference between the cold and room temperature
conditions during exercise (p = 0.801).

During exercise, carbohydrate utilization was lower in the
hot condition (p = 0.042; Table 2) when compared to the
room temperature condition. There was no difference between
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Figure 1. Plasma IL-6 concentrations corrected for exercise- and temperature-induced plasma volume shifts.
*p < 0.05 from pre (main effect of time). Hematocrit and hemoglobin levels were measured
immediately after collection to correct for any plasma volume shifts known to occur with exercise
and heat exposure (Dill & Costill, 1974).

the hot and cold temperature conditions (p = 0.123;
Table 2) and between cold and room temperature condi-
tions (p = 0.535; Table 2).

Fat utilization during exercise was higher in the hot con-
dition when compared to the cold and room temperature
conditions (p = 0.003, p = 0.001, respectively; Table 2).

Core Temperature

Data from six subjects were used for core temperature
analysis (Figure 2) due to technical problems with the
ingestible sensor. During exercise, core temperature was
similar until 50 min into exercise, at which point core
temperature in the hot condition was higher than the cold
(p < 0.001) and room temperature (p < 0.001) conditions.
During the first hour of recovery, core temperature in the
hot condition (37.4 + 0.3 “C) was higher than in the cold
(37.1 £ 0.3 °C, p < 0.001) and room temperature (37.1 +
0.2 °C, p = 0.038) conditions. There was no difference in
core temperature throughout the remaining recovery period
(p > 0.05).

Skin Temperature

Skin temperature (Figure 3) during exercise was higher
in the hot condition (36.6 4+ 0.7 °C, p < 0.001) and lower
in the cold condition (27.3 + 2.3 C, p < 0.001) at the
10 min mark and thereafter when compared to the room
temperature condition (32.2 + 1.1 °C). During recovery,
there were no differences in skin temperature between the hot,
cold, and room temperature conditions (34.2 + 1.0 °C, 33.6 +
1.1 °C, 344 + 0.8 °C, respectively; p = 0.101).

Table 2.
Metabolic measures.

Exercise Recovery

VO, (1 min~ ")
Hot 3.05+0.48%* 0.354+0.06
Cold 2.69+0.38%* 0.33+0.06
Room temp. 2.834+0.40% 0.3440.05
VO, (ml kg~' min™")
Hot 38.8+2.2% 4.540.1
Cold 34.4+1.8% 4.3+40.1
Room temp. 359+1.8*% 43+0.2
Heart rate (bpm)
Hot 165+11 81+12
Cold 152497 74413
Room temp. 1544137 76+ 10
Respiratory exchange ratio
Hot 0.8940.04 0.7940.07
Cold 0.94+0.04" 0.7740.07
Room temp. 0.9440.03" 0.79+0.08
Carbohydrate utilization (g min™~")
Hot 2.564+0.50 0.134+0.05
Cold 2.91+0.56 0.134+0.05
Room temp. 2.98+0.45" 0.14+0.06
Fat utilization (g min ')

Hot 0.56+0.25 0.134+0.05
Cold 0.26+0.217 0.134+0.05
Room temp. 0.30+0.18" 0.14+0.06

Note. Hot, 33 °C; cold, 7 °C; room temp., 20 °C. Data are mean + SD.
*p < 0.05 between all conditions (main effect of temperature),
p < 0.05 from hot.

Discussion

Based on previous research, it was hypothesized that
plasma IL-6 would be greater in the heat due to an
increased inflammatory response that is typically associated
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Figure 3. Skin temperature during exercise and recovery. *p < 0.05 between all conditions. Data are mean + SE.

with exercising in the heat (Starkie, Hargreaves, Rolland, &
Febbraio, 2005). However, the main finding of this study
was that exercise in a hot or cold environment did not
differentially influence plasma IL-6 concentration com-
pared to exercise in room temperature environment.
Despite the differences in environmental and skin temp-
eratures across conditions, there was a relatively small

RT = room temperature.

difference in core temperature throughout the exercise
protocols. This observation of core temperature may be one
explanation for the lack of differences in IL-6 between
trials. Specifically, core temperature for the first 50 min of
the 60 min exercise bout was similar. This finding from the
current study is supported by the observation that clamping
the rise in core temperature during hyperthermic exercise
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diminishes the exercise-related IL-6 response (Rhind et al.,
2004). Similarly, our results support other observations
that exercise in the cold shows no difference in plasma
IL-6 when compared to room temperature environments
(Gagnon et al., 2014; Patterson, Reid, Gray, & Nimmo,
2008). Previous work has shown an increase in plasma
IL-6 after 8 days of exhaustive exercise in the cold;
however, no control condition was performed (Rhind et al.,
2001). Furthermore, the observed increase in plasma IL-6
may have been due to the intense exercise regimen perfor-
med by the subjects and not due to the effect of tempe-
rature. The differences in oxygen and substrate utilization
between trials indicate that factors other than exercise
intensity may play a role in plasma IL-6 concentration. The
findings from the current study agree with other studies that
have shown a minor increase in plasma IL-6 concentrations
with endurance exercise but no effect of temperature
(Cosio-Lima, Desai, Schuler, Keck, & Scheeler, 2011; Lim
et al., 2009; Montain, Latzka, & Sawka, 2000; Starkie
et al., 2005).

Although temperature did not influence plasma IL-6
levels, exercise elicited a significant increase in plasma
IL-6. The increased plasma concentrations following exercise
are in agreement with previous investigations (Fischer,
2006; Pedersen, Steensberg, & Schjerling, 2001; Pedersen
et al., 2004; Petersen and Pedersen, 2006). Plasma con-
centrations of IL-6 increase exponentially from exercise
and are dependent on fitness level, duration, intensity, and
amount of muscle mass recruited (Febbraio & Pedersen,
2002; Pedersen & Febbraio, 2008; Pedersen et al., 2001;
Pedersen et al., 2004). Within the current study, a rela-
tively small increase in plasma IL-6 was observed and this
could be due to a variety of variables. First, the reasonably
fit participants within the current study could explain the
relatively small increase due to the known reduction in
plasma IL-6 response with training status (Pedersen &
Febbraio, 2008). Second, duration of exercise has been
shown to be the single most important factor in determining
the post-exercise plasma IL-6 response (Fischer, 2006).
Only a one- to two-fold increase in IL-6 is typically
observed in exercise lasting less than 60 min (Brenner
et al., 1999; Fischer, 2006; Lundby & Steensberg, 2004).
Therefore, the duration of the trials in the current study may
not have been long enough for the exercise-induced
response of IL-6 to be of greater magnitude. Third, since
high-intensity exercise is associated with shorter duration
and vice versa, the response of IL-6 may have been more
pronounced if a higher exercise intensity was used
(Pedersen & Febbraio, 2008). However, within the current
study, the intensity was set at the maximum work rate that
allowed the participants to complete the protocol in the hot
temperature condition. Lastly, mode of exercise seems to
influence the IL-6 response with exercise involving a large
muscle mass producing the greatest increase (Ostrowski,
Rohde, Zacho, Asp, & Pedersen, 1998). Since the

production of IL-6 during exercise comes mainly from
the skeletal muscle itself (Steensberg et al., 2000), it should
be noted that exercise involving a limited amount of muscle
mass (i.e. cycling) may have been insufficient to elicit a
drastic increase in plasma IL-6 compared to other modes of
exercise that recruit more muscle mass. Furthermore, the
small sample size investigated in the current study may
explain the lack of significant findings, despite a large
effect size. The noticeably high variation in pre-exercise
plasma IL-6 levels may be due to day-to-day variability that
has been previously reported in healthy adults (Picotte,
Krehlik, & Campbell, 2006).

Interestingly, plasma concentrations of IL-6 remained
significantly higher 3 hr post-exercise when compared to
resting levels. The prolonged elevation of IL-6 concentra-
tions is typically associated with eccentric exercise that
results in a slower decrease of plasma IL-6 during recovery
(MaclIntyre, Sorichter, Mair, Berg, & McKenzie, 2001;
Willoughby, McFarlin, & Bois, 2003). This finding is intri-
guing due to the minimal eccentric muscle actions asso-
ciated with cycling and the short half-life of IL-6. One
possible explanation may be due to the post-exercise pro-
duction of IL-6. During recovery, IL-6 production shifts
from the muscles during exercise to immune cells (i.e.
monocytes, neutrophils, and macrophages), adipose tissue,
and/or the brain (Pedersen, 2006). A possible explanation
for the increased levels of IL-6 during recovery could be
explained by the immune response to inflammation follow-
ing exercise. The local inflammatory response is accom-
panied by a systemic response known as the acute phase
response in which cytokines initiate an influx of immune
cells to aid in tissue repair (Pedersen, 2000). Therefore,
the increase in IL-6 production aids in orchestrating this
tissue repair and enables inflammatory monocytes that are
recruited after skeletal muscle tissue damage to switch into
anti-inflammatory macrophages to support myogenesis
through phenotype changes (Arnold et al., 2007). None-
theless, the extended elevation of IL-6 is a unique finding
in cycling exercise.

As mentioned earlier, core temperature remained simi-
lar across the three conditions for 50 min of the 60 min
exercise bout within the current study. Despite this simi-
larity, VO, and heart rate were higher in the hot condition
even though the work rate was held constant at 60% of W,.«.
From a physiological standpoint, the participants within this
study were working harder in the hot condition, which is
typically indicated with a higher RER value. However, the
RER in the hot condition was lower than in the cold and room
temperature conditions. Furthermore, fat oxidation was higher
and carbohydrate oxidation was lower in the heat. Thus, a
higher concentration of IL-6 may have been expected due to
its effects on lipolysis and ability to stimulate the hepatic
glucose output (Pedersen & Febbraio, 2008). However, the
results from this study indicated no change in plasma IL-6
levels between conditions. Thus, IL-6 did not appear to govern
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the alterations in substrate use associated with exercising in hot
and cold environments within the current study.

Conclusions

In conclusion, the plasma IL-6 response with exercise was
not altered by temperature. IL-6 increased with exercise and
remained elevated following exercise. Furthermore, the
present data illustrate that the metabolic roles of IL-6 were
not influenced by an acute bout of exercise in different
temperatures.

Funding

This work was supported by the University Committee
on Research and Creative Activity (UCRCA) and the
National Institute for General Medical Science (NIGMS)
(5P20GM103427), a component of the National Institutes
of Health (NIH).

References

Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., van Rooijen, N.,
Plonquet, A., ... Chazaud, B. (2007). Inflammatory monocytes recrui-
ted after skeletal muscle injury switch into antiinflammatory macro-
phages to support myogenesis. Journal of Experimental Medicine, 204,
1057-1069.

Booth, F. W., Roberts, C. K., & Laye, M. J. (2012). Lack of exercise is
a major cause of chronic diseases. Comprehensive Physiology, 2,
1143-1211.

Brenner, 1. K., Castellani, J. W., Gabaree, C., Young, A. J., Zamecnik, J.,
Shephard, R. J., & Shek, P. N. (1999). Immune changes in humans
during cold exposure: Effects of prior heating and exercise. Journal of
Applied Physiology, 87, 699-710.

Cesari, M., Penninx, B. W., Newman, A. B., Kritchevsky, S. B., Nicklas,
B. J., Sutton-Tyrrell, K., ... Pahor, M. (2003). Inflammatory markers
and onset of cardiovascular events: Results from the Health ABC
study. Circulation, 108, 2317-2322.

Cosio-Lima, L. M., Desai, B. V., Schuler, P. B., Keck, L., & Scheeler, L.
(2011). A comparison of cytokine responses during prolonged cycling
in normal and hot environmental conditions. Open Access Journal of
Sports Medicine, 2, 7-11.

Dill, D. B., & Costill, D. L. (1974). Calculation of percentage changes in
volumes of blood, plasma, and red cells in dehydration. Journal of
Applied Physiology, 37, 247-248.

Febbraio, M., & Pedersen, B. (2002). Muscle-derived interleukin-6:
Mechanisms for activation and possible biological roles. Faseb
Journal, 16, 1335-1347.

Fischer, C. P. (2006). Interleukin-6 in acute exercise and training: What is
the biological relevance? Exercise Immunology Review, 12, 6-33.
Fonseca, J., Santos, M., Canhao, H., & Choy, E. (2009). Interleukin-6 as a
key player in systemic inflammation and joint destruction.

Autoimmunity Reviews, 8, 538-542.

Gagnon, D. D., Gagnon, S. S., Rintamiki, H., Térmikangas, T., Puukka,
K., Herzig, K., & Kyroldinen, H. (2014). The effects of cold exposure
on leukocytes, hormones and cytokines during acute exercise in
humans. PLoS One, 22, e110774.

Heinrich, P. C., Castell, J. V., & Andus, T. (1990). Interleukin-6 and the
acute phase response. Biochemical Journal, 265, 621-636.

Iwen, K. A., Wenzel, E. T., Ott, V., Perwitz, N., Wellhoner, P., Lehnert,
H., ... Klein, J. (2011). Cold-induced alteration of adipokine profile in
humans. Metabolism: Clinical and Experimental, 60, 430-437.

/ Journal of Human Performance in Extreme Environments

Jeukendrup, A. E., & Wallis, G. A. (2005). Measurement of substrate
oxidation during exercise by means of gas exchange measurements.
International Journal of Sports Medicine, 26, (Suppl 1), S28-S37.

Knudsen, J. G., Murholm, M., Carey, A. L., Biensg, R. S., Basse, A. L.,
Allen, T. L., ... Hansen, J. B. (2014). Role of IL-6 in exercise training-
and cold-induced UCP1 expression in subcutaneous white adipose
tissue. PLoS One, 9, €84910.

Lee, E. C., Watson, G., Casa, D., Armstrong, L. E., Kraemer, W., Vingren,
J. L., ... Maresh, C. M. (2012). Interleukin-6 responses to water
immersion therapy after acute exercise heat stress: A pilot investiga-
tion. Journal of Athletic Training, 47, 655-663.

Lim, C. L., Pyne, D., Horn, P., Kalz, A., Saunders, P., Peake, J., ...
Mackinnon, L. T. (2009). The effects of increased endurance training
load on biomarkers of heat intolerance during intense exercise in the
heat. Applied Physiology, Nutrition, and Metabolism, 34, 616-624.

Lundby, C., & Steensberg, A. (2004). Interleukin-6 response to exercise
during acute and chronic hypoxia. European Journal of Applied
Physiology, 91, 88-93.

Maclntyre, D. L., Sorichter, S., Mair, J., Berg, A., & McKenzie, D. C.
(2001). Markers of inflammation and myofibrillar proteins follow-
ing eccentric exercise in humans. European Journal of Applied
Physiology, 84, 180-186.

Montain, S. J., Latzka, W. A., & Sawka, M. N. (2000). Impact of muscle
injury and accompanying inflammatory response on thermoregula-
tion during exercise in the heat. Journal of Applied Physiology, 89,
1123-1130.

Ostrowski, K., Rohde, T., Zacho, M., Asp, S., & Pedersen, B. (1998).
Evidence that interleukin-6 is produced in human skeletal muscle
during prolonged running. Journal of Physiology (London), 508,
949-953.

Patterson, S., Reid, S., Gray, S., & Nimmo, M. (2008). The response of
plasma interleukin-6 and its soluble receptors to exercise in the cold in
humans. Journal of Sports Science, 26, 927-933.

Pedersen, B. K. (2000). Exercise and cytokines. Immunology and Cell
Biology, 78, 532-535.

Pedersen, B. K. (2006). The anti-inflammatory effect of exercise: Its role
in diabetes and cardiovascular disease control. Essays in Biochemistry,
42, 105-117.

Pedersen, B. K., & Febbraio, M. A. (2008). Muscle as an endocrine organ:
Focus on muscle-derived interleukin-6. Physiological Reviews, 88,
1379-1406.

Pedersen, B., Steensberg, A., Fischer, C., Keller, C., Keller, P., Plomgaard,
P., ... Febbraio, M. (2004). The metabolic role of IL-6 produced during
exercise: Is IL-6 an exercise factor? Proceedings of the Nutri-
tion Society, 63, 263-267.

Pedersen, B., Steensberg, A., & Schjerling, P. (2001). Muscle-derived
interleukin-6: Possible biological effects. Journal of Physiology
(London), 536, 329-337.

Petersen, A., & Pedersen, B. (2006). The role of IL-6 in mediating the anti-
inflammatory effects of exercise. Journal of Physiology and Pharma-
cology, 57, 43-51.

Picotte, M. S., Krehlik, M., & Campbell, C. G. (2006). Day-to-day
variability in plasma interleukin-6 concentrations in healthy adults.
FASEB Journal, 20, LB98-1L.B99.

Rhind, S. G., Castellani, J. W., Brenner, I. K., Shephard, R. J., Zamecnik,
J., Montain, S. J., ... Shek, P. N. (2001). Intracellular monocyte and
serum cytokine expression is modulated by exhausting exercise and
cold exposure. American Journal Physiology: Regulatory, Integrative
and Comparative Physiology, 281, R66-R75.

Rhind, S., Gannon, G., Shephard, R., Buguet, A., Shek, P., & Radomski,
M. (2004). Cytokine induction during exertional hyperthermia is
abolished by core temperature clamping: Neuroendocrine regulatory
mechanisms. International Journal of Hyperthermia, 20, 503-516.

Scheller, J., Chalaris, A., Schmidt-Arras, D., & Rose-John, S. (2011). The
pro- and anti-inflammatory properties of the cytokine interleukin-6.
Biochimica et Biophysica Acta, 1813, 878—888.



N. E. Dinan et al. / Journal of Human Performance in Extreme Environments

Siri, W. E. (1961). Body composition from fluid spaces and density:
Analysis of methods. Techniques for Measuring Body Composition 61,
223-244.

Starkie, R., Hargreaves, M., Rolland, J., & Febbraio, M. (2005). Heat
stress, cytokines, and the immune response to exercise. Brain,
Behavior, and Immunity, 19, 404—412.

Steensberg, A., van Hall, G., Osada, T., Sacchetti, M., Saltin, B., &
Pedersen, B. (2000). Production of interleukin-6 in contracting
human skeletal muscles can account for the exercise-induced increase

in plasma interleukin-6. Journal of Physiology (London), 529,
237-242.

Welc, S. S., Phillips, N. A., Oca-Cossio, J., Wallet, S. M., Chen, D. L., &
Clanton, T. L. (2012). Hyperthermia increases interleukin-6 in mouse
skeletal muscle. American Journal of Physiology: Cell Physiology,
303, C455-C466.

Willoughby, D. S., McFarlin, B., & Bois, C. (2003). Interleukin-6
expression after repeated bouts of eccentric exercise. International
Journal of Sports Medicine, 24, 15-21.



	Exercise-Induced Interleukin-6 and Metabolic Responses in Hot, Temperate, and Cold Conditions
	Recommended Citation

	Exercise-Induced Interleukin-6 and Metabolic Responses in Hot, Temperate, and Cold Conditions
	Authors

	Exercise-Induced Interleukin-6 and Metabolic Responses in Hot, Temperate, and Cold Conditions

