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syncope: Automatic Enforcement of Distributed

Consistency Guarantees

Kia Rahmani1, Gowtham Kaki1, and Suresh Jagannathan1

Purdue University, West Lafayette IN 47906, USA
{rahmank,gkaki,suresh}@purdue.edu

Abstract. Designing reliable and highly available distributed applica-
tions typically requires data to be replicated over geo-distributed stores.
But, such architectures force application developers to make an undesir-
able tradeoff between ease of reasoning, possible when replicated data is
required to be strongly consistent, and performance, possible when such
guarantees are weakened. Unfortunately, undesirable behaviors may arise
under weak consistency that can violate application correctness, forcing
designers to either implement ad-hoc mechanisms to avoid these anoma-
lies, or choose to run applications using stronger levels of consistency
than necessary. The former approach introduces unwanted complexity,
while the latter sacrifices performance. In this paper, we describe a
lightweight runtime verification system that relieves developers from hav-
ing to make such tradeoffs. Instead, our approach leverages declarative
axiomatic specifications that reflect the necessary constraints any correct
implementation must satisfy to guide a runtime consistency enforcement
and monitoring mechanism. This mechanism guarantees a provably op-

timal strategy that imposes no additional communication or blocking
overhead beyond what is required to satisfy the specification, allowing
distributed operations to run in a provably safe environment. Experi-
mental results show that the performance of our automatically derived
mechanisms is better than both specialized hand-written protocols and
common store-offered consistency guarantees, providing strong evidence
of its practical utility.

Keywords: Runtime Safety Enforcement and Montoring, Weak Con-
sistency, Distributed Systems, Haskell

1 Introduction

Historically, the de facto system abstraction for developing distributed programs
has typically included ACID1 properties. These properties guarantee replication
transparency (i.e. requiring distributed systems to appear as a single compute
and storage server to users), and make it straightforward to develop standard-
ized implementation and reasoning techniques around strongly consistent (SC)
distributed stores [7, 12]. Although such strong notions of consistency simplify
1 Atomicity, Consistency, Isolation and Durability
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reasoning, they also introduce extensive synchronization overhead which is often
unacceptable for web-scale applications that need to be “always-on” even in the
presence of network partitions [6]. Such applications are therefore usually de-
signed to tolerate certain inconsistencies, allowing them to adopt weaker notions
of consistency that impose less synchronization overhead. An extreme example is
eventual consistency (EC), where the local state of each application server only
represents an unspecified order of an unspecified subset of the aggregate collec-
tion of all updates submitted to the system globally. Applications that may not
tolerate the level of inconsistency imposed by EC are often equipped with ad
hoc mechanisms to enforce the required level of consistency. Unfortunately, such
enforcement mechanisms are closely tied to the application logic, confounding
standardization, while complicating application reasoning, maintainability, and
reusability.

In this paper, we propose an alternative approach to weak consistency en-
forcement that circumvents the aforementioned issues. syncope is a lightweight
runtime verification system for Haskell that allows application developers to
take advantage of weak consistency without having to re-engineer their code
to accommodate anomaly preemption mechanisms. The key insight that drives
syncope’s design is that the hardness of reasoning about the integrity of a
distributed application stems from conflating application logic with consistency
enforcement logic, requiring reasoning about both operationally. By separating
application semantics from consistency enforcement semantics, however, admit-
ting operational reasoning for the former, and declarative reasoning for the latter,
programmers are liberated from having to worry about implementation details of
anomaly preemption mechanisms, allowing them to be focused instead on appli-
cation semantics, under the assumption that specified consistency requirements
are automatically enforced by the data store at runtime. Our approach admits
declarative reasoning for consistency enforcement via a specification language
that allows programmers to formally specify consistency requirements. The de-
sign of our specification language is based on the observation that all anomalous
behaviors allowed under EC occur as the result of nodes executing operations
before certain dependencies are satisfied. Using syncope, one can specify ar-
bitary dependency relations between updates, and a runtime monitoring and
verification system working on top of each EC data store replica guarantees
that an operation will only proceed if it can witness all of its dependencies. For
example, lost-updates is a well-known anomaly possible under EC that occurs
when an operation o from a client session is routed to a replica different than the
replica that served earlier operations from the same session, because of transient
system properties, such as load balancing or network partitions. When this hap-
pens, o may successfully execute without witnessing updates from those earlier
operations. In this case, because o is dependent on updates from all previous
operations from the same sessions, syncope guarantees to temporarily block
operations until these dependencies become available at o’s replica. Of course,
if this anamolous behavior can be tolerated by the application, this level of
dependency tracking will be elided.
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We make the following contributions: (i) We propose an expressive specifica-
tion language to express fine-grained consistency requirements of applications in
terms of the dependencies between operations. (ii) We describe a generic runtime
consistency enforcement mechanism that analyzes each operation’s consistency
specification, and ensures that its dependencies are available at the replicas on
which it executes. We formalize the system’s operational semantics, and prove
its correctness and optimality. (iii) We describe an implementation of these ideas
in a tool called syncope, which works on top of an off-the-shelf EC data store.
Evaluation over realistic applications and microbenchmarks, demonstrate the
performance benefits of making fine-grained distinctions between consistency
guarantees, and the ease of doing so via our specification language.

The remainder of the paper is organized as follows. A system model that
describes the key notions of consistency and replication is presented in Sec. 2. In
Sec. 3, we provide a detailed example to further motivate the problem. In Sec. 4
and Sec. 5, we formally present our specification language and the high level
operational semantics of the runtime system, with correctness and optimality
theorems. Sec. 6 elaborates on the algorithmic aspects of our runtime that is
key to its efficient realization. Sec. 7 describes implementation of syncope, and
evaluates its applicability and practical utility. Related work and conclusion are
presented in Sec. 8.

2 System Model

A data store in our system model is a collection of replicas (#1,#2,...), each of
which maintains a copy of a set of replicated data object (x,y,...). Each data
object includes and maintains a state value (v,v’,...) and is equipped with a set
of operations (op,op’,...). Operations may read the state of an object residing
in a replica, and modify it by generating update effects (⌘,⌘0,...). These effects
are then asynchronously sent to all other replicas where they are applied to the
state of the object instance at the recipient replica using a user-supplied function.
Figs. 1a and 1b illustrate this process.

Because there is no direct synchronization between replicas when an opera-
tion is executed, concurrent and possibly conflicting updates can be generated

x=v
x=v

x=v
x=v

client
1: op
2: op’

#1
#2

#4
#3

(a) A client submits an oper-
ation op to the store, which is
routed to the replica #1.

client
1: op
2: op’

x=v’
⌘⌘

x=v’

x=v
x=v

#1
#2

#4
#3

(b) The state of the replica #1

is updated, an effect is created
and is being propagated

client
1: op
2: op’

x=v’
⌘⌘x=v’

x=v’
x=v’

#1
#2

#4
#3

(c) Second operation op

0 is
submitted to the store, which
is routed to the replica #4

Fig. 1: syncope’s system model.
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at different replicas. Conflict resolution is handled at the point when an effect is
applied to the current state of the object, and must be designed to ensure that
all replicas eventually converge to the same value, assuming generated effects
quiesce. This model admits all inconsistencies and anomalies associated with
eventual consistency [16, 17].

Clients in our model interact with the store by invoking operations on ob-
jects. A session is a sequence of operations invoked by a particular client. Con-
sequently, operations (and effects) can be uniquely identified by the session id
that invoked them, and their sequence number in that particular session, which
is used by replicas to record the set of all updates that are locally applied. Since,
the data store may be concurrently accessed by a large number of clients, op-
erations (even from the same session) might be routed to different replicas to
improve latency (see Figs. 1a and 1c).

Lastly, we define two relations over effects created in the store. Session order
(so) is an irreflexive, transitive relation that relates an effect to all subsequent
effects from the same session. Visibility (vis) is an irreflexive and assymetric
relation that relates an effect to all others that are influenced by it (i.e., witnesses
its update) at the time of their generation. For example, in Fig. 1c vis(⌘, ⌘0)
holds, since ⌘ (the effect of op) has already been delivered and applied to the
replica #4, when op

0 is executed and thus has influenced generation of ⌘0.

3 Motivation

3.1 Replicated Data Types in ECDS

To motivate our approach, consider a highly available (low latency) application
for managing comments on posts in a photo sharing web site. Fig. 2a presents
a simple Haskell implementation of such an application cognizant of our system
model.

In this implementation, Effect and State strings are respectively defined
as the text of a single comment, and the concatentation of all visible comments
associated with a post. A new Effect is generated every time a user wants to
comment on a post by calling the write function, and a read call simply returns
the State of the object at the serving replica. The apply function, returns the
updated state of the replica, which is the concatenation of the old state and the
given effect. For perspicuity, we omit any conflict resolution strategy in the code;
however, developers (using timestamps, roll-backs, etc.) can design the apply

function to resolve conflicting concurrent updates as they desire, consistent with
application invariants.

An example of how users interact with this application is presented in Fig.2b,
where Alice and Bob invoke operations on an object (here, a photo of Alice in
Chicago); the chronological order of events is given in black circles. At time
∂, Bob writes a comment, which is routed to replica #1, whose effect is then
propagated and delivered to replica #2 at ∑; while Alice’s first read operation is
routed to ∏. Alice and Bob then keep talking, generating more read and write
events, while updates are propagated concurrently between the two replica.
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1 type Effect = String

2 type State = String

3
4 read :: State -> (String ,Maybe Effect)

5 read s = (s,Nothing)

6
7 write :: String -> ((),Maybe Effect)

8 write comment = ((),Just comment)

9
10 apply :: State -> Effect -> State

11 apply s comment = s ++ comment

(a) A simple implementation

replica #1

Where are you? 

Where are you? Chicago

Where are you? Chicago Me too!

Client: Bob

1: write “Where are you?”
2: read
3: write “Me too!”

Client: Alice

2: write “Chicago”
1: read

replica #2

Where are you? 

Where are you? Chicago Me too!

Where are you? Chicago 

4

7

8

56

31 2

(b) Example execution

Fig. 2: A distributed application for comment section management

As mentioned before, lost updates, is a well-known, often undesirable, behav-
ior admitted by eventually consistent data stores (ECDS). An example of such
anomaly can occur here if at time ª, Bob is temporarily disconnected from both
replicas in the figure, and his read operation is routed to another replica #3, that
has not yet received any updates from #1 or #2. Consequently, Bob cannot see
his first comment and would retry submitting it, assuming it failed the first time
it was sent. This would result in multiple copies of the message eventually being
displayed on each replica.

3.2 Ad-hoc Anomaly Prevention

One way to prevent the above anomaly is to tag each effect using a unique
identifier as mentioned in Sec. 2. Using these tags, replicas will be able to track all
locally available effects, and temporarily block operations, until all the preceding
effects from the same session arrive at the replica. For example, the replica #3
that receives Bob’s read in the above undesired scenario, can simply postpone
its execution until all prior effects upon which this operation depends reach this
replica..

In order to reduce the overhead of tracking dependencies per operation, the
above idea can be refined using another technique called filtration, which is based
on separating the locally available effects at each replica that have not yet been
applied to the state from those who have. In the above example each replica
can maintain a safe environment for operations (e.g. using a soft-state cache),
that contains an effect only if it also contains all the previous effects from the
same session. This way, an operation can proceed, when the effect of its previous
operation from the same session is already applied to the state (which transitively
yields the presence of all dependencies).

We present a modified version of the running example in Appendix A, up-
dated to tolerate the lost-update anomaly by implementing the blocking mech-
anism in the read function and incorporating filtration in the apply function
as explained above. Unfortunately, these modifications require fundamental and
pervasive changes to the original code. Additionally, the changes are heavily
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tangled with application logic, complicating reasoning, hampering correctness
arguments, and sacrificing composability and scalability.

3.3 Our Solution

syncope is a runtime enforcement mechanism that allows developers to de-
fine a consistency level for each operation a priori, delegating the responsibility
for ensuring that constraints defined by this level are respected. Our technique
generalizes blocking and filtration mechanisms, admits arbitrary user-defined de-
pendency relations for each operation, and maintains a consistent shim layer on
top of each ECDS replica.

EC Replica

Blocker

Filter

...E1E1 E2E2 EkEk

User 
Operation

Fig. 3: syncope

The syncope shim layer maintains multiple safe envi-
ronments (E1, E2, ...) by periodically (or on-demand) reading
from the underlying ECDS database, and adding effects to
each environment, only if its dependencies have already been
added (Fig.3). syncope realizes this idea efficiently, using a
simple tagging mechanism that represents effects in an en-
vironment via a tag associated with that environment. Each
operation only witnesses effects from its associated environ-
ment, and is blocked by the runtime system if the necessary
dependencies are not present.

Users can specify arbitrary consistency guarantees in a
language that is seeded with so and vis relations. Con-
straints on read operations can be used to synthesize appro-
priate filtration and blocking mechanisms. For example, the following contract,
eliminates the possibilty of lost-update anomalies by establishing the appropriate
conditions under which an effect may be witnessed by the current operation:

 : 8a.
so�! ⌘̂ ) a

vis��! ⌘̂

4 Specification Language

The formal syntax of our specification (or contract) language, presented in
Fig.4a, allows definitiosn of prop, a first-order formula that establishes depen-
dency relations between effects, necessary to determine the effects an operation
may witness, under a given consistency level. The language is seeded with so and
vis, respectively representing session order and visibility relations over effects,
and defines dependency relation as a sequence2 of seeds, where (a r1;...;r

k�����! b)
is interpreted as 9c.(a

r1;...;r
k�1�������! c ^ c

r
k�! b). null is the empty relation. Addi-

tionally, the language allows conjunctions of propositions, spec, used to define
a safe environment free from multiple inconsistencies. Our language is crafted to
capture all fine-grained weak consistency levels, including well-known ones such
as those explicated by Terry et al. [17] (see e.g., Fig.4b).

We provide two important classes of contracts, and explain how they can be
satisfied with different enforcement techniques.
2

syncope also allows using closures of seeds, which is omitted here for simplicity.
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r 2 rel.seed

:= vis | so | r [ r
R 2 relation

:= r | R; r | null

⇡ 2 prop

:= 8a. a
R�! ⌘̂ ) a

vis��! ⌘̂
 2 spec

:= ⇡ | ⇡ ^ ⇡

(a) syntax of contracts

Guarantee Contract

Read My Writes (RMW) 8a.a
so�! ⌘̂ ) a

vis��! ⌘̂

Monotonic Writes (MW) 8a.a
so;vis���! ⌘̂ ) a

vis��! ⌘̂

Monotonic Reads (MR) 8a.a
vis;so���! ⌘̂ ) a

vis��! ⌘̂

Transitive Visibility (2VIS) 8a.a
vis;vis����! ⌘̂ ) a

vis��! ⌘̂

(b) examples

Fig. 4: syncope Specification Language

LB: A lower bound (LB) contract is one in which all defined dependency relations
end with an so, i.e. are of the following form: (8a.a r1;r2;...;so�������! ⌘̂ ) a

vis�! ⌘̂).
It specifies the smallest set of effects that any operation should witness to
maintain consistency, e.g. RMW and MR in Fig.4b.

UB: Similarly, we define upper bound (UB) contracts as those whose dependency
relations end with a vis. These contracts define constraints on the set of effects
made visible to each operation; if an effect is in the set, certain dependencies
of that effect must also be included, e.g. 2VIS and MW in Fig.4b.

Our consistency enforcement approach is based on blocking operations with LB

contracts to make sure that they witness all effects that they are supposed to,
and filtering for UB contracts to make sure that they do not witness effects that
they are not supposed to (e.g. see Fig. 5).

Consider a replica that has witnessed effects {⌘1, ⌘2, ⌘3}. Sup-
pose an operation op arrives with a UB contract that requires
it to witness effect ⌘4 if it witnesses ⌘1, a property that is
mandated by the vis relation. A violation of the contract oc-
curs if op witnesses ⌘1 because ⌘4 has not yet been seen (left);
a filtration mechanism that hides ⌘1, however, allows the con-
tract to be enforced (right).

op

vi
si
bl
e ⌘3⌘3

⌘1⌘1

⌘2⌘2

op
vi
si
bl
e

⌘2⌘2

⌘1⌘1

⌘3⌘3

Fig. 5: Filtration and UB contracts

5 Semantics
In this section, we present the consistency enforcement mechanism of syncope,
abstracted as a formal operational semantics. Our approach is complete for the
specification language defined in Sec.4. However for better comprehensibility, we
present the semantics and the theorems paramterized over a contract consisting
of a single proposition. Therefore, in the rest of this section, we will assume a
given contracat  of the following form:

 = 8a.a r1;r2;...;r
k�������! ⌘̂ ) a

vis�! ⌘̂ ri 2 {vis; so}

The operational semantics defines a small-step relation over execution states,
which are tuples of the form E = (A, vis, so). The effect soup A stands for the
set of all effects produced in the system, and primitive relations vis, so ✓ A⇥A,
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⌘1⌘1

⌘6⌘6

⌘8⌘8

⌘3⌘3 ⌘2⌘2

⌘7⌘7⌘9⌘9

⌘4⌘4⌘5⌘5

vis

so

so

so

so

vis

vis

vis

vis

(a) An execution state E

E.A = {⌘1, ⌘2, ⌘3, ⌘4, ⌘5,
⌘6, ⌘7, ⌘8, ⌘9}

E.vis = {(⌘5, ⌘3), (⌘4, ⌘3),
(⌘3, ⌘1), (⌘2, ⌘1),
(⌘6, ⌘2)}

E.so = {(⌘9, ⌘3), (⌘8, ⌘6),
(⌘6, ⌘1), (⌘8, ⌘1),
(⌘7, ⌘2)}

(b) Primitive relations

vis

�1(⌘1) = {⌘2, ⌘3}
so

�1(⌘1) = {⌘6, ⌘8}
(so [ vis)�1(⌘1) = {⌘2, ⌘3, ⌘6, ⌘8}
(vis; vis)�1(⌘1) = {⌘4, ⌘5, ⌘6}
(so; vis)�1(⌘1) = {⌘7, ⌘9}

(c) Inverse of relations

Fig. 6: A simple execution state

respectively represent the visibility and session order among such effects. Figs. 6a
and 6b present a simple execution state consisting of 9 effects with associated
primitive relations3. We denote the subset of A consisting of effects that satisfy
a certain condition as A(condition).

Note that syncope’s contracts are in fact constraints over execution states,
where the domain of quantification is fixed to the effect soup A, and interpreta-
tion for so and vis relations (which occur free in the contract formulae) are also
provided. Thus, execution states are potential models for any first-order formula
expressible in the specification language. If an execution state E is a valid model
for a contract  , we say that E satisfies  (E |=  ).

The reduction relation in our semantics is of the form (E, op<s,i>)
V�! (E0, ⌘),

which can be interpreted as a transformation of the initial execution state E,
caused by a replica with a local set of effects V , when it executes op, the ith op-
eration from the session s. During this reduction step, a new effect ⌘ is produced
and added to the system, resulting in a new execution state E

0 composed of an
updated effect soup and new primitive relations.

5.1 Preliminaries

Before presenting the operational semantics, we first introduce supporting def-
initions and notations. We start by defining the interpretation of an inversed
dependency relation R

�1 under an execution state E, which is utilized in the
basis of our consistency enforcement mechanism. We previously mentioned our
interpretation for so and vis between effects under E; this can now be straight-
forwardly extended to their inverse as follows4:

r
�1(S) =

S
b2S

{a|(a, b) 2 E.r} r 2 {so, vis} (1)

Additionally, based on our interpretation of the sequences of seed relations given
in Sec.4, we can extend the above definition:

b 2 (R0; r)�1(a) () 9c.c 2 r�1(a) ^ b 2 (R0)�1(c) (2)

3 We omit drawing transitive so edges (e.g. between ⌘8 and ⌘1) for better readability.
4 Note that when the input of an inversed relation is a singleton {⌘}, we drop the

brackets and simply write it as r

�1(⌘)
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It might seem that we are ready to define any R

�1 based on the two definitions
above; however, note that definition (2) fails to capture the reality of our system
model, where all computations are performed by replicas independently; at any
given moment, a replica might have access to only a subset of all produced effects
in the system. For example, consider (so; vis)�1(⌘1) under the execution state
presented in Fig.6. In order to compute this set, based on (2) we have:

b 2 (so; vis)�1(⌘1) () 9c.c 2 vis

�1(⌘1) ^ b 2 (so)�1(c)

Now, since there exists mid-level effects c = ⌘2 and c = ⌘3, that satisfy the above
definition respectively for ⌘7 and ⌘9, we can conclude: (so; vis)�1(⌘1) = {⌘7, ⌘9}.
Consider a replica that contains {⌘1, ⌘6, ⌘7, ⌘9} at the moment, and wants to
check if the dependencies of ⌘1 are locally present or not. Even though based
on the above definition, the answer is affirmative (since the replica does contain
{⌘7, ⌘9}), the replica has no way to verify it, since the mid-level effects ⌘2 and
⌘3 are not present at the replica yet.

To capture the above property, we redefine the inverse of R, according to a
set of available effects V , that considers whether all required mid-level effects are
present in V . The following definition is based on (1) and a more strict version
of (2):

b 2 R

�1
V

(a) ()

8
><

>:

? if R = null

b 2 r�1(a) if R = r

9c.c 2 r�1(a) ^ b 2 (R0)�1
V

(c) ^ r�1(a) ✓ V if R = R

0; r

(3)

For example, in Fig.6, (⌘9 2 (so; vis)�1
{⌘1,⌘3}(⌘1)) holds, but (⌘9 62 (so; vis)�1

{⌘1}(⌘1)).
We define a set V to be self-contained for a given effect ⌘, written as SCR

⌘ (V ),
if V contains all the required mid-level effects to compute R inverse of ⌘ in
totality, i.e.

SCR

⌘

(V ) () R
�1
V

(⌘) = R
�1
E.A

(⌘) (4)

For example in Fig.6, SCR
⌘1(V ) holds for an arbitrary R and for any V that is a

superset of {⌘1, ⌘2, ⌘3, ⌘4, ⌘5}.
We define trunc() as a function that given R 2 relation, returns a new

relation by removing the last element from the sequence in R:

trunc(R) =

(
null if R = r or R = null

R0 if R = R0; r
(5)

Finally, we define closed subsets of a given set V , as the subsets that are
closed under (trunc(R)�1

V ), that also contain all the required mid-level effects to
compute trunc(R)�1. Moreover, we define the largest element among such subsets,
as the maximally closed subset of V as follows5:

closed subsets : V 0 2 bV c () V 0 ✓ V ^ (trunc(R))�1
V

(V 0) ✓ V 0 ^ SCtrunc(R)
⌘

(V 0)

maximally closed subset : V 0 = bV cmax () V 0 2 bV c ^ 6 9V 00 2 bV c .|V 00| > |V 0|
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Auxiliary Definitions
op 2 Oper. Name
v 2 Ret. Val.
s 2 Sess. ID
⌘ 2 Effect := (s, op, v)

F
op

2 Op. Def. := P(⌘) 7! v
A 2 Eff Soup := P(⌘)
vis, so 2 Relations := P((⌘, ⌘))
E 2 Exec State := (A,vis,so)

Auxiliary Reduction
S ` (E, op

<s,i>

) ,�! (E0, ⌘)

[Oper]

S ✓ A F
op

(S) = v ⌘ 62 S ⌘ = (s, op, v)

A

0 = A [ {⌘} vis

0 = vis [ (S ⇥ {⌘}) so

0 = so [ (A(SessID=s) ⇥ {⌘})
S ` ((A, vis, so), op

<s,i>

)) ,�! ((A0, vis0, so0), ⌘)

Operational Semantics

(E, op
<s,i>

)
V�! (E0, ⌘)

[UB Exec]

r
k

= vis V ✓ E.A V 0 = bV cmax
V 0 ` (E, op

<s,i>

)) ,�! (E0, ⌘)

(E, op
<s,i>

)
V�! (E0, ⌘)

[LB Exec]

r
k

= so V ✓ E.A SCR

⌘

(V )

R�1
V

(⌘) ✓ V V ` (E, op
<s,i>

)) ,�! (E0, ⌘)

(E, op
<s,i>

)
V�! (E0, ⌘)

Fig. 7: Core Operational semantics of a replicated data store.

5.2 Core Operational Semantics

Our operational semantics is defined as a set of reduction rules representing our
consistency enforcement approach (see Fig.7). The small-step reduction relation
(!) is parametrized over a set V , which stands for the locally available set of
effects at the replica taking the reduction step. Trivially, V must be a subset of
all effects in the system at the initial execution state, however, there is no other
restrictions on V , since we only assume eventual consistency in the underlying
store.

The rule [oper] defines the abstract procedure of generating a new effect ⌘, by
witnessing a set of effects S, using a user-defined function Fop. We formally define
an effect as a tuple ⌘ = (s, op, v), representing the session s, operation name op
whose execution created ⌘, and the value v that the replica returns, responding
to that operation. Moreover, the rule explains how the execution state changes
after a new effect is produced. Specifically, in the new execution state, the effect
soup A

0 contains the newly created effect ⌘, the relation vis

0 captures the fact
that all effects in the set S were made visible to ⌘, and so

0 states that all effects
from the same session as the current operation that are already presenet in the
system, should be in session order with ⌘ in the final execution state.

Rule[ub exec], defines the execution of an operation in a replica under a UB

contract. The rule requires operations to only witness V 0, the maximally closed

5 We slightly abuse the previously defined notation in (3) and use a set of effects as
the input of R�1, which is defined as: x 2 R�1

V (S) () 9(y 2 S).x 2 R�1
V (y).



11

subset of V . Thus„ the rule governs how replicas create safe environments for
operations, by filtering out undesirable or uwanted effects.

Rule [lb exec] defines the step taken by a replica when an operation is executed
under an LB contract. The precondition R�1

V (⌘) ✓ V in the rule ensures that the
reduction happens only if the effects necessary to avoid the specified anomaly
are present in V , assuming that V contains all the mid-level effects to determine
dependencies of the newly created effect ⌘ (i.e. is a self contained set). Thus, the
rule governs replicas to block execution of an operation under an LB contract, if
the replica is unable to verify the presence of all necessary dependent effects.

5.3 Soundness and Optimality

In this section we present our meta-theoretic results on the desired properties
for our consistency enforcement mechanism. Three theorems are presented, re-
garding the correctness of our approach, maximality of witnessed effects by each
operation (i.e. minimum staleness) and the liveness guarantee of the system as-
suming the eventual delivery of all effects at all replicas. Detailed proofs of all
theorems can be found in appendix B.

Before presenting the theorems, we define a  -consistent set of effects S under
an execution state E as a set that is closed under (R = r1; ...; rk), i.e.

S is  �consistent () 8(⌘ 2 S).8(a 2 E.A).R(a, ⌘) ) a 2 S (6)

Theorem 1. For all reduction steps (E, op
<s,i>

)
V�! (E0, ⌘), the followins hold:

(i) If V is  �consistent under E, then V [ {⌘} is  �consistent under E0

(ii) E0 |=  [⌘/⌘̂]

The above theorem states the preservation of  -consistency at replicas, under
reduction stpes. Moreover, it states the correctness of the enforced consistency
guarantee at the final execution state.

Theorem 2. For all reduction steps (E, op<s,i>)
V�! (E0, ⌘), the set of effects made

visible to ⌘ is maximal. i.e. for all a 2 V , if SCtrunc(R)
a (V ), then

(a, ⌘) 62 E

0
.vis ) (E0

.A, E
0
.vis [ {(a, ⌘)}, E

0
.so) 6|=  [⌘/⌘̂]

Theorem 3. For all execution states E, if there exists a set of effects S ✓ E.A,
such that:

S ` (E, op
<s,i>

) ,�! (E0
, ⌘) ^ (S [ {⌘} is  �consistent under E

0)

then there exist E

00, ⌘0 and V such that: ((E, op<s,i>)
V�! (E00, ⌘0))

A trivial corollary of the above theorem is the liveness of our operational seman-
tics, since at least one set S with the requested properties always exists6 at any
execution state.
6 S = E.A. This requires the preservation of  -consistency under the resuction step,

that is already shown in theorem 1.



12

6 Implementation

syncope is implemented as an extension to a GHC Haskell add-on called Quelea
[16]. Quelea maintains a causally consistent [2] cache on top of Cassandra, and
all operations whose contract is satisfied under causal consistency, are performed
witnessing that cache (even if they require weaker guarantees.).

In syncope, we maintain a generic cache in which operations maintained
by the cache are associated with tags, and are allowed to witnesses only the
subset of effects in the cache that also have that tag (i.e. effects that are in the
logical cache associated with that operation). We implemented a dependency
finder mechanism in syncope, that is used to verify the presence of arbitrarily
defined dependencies of an effect in each logical cache. Consequently, syncope’s
filtration and blocking mechanisms are added to the runtime system, which rely
on this dependency finder to keep each logical cache consistent according to its
associated contract. Specifically, given a dependency relation R and a replica
containing a localset V of effects, an effect ⌘ is allowed to enter a logical cache
only if trunc(R)�1

V (⌘) is already in that cache.
Considering the arbitrary length of the dependency relations that may gener-

ated and the fact that verifying the presence of dependencies for an effect might
fail for an unbounded number of trials until all dependencies arrive, special care
must be taken to ensure performance does not grade at scale. We implemented
a number of techniques to improve cache efficiency such as memoization that
extends the binary notion of dependency presence to the degree of dependency
presence (DDP) representing the maximum depth (or size) of the dependencies
of an effect, whose presence has already been verified. Consequently, when verifi-
cation fails, we can avoid checking previously computed and known dependencies
when subsequent effects arrive. syncope’s runtime, by performing periodic DDP

refreshes, tries to assign larger DDP values to each effect when more dependen-
cies arrive at the replica. We leave the details of this technique, captured as an
operational semantics in appendix C for the interested reader.

7 Evaluation

In this section, we present an evaluation study of our implementation, including
a report on benchmark applications that utilize fine-grained weak consistency
requirements, expressable in syncope’s specification language. Fig. 8 presents
seven such programs, that include library definitions of individual replicated
data types as well as larger applications consisting of multiple replicated types.

Each program supports various operations, some of which have non-trivial
consistency requirements. Out of the 38 non-SC operations defined in these pro-
grams, there are 11 such operations, whose consistency requirements can be
expressed as a combination of four previously described consistency guarantees:
Monotonic Reads (MR), Monotonic Writes (MW), Read-My-Writes (RMW),
and Transitive Vis (2VIS). The significant diversity among the consistency re-
quirements of these operations emphasizes the need for a multi-abled environ-



13

ment that can understand and enforce fine-grained consistency requirements ef-
ficiently. It is clearly not practical to hard code them all, due their sheer number;
even if we ignore bespoke consistency requirements, there are 15 combinations of
just the 4 aforementioned consistency guarantees, even as there are other known
guarantees, such as writes-follow-reads (WFR), which we ignored previously.
Causal consistency (CC), the strongest of the weak consistency guarantees, is
often used as a metaphorical one-size to fit all weak consistency requirements.
Notably, none of the operations we analyzed intrinsically require CC. Further-
more, we found that enforcing CC is significantly more expensive than enforcing
weaker guarantees (see below), thus making CC a bad substitute for weaker guar-
antees. On the other hand, we found syncope’s generic consistency enforcement
mechanism to be very useful in this case.

While the consistency requirements of the applications in Fig. 8 are express-
ible as the combination of known guarantees as described above, this is not
necessary in general. The bespoke consistency specifications of an application
are usually crafted by analyzing the anomalies that need to be preempted. For
example, consider a bank account application, which offers deposit, withdraw

and get_balance operations, where withdraw is a strongly consistent operation
that succeeds only if there are sufficient funds in the account. There are two
anomalous scenarios associated with get_balance in this program: (i) when a user
performs a deposit that is not reflected in subsequent get_balance operations;
(ii) when a get_balance witnesses a withdraw effect without witnessing all deposit
effects visible to it, resulting in get_balance returning a potentially (incorrect)
negative balance. The consistency specifications of the bank account applica-
tion are crafted to preempt these anomalies. As presented in Fig. 8, get_balance
requires both RMW and 2VIS guarantees to be simultaneously satisfied.

We have deployed syncope on a cloud cluster, consisting of three fully repli-
cated Cassandra replicas, running on separate machines within the same data-
center. Each machine is instantiated with a syncope shim layer, that responds
to clients, which are instantiated on a VM co-located with one of the replicas on
a machine. We deploy the cluster on three m4.4xlarge Amazon EC2 instances
in the US-West (Oregon) region, with an inter-machine communication time of
5ms.

Inter-replica communication in Cassandra uses TCP connections, causing
all messages to get delivered with no loss and reordering, which is in practice,
far more consistent than EC, and masks out the performance gain from our

Benchmark Consistency Description

Counter MR Monotonicly increasing counter, e.g. YouTubes’ watch count
DynamoDB RMW Integer register allowing various conditional puts and gets
Online Store RMW Online store with shopping carts and modifiable item prices
Bankaccount 2VIS ^ RMW Offering deposit, withdraw and get balance operations
Shopping List MW ^ RMW A shopping list with concurrent adds and deletes functionality
Microblog MW, RMW A Twitter-like application modeled after Twissandra [19]
Rubis RMW, RMW^2VIS eBay-like application with browsing, supporting user wallet [14]

Fig. 8: Fine-grained consistency requirement in benchmark programs
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Latency in CC (50 concurrent clients | 5 Objects | 50 Rounds)

% of package loss CC - Take1 CC - Take2 CC - Take3 CC - Take4 CC - Take5 CC - Take6 CC - Take7 CC - Take8 CC - Take9 CC - Take10 CC - Avg
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4 69ms 98ms 70ms 59ms 55ms 52ms 52ms 79ms 60ms 75ms 0.924200126

6 94ms 158ms 57ms 130ms 114ms 71ms 97ms 85ms 108ms 56ms 0.916165079333333

8 150ms 147ms 201ms 157ms 79ms 109ms 178ms 97ms 130ms 146ms 0.902917742

10 190ms 201ms 222ms 150ms 182ms 160ms 120ms 182ms 121ms 238ms 0.871551667333333

12 110ms 210ms 150ms 224ms 164ms 173ms 255ms 197ms 218ms 182ms 0.871206734

14 203ms 202ms 357ms 12ms 156ms 242ms 262ms 204ms 206ms 208ms 0.866238984
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Fig. 9: A distributed application for comment section management

fine-grained consistency guarantees. Consequently, to simulate a realistic EC en-
vironment, we injected artificial message losses in syncope’s shim layer, forcing
random messages to be delayed for 1s, simulating messages losses in a network
with 600ms RTT.

Fig. 9(a) and 9(b) represent our experimental results, with a workload gen-
erated by 50 concurrent clients repeatedly running sessions, each composed of
three operations, where operations uniformly choose from 5 objects, performed
under a specified consistency level. We increase the percentage of delayed mes-
sages from 0 to 14. Each experiment ran for 100 repeated sessions per client.
In addition to client perceived latency, we also measure the staleness of opera-
tions, which we define as the average ratio of the number of visible effects, to
the number of all available effects, when executing an operation.

In the first set of experiments, we measure latency under three different
LB contracts, all implemented in syncope. As expected, causal consistency and
RMW experience respectively the highest and the lowest performance loss as the
percentage of lost messages is increased7. With only a 4% percent message loss
rate, we see 17% higher latency under an MR contract compared to RMW, and
similarly 67% higher latency in CC compared to MR; with 10 percent message
loss, the numbers are increased to 18% and 87%.

Similarly, we repeated the experiment with 3 UB contracts. Here, a causal
visibility (CV) contract (i.e. 8a.a (so[vis)⇤;vis�������! ⌘̂ ) a

vis�! ⌘̂), yields the most stale
data when the percentage of lost messages is increased, whereas staleness in
MW is the lowest and is barely affected. We report 3% (6%) difference between
staleness of data under MW and 2VIS, and 4% (7%) difference between 2VIS
and CV, at four (ten) percent message loss rate.

Finally, in order to provide evidence on the practicality of syncope, we
implemented an ad-hoc mechanism to prevent the lost-updates anomaly, for a
simple counter application. Fig. 9(c) shows the latency results of this application
compared to the same in syncope, under the same setting as before (albeit
with no message loss). We see 78% higher latency for the handwritten code
compared to syncope with 50 concurrent clients. The reason hand-written code

7 In fact, they define the strongest and the weakest LB dependency relations express-

able in our language: ( so�!) and (
(so[vis)⇤�����!)
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performs worse than syncope is because it relies on certain Cassandra-specific
features that are not optimized for the current purpose (each time a new session
is created, it performs a strongly-consistent schema alteration to create a new
column that records the sequence number of the last update from that session
to every object). Short of replicating the syncope’s shim layer-based approach,
we found no other way to enforce the required consistency guarantee beyond the
one we implemented. Beyond the performance numbers, the ad-hoc approach to
consistency enforcement is also qualitatively inferior since it required significant
re-engineering of the counter application (nearly 40% of the original code needed
refractoring to perform book-keeping needed for the ad-hoc approach to work).
With syncope, however, no refractoring was needed to enforce the required
consistency.

8 Related Work and Conclusions

Distributed data structures composed of operation-based replicated data types
(RDTs) [5, 15] have been utilized in a number of real-world systems [3, 8]. How-
ever, these systems are developed without assuming any principled notions of
consistency, and thus have goals different from syncope. Like [2], syncope’s
focus is entirely on consistency management, and leaves issues of liveness and
durability management to the underlying data store.

The specification of consistency requirements of replicated data-objects have
been studied in several works [1, 4, 10], where multiple sufficient conditions and
analysis techniques are proposed to detect potential coordination points in pro-
grams to enforce different notions of consistency. syncope shares similar goals,
manifested within a lightweight runtime enforcement mechanism that dynami-
cally validates fine-grained consistency specifications.

Numerous systems [2, 9, 11, 13, 16, 18] define and implement various levels of
consistency guarantees in order to protect applications from anomalies admitted
under EC. [9] presents a verified implementation for a causally consistent store,
assuming a system model with session stickiness, where unlike syncope, opera-
tions from a session are always routed to the same replica. The idea of a causally
consistent shim layer on top of an off-the-shelf ECDS, is proposed in [2] and is
also utilized in [16], which offers three coarse-grained levels of consistency. syn-

cope extends the shim layer in [16] by maintaining multiple fine-grained weak
consistency levels.

This paper presents syncope, a lightweight runtime mechanism and spec-
ification framework for enforcing fine-grained consistency contracts in eventu-
ally consistent distributed systems. Our design is provably optimal and safe,
and experimental results indicate that automatic consistency validation using
the techniques described here outperforms ad hoc manual solutions. We believe
these results pave the way for strengthening any off-the-shelf distributed data
store with consistency validation support for free.



16

References

[1] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak. “Consistency
analysis in Bloom: A CALM and collected approach”. In: In Proceedings 5th
Biennial Conference on Innovative Data Systems Research. 2011, pp. 249–
260.

[2] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. “Bolt-on Causal
Consistency”. In: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’13. New York, New York,
USA: ACM, 2013, pp. 761–772. isbn: 978-1-4503-2037-5. doi: 10.1145/
2463676.2465279. url: http://doi.acm.org/10.1145/2463676.

2465279.
[3] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M.

Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck. “Tango: Distributed Data
Structures over a Shared Log”. In: Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. SOSP ’13. Farminton, Penn-
sylvania: ACM, 2013, pp. 325–340. isbn: 978-1-4503-2388-8. doi: 10.1145/
2517349.2522732. url: http://doi.acm.org/10.1145/2517349.

2522732.
[4] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Na-

jafzadeh, and M. Shapiro. “Putting Consistency Back into Eventual Con-
sistency”. In: Proceedings of the Tenth European Conference on Computer
Systems. EuroSys ’15. Bordeaux, France: ACM, 2015, 6:1–6:16. isbn: 978-
1-4503-3238-5. doi: 10.1145/2741948.2741972. url: http://doi.acm.
org/10.1145/2741948.2741972.

[5] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. “Replicated Data
Types: Specification, Verification, Optimality”. In: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’14. San Diego, California, USA: ACM, 2014, pp. 271–284.
isbn: 978-1-4503-2544-8. doi: 10.1145/2535838.2535848. url: http:
//doi.acm.org/10.1145/2535838.2535848.

[6] S. Gilbert and N. Lynch. “Brewer’s Conjecture and the Feasibility of Con-
sistent, Available, Partition-tolerant Web Services”. In: SIGACT News 33.2
(June 2002), pp. 51–59. issn: 0163-5700. doi: 10.1145/564585.564601.
url: http://doi.acm.org/10.1145/564585.564601.

[7] M. Herlihy and J. Wing. “Linearizability: A Correctness Condition for
Concurrent Objects”. In: ACM Transactions on Programming Languages
and Systems 12.3 (July 1990), pp. 463–492.

[8] A. Lakshman and P. Malik. “Cassandra: A Decentralized Structured Stor-
age System”. In: SIGOPS Oper. Syst. Rev. 44.2 (Apr. 2010), pp. 35–40.
issn: 0163-5980. doi: 10.1145/1773912.1773922. url: http://doi.
acm.org/10.1145/1773912.1773922.

[9] M. Lesani, C. J. Bell, and A. Chlipala. “Chapar: Certified Causally Con-
sistent Distributed Key-value Stores”. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’16. St. Petersburg, FL, USA: ACM, 2016, pp. 357–370.



17

isbn: 978-1-4503-3549-2. doi: 10.1145/2837614.2837622. url: http:
//doi.acm.org/10.1145/2837614.2837622.

[10] C. Li, J. Leitão, A. Clement, N. Preguiça, R. Rodrigues, and V. Vafeiadis.
“Automating the Choice of Consistency Levels in Replicated Systems”. In:
Proceedings of the 2014 USENIX Conference on USENIX Annual Techni-
cal Conference. USENIX ATC’14. Philadelphia, PA: USENIX Association,
2014, pp. 281–292. isbn: 978-1-931971-10-2. url: http://dl.acm.org/
citation.cfm?id=2643634.2643664.

[11] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues.
“Making Geo-replicated Systems Fast As Possible, Consistent when Nec-
essary”. In: Proceedings of the 10th USENIX Conference on Operating Sys-
tems Design and Implementation. OSDI’12. Hollywood, CA, USA: USENIX
Association, 2012, pp. 265–278. isbn: 978-1-931971-96-6. url: http://dl.
acm.org/citation.cfm?id=2387880.2387906.

[12] C. H. Papadimitriou. “The serializability of concurrent database updates.”
In: J. ACM 26.4 (1979), pp. 631–653. url: http://dblp.uni-trier.de/
db/journals/jacm/jacm26.html:w.

[13] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J.
Demers. “Flexible Update Propagation for Weakly Consistent Replication”.
In: SIGOPS Oper. Syst. Rev. 31.5 (Oct. 1997), pp. 288–301. issn: 0163-
5980. doi: 10.1145/269005.266711. url: http://doi.acm.org/10.
1145/269005.266711.

[14] RUBiS: Rice University Bidding System. http://rubis.ow2.org/. Ac-
cessed: 2017-05-11.

[15] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. “Conflict-free
Replicated Data Types”. In: Proceedings of the 13th International Confer-
ence on Stabilization, Safety, and Security of Distributed Systems. SSS’11.
Grenoble, France: Springer-Verlag, 2011, pp. 386–400. isbn: 978-3-642-
24549-7. url: http://dl.acm.org/citation.cfm?id=2050613.2050642.

[16] K. Sivaramakrishnan, G. Kaki, and S. Jagannathan. “Declarative Program-
ming over Eventually Consistent Data Stores”. In: Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. PLDI ’15. Portland, OR, USA: ACM, 2015, pp. 413–424.
isbn: 978-1-4503-3468-6. doi: 10.1145/2737924.2737981. url: http:
//doi.acm.org/10.1145/2737924.2737981.

[17] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and
B. W. Welch. “Session Guarantees for Weakly Consistent Replicated Data”.
In: Proceedings of the Third International Conference on Parallel and Dis-
tributed Information Systems. PDIS ’94. Washington, DC, USA: IEEE
Computer Society, 1994, pp. 140–149. isbn: 0-8186-6400-2. url: http:

//dl.acm.org/citation.cfm?id=645792.668302.
[18] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguil-

era, and H. Abu-Libdeh. “Consistency-based Service Level Agreements for
Cloud Storage”. In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. SOSP ’13. Farminton, Pennsylvania: ACM,



18

2013, pp. 309–324. isbn: 978-1-4503-2388-8. doi: 10 . 1145 / 2517349 .

2522731. url: http://doi.acm.org/10.1145/2517349.2522731.
[19] twissandra. https://github.com/twissandra/twissandra. Accessed:

2017-05-11.



19

A Modified Haskell Program

1 data Sess = Bob | Alice

2 type ID = (Sess ,Int)

3 type Effect= (ID,String)

4 type State = (String ,Int ,Int)

5
6 read :: ID -> State -> String

7 read (sess ,seq) (st,sq1 ,sq2) =

8 case sess of

9 Bob -> if (seq==sq1 +1) then st

10 else read (sess ,seq)(st,sq1 ,sq2)

11 Alice -> if (seq==sq2 +1) then st

12 else read (sess ,seq)(st,sq1 ,sq2)

13 apply :: State -> Effect -> State

14 apply (st,sq1 ,sq2) ((sess ,seq),cm) =

15 case sess of

16 Bob -> if (sq1==seq -1)

17 then (st++cm,sq1+1,sq2)

18 else (st,sq1 ,sq2)

19 Alice -> if (sq2==seq -1)

20 then (st++cm,sq1 ,sq2 +1)

21 else (st,sq1 ,sq2)

The guarded application to prevent the lost-updates anomaly, assuming 2 known
clients Bob and Alice. Even with 2 known clients, the application has become
much more complex with changed logic. This is much worse in reality where
clients constantly join and leave the system

B Proofs

Here, we present detailed proofs of the theorems of the paper by first presenting
a useful lemma.

Lemma 1. For all relations R 2 relation and execution steps: (E, op<s,i>)
V�!

(E0, ⌘) interpretatin of R under E and E

0 (Simply denoted by R and R0) differ
only on the single effect ⌘, i.e. 8a, b 6= ⌘ ) (R0(a, b) , R(a, b)).

Proof. We prove ), the other direction can be shown similarly. We have the
following goal and hypotheses:

H0 : (E, op
<s,i>

)
V�! (E0, ⌘)

H1 : a, b 6= ⌘
H2 : R0(a, b)
G0 : R(a, b)

Now by destructing R, we get the followings, in the only non-trivial case:

H3 : (trunc(R); r)0(a, b)
G1 : (trunc(R); r)(a, b)

which by rewriting the definition in H4 and G1, we get that y exists s.t.

H4 : (trunc(R))0(a, y)
H5 : r0(y, b)
G2 : 9x.(trunc(R))(a, x) ^ (r)(x, b)
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Now by instantiating G2 with y and by inversion:
G3 : (trunc(R))(a, y)
G4 : r(y, b)

Now by induction on the length of the relation R, G3 is trivially proved and we
are left with the following:

H5 : r0(y, b)
G4 : r(y, b)

Now by inversion on H0 we get two cases. We show the [lb exec] case, and the
other case can be shown similarly (only difference is V being replaced by V 0,
which has no effect on the proof):

H7 : vis

0 = vis [ V ⇥ {⌘}
H8 : so

0 = so [ (A(SessID=s) ⇥ {⌘})

Now, because of H1 (and the fact that y 6= ⌘) it is easy to get the following from
H7 and H8:

H9 : vis

0(y, b) ) vis(y, b)
H10 : so

0(y, b) ) so(y, b)

which directly prove G4, in both cases derived by destructing r.

B.1 Proof of Theorem 1
(Part i)

We have the following two hypotheses and the goal:

H0 : (E, op
<s,i>

)
V�! (E0, ⌘)

H1 : V is  �consistent under E

G0 : V [ {⌘} is  �consistent under E

0

Rewriting the definition in G0 results in the following. We denote the interpretation of
R under E0 as R0:

G1 : 8(b 2 V [ {⌘}).8(a 2 E0.A).R0(a, b) ) a 2 V [ {⌘}

By intros we have:
H2 : b 2 V [ {⌘}
H3 : a 2 E0.A
H4 : R0(a, b)
G2 : a 2 V [ {⌘}

by inversion on H0, there is two cases, in case [ub exec] we have the following:
T1 : V 0 ` (E, op

<s,i>

) ,�! (E0, ⌘)

by inversion on T1 we will have the following:
T2 : E0.A = E.A [ {⌘}

Since the other case ([lb exec]) also includes similar premises which yields T2, we can
add it to the hypotheses:

H5 : E0.A = E.A [ {⌘}

by rewriting H5 in H3 and by inversion, we get two cases: (a = ⌘) and (a 2 E.A). The
first case immediatly proves G2, so we only consider the second case where we have:

H6 : a 2 E.A

Now, by inversion on H2, we have two cases:
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– Case 1:

b 2 V

by inversion in H1 we have:

H7 : 8(x 2 V ).8(y 2 E.A).R(y, x) ) y 2 V

and by instantiating it with a and b:

H8 : R(a, b) ) a 2 V

Now by applying the lemma 1 on H4 we get that R(a, b) holds (since a, b 6= ⌘),
which can be applied on H8 to get a 2 V which proves the goal G2.

– Case 2:

H9 : b = ⌘
(by rewriting H9 in H4) H10 : R0(a, ⌘)

Now we use inversion on H0 and get two cases: [LB exec] and [UB exec]:
– SCase [LB exec]: we have H11 and H12 from the reduction rule premises:

H11 : R�1
V

(⌘) = R�1
E

0
.A

(⌘)

H12 : R�1
V

(⌘) ✓ V

now from H10 we have H13 which can be rewritten by H11 to get HH14:

H13 : a 2 R�1
E

0
.A

(⌘)

H14 : a 2 R�1
V

(⌘)

The goal G2 is now proved from H12 and H14.
– SCase [UB exec]: We have the following from the premises:

H15 : V 0 = bV cmax
H16 : V 0 ✓ V

By destructing R, the only non-trivial cases are (R = trunc(R); vis) and (R = vis):
SSCase (R = trunc(R); vis):
From H10 we get H17 which based on the definition, yields that there exists c such
that H18, H19 and H20 hold:

H17 : a 2 (trunc(R)0; vis0)�1
E

0
.A

(⌘)

H18 : c 2 vis

0�1(⌘)
H19 : a 2 trunc(R)0�1(c)
H20 : vis

0�1(⌘) ✓ E0.A

from H15 we have:

H21 : (trunc(R))�1
V

(V 0) ✓ V 0

Now from H18 (and T1) it is straightforward to get:

H22 : c 2 V 0

which after appying the lemma 1 on H19, and by H21 yields the following, which
proves the goal G2:

H23 : a 2 V 0

SSCase (R = vis): From H10 we get that vis

0(a, ⌘), which -with a similar argument
to the previous subcase- yields the following and the goal is proved:

H24 : a 2 V 0
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QED.

(Part ii)

For this part we have the following hypothesis and the goal:

H0 : (E, op
<s,i>

)
V�! (E0, ⌘)

G0 : E0 |= [⌘/⌘̂]

By inversion on H0, we have two cases:
Case1 [UB exec]:

H1 : r
k

= vis

H2 : V ✓ E.A
H3 : V 0 = bV cmax
H4 : V 0 ` (E, op

<s,i>

) ,�! (E0, ⌘)

The goal G0 can also be rewritten as:

G1 : E0 |= 8a.a
R�! ⌘ ) a

vis��! ⌘

Since the E0.A gives the interpretation for the universe of quantification:

G2 : 8(a 2 E0.A).E0 |= a
R�! ⌘ ) a

vis��! ⌘

by intros:

H5 : a 2 E0.A

G3 : E0 |= a
R�! ⌘ ) a

vis��! ⌘

Now since ((M |= A ) B) , (M |= A ) M |= B)) we can rewrite G3 as:

G4 : (E0 |= a
R�! ⌘) ) (E0 |= a

vis��! ⌘)

by intros:

H6 : E0 |= a
R�! ⌘

G5 : E0 |= a
vis��! ⌘

Now we use the interpretation given by E0, to rewrite the relations as follows. Note
that we denote the interpretation of R under E0 as R0 and E.vis as vis

0.

H7 : R0(a, ⌘)
G6 : vis

0(a, ⌘)

by inversion on H4:

H8 : vis

0 = vis [ V 0 ⇥ {⌘}

Now since ⌘ 62 E.A, we get that a 2 V 0 ) vis

0(a, ⌘), which can be applied to G6 to get
the following:

G7 : a 2 V 0

Now, destructing R yileds multiple cases, only one of which is non-trivial: R = trunc(R); vis,
which can be rewritten in H7 to get:

H9 : (trunc(R); vis)0(a, ⌘)
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Now we can rewrite the definition in H9, and derive that there exists b such that:

H10 : trunc(R)0(a, b)
H11 : vis

0(b, ⌘)

Now using a similar argument, from H8 and H11 we get:

H12 : b 2 V 0

Now by applying the lemma 1 on H10 we get:

H13 : trunc(R)(a, b)

since we have V 0 2 bV c, we get the following:

H14 : 8(x 2 V 0).(trunc(R))�1
E.A

(V 0) ) x 2 V 0

which yields the following from H12 and H13:

H15 : a 2 V 0

which proves the goal G7.

Case2 [LB exec]:
We prove this case by induction on the length of the given relation R. We have the
followings, from the premises of the reduction rule:

H1 : r
k

= so

H2 : V ✓ E.A

H3 : R�1
V

(⌘) = R�1
E.A

(⌘)
H4 : R�1

V

(⌘) ✓ V
H5 : V ` (E, op

<s,i>

) ,�! (E0, ⌘)

Using the same argument as the previous section, we get the following new goal and
hypotheses:

H6 : a 2 E0.A
H7 : R0(a, ⌘)
G1 : vis

0(a, ⌘)

We now destruct R to get H8 from H7, and rewrite the definition in it to get the
next two hypotheses. Note that by destructing R, there are only two non-trivial cases
(R = trunc(R); so) and (R = so), which we only consider the former, since the latter
can be proved similarly:

H8 : (trunc(R); so)0(a, ⌘)
H9 : trunc(R)0(a, b)
H10 : so

0(b, ⌘)

Now, from the previous section we know that (so0)�1(⌘) ✓ V which yields the following
from H10:

H11 : b 2 V

The goal is proved by the induction hypothesis, H9 and H11.
QED.
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B.2 Proof of Theorem 2

We prove the theorem by contradiction:

H0 : (E, op
<s,i>

)
V�! (E0, ⌘)

H1 : a 2 V
H2 : (a, ⌘) 62 E0.vis
H3 : (E0.A, E0.vis [ {(a, ⌘)}, E0.so) |=  [⌘/⌘̂]
H4 : (trunc(R)�1

V

(a) = trunc(R)�1
E.A

(a))
G0 : ?

Now we call (E0.A, E0.vis [ {(a, ⌘)}, E0.so) as E00 and derive the following from H3:

H5 : E00 |= 8x.x
R�! ⌘ ) x

vis��! ⌘

because E00 defines the universe of quantification (and since E00.A = E0.A), we get the
following:

H6 : 8(x 2 E0.A).E00 |= x
R�! ⌘ ) x

vis��! ⌘

and is rewritten as the following:

H7 : 8(x 2 E0.A).(E00 |= x
R�! ⌘) ) (E00 |= x

vis��! ⌘)

Now by inversion on H0 we get two cases, one of which is trivial. We skip the formal
proof for it but it is easy to see that in [LB exec] case, ALL effects in V are made
visible to ⌘, so the set is trivially maximal, i.e. H1 and H2 yield ?. For the other case
(UB exec), we get the following:

H8 : V 0 = bV cmax
H9 : V 0 ` (E, op

<s,i>

) ,�! (E0, ⌘)

by inversion on H9 we get H10 and from that and from H2, following a similar argument
from the proof of theorem 1, we get H11:

H10 : vis

0 = vis [ V 0 ⇥ {⌘}
H11 : a 62 V 0

Now by denoting the interpretation of R under E00 as R00, H7 can be rewritten as
follows:

H12 : 8(x 2 E0.A).R00(x, ⌘) ) vis

00(x, ⌘)

Now by inversion on H8, we get the following:

H13 : V 0 2 bV c
H14 : 6 9V 00 2 bV c .|V 00| > |V 0|

(from H13) H15 : V 0 ✓ V ^ (trunc(R))�1
V

(V 0) ✓ V 0 ^
(trunc(R))�1

V

(V 0) = (trunc(R))�1
E.A

(V 0)

Now we can destruct R, where we get multiple cases, only two of which are non-trivial,
(R = vis) and (R = trunc(R); vis)

– Case1(R = vis):
trunc(R) = null, thus V itself satisfies the requirements in H15 and we get that
(V = bV cmax) and the following holds:

H16 : V = V 0

which results in contradiction from H1 and H11.
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– Case2(R = trunc(R); vis):
Since |V 0 [ {a}| > |V 0| we have the following:

H17 : (V 0 [ {a}) 62 bV c

which based on the definition yields that the conditiones for holding the above
relation are not true, i.e.

H18 : ¬((V 0 [ {a}) ✓ V ^ (trunc(R))�1
V

(V 0 [ {a}) ✓ (V 0 [ {a}) ^
(trunc(R))�1

V

(V 0 [ {a}) = (trunc(R))�1
E.A

(V 0 [ {a}))

or equally:

H19 : (V 0 [ {a}) 6✓ V _
(trunc(R))�1

V

(V 0 [ {a}) 6✓ (V 0 [ {a}) _
(trunc(R))�1

V

(V 0 [ {a}) 6= (trunc(R))�1
E.A

(V 0 [ {a})

By inversion on the above, we get three cases, two of which are trivial. The last
conjunct can’t hold because of H4 and the first one also contradics with H1 and
H15. Thus, we are left with only one case:

H20 : (trunc(R))�1
V

(V 0 [ {a}) 6✓ (V 0 [ {a})

Now, from the second conjunct in H15 we know that it should be the case that:

(from H15 : (trunc(R))�1
V (V0) ✓ V0) H21 : ((trunc(R))�1

V

(a) 6✓ (V 0 [ {a}))

The above hypothesis yields the existance of c 6= a such that:

H22 : c 2 (trunc(R))�1
V

(a)
H23 : c 62 V 0

Now, by rewriting (R = trunc(R); vis) in H12 we get H24, which can be rewritten
again into H25 from the definition:

H24 : 8(x 2 E0.A).((trunc(R); vis)00(x, ⌘) ) vis

00(x, ⌘))
H25 : 8(x 2 E0.A).(9b.trunc(R)00(x, b) ^

vis

00(b, ⌘) ) vis

00(x, ⌘))

Now, we instantiate H25 with x = c:

H26 : 9b.trunc(R)00(c, b) ^ vis

00(b, ⌘) ) vis

00(c, ⌘)

we can replace trunc(R)00 with trunc(R)0 in above definition, since from H3, the
only difference in interpretation under E0 and E00 is the extra element (a, ⌘) in
E00.vis which does not effect trunc(R)00(c, b):

H27 : 9b.trunc(R)0(c, b) ^ vis

00(b, ⌘) ) vis

00(c, ⌘)

Moreover, since c 6= a, we can replace vis

00(c, ⌘) with vis

0(c, ⌘):

H28 : 9b.trunc(R)0(c, b) ^ vis

00(b, ⌘) ) vis

0(c, ⌘)

From H15 and H22 we get H29, and H30 also holds trivially from H3:

H29 : trunc(R)0(c, a)
H30 : vis

00(a, ⌘)

which can be used in instantiation of H28 with b = a and derive the following:

H31 : vis

0(c, ⌘)

However, we know -from the previously explained argument- that H31 results in
H32, which results in contradiction with H23.

H32 : c 2 V 0

QED.
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B.3 Proof of Theorem 3

Before proving the theorem, we first present and prove a useful lemma and then we
will present a new definition, regarding sets of effects.

Lemma 2. Under an execution state E and for a given set S ✓ E.A, if S is  -

consistent under E, then 8(x 2 S).R�1
S (x) ✓ S under E.

Proof.

H0 : Sis �consistent

G0 : 8(x 2 S).R�1
S

(x) ✓ S

after intros:

H1 : x 2 S

G1 : R�1
S

(x) ✓ S

inversion on H0 gives the following:

H2 : 8(⌘ 2 S).8(a 2 E.A).R(a, ⌘) ) a 2 S

which can be rewritten to:

H3 : 8(⌘ 2 S).R�1(⌘) ✓ S

however, since S ✓ E.A then8:

H4 : 8(a 2 E.A).R�1
S

(a) ✓ R�1(a)

Now we can instantiate H3 and H4 into:

H5 : R�1(x) ✓ S

H6 : R�1
S

(x) ✓ R�1(x)

which trivially yields G1 and the proof is completed.
QED.

Definition 1. We define the completment of a given set of effects S (under an exe-

cution state E) as the super set of S, containing ALL the mid-level effects required to

determine ALL the dependencies of the effects in S, i.e.

S0 2 dSe () R�1
S

0 (S) = R�1
E.A

(S)

Now, using the above theorem and lemma, we present the proof of the theorem 3,
which starts by listing the following hypotheses and the goal:

H0 : S ` (E, op
<s,i>

) ,�! (E0, ⌘)
H1 : S [ {⌘} is  �consistent

G0 : 9E00.9⌘0.9V.((E, op
<s,i>

)
V�! (E00, ⌘0))

Now, by destructing R we get two non-trivial cases:

8 we skip the formal proof of this claim, however, since the only difference in the definitions of R�1

and R�1
S

is the extra requirement about mid-level effects in the latter, it should be a subset of
the former.
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– Case1(R = trunc(R); vis):
In this case9, we generate the premises of the [ub exec] to achieve the goal as follows.
Firstly, we define S0 and present ⌘0:

H3 : S0 = bScmax
H4 : ⌘0 = (s, op, F

op

(S0))

Moreover, we will define the followings, which will be used when presenting E00:

H5 : so

00 = so [ A(SessID=s) ⇥ {⌘0}
H6 : vis

00 = vis [ S0 ⇥ {⌘0}
H7 : A00 = E.A [ {⌘0}

Now we present V and E00 as follows and rewrite the goal:

H8 : V = S
H9 : E00 = (A00, so00, vis00)

G1 : (E, op
<s,i>

)
V�! (E00, ⌘0)

by applying [ub exec] on G1 we get the following new goals (after rewriting H9 and
H3):

G2 : r
k

= vis

G3 : S ✓ E.A
G4 : S0 = bSc
G5 : S0 ` (E, op

<s,i>

) ,�! (E00, ⌘0)

first three goals are proved via the assumptions, and the last one can be easily
shown to hold by applying [oper] and deriving the following new goals:

G6 : S0 ✓ E.A
G7 : F

op

(S0) = v
G8 : ⌘0 = (s, op, v)
G9 : ⌘ 62 S0

G10 : E00.A = E.A [ {⌘0}
G11 : E00.vis = E.vis [ S0 ⇥ {⌘}
G12 : E00.so = E.so [ (A(SessID=s)) ⇥ {⌘}

all the above goals have already been shown in the assumptions and the case is
proved.

– Case2(R = trunc(R); so):
Similarly in this case we define the following:

H13 : V = dS [ {⌘}e

which yields:

H14 : 8(x 2 S [ {⌘}).R�1
V

(x) = R�1
E

0
.A

(x)

and also:

H15 : R�1
V

(⌘) = R�1
E

0
.A

(⌘)

Similar to the previous case, we now define the followings:

H16 : ⌘0 = (s, op, F
op

(V ))
H17 : so

00 = so [ A(SessID=s) ⇥ {⌘0}
H18 : vis

00 = vis [ V ⇥ {⌘0}

9 Note that in this case the goal G0, trivially holds. That is because the contract in this case is
[ub], which represents executions whitout blocking or waiting, that can always make progress by
showing some set of effects to the operations
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Now we presentE00 as follows and rewrite the goal:

H19 : E00 = (A00, so00, vis00)

G1 : (E, op
<s,i>

)
V�! (E00, ⌘0)

by applying [lb exec] on G1 we get the following new goals

G2 : r
k

= so

G3 : V ✓ E.A

G4 : R�1
V

(⌘0) = R�1
E

00
.A

(⌘0)

G5 : R�1
V

(⌘0) ✓ V
G6 : V ` (E, op

<s,i>

) ,�! (E00, ⌘0)

Now, G2 and G3 are trivially proved from the assumptions, and G6 also can be
easily proved following the argument from the previous case. We prove G4 and G5,
by a new claim that R�1

E0.A(⌘) = R�1
E00.A(⌘

0) which will be proved separately. Thus,
we can rewrite the goals and add the new claim:

G7 : R�1(⌘) = R�1
E

0
.A

(⌘)

G8 : R�1(⌘) ✓ V

G9 : R�1
E

0
.A

(⌘) = R�1
E

00
.A

(⌘0)

Now G7 is equal to the assumption H15, and G8 is the direct result of applying the
lemma 2 on H1. Now by rewriting R = trunc(R); so in G9 we have the following:

G10 : (trunc(R); so)�1
E

0
.A

(⌘) = (trunc(R); so)�1
E

00
.A

(⌘0)

Now, note that the only difference in E0 and E00 is in how the update the vis

relation from E, the former makes the set S visible to the operation and the latter
the set dS [ {⌘}e. Now since the given relation R ends with an so relation, it is
straigtforward to show that G10 holds and thus the case (and the theorem) is
proved.

QED.
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C Operational Semantics of the Augmented algorithm

Here, we explain our detailed operational semantics, to maintain multi-consistent
replicated stores. We assume a given function from operation names, to consis-
tency contracts:  : op 7!  and for simplicity reasons (again, it can be easily
generalized) we consider contracts made by a single prop:

 (op) = 8a.a
R

op��! ⌘̂ ) a
vis��! ⌘̂.

For a given realtion R we also define R[m] to refer to the m’th relation seed in
R:

(r1; r2; ...; rm; ...; rk)[m] = rm

Each replica in this semantics, maintains a pool of available effects, and a cache of
filtered effects for each operation, each of which is a subset of pool that is closed
under its associated contract, i.e. 8⌘ 2 cache(op).(trunc(Rop))

�1
pool

(⌘) ✓ cache(op)
We also define DDP of effects which is maintained according to section 6. The
formal definitions and the operation semantics are presented in the next page.
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� 2 Replicated Data Type v 2 Value op 2 Operation Name

s 2 Session Id i 2 Effect Id ⇢ 2 Replica Id

⌘ 2 Effect := (s, i, op, v)

pool 2 Pool := (v,P(⌘))

cache 2 Cache := op 7! (v,P(⌘))

DDP 2 Deps.Presence := op 7! (⌘ 7! {0, 1, ..., k � 1})
F

op

2 Op. Def. := v ! ⌘

A 2 Eff Soup := P(⌘)

vis, so 2 Relations := P((⌘, ⌘))

E 2 Exec State := (A,vis,so)

⇥ 2 Store := ⇢ 7! (pool, cache, DDP)

� 2 Session := · | op :: �

⌃ 2 Session Soup := hs, i,�i k ⌃ | ;
ssn(s, _, _, _) = s id(_, j, _, _) = j oper(_, _, op, _) = op rval(_, _, _, n) = n

Auxiliary Reduction v ` (E, hs, i, opi) ,�! (E0, ⌘)
[Oper]

F
op

(v) = ⌘ ssn(⌘) = s id(⌘) = i A

0 = A [ {⌘}
vis

0 = vis [ S ⇥ {⌘} so

0 = so [ {(⌘0, ⌘) | ⌘0 2 A ^ ssn(⌘0) = s ^ id(⌘0) < i}
v ` ((A, vis, so), hs, i, opi ,�! ((A0, vis0, so0), ⌘)

Operational Semantics (E,⇥,⌃)
⌘�! (E0,⇥0,⌃0)

[Pool Refresh]

⌘ 2 E.A ⇥(⇢) = (pool, cache, DDP) ⌘ 62 pool

e

pool

0 = (apply ⌘ pool

v

, pool

e

[ {⌘})
⇥0 = ⇥[⇢ 7! (pool

0, cache, DDP)]

(E,⇥,⌃)
⌘�! (E,⇥0,⌃)

[DDP Refresh]

⇥(⇢) = (pool, cache, DDP) ⌘ 2 pool

e

oper(⌘) = op

DDP(op)(⌘) = i i < k DDP

0(op) = DDP(op)[⌘ 7! i + 1]

DDP(op)((R
op

[i + 1])�1(⌘)) ✓ DDP

i

⇥0 = ⇥[⇢ 7! (pool, cache, DDP[op 7! DDP

0(op)])]

(E,⇥,⌃)
⌘�! (E,⇥0,⌃)

[Cache Refresh]

⇥(⇢) = (pool, cache, DDP) ⌘ 2 pool

e

oper(⌘) = op

⌘ 62 cache(op)
e

cache

0 = (apply ⌘ cache(op)
v

, cache(op)
e

[ {⌘})
DDP(op)(⌘) = k � 1 ⇥0 = ⇥[⇢ 7! (pool, cache

0, DDP)]

(E,⇥,⌃)
⌘�! (E,⇥0,⌃)

[LB Exec]

⇥(⇢) ` (E, hs, i, opi) ,�! (E0, ⌘)

⇥(⇢) = (pool, cache, _) so

�1(⌘) ✓ cache(op)
e

(E,⇥, hs, i, op :: �i k ⌃)
⌘�! (E0,⇥, hs, i + 1,�i k ⌃)

[UB Exec]

⇥(⇢) = (pool, cache, _)

cache(op) ` (E, hs, i, opi) ,�! (E0, ⌘)

(E,⇥, hs, i, op :: �i k ⌃)
⌘�! (E0,⇥, hs, i + 1,�i k ⌃)

Fig. 11: Operational semantics of a replicated data store.
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