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RESEARCH ARTICLE
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the 91-R and 91-C Drosophila melanogaster
Strains Reveals Few of the ‘Usual Suspects’ in
Dichlorodiphenyltrichloroethane (DDT)
Resistance
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Research Unit, Iowa State University, Ames, Iowa, United States of America, 3 Department of Animal
Sciences, Purdue University, West Lafayette, Indiana, United States of America, 4 Department of Veterinary
& Animal Science, University of Massachusetts, Amherst, Massachusetts, United States of America
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Abstract
Adaptation of insect phenotypes for survival after exposure to xenobiotics can result from

selection at multiple loci with additive genetic effects. To the authors’ knowledge, no selec-

tive sweep analysis has been performed to identify such loci in highly dichlorodiphenyltri-

chloroethane (DDT) resistant insects. Here we compared a highly DDT resistant phenotype

in the Drosophila melanogaster (Drosophila) 91-R strain to the DDT susceptible 91-C strain,

both of common origin. Whole genome re-sequencing data from pools of individuals was

generated separately for 91-R and 91-C, and mapped to the reference Drosophila genome

assembly (v. 5.72). Thirteen major and three minor effect chromosome intervals with re-

duced nucleotide diversity (π) were identified only in the 91-R population. Estimates of Taji-

ma's D (D) showed corresponding evidence of directional selection in these same genome

regions of 91-R, however, no similar reductions in π or D estimates were detected in 91-C.
An overabundance of non-synonymous proteins coding to synonymous changes were iden-

tified in putative open reading frames associated with 91-R. Except for NinaC and Cyp4g1,
none of the identified genes were the ‘usual suspects’ previously observed to be associated

with DDT resistance. Additionally, up-regulated ATP-binding cassette transporters have

been previously associated with DDT resistance; however, here we identified a structurally

alteredMDR49 candidate resistance gene. The remaining fourteen genes have not previ-

ously been shown to be associated with DDT resistance. These results suggest hitherto un-

known mechanisms of DDT resistance, most of which have been overlooked in previous

transcriptional studies, with some genes having orthologs in mammals.
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Introduction
Dichlorodiphenyltrichloroethane (DDT) has gone from being a worldwide panacea of insect
control and probably the most famous pesticide in modern history, to being a critical flashpoint
of the modern environmental movement and becoming the most infamous pesticide of recent
times. DDT was first used to control pest insect populations beginning in the 1940s, but in-
stances of field resistance were observed among many species of insects, including Drosophila
melanogaster (Drosophila) [1]. Subsequent deleterious side effects were observed in non-target
mammalian and avian species, and were linked to the environmental persistence of this insecti-
cide or its metabolites [2–5], ultimately leading to DDT being banned in most countries. How-
ever, DDT remains in industrial production due to its continued use for the control of
mosquitoes that vector malaria; a niche where DDT is very effective [6].

DDT disrupts nervous system function in arthropods by affecting nerve cell plasma mem-
brane permeability and causing paralysis [7]. Contrary to expectations, when selection pres-
sures for DDT resistance were eliminated following bans on DDT use in many nations, the
frequencies of resistance phenotypes remained high in many endemic pest insect populations.
Persistence has been attributed to random genetic drift of alleles that have no fitness costs com-
pared to susceptible counterparts [8]. Additionally, DDT resistance mechanisms can confer
cross-resistance to pyrethroid [9, 10] and neonicotinoid insecticides [11], and may be a factor
that contributes to maintenance of resistance alleles in the absence of a direct DDT selection
[12].

The genetic basis of DDT resistance traits in the mosquito Anopheles gambiae involves the
additive effects of two quantitative trait loci (QTL) [13]. Similarly, two QTL with major effects
were mapped to the para sodium channel and the CCEunk7 esterase genes in Aedes aegypti,
along with minor QTL that implicated the role of 20 other detoxification enzymes [14]. Addi-
tionally, a significant amount of research on DDT resistance in Drosophila has focused on met-
abolic resistance [11, 12, 15–17].

DDT resistance in Drosophila is not a uniform phenotype, with varying levels of resistance
observed across different Drosophila strains, and resistance can roughly be categorized into
low-, medium- and high-level resistance [18]. Initial work on DDT by Crow [19] demonstrated
the polygenic nature of DDT resistance, however, subsequent research singled out one low-
level DDT resistant phenotype involving the Rst(2)DDT locus on chromosome two [20]. The
chromosome region of Rst(2)DDT contains two cytochrome monooxygenease (P450) genes,
Cyp6g1 and Cyp12d1, that are over expressed in at least some DDT resistant strains [18, 21].
Transcription of Cyp6g1 in DDT resistant Drosophila was up-regulated by an upstream inser-
tion of the Accord transposon [22], and all subsequently described field resistant strains simi-
larly show an over expression of Cyp6g1 due to this Accord insertion [12].

In contrast, DDT resistance among laboratory strains involves over expression of multiple
P450 genes in addition to Cyp6g1 and Cyp12d1 [23, 24]. Specifically, the laboratory selected
strain 91-R showed significant increases in expression of multiple cytochrome P450s and doz-
ens of other genes. Furthermore, over expression of Cyp6g1 in transgenic Drosophila with a
susceptible genetic background failed to reconstitute high levels of DDT resistance [25] and re-
inforced the hypothesis that DDT resistance may be a multilocus trait in this species [17, 26].
Indeed, a recent toxicokinetic analysis of 91-R revealed that oxidative P450s likely causes little
direct metabolic resistance, but reduced cuticular penetration, increased reductive dechlorina-
tion, and enhanced excretion have been shown to play dominant roles [27].

With the advent of next generation sequencing (NGS) technologies, full-genome re-se-
quencing has become logistically feasible, and allows for ultra-fine resolution to map the ge-
nome location of mutations [28]. It is also a tool for genome-wide association studies (GWAS),
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population genomic [29] and phylogenomic studies [30]. GWAS using NGS-based re-sequenc-
ing approaches has been effectively applied to estimate genome variation within and between
populations, and has identified genome regions that are associated with the expression of vari-
ous traits [31–33]. GWAS in Drosophila are feasible due to a high-quality genome sequence as-
sembly, gene models and tools for genome-wide molecular analyses [5, 34, 35].

The laboratory selected DDT resistant and control strains 91-R and 91-C, respectively, rep-
resent lines that have a common origin, have been kept side-by-side in the laboratory, yet while
91-C received no DDT selection, 91-R received intense DDT selection pressure for over 50
years. Using these resource populations, whole genome re-sequencing data were generated
from pools of individuals from the Drosophila strains 91-R and 91-C, and applied to detect
chromosome regions putatively affected by prolonged DDT selection. To the authors’ knowl-
edge, analysis across the entire insect genome to identify regions influenced by selective sweeps
in highly DDT resistant insects has not been previously performed, although there has been a
study focused on insecticide resistant blow flies (Lucilia cuprina) examining selective sweeps
around an individual gene [36] and some additional studies looking at signatures of selection
around transposable elements [37, 38]. We tested the hypothesis that the expected usual gene
suspects for DDT resistance would be detected, as opposed to the alternative that resistance is
polygenic with many other genes impacting resistance. Elucidating these genetic and biochemi-
cal mechanisms associated with pesticide resistance evolution might lead to improved pest
management strategies. Equally important, such information has the potential to further our
understanding of how DDT impacts biological processes that are evolutionarily conserved be-
tween insects and mammals.

Results

Genome re-sequencing and data filtering
Read mapping with the Bowtie2 resulted in alignment of� 98.5% of all 91-R and 91-C
trimmed reads to the Drosophila reference genome release 5.7 resulted mean coverage depths
of 63.6- and 62.0-X, respectively (S1 Table). The resulting mapping files were submitted to
NCBI with an accession number SRP052046.

Detection of selective sweeps in 91-R by mapping Pool-seq data
Mean nucleotide diversity (π) and Tajima's D (D) estimates were made among major chromo-
some arms for mapped read data from strains 91-R and 91-C (Table 1). Both estimates were
generally higher for 91-R compared to 91-C and were also ~10-fold lower on the X chromo-
some compared to autosomes (Table 1). The variation within sliding window estimates for π
and D were also greater for 91-R compared to 91-C. Use of an arbitrary cutoff of a� 100-fold
reduction of π in a given 500-kb window compared to the mean π across the same chromo-
some resulted in the identification of 13 genome intervals in the 91-R genome (Fig 1A). Strong
evidence for directional selection was not found on chromosomes X or 3L. Reduced nucleotide
diversity was used as a proxy for the identification of genome regions, which potentially show
the effects of a selective sweep, where the size of these 13 genome regions ranged from 0.1 to
0.9-Mbp (Table 2). A second tier cutoff of a� 90- but< 100-fold reduction of π in a given
500-kb window was used to identify putative genome regions affected to a lesser degree follow-
ing chronic DDT exposure in 91-R, and resulted in the identification of three additional ge-
nome intervals showing “minor” selective sweeps (Fig 1A). By comparison to estimates
obtained across the genome of 91-C, the effects of random genetic drift, as opposed to direc-
tional selection, could possibly be accounted for on the 91-R genome. Decreases in the esti-
mates of D along chromosome arms were also interpreted as being derived from the effects of
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directional selection in those corresponding genome regions. The calculated values of D along
500-kb windows of genomic sequence from 91-R indicated the effects of negative section were
detected in 2L and 3R, and that these genome regions corresponded to those also predicted to
show significant reductions in π described above. Similar to the estimates of π described above,
there were no intervals on chromosomes X or 3L that showed significant reductions in

Table 1. Mean nucleotide diversity (pi;π) and Tajima's D (D) among chromosome arms for DDT resistant 91-R and susceptible 91-C Drosophila
melanogaster strains.

Mean π Mean D

Chromosome 91-R 91-C 91-R 91-C

X 0.0000287±0.0000173 0.0002626±0.000074 -0.5516±0.1172 -0.8784±0.1217

2L 0.0013216±0.001567 0. 0002698±0.000136 -1.1013±0.2103 -0.3383±0.4770

2R 0.0003640±0.001051 0.0002663±0.0000540 -0.5812±0.4047 -1.0866±0.1121

3L 0.0049182±0.001512 0.0003234 ±0.0002795 0.4785±0.0375 -1.0183±0.4060

3R 0.0037892±0.002277 0.0002899±0.0002664 0.4339±0.1668 -1.0558±0.3084

doi:10.1371/journal.pone.0123066.t001

Fig 1. Estimates of (A) nucleotide diversity (pi;π) and (B) Tajima's D (D) across the chromosome
arms ofDrosophila melanogaster from the DDT resistant 91-R strain (black line) and DDT susceptible
91-C strain (grey line).Metrics obtained from 500-kb sliding windows with a step size of 100-kb. The genes
identified to be associated with each of the major selection sweeps are as follows: (1) CG42329, (2)
CG15394, (3)NinaC, (4) CG6453, (5) CG17568 and Ref(2)P, (6) RtGEF, (7) CG12050, CG8677, and Dtr, (8)
CG31612, (9) Dscam1, (10) Sut1, (11)MDR49, (12) CG1041 and (13) CG31495. The genes identified to be
associated with each of the minor selection sweeps are as follows: (A)Cyp4g1; (B) AlstR,Mnt and Fd3F; and
(C) Kon.

doi:10.1371/journal.pone.0123066.g001

DDT and Selective Sweeps in Drosophila

PLOSONE | DOI:10.1371/journal.pone.0123066 March 31, 2015 4 / 15



estimates of D in the 91-R or 91-C genome. In contrast, the estimates of D did appear to mirror
those of π along 2L, 2R and 3R in 91-R but not 91-C (Fig 1B).

Identification and annotation of candidate genes in selective sweeps
The location of 67,835 91-R and 58,376 91-C single nucleotide polymorphisms (SNPs) were
mapped to all gene-coding regions on chromosomes 2L, 2R and 3R (S2, S3 and S4 Tables).
Mapping was not conducted on chromosomes X or 3L due to lack of selective sweeps detected
on those chromosome regions. The genes in each nucleotide interval identified within selective
sweeps from the 91-R genome were interrogated for further evidence of directional selection
using excess of nucleotide mutations that cause amino acid changes. Specifically, the ratios of
the rate non-synonymous to synonymous mutation (KA/KS) were calculated for gene in each
selective sweep, and those with a KA/KS > 1 were considered candidates genes with evidence of
DDT selection (S5 Table). Functional and mutant annotations for each gene were retrieved
from Flybase.org using gene symbol in a keyword search and distribution of tissues in which
transcripts for each gene have been previously identified were found in Flybase.org. Derived
protein sequences were obtained for all genes putatively involved in DDT resistance in 91-R
(S6 Table), and when possible the functional domains were mapped with respect to the site of
amino acid changes (S7 Table).

Table 2. Thirteen genomic intervals inDrosophila melanogaster strain 91-R (ID 1 to 13) with nucleotide diversity estimated reduced� 100-fold
compared to respective chromosomemeans, and indicate putative genome regions under directional selection for survival when exposed to DDT.

ID Chr Start Stop 91-R π ID Chr Start Stop 91-R π

1 2L 850,000 950,000 0.00000795 7 2L 21,050,000 21,150,000 0.00000622

1 2L 950,000 1,050,000 0.00000583 7 2L 21,150,000 21,250,000 0.00000841

1 2L 1,050,000 1,150,000 0.00000479 7 2L 21,250,000 21,350,000 0.00000265

1 2L 1,150,000 1,250,000 0.00000483 8 2L 21,750,000 21,850,000 0.00000172

1 2L 1,250,000 1,350,000 0.00000460 8 2L 21,850,000 21,950,000 0.00000148

1 2L 1,350,000 1,450,000 0.00000446 8 2L 21,950,000 22,050,000 0.00000602

2 2L 2,650,000 2,750,000 0.00000995 9 2R 2,750,000 2,850,000 0.00000150

3 2L 7,350,000 7,450,000 0.00001100 9 2R 2,850,000 2,950,000 0.00000001

4 2L 17,150,000 17,250,000 0.00000788 9 2R 2,950,000 3,050,000 0.00000001

4 2L 17,250,000 17,350,000 0.00001210 9 2R 3,050,000 3,150,000 0.00000001

4 2L 17,350,000 17,450,000 0.00000843 9 2R 3,150,000 3,250,000 0.00000001

4 2L 17,450,000 17,550,000 0.00000823 10 2R 3,950,000 4,050,000 0.00000001

4 2L 17,550,000 17,650,000 0.00001138 11 2R 8,850,000 8,950,000 0.00000001

4 2L 17,650,000 17,750,000 0.00000750 11 2R 8,950,000 9,050,000 0.00000001

4 2L 17,750,000 17,850,000 0.00000328 12 3R 1,850,000 1,950,000 0.00074201

4 2L 17,850,000 17,950,000 0.00000563 12 3R 1,950,000 2,050,000 0.00045369

5 2L 19,250,000 19,350,000 0.00000650 12 3R 2,050,000 2,150,000 0.00008574

5 2L 19,350,000 19,450,000 0.00000918 12 3R 2,150,000 2,250,000 0.00043772

5 2L 19,450,000 19,550,000 0.00000947 12 3R 2,250,000 2,350,000 0.00096688

6 2L 20,350,000 20,450,000 0.00000441 13 3R 9,550,000 9,650,000 0.00078830

6 2L 20,450,000 20,550,000 0.00000653 13 3R 9,650,000 9,750,000 0.00017920

Each interval (ID number) is represented by � 1 100-kb sliding window that spans a putative selective sweep identified from estimates of nucleotide

diversity (pi; π) (Fig 1). Due to either the size of the interval > 1 sliding window region was identified in selective sweeps for all but intervals (IDs) 2, 3, and

10.

doi:10.1371/journal.pone.0123066.t002

DDT and Selective Sweeps in Drosophila

PLOSONE | DOI:10.1371/journal.pone.0123066 March 31, 2015 5 / 15



Discussion
In the current study we used a whole genome approach to detect nucleotide signatures of direc-
tional selection in the 91-R population that resulted following chronic DDT exposure. Specifi-
cally, the effects of DDT selection on localized regions of the 91-R genome were measured by
reductions in nucleotide diversity and corresponding estimates of directional selection using
Tajima's D. The implication of individual genes in DDT resistance was obscured using this ap-
proach since genetic hitchhiking of flanking genes and genome regions occurs during selection
due to limits on recombination to reduce the size of haplotype blocks [39, 40]. Thus, selective
sweeps in 91-R have resulted in the near fixation of nucleotide sequence of the causal genetic
factor(s) that are directly involved in the genes giving rise to this DDT resistant phenotype, as
well as genes in proximity. It is important to note that some gene(s) located within some of the
selective sweeps may appear associated with the resistant phenotype in 91-R, but may have
been carried to fixation due to physical genetic linkage to gene(s) with major effect due to
genetic hitchhiking.

Overall, genes within the 13 major (Fig 1 and S6 Table) and three minor effect regions (Fig
1 and S6 Table) identified in 91-R by selective sweeps do not correspond to the genes that have
been previously associated with DDT resistance using gene expression analyses or identified in
pesticide resistant Drosophila populations. The only exception is gene NinaC, which has pre-
dicted kinase activity related to sensory transduction/vision, and is over-expressed in DDT re-
sistant strains [26]. Similarly, four of the genes located in genome regions of 91-R affected by
selective sweeps, Dscam1, Dtr, RtGEF, and CG6453, have previously been implicated in synap-
tic development and/or function [41–44]. Additionally, the candidate genes of 91-R affected by
selective sweeps may also be involved in regulation of cellular growth (CG6453) [44], as well as
genes that are involved in cellular communication and signal transduction cascades (S4 Table).
Although implication of these mutant alleles in DDT resistance can be rationalized, additional
functional studies are required to deduce individual roles as well as the effects of the non-syn-
onymous changes in 91-R on subsequent protein function and resulting phenotype. Addition-
ally, the nucleotide diversity (pi; π) and D in the sliding window figure indicated that the
control (91-C) strain showed no evidence for reduced variation or coding sequences (CDS) se-
lection, in that sliding windows are fairly uniform across the chromosome—with exception of
certain regions likely representing those near centromeres.

The genes CG17568, ref(2)P, CG8677, and CG31612 located in selective sweeps five, seven
and eight, respectively, contain Zn-finger DNA binding motifs, which could suggest the resul-
tant proteins have potential roles as transcription factors. Since trans-regulatory control of
transcription by soluble transcription factors often occurs at cis-promoter or enhancer ele-
ments by way of Zn-finger mediated protein-DNA interactions, mutations in transcription fac-
tors that affect DNA-protein or protein-protein interactions at the promoter or with enhancer
elements can cause changes in expression at physically unlinked genes. Therefore, genes in an
interconnected gene regulatory pathway may show a coordinated response to transcription fac-
tor mutations. It is conceivable (but speculative) that the mutant transcription factor alleles in
91-Rmight be involved in the gene regulatory networks which lead to up-regulation of the
transcripts in 91-R described by Pedra et al. [17], a hypothesis that remains to be tested. In a
broader context, the basal cause of apparent incongruent results obtained from gene expression
and genetic mapping/phylogenomic studies may be rooted in the effect that genes in QTL in-
tervals/selective sweeps have upon gene networks. This hypothesis might also suggest that sys-
tem approaches may yield greater insight into the genetic and genomic basis of insecticide
resistance traits.
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In the three genome regions showing less major effects of selection at a� 90-fold reduction
in nucleotide diversity cutoff, (A, B and C in Fig 1 and S2 Table), the candidate genes were as-
sociated with the nervous system and only one was a P450, Cyp4g1. The Cyp4g1 protein is
known to be associated with hydrocarbon production, converting long-chained aldehydes to
long-chained hydrocarbons in oenocytes in the epidermis of Drosophila, that are then in turn
transported to the waxy layer of the epicuticle [45]. Additionally, Strycharz et al. [27] recently
demonstrated that 91-R had higher quantities of cuticular hydrocarbons, visible changes in the
cuticle (via electron microscopy), and that reduced penetration is an important component of
DDT resistance in 91-R. Although work by Waters et al. [46] suggested no difference in expres-
sion levels of Cyp4g1 between 91-C and 91-R, it is not currently known if differential expression
of the Cyp4g1 protein might be localized near the cuticle of the insect or if structural changes in
Cyp4g1may play some role in resistance.

Although ATP-binding cassette (ABC) transporters have previously been associated with
DDT resistance in Drosophila, the selective sweeps analysis has shed new light on an additional
candidate DDT resistance gene known asMDR49. Strycharz et al. [27] previously compared
the transcription levels of the ATP-binding cassette transportersMDR49,MDR50 andMDR65
andMRP1 in 91-R versus Canton-S strains. Interestingly,MDR50,MDR65 andMRP1 were
over-expressed in 91-R whereasMDR49 was not. RNAi knockdown ofMDR50,MDR65 and
MRP1 in DDT resistant flies results in increased sensitivity to DDT, however, knockdown of
MDR49 had no effect [47]. Such aforementioned experimental approaches would only detect
the putative role of differential transcription in DDT resistance and not structural changes in
the protein that may lead to DDT resistance. Thus, the amino changes that we observed in
MDR49 that may play a role in DDT resistance, if any, remain to be determined.

The other genes co-occurring with selective sweeps included: Dscam1, NinaC, CG6453,
CG17568, Ref(2)P, RtGEF, CG12050, CG8677, Dtr, CG31612, Sut1, CG1041, and CG31495.
Several of these aforementioned genes located within the identified selective sweeps contain
known or suspected orthologs in other animals, including mammals, which could be useful in
further investigation to better understand their potential links to DDT resistance. For example,
some of these genes show plausible linkages to phenotypic resistance to DDT, however, based
on their roles in mammals in biological processes known to be impacted by DDT exposure.
For example, Dscam1 is associated with psychomotor retardation, and DDT (or more specifi-
cally the DDE byproduct) has been linked with retarded psychomotor development in humans
exposed in the first trimester [48, 49]. NinaC is a retinal specific gene that codes for two photo-
receptor cell specific proteins in Drosophila [50, 51], and mutations in NinaC were shown to
cause light- and age-dependent retinal degeneration in Drosophila [51]. In human studies,
Kamel et al. [52] found a dose-response relationship between exposure to organochlorides,
such as DDT, and the risk of retinal degeneration. Male sterility in Drosophila results when Ref
(2)P gene expression is absent in the testes, which suggested that the Ref(2)P gene expression is
required for successful reproduction [53]. Although a somewhat controversial topic in the liter-
ature, there have been studies indicating that environmental pollutants (such as DDT) have
links to male infertility [54, 55] in both humans [54] and rats [55]. The role these genes may
play in high level DDT resistance remains to be determined. Additionally, it remains to be de-
termined if some of these evolutionarily conserved, between insects and mammals, candidate
genes may also provide insights into the impact of DDT exposure in mammalian systems, as
has been done previously using Drosophila and human diseases [56–60].

Interestingly, we did not observe many of the genes typically associated with pesticide resis-
tance [19, 61–65, 68–76]. Many initial publications reported that moderate to high level DDT
resistance is thought to be polygenic with multiple genome regions contributing to this pheno-
type [19, 63, 64]. Previous researchers have identified loci on the second chromosome involved
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in DDT resistance [20, 65], whereas chromosomes X and three are thought to have some slight
impact on the DDT resistance phenotype [64, 65]. The uniform reduction in estimates of π
across the X-chromosome of 91-C and 91-C, were not surprising due to the effective 3/4 popu-
lation size of the X-chromosome as compared to autosomes [66], which affects the rate at
which chromosomal loci may become fixed by random genetic drift or influenced by selection
[77]. The affects of random fixation by random genetic drift on the X-chromosome may also
have been exacerbated by the relatively small number of individuals in 91-C and 91-R laborato-
ry populations [67]. An increasing amount of research has focused on the single Rst(2)DDT
locus [20, 68–71], whereby over-transcription of the cytochrome P450 Cyp6g1 located within
the Rst(2)DDT region was suggested to be both necessary and sufficient for DDT resistance
[25]. Daborn et al. [25] essentially proposed that resistance to DDT was monogenic, at least in
Drosophila strains with low-level DDT resistance. The Rst(2)DDT locus maps to the second
chromosome between the genes cinnabar (cn; location 2R:3,670,302–3,672,711) and vestigial
(vg; 2R:8,772,137–8,786,890) [11, 21, 72, 73]. Although our current dataset is not from a low-
level resistant strain, this genome interval in 91-R where Cyp6g1 exists is located between, and
not within, the 91-R selective sweeps labeled 9 and 10 (Fig 1). Interestingly Cyp6g1 is over-ex-
pressed in the 91-R strain [17, 21, 78]. Thus, our analysis suggests that Rst(2)DDT is not a
major factor, or potentially even involved, in the DDT resistance phenotype in 91-R, and agrees
with prior results which showed that DDT resistance could be maintained in Drosophila strains
that did not show high Cyp6g1 transcript levels derived from at the Rst(2)DDT locus [74]. The
current results are also in agreement with the conclusion by Strycharz et al. [27] that metabolic
resistance, particularly P450-based resistance, plays a negligible role in the overall DDT resis-
tance phenotype in 91-R. In addition to Cyp6g1, expression of Cyp12d1 was implicated in being
differentially expressed in DDT-resistant fly strains [18] as were non-synonymous coding se-
quence mutations Cyp6a2 [75] and para [76]. However, none of these genes occurred in any of
the selective sweeps identified in our current experiments.

DDT resistance, however, is not a single phenotype, but varies among strains from low-
(e.g.,Hikone-R), to moderate- (e.g.,Wisconsin), to high-levels (e.g., 91-R) [18]. Based on micro-
array analysis, moderate- to high-level resistant phenotypes appeared to result from the effect
of multiple differentially-regulated genes. Specifically, using microarray data, Pedra et al. [17]
observed that numerous genes were over-transcribed in the 91-R strain including cytochrome
P450s, glutahione S transferases, and a set of additional genes. Comparative analysis of micro-
array data from theWisconsin and 91-R strains showed that multiple genes were differentially
expressed, and that these genes were more numerous in the more highly resistant strain than
the moderately resistant strain [17, 79]. A proteomic analysis also revealed that proteins associ-
ated with energy metabolism were differentially expressed in two DDT resistant as compared
with a susceptible strain [26]. These combined observations suggest that at least moderate- to
high-level DDT resistance may involve complex molecular interactions, and this might be con-
sistent with a resistant phenotype that results from the effects of multiple genes. These results
also suggest that several different genetic mechanisms may result in DDT resistant phenotypes,
and that increasing levels of DDT resistance may be additive with an increasing number of
genes involved, a hypothesis that remains to be tested. However, these results do not rule out
the fact that low-level DDT resistant strains, taken directly from the field, may have fewer, i.e.,
monogenic, molecular mechanisms of resistance such as overly transcribed Cyp6g1 [78].

Certainly, the current data and analysis could be of potential importance to those insecti-
cides where DDT resistance has been shown to confer cross-resistance to other types of insecti-
cides, such as imidacloprid in Drosophila and pyrethroids in A. aegypti [11, 80]. Of greater
practical importance, however, this general GWAS approach could be applied to other insect
species currently being controlled by other pesticides, in order to understand the evolution of
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resistance in “real time” (i.e., follow field populations through generations of selection). A
number of other insect genomes have been sequenced since the Drosophila genome was pub-
lished in 2000 and has allowed for the study of insecticide resistance at the molecular level for a
variety of species, such as in Anopheles gambiae [34, 81]. Although the 91-C and 91-R fly lines
provide a unique system where selection has occurred for over half a century, there exist multi-
ple Aedes aegypti laboratory strains, including strains selected for insecticide resistance to per-
methrin, where similar studies could be performed to identify structural mutations across the
genome [82].

The discoveries of novel resistance mechanisms from such studies could help lead to new
target genes and the development of novel control methods for these resistant species [83, 84].
This work also highlights that selection with DDT may result in the selection for novel muta-
tions, potentially with some or many of these being associated with or directly involved in
DDT resistance. Additional studies are required to validate the role of genes in each predicted
selective sweep in DDT resistance by verifying the functional consequence of amino acid
changes on protein structures and potential impact on the 91-R resistant phenotype. Of great-
est importance, this study highlights the need for selective sweep analyses in pesticide resistant
insect populations in order to identify potential candidate resistance traits. Further molecular
examination of individual genes and a more detailed analysis of the specific effects of the struc-
tural changes within the insects are crucial to better understanding resistance, something be-
yond the scope of the current project.

Materials and Methods

Genome re-sequencing and data filtering
Dr. Ranjan Ganguly of the University of Tennessee-Knoxville provided the DDT resistant and
susceptible Drosophila strains, respectively 91-R and 91-C [85]. For detailed description of fly
line maintenance, re-sequencing, and data filtering, please see Steele et al. [86].

Detection of selective sweeps in 91R by mapping Pool-seq data
Estimates of nucleotide diversity. A pooled sequencing approach (Pool-seq) was used to

compare the nucleotide variance at all positions across the Drosophila strains 91-C and 91-R
genomes, with the goal of identifying putative regions of reduced nucleotide diversity in 91-R
that putatively correspond to regions affected by directional selection (selective sweeps) [87,
88]. To accomplish this, quality score trimmed reads from 91-R and 91-C libraries were aligned
separately to the Drosophila genome assembly release 5.7 (file dmel-all-chromosomee-r5.7.
fasta downloaded from Flybase.org) using Bowtie2 with parameters-l 100-n 0.01-o 2-e 12-d 12
[89]. Bowtie2 output in SAM format was converted to a sorted BAM file and synchronized
with the SamTools mpileup command [90]. The BAM files have been deposited at NCBI with
accession number of SRP052046. Nucleotide diversity (π) estimates were calculated across the
alignments for 91-C and 91-R data in 500-kb sliding windows with a step size of 100 kb using
the Perl script Variance-sliding.pl from the PoPoolation Package [91] with a minimum cover-
age = 2, maximum coverage = 75, and minimum quality = 25. The maximum coverage was re-
stricted to 2-times the mean read depth to reduce the incidence of SNP detection within
repetitive DNAs. Windows where genome regions lacked any SNPs were reported as "na", and
were counted as missing data such that gaps were present in the resulting plots. Regions of the
genome with evidence of putative selective sweeps were identified using an arbitrary cutoff of a
π 100-fold reduction of π within a window compared to the mean π across the same chromo-
some. Mapping data to the Y chromosome, mitochondrial genome and chromosome four were
excluded from analyses.
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Estimates of Tajima's D. Tajima's D (D) estimates were independently obtained for align-
ments of 91-R and 91-C reads using the script Variance-sliding.pl from the PoPoolation Pack-
age [91] using parameters identical to those used to estimate π, except a uniform coverage of 30
was used to account for heterogeneous expectations of D since the measure is dependent upon
the number of chromosomes (coverage depth). The D estimates provided by PoPoolation do
not take into account the potential of multiple sampling, thus a negative bias is likely among re-
sulting output but was expected to be equally represented across the genome such that general
inferences of the effects of directional and balancing selection in genome regions could be
made [92]. Resulting estimates of D for 91-R and 91-C were plotted along the lengths of each
chromosome arm. Gene-by-gene estimates of D were also made using the script Variance-at-
position.pl (measure = D), with the file Drosophila_melanogaster_BDGP5.72.gtf used to define
gene coding intervals. Sampling of the data also used a uniform depth of 30 across each gene.

Identification and annotation of candidate genes in selective sweeps
Genes in genome intervals with reduced estimates of π and D were considered candidate DDT
resistance genes, but the pools were narrowed using an N/π S cutoff> 1.0. Specifically, nucleo-
tide diversity at synonymous (πS) and nonsynonymous codon positions (πN) was estimated for
all genes in 91-C and 91-R alignment data using the Perl script syn-nonsyn-at-position.pl
(measure = pi), where gene coding positions were defined in the file Drosophila_melanogas-
ter_BDGP5.72.gtf (http://www.ensembl.org/info/data/ftp/index.html). SNPs predicted with a
minimum count of 4, minimum coverage of 8, and a maximum coverage of 75 for both 91-C
and 91-R datasets. Gene coding regions that lacked synonymous and/or non-synonymous mu-
tations were excluded from subsequent calculations of πN/ πS, and the ratio was used to predict
genes with an excess of non-synonymous site mutation (πN/ πS > 1.0).

Instances in each putative selective sweep where alleles had become fixed in strain 91-R but
remained variable in the 91-C genome were identified manually. Functional gene annotation
data were retrieved for candidate genes from FlyBase (http://flybase.org/) using a keyword
search gene symbol. Derived protein coding sequences were constructed using predicted non-
synonymous mutation predictions made from 91-R and 91-C SNP data, and used as a query
against the NCBI nr protein database using the blastp algorithm (hit cutoff set for E-
values� 10–20). Conserved functional protein domains were identified by searches against the
Conserved Domain Database (CDD) [93], and used to annotate the derived proteins from can-
didate DDT resistance genes from 91-R. These variable amino acids positions in 91-R were
plotted with respect to protein functional domains (when known).

Supporting Information
S1 Table. Mapping statistics for Drosophila melanogaster 91-R and 91-C specific read li-
braries to the reference genome release 5.7 using Bowtie2 [89]. All reads reported
in millions.
(DOCX)

S2 Table. Locations of those 67,835 91-R and 58,376 91-C single nucleotide polymorphisms
(SNPs), located on chromosome 2L, mapped to all gene-coding regions on the chromo-
some.
(TXT)

S3 Table. Locations of those 67,835 91-R and 58,376 91-C single nucleotide polymorphisms
(SNPs), located on chromosome 2R, mapped to all gene-coding regions on the
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S5 Table. Genes in the genome of theDrosophila melanogaster 91-R strain that are within
regions putatively affected to a lesser extent by selective sweeps caused by fixation of DDT
resistant traits (please see Fig 1). Expression in adult head (hd), brain (br), malpigian tubules
(mt), central nervous system (cns) and embryonic tissues (emb) are shown as indicated in Fly-
Base.org. These genome regions did not surpass the arbitrary cutoff of 100-fold reductions in
nucleotide diversity, but did shown an estimated�90-fold decreases when compared to the av-
erage across respective chromosomes.
(DOCX)

S6 Table. Genes in the genome of theDrosophila melanogaster 91-R strain that are within
regions putatively affected by selective sweeps caused by fixation of DDT resistant traits
(please see Fig 1). Expression in adult head (hd), brain (br), malpigian tubules (mt), central
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