Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

6-28-2017

The Application of Microperforated Panels in Duct Systems

Seungkyu Lee 3M Company, sklee@mmm.com

Thomas P. Hanschen 3M Company, tphanschen1@mmm.com

J Stuart Bolton *Purdue University,* bolton@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

Lee, Seungkyu; Hanschen, Thomas P.; and Bolton, J Stuart, "The Application of Microperforated Panels in Duct Systems" (2017). *Publications of the Ray W. Herrick Laboratories.* Paper 153. http://docs.lib.purdue.edu/herrick/153

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

The Application of Microperforated Panels (MPP) in Duct Systems

Acoustics '17 Boston MA 25-29 June 2017

6/28/2017

Seungkyu Lee Thomas P. Hanschen J. Stuart Bolton

FreeHDWallpapers.com

Objective

Industrial Duct Applications

Building HVAC system

Automotive HVAC

Why do we care?

Ref: http://exos.com/en/productsservices/automative/

HVAC noise is one of the key noise sources in building interiors (office areas, etc.).

Office space example:

Average SPL = 57 - 60 dBA

Meets the spec but not desirable!!

□ Room Noise Criterion. (ASHRAE Handbook)

Room Types		Recommend ed NC or RC				
Residences,	Living areas	30				
Condominiu ms	Bathrooms, kitchens, utility rooms	35				
Hotels/motel	Individual rooms or suites	30				
S	Meeting/banquet rooms	30				
	Executive and private offices	30				
Office	Conference rooms	30				
buildings	Teleconference rooms	25				
	Open-plan offices	40				
Schools	Classrooms and lecture rooms	25-30				

Objective

RAY W. HERRICK.

ABORATORIES

Efforts to resolve problems.

Key design point

RAY W. HERRICK

LABORATORIES

Silencer with MPP liner

Seungkyu Lee, J. Stuart Bolton and Paul A. Martinson, "Design of multi-chamber cylindrical silencers with microperforated elements," *Noise Control Engineering Journal*, 64(5), 2016.

Key design point

Silencer with MPP lining

To reduce undesirable pressure drop from expansion muffler.

Design modification

Dual chamber silencer with MPP liner

Design modification

Silencer with multiple MPP liners

ABORATORIES

Improve the minima using double lining treatment
 Achieve TL above 10 dB 5000 Hz with limited space and design of muffler

Differences in sound?

		Gurlet Inter	Quilet	Quiter Internet	Outlet	 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Qutet			
	Sound without muffler treatment	Single Chamber	Single Chamber w/ MPP454	Single Chamber w/ Double MPP454	Double Chamber	Double Chamber w/ MPP454	Double Chamber w/ Double MPP454			
A-weighted Overall Sound Pressure Level	68.50 dBA	53.98 dBA	52.09 dBA	53.28 dBA	53.24 dBA	50.49 dBA	51.28 dBA			
Recordings										

MPP under flow condition

ASTM E2611 Measurement preparation

□ 4 – Microphone and 2 – load Method

MPP under flow condition

Prediction model considering mean flow effect

□ Square cross-section standing wave tube model

□ Sound Pressure along the duct

$$\tilde{p} = Ae^{-\frac{jkx}{1+M}} + Be^{\frac{jkx}{1-M}}$$

Variational form, Helmholtz Equation

$$\int_{V} \left[\frac{1}{\omega^{2} \rho_{0}} \nabla \delta \tilde{p} \cdot (I - \tilde{\mathbf{v}} \tilde{\mathbf{v}}) \cdot \nabla \tilde{p} - \frac{j}{\omega \rho_{0} c} (\nabla \delta \tilde{p} \cdot \tilde{\mathbf{v}} \tilde{p} - \delta \tilde{p} \tilde{\mathbf{v}} \cdot \nabla \tilde{p}) - \frac{1}{K} \delta \tilde{p} \tilde{p} \right] dV$$
$$+ \int_{S} \frac{1}{\omega^{2} \rho_{0}} \delta \tilde{p} \left[\mathbf{n}^{-} \cdot (I - \tilde{\mathbf{v}} \tilde{\mathbf{v}}) \cdot \nabla \tilde{p} - \frac{j\omega}{c} \mathbf{n}^{-} \cdot \tilde{\mathbf{v}} \tilde{p} \right] dS = 0$$

Anechoic Termination

$$((1 - M^2)\nabla \tilde{p} - \frac{j\omega}{c}M\tilde{p}) \cdot \mathbf{n} = p \frac{i\omega}{Z_{anechoic}} \qquad Z_{anechoic} = \rho_0 c$$

MPP under flow condition

MPP modeling

Equivalent fluid – JCA model ^{1,2}

- Complex Density and Bulk Modulus were modeled using following equations
- Calculated properties were implemented in the finite element model of the MPP
- Rigid inclusions to make the MPP locally reacting. *

Complex Density :

$$\tilde{\rho}_{cs}(\omega) = \frac{\alpha_{\infty}\rho_0}{\phi} \left[1 - j \frac{\sigma\phi}{\omega\rho_0\alpha_{\infty}} \sqrt{1 + j \frac{4\alpha_{\infty}^2\eta\rho_0\omega}{\sigma^2\Lambda^2\phi^2}} \right]$$

Complex Bulk Modulus :

$$\tilde{K}(\omega) = \frac{\gamma P_0 / \phi}{\gamma - (\gamma - 1) \left[1 - j \frac{8\kappa}{\Lambda'^2 C_p \rho_0 \omega} \sqrt{1 + j \frac{\Lambda'^2 C_p \rho_0 \omega}{16\kappa}} \right]^{-1}}$$

		0.7	1.0	-							100									1.2	
×		*		•	*				*			•	*	*				*			
		*				18		.*	*		1						*:			*	
			*					*							*	-	÷			*	
																	*		*		
															×						
÷	*				*											-					
	*											*									
				*																	
2											*										
	*						*													*	
										4			*							×	
2					*													-			
į.			-						-	-	-	_									
1												D									
	-							V.													

φ: Perforation rate α: Dynamic Tortuosity σ: Flow resistivity η: Dynamic viscosity of air Λ: Viscous characteristic length Λ': Thermal characteristic length Λ = Λ ' = r (radius of perforation)

k: Thermal conductivity γ: Specific heat ratio of air P_o: Atmospheric pressure C_p: Specific heat of air at const. pressure

□ MPP Properties

	MPP 549
Hole diameter [µm]	126.6
Thickness [mm]	0.35
Flow resistance [Rayls]	549

1) Champoux Y. and Allard J.-F., *Dynamic tortuosity and bulk modulus in air-saturated porous media*, J. Appl. Phys. 70, 1991, pp. 1975-1979

2) L. Jaouen and F.-X. Be'cot, "Acoustical characterization of perforated facings", J. Acoust. Soc. Am. 129 (3), March 2011

* S. Lee, J. S. Bolton and P. A. Martinson, "Design of multi-chamber silencers with microperforated elements," NoiseCon 14 Conference Proceedings, Fort Lauderdale, Florida, USA (2014)

MPP design - Modeling

MPP lining with flow effect

MPP design - Modeling

Measurements and predictions comparisons.

Different muffler design is possible.

□ MPP can help to improve TL when there is spatial limitation.

Conclusion and Plans

Use of a silencer with Microperforated Panel (MPP) lining in HVAC duct noise control was studied

Reliable modeling techniques to design a silencer with MPP linings were suggested

In-line MPP treatment inside a silencer helps in minimizing the pressure-drop as well as improving noise attenuation

More practical studies will be made in the future.

Building and vehicle applications.

THANK YOU

