

How to Design and Build Smoother Pavements

ΒY

DR. GEORGE K. CHANG, P.E.

DIRECTOR OF RESEARCH, TRANSTEC GROUP

DEVELOPER/TRAINER OF FHWA PROVAL

Outlines

- What is Smoothness
- Design Consideration
- Best Practices for Asphalt Paving
- Improve Smoothness with ProVAL

Outlines

- What is Smoothness
- Design Consideration
- Best Practices for Asphalt Paving
- Improve Smoothness with ProVAL

What is Pavement Profile ?

A **profile** is a slice of the road surface following an imaginary line

Sinusoids

California Profilograph

Inertial Profilers

Courtesy of Steve Karamihas, 2014

Courtesy of Steve Karamihas, 2014

IRI Gain Chart

Outlines

- What is Smoothness
- Design Consideration
- Best Practices for Asphalt Paving
- Improve Smoothness with ProVAL

Effects of Geometric Lines on Smoothness

Car Response to Bumps

Response at the Front Response at the Rear

ACP Design Factors

- Project location: Rural or Urban
- Condition/roughness of existing pavement
- Mix Type and Lift thickness
- Number of "Opportunities"
- Job Specifications

Urban obstacles

- Matching curb and gutter
- Matching drains / manholes
- Increased traffic considerations
- More stop and go paving required

Condition of Existing Pavement

Severe distress and/or roughness

- Surface preparation
 - Stabilize PCC slabs (underseal, crack/seat, rubbilize)
 - Remove and/or replace distressed asphalt pavements
- Multiple opportunities on deficient pavements
- Before and after smoothness measurements
- Percent % improvement

Mix Type and Lift thickness

Proper lift thickness

- Nominal maximum size (NMS) of aggregate
- Optimal lift thickness at least 3.0 times NMS
- E.g. NMS (12.5mm) x 3 = lift thickness (37.5 mm)

Uniform thickness

Adequate surface preparation

• QC on paving

Number of Opportunities

- Surface prep / milling
- Every lift of asphalt
- Expected % improvement

Surface Preparation

- Base or intermediate layer
 - Attention to smoothness
 - Attention to uniformity
 - "2nd opportunity" for smoothness

Roughness reduced by half with each pavement layer

Job Specifications

- Thickness / Yield
- Uniform thickness?
- Predetermined yield?
- Better if thickness / yield can vary somewhat

Mill-and-Fill Projects

- Shoulder / adjoining lane stay in place?
- Match existing elevations?
- Joint matching shoe on grade control
- Better if use automatic grade control with long reference and vary elevation

Outlines

- What is Smoothness
- Design Consideration
- Best Practices for Asphalt Paving
- Improve Smoothness with ProVAL

Good Communication

Good Subbase for New Paving

1. Spread

2. Grade

3. Compact

Paved Subbase Materials

Existing Pavement Condition

Existing Distresses – Rutted/Shoved

Milled Surfaces

Effects of Uneven Base

Fixed Depth Mill/Fill

3D Variable Depth Milling

Fixed Depth vs. Variable Depth Milling

Variable Depth Milling minimizes asphalt usage

Coordinate Paving Process

Balance Paving Operation

- Verify available Plant Rate
- Calc. # of Trucks
- Calc. Paver Speed and Rate
- Calc. Roller Speed and Rate
- Check Balance
- Make Adjustments

Check Balance

	Tons	Speed	Prod. rate
Plant	190 x 8		
Trucks	190 x 8		
Paver	190 x 8	28.5 fpm	22.8 fpm
Roller		261 fpm	29.9 fpm

Stockpile Segregation

Avoid Stockpile Segregation

DO DUMP TIGHTLY IN SINGLE PILES

DO KEEP THE BUCKET UP

CONTAMINATION
Meet Aggregate Blending Requirement

Meet Job Mix Formula

Asphalt Plant Automation and Monitoring

Load Asphalt to Haul Trucks

End Dump

Windrow

Re-mix with MTV

MTV to Hopper

Comparison of Temperature Segregation

Hopper

Components of Paver

Dual-Feed Paver System

Mechanism of Screed

Uniform and Constant Head

Automatic Flow Controls

Elevation/Slope Control

Elevation/Slope Control

Elevation/Slope Control

Real Time Smoothness

Real Time Temperature Monitoring

Temperature Segregation

Paver-Mounted Thermal Profiler

Thermal Profile Analysis using Veta

Paver Stops using Veta

Materials Segregation

Incorrect Mix Aggregate Size

Leveling Excessive Crown

Placing Leveling Courses

Balanced Paver Speed

Paver Stops

Compaction

Roller Marks

3D Paving

Intelligent Compaction (IC)

IC Tracks Roller Passes, Temperatures....

IC Improve Roller Coverage & Consistency

Outlines

- What is Smoothness
- Design Consideration
- Best Practices for Asphalt Paving

Improve Smoothness with ProVAL

INDOT – from Prl to IRI

INDOT – from Prl to IRI

INERTIAL PROFILER WITH SMOOTHNESS PAY ADJUSTMENTS FOR HMA

The Standard Specifications are revised as follows:

SECTION 401, BEGIN LINE 535, DELETE AND INSERT AS FOLLOWS:

401.18 Pavement Smoothness

Pavement smoothness will be accepted by means of an profilographinertial profiler, a 16 ft long straightedge, or a 10 ft long straightedge as described below.

(a) ProfilographInertial Profiler with Smoothness Pay Adjustments When a pay item for ProfilographInertial Profiler, HMA is included in the contract,

401.18 Pavement Smoothness

Pavement smoothness will be accepted by means of an profilographinertial profiler, a 16 ft long straightedge, or a 10 ft long straightedge as described below.

(a) ProfilographInertial Profiler with Smoothness Pay Adjustments

rate of surface, intermediate, and base courses is 385 lb/sq yd or greater.

The profilogramprofiles, International Roughness Index, IRI, results including smoothness histograms and areas of localized roughness, and fixed interval IRI results produced shall become the property of the Department. The profilographinertial profiler shall remain the property of the Contractor.

INDOT Draft IRI Spec for HMA

PAY FACTORS FOR SMOOTHNESS	
Design Speed greater than 45 mph	
IRI, in./mi.	Pay Factor, PF
over 0 to 40	1.06
over 40 to 45	1.04
over 45 to 50	1.03
over 50 to 55	1.02
over 55 to 70	1.00
over 70 to 75	0.98
over 75 to 80	0.97
over 80 to 85	0.96
over 85	0.94

Localized Roughness

> 150 in./mi.

INDOT Draft IRI Spec for PCCP

PAY FACTORS FOR SMOOTHNESS	
Design Speed greater than 45 mph	
IRI, in./mi.	Pay Factor, PF
over 0 to 35	1.08
over 35 to 40	1.07
over 40 to 45	1.05
over 50 to 55	1.02
over 55 to 60	1.01
over 60 to 70	1.00
over 70 to 75	0.99
over 75 to 80	0.98
over 80 to 85	0.96
over 85	0.95

Localized Roughness

> 150 in./mi.

IRI Gain Chart

Use ProVAL to Improve Smoothness

Many Different Profilers...

03 Ride Statistics - ProVAL Ride Stats ++ 9. · E & B & Ceft Elevation -15 ő..x -25 PROVAL **SINCE 2001** 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 Distance (ft) ----- Ride Stats_Left Elevation_Full ----- Ride Stats_Right Elevation_Ful

One Standard Software

Use ProVAL to Diagnose Smoothness Issues

Use ProVAL to Diagnose Smoothness Issues

SAM Analysis

ProVAL Grinding Simulation

Use ProVAL to Optimize Grinding

Quality Paving – Smoother Pavements

Best Practices with Modern Tools

Further information

www.RoadProfile.com

Smooth Pavements Ahead

U.S. Department of Transportation Federal Highway Administration

Thank You!

Dr. George K. Chang, PE Director of Research, Transtec Group Developer/Trainer of FHWA ProVAL GkChang@TheTranstecGroup.com

