"The Other Left" 96th Street/Allisonville Road

A Presentation Brought to you by the City of Fishers Engineering Department CHA Consulting, Inc. and A & F Engineering

> Jeff Hill, P.E., PTOE Dave Henkel, P.E., PTOE Joe Rengel, P.E., <u>PTOE</u>

Purdue Road School – March 8, 2017

Presentation Agenda

Project Overview Preliminary Engineering Geometric Design Public Outreach Constructability Challenges Traffic Design Before/After Comparison □ Summary

Project Overview – Existing Intersection

Project Overview – No Build

Project Overview - General

Need

- Operationally deficient intersection
- Severe pavement deterioration
- Significant additional development anticipated in NW quad
- Safety
- □ Funding
 - Local TIF
- Constraints
 - Right-of-way
 - Local business impacts
 - Cost
 - Environment
 - Utilities
 - Solution provides acceptable 20-year LOS

Preliminary Engineering - General

Allisonville Road at 96th Street Intersection **Design** Proposal

Continuous E

January 15, 2010

Prepared Fo

Prepared By ARMSTRONG

Several proposals submitted Project stakeholders General public City of Fishers City of Indianapolis NW quadrant developer Adjacent property owners Our team investigated 5 potential options

Preliminary Engineering – Options 1 and 2

Interchange

- Tight diamond considered but discarded immediately
 Three lane roundabout considered but
 - discarded immediately
- Pros improved
 mobility
- Cons several

FISHER

Preliminary Engineering – Option 3

□ Pros

- Improved mobility
- Impacts reduced on 96th Street
- Less utility impact

- Significant impact to intersection corners
- Driver familiarity

Preliminary Engineering – Option 3 Synchro

Preliminary Engineering – Option 4

Bow-tie □ Pros Improved mobility Drivers familiar with roundabouts □ Cons Significant impact at roundabout intersections Constructability

Preliminary Engineering – Option 4 VISSIM

Preliminary Engineering – Option 5

Median u-turn

- Pros
 - Improved mobility
 - Synchronized signals
 - Constructability

Median U-Turn Option

- Few property owner impacts
- - Driver familiarity

Preliminary Engineering – Option 5 Synchro

Preliminary Engineering – Preferred Option

Median u-turn

Best optimization of
 Traffic flow
 Construction cost
 Property impact
 Constraint matrix

Green = Best Red = Worst

Geometric Design - Components

□ "Right to go left" capacity Truck accommodation at turn intersections □ MSE walls Driveway grades □ Concrete vs Asphalt Narrow Medians □ Curb/Gutter Storm Sewer

Geometric Design - Challenges

- Dam and cemetery at north end of project
- Environmental
 - White River flood plain (mitigation)
 - Indiana Bat
 - City of Indianapolis flora permit
- Pedestrian/bicycle accommodations
 - Bike lanes/railings
- Utilities
- Driveways in close proximity
- Accommodate NW quad property owner
- Other project coordination (I-465/ Allisonville closure)
- Gateway signage

Public Outreach

City of Indianapolis Interlocal Agreement
Public meetings - 2
Website
Driver education

<u>www.fishers.in.us/index.aspx?NID=381</u>

Public Outreach

Constructability Challenges - Accessibility

Keep two through lanes open at all times
Pedestrian crossing locations
Always allow left turning movements

Constructability Challenges - General

□ Two lanes open at all times

- □ Limited right of way
- Non-standard intersection type

□ High traffic volume

Traffic Design - MOT

- □ Two lanes are open at all times
- During construction, reduce lane widths to 10 feet
- Pre-ordered the sign structure to allow MOT flexibility
- Did not go back and forth on left turn being allowed at main intersection

Traffic Design - Signals

- Pedestrian crossings were placed where pedestrian clearance time would be safest and least impactful to traffic flow Timing plans during construction Protected or permissive u-turn movements □ Interconnection/adaptive system
- Stop here on red signs at loons

Intersection Configurations

Pedestrian Crossing Locations

Before/After Comparison - LOS

□ Just prior to construction (2012)AM Peak – LOS E PM Peak – LOS E Just after construction (2013)AM Peak – LOS B PM Peak – LOS B

Before/After Comparison – Travel Time

Overall improved travel time

	96th Street & Allisonville Road Before-After Median U-Turn Travel Time Study (Times in Seconds)												
		Northbound		Southbound		Eastbound			Westbound				
	TRAVEL TIME (sec)	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
AM PEAK	Before	181	133	113	163	117	215	122	113	134	139	151	112
	After	189	83	109	207	123	105	170	118	129	178	116	88
	Difference	8	-50	-4	44	6	-110	48	5	-5	39	-35	-24
PM PEAK	Before	230	137	121	142	115	105	205	234	184	140	136	96
	After	155	103	108	223	113	116	172	122	97	181	88	88
	Difference	-75	-34	-13	81	-2	11	-33	-112	-87	41	-48	-8

Before/After Comparison - Volume

Peak hour traffic prior to construction (2012) AM Peak – 3,992 VPH Mid-day Peak – 3,078 VPH PM Peak – 4,853 VPH Peak hour traffic just after construction (2013) AM Peak – 3,912 VPH Mid-day Peak – 3,062 VPH PM Peak – 4,823 VPH

Before/After Comparison - Safety

- Preconstruction (almost all rear end & right angle)
 - **2010: 25 Crashes**
 - 2011: 31 Crashes
 - 2012: 47 Crashes
- 2012 and 2013 crash data generally disregarded
- Post construction and MPO study for 2013-2015 Crash data (all different types of crashes)
 - **2013: 48 Crashes**
 - **2014: 33 Crashes**
 - **2015: 25 Crashes**
 - 2016: 34 Crashes

DIAGRAM OF	96 th Street & Allisonville Road					
REPORTS	Study Period: 1/1/20	13 to 12/31/2015	Location: 10			
ALCONTS.	District: Greenfield	County: Hamilton	City/Town Fishers			
	Analyst MID	QC:EWHM	Date: 6/29/2016			

Crashes by Type

A&F ENGINEERING Transportation & Site Engineering Creating Order Sizeo 1966

design/construction solutions

	<u>2012</u>	<u>2013</u>	<u>2015</u>	<u>2016</u>	<u>Total</u>
Right Angle	5	8	4	10	27
Left Turn	5	10	6	1	22
Rear End	24	21	8	15	68
Sideswipe	7	5	4	7	23
Right Turn	3	1	2	0	6
Head On	2	0	0	0	2
Other		3	1	_1	6
Total	47	48	25	34	154
FISHERS CHA	ALF ENGINEERING				

Before/After Comparison – Additional Thoughts

- Improved capacity, especially for the thru movement
- Reduced overall travel time (cycle length reduced from 160 sec. to 100 sec.)
- Did we send everyone away? Traffic consistent from 2013 to 2015
- Continued education (flyers, PD warnings)
- Neighborhood cut through traffic
- Improved safety

Before/After Comparison – Future Possibilities

- Illuminated overhead lane signs Permissive/protective lefts □ Flashing yellow arrows Pavement markings for lane shifts □ Improved signage?
 - NB lane drop
 - "Stop Here on Red"

Before/After Comparison – Lessons Learned

- Communicate early/ often @DriveFishers
- Build what feels intuitive
- Consider building under full closure
- Complete phase changes at night
- Look at lane utilization
- Order signs early

Confirm, then re-confirm, then re-confirm again with utilities

Summary - Other Applications

Median u-turn is a tool in the intersection tool box
 Many other agencies are considering the MUT
 INDOT, Hamilton County (with roundabouts)
 SR 135 and Smith Valley Road in Greenwood
 US 231 in Dale, US 41 at SR 114 in Newton County
 Wisconsin DOT to replace interchange
 SR 110 and SR 18 programmed J turns

Summary - General

Unique configuration
Improved level of service
Drivers have returned
Businesses - improved access (signal at north & south end of project)
Improved safety

96th Street/Allisonville Road

Thanks for Listening

Questions?

Purdue Road School – March 8, 2017