Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

5-15-2007

Influence of Tire Size and Shape on Sound Radiation from a Tire in the Mid-Frequency Region

Kiho Yum Hyundai Motor Company

Kwanwoo Hong Purdue University

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

Yum, Kiho; Hong, Kwanwoo; and Bolton, J Stuart, "Influence of Tire Size and Shape on Sound Radiation from a Tire in the Mid-Frequency Region" (2007). *Publications of the Ray W. Herrick Laboratories*. Paper 148. http://docs.lib.purdue.edu/herrick/148

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Influence of Tire Size and Shape on Sound Radiation from a Tire in the Mid-Frequency Region

[SAE 2007-01-2251]

Yum, Kiho Hong, Kwanwoo Bolton, J. Stuart (Hyundai Motor Company) (Purdue University)

May 15th, 2007

SAE 2007 Noise & Vibration Conference

SAE International[®]

Objectives

Problem Definition

Tire's structural vibration and its sound radiation in a mid-frequency region (300 – 800 Hz)

Objectives

- To identify the relationship between structural wave propagation characteristics and its sound radiation
- No investigate the influence of tire shape and size on a tire's structural vibration and its sound radiation
- To suggest the optimized tire shape factor with a view to reducing tire noise resulting from tire vibration

Contents

1. Relationship between Structural Vibration on Tire Surface and its Sound Radiation

- 2. Influence of Tire Size and Shape (Aspect Ratio, Width, Rim Diameter) on Structural Vibration and Sound Radiation in a Mid-Frequency Region
- 3. Optimization of Tire Shape factor

SAE International[®]

Structural FE Analysis

Tire FE model

- Based on 205/70R14 Tire
- Shell elements were used.
- Orthotropic material properties were applied on treadband and sidewall.

Structural Harmonic Analysis

- ▶ Full matrix method was performed using ANSYS ver. 7.1.
- ▶ Harmonic point source was applied at the point in contact with the ground

Orthotropic Material Properties

tread band	circumferential Young's modulus	750 MPa	side wall	circumferential Young's modulus	7.5 MPa
	cross-sectional Young's modulus	320 MPa		cross-sectional Young's modulus	50 MPa
	shear modulus	50 MPa		shear modulus	1.5 MPa
	Possion's ratio	0.45		Possion's ratio	0.45
	density	1200 kg/m ³		density	800 kg/m ³
inflation pressure		30 psi (207 kPa)			

 adapted from the work of Kropp [1989] and Pinnington and Briscoe [2002], and direct measurement at Continental Tire.

SAE International[®]

Structural Harmonic Analysis Results

Structural input power

•
$$E = \rho_0 c S_b \left\langle \overline{v}_b^2 \right\rangle$$

where S_b : tire surface area

- Structural vibrations related to road noise below 300 Hz appears mainly on treadband.
- Dominant structural power peaks correspond to cut-on frequencies of the flexural waves.

Far-field Radiation Model

Boundary Element Model

▶ Full tire model used in structural harmonic analysis was imported.

D-BEM Analysis

- Solution Notice State Stat

Structural Vibration/Radiation Relationship

Relationship between structural wave propagation and its radiation

- Flexural wave motion below 400 Hz on the treadband, which results in structure-bone road noise, does not radiate airborne sound effectively.

0::

SAF 2007-01-2251

- Radiated power peaks appear
 when structural wave has low
 wave number.
- Radiated power for the reflecting surface radiation case is amplified above 800 Hz due to `horn effect'.

Influence of Tire Shape and Size

Procedure

- Performing structural harmonic analysis and sound radiation calculation by modifying each tire shape factor
- ▲ Applying same material properties as the base set

	base	high	Low
tire width (W) [mm]	205	225	185
aspect ratio (h/w*100)	70	90	50
rim diameter (d) ["]	14	16	12

SAE International[®]

11/17

Influence of Tire Aspect Ratio

SAE International[®]

12/17

Influence of Tire Width

SAE International[®]

13/17

Influence of Rim Diameter

SAE International[®]

14/17

Tire Shape and Stiffness Optimization

Structural and tire shape optimization

	Treadband Stiffness		Tire Size and Shape			
	circumferential stiffness [MPa]	cross-sectional stiffness [MPa]	width [mm]	aspect ratio	rim diameter ["]	Overall Diameter [mm]
base	750	320	205	70	14	320
suggestion 1	938	240	205	70	14	320
suggestion 2	938	240	205	55	16	320

SAE International[®]

15/17

Summary and Conclusions

Summary

- ▶ The **relationship** between structural wave propagation on the tire surface and its sound radiation was identified analytically.
- Influence of tire size and shape on structural vibration and sound radiation was investigated.
- ▶ **Optimization of tire shape and tire structure** was suggested.

Conclusions

- Radiated power peaks appear when structural wave has low wave number.
- The flexural wave motion was controlled primarily by the tire crosssection length while the longitudinal wave motion was mainly affected by the treadband centerline diameter (OD).
- Decrease of aspect ratio and increase of treadband circumferential stiffness moves the structural vibration characteristics into a higher frequency region.

SAE International[®]