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RESEARCH ARTICLE
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Abstract
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or

production facilities highlights the importance of surveillance. Increased understanding of

the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic

targets. In the present work, using mass spectrometry and genetic cloning, we show that

fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of

the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-

3F8 could distinguish all tested Listeria species from close-related bacteria. Localization

studies indicated that FBA is present in every fraction of Listeria cells, including supernatant

and the cell wall, setting Listeria spp. as one of the few bacteria described to have this pro-

tein on their cell surface. Epitope mapping using ORFeome display and a peptide mem-

brane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target

epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was

identified as part of the active site in the dimeric enzyme. However, its function in cell sur-

face seems not to be host cell adhesion-related. Western and dot blot assays further dem-

onstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic

from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we

report FBA as a novel immunogenic surface target useful for the detection of Listeria genus.
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Introduction
Bacteria of the genus Listeria comprise a group of Gram-positive, facultative anaerobic, non-
sporulating rods that are widely distributed in the environment [1]. Due to its ubiquitous
nature, Listeria spp. may persist in food-processing facilities and, thus, may contaminate food
products [2]. A short time ago, the genus Listeria consisted of eight species; L.monocytogenes,
L. ivanovii, L. innocua, L. seeligeri, L. welshimeri, L. grayi, L.marthii, L. rocourtiae [3–5]. How-
ever, most recently, nine new species have been described: L. fleischmannii, L. weihenstepha-
nensis, L. booriae, L. newyorkensis, L. floridensis, L. aquatica, L. cornellensis, L. riparia, and L.
grandensis [6–9]. Among these, L.monocytogenes is the pathogen that predominantly infects
humans resulting in severe infection in the elderly, cancer patients, HIV patients, pregnant
women, and their fetuses or infants. Mostly described as an animal pathogen, L. ivanovii rarely
infects human [10]. Listeria monocytogenes has been responsible for several fatal outbreaks
involving ready-to-eat meat, dairy products (soft cheeses, ice cream), and fish products, and
most recently fruits (cantaloupe, apple) and vegetables (celery) [11].

Due to its ubiquitous nature and importance as a food-borne pathogen, countries such as
USA have adopted a “zero tolerance” policy for Listeria in ready-to-eat (RTE) foods [12]. Other
countries, especially those in Europe, have relaxed laws, allowing 100 CFU/25 g for some RTE
foods [13], and some countries, such as Brazil, only have rules for production facilities and the
bacterium control in high-risk foods, e.g. high-moisture cheeses [14]. Regarding the guidance
adopted by each country, the culture-based detection method for Listeria relies on the cultiva-
tion, isolation, and biochemical characterization of the microorganisms present in the food sam-
ples [15,16]. This method is time-consuming, therefore, it represents a drawback for the food
production workflow, new and quicker methods, such as the immunochromatographic lateral
flow and polymerase chain reaction (PCR), are being developed [17,18].

Antibodies have been widely used in immunological tests for specific detection and identifi-
cation of pathogens [19–22]. The availability of monoclonal antibodies (mAbs) against bacte-
rial surface antigens not only allows the development of detection assays but also provide a
powerful tool for the study of bacterial protein structures and functions [23–27]. Since mAbs
recognize exclusive epitopes in the antigen, they can be used to identify new proteins that
would be important in the bacterial pathogenesis, survival, or adaptation to the environment
[28]. Moreover, mAbs offer a uniform reagent that can be produced in unlimited amounts to
provide highly reproducible and consistent immunoassay results [29]. This way, immunoas-
says were shown to be the best option to overcome the time-consuming method for Listeria
spp. detection used as standard [15].

Through the years, many groups have focused efforts on the production of mAbs specific to
the genus Listeria with variable species specificity with unknown or uncharacterized antigen
targets [30–33]. At the same time, attempts with variable success were also made to develop L.
monocytogenes-specific antibodies using specific target antigens, such as N-acetyl muramidase
[34–36], flagella [37], p60 protein [38,39], Internalin B [40], actin polymerization protein [41],
and Internalin A [42]. Although most of these works focused on the detection of the patho-
genic species, it is widely known that non-pathogenic Listeria grow in a faster rate during the
enrichment step, thus possibly increasing false-negative results [43–45]. Thus, the description
of new targets that allow the detection of both pathogenic and non-pathogenic species is of
high value for the development of detection methods.

Our group had previously described a hybridoma-derived antibody (mAb-3F8) capable of
recognizing a 30-kDa protein in all Listeria spp. tested. The detection of this protein by mAb-
3F8 allowed the specific recognition of Listeria genus on the fiber optic immunosensor [42]. In
this paper, we show that the 30-kDa protein is a fructose-1,6-bisphosphate aldolase (FBA), an
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enzyme of the glycolytic pathway that catalyzes the cleavage of its substrate fructose-1,6-bispho-
sphate (FBP) into glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate
(DHAP). There are two main classes of FBA described: class I is known to form tetramers, and
is mainly present in higher eukaryotes, such as animals, plants, and algae; while class II can
form many different multimers, and is present mainly in bacteria [46]. Due to a considerable
difference between the two classes, class II FBA has been studied as a potential target of new
antibiotics [47,48], and as vaccine antigen [49]. Besides, many studies have shown that FBA
may play a role in pathogenesis by interacting with host’s plasminogen [50,51], or promoting
adhesion to host’s cells [52,53]. Thus, FBA is considered a moonlighting protein (protein with
two or more dissimilar functions) in many species [54], and may have significant role in both
physiology and pathogenesis.

In addition, here we have also validated the capability of mAb-3F8 to distinguishing differ-
ent Listeria spp., and analyzed FBA’s cellular localization, secretory pathway, and role in mam-
malian cell adhesion. We additionally showed that mAb-3F8 can be used to detect Listeria in
contaminated food, as a proof of concept. Moreover, epitope mapping experiments with mAb-
3F8 were done to initially characterize this target, highlighting that both FBA and mAb-3F8
are biological tools that can be used to detect Listeria genus in food samples.

Materials and Methods

Bacterial cultures and growth conditions
The Listeria species (Table 1) were grown at 37°C for 16–18 h in Tryptic soy broth (TSB; Bec-
ton Dickinson, Sparks, MD, USA) containing 0.6% yeast extract (TSB-YE; Acumedia, Lansing,
MI, USA); Listeria enrichment broth (LEB, BD); or Fraser Broth (FB, BD). Other non-Listeria
bacteria were grown in TSB-YE and lactic acid bacteria were grown in MRS broth (DeMan
Rogosa Sharpe: BD) at 37°C for 16–18 h.

Protein identification by mass spectrometry
The p30 protein band was first localized in the Coomassie stained SDS-PAGE with the help of
the Western blot (mAb-3F8) performed in parallel. The protein band was then excised from
the gel and submitted for MALDI-TOF MS+MS/MS (matrix-assisted laser desorption ioniza-
tion, time-of-flight mass spectrometry followed by tandem mass spectrometry) analysis by two
laboratories: Applied Biomics (Hayward, CA, USA) and the Purdue University sequencing
facility (West Lafayette, IN, USA). In both laboratories, the Voyager-DE Pro (Applied Biosys-
tems) mass spectrometer was used, and sample treatment and experimental procedures were
also the same. Briefly, the gel spots were reduced, alkylated, washed, and dehydrated prior to a
trypsin digestion and peptide recovery. After MALDI-TOF, the most abundant peptides were
submitted to MS/MS. The data fromMALDI-TOF was analyzed by peptide mass fingerprint
(PMF), while the data fromMS/MS was analyzed by peptide fragmentation mapping. Results
from both MS and MS/MS were combined, where tandemMS served as a validation step, and
analyzed with MASCOT protein identification software (Matrix Science, London, UK) using
three different databases (the NCBI/GenBank, and two of L.monocytogenes genomes [Gen-
Bank: AE017262.2, and FM242711.1]). The hits using the NCBI/GenBank entire database were
filtered to those corresponding to Listeria proteins. For all three databases, the hits were filtered
by including the best protein score of each protein and excluding hits with zero confidence
interval (CI%) (S1 Table). The proteins with the highest scores (100 CI%) include, fructose
1,6-bisphosphate aldolase (FBA) class II; transcriptional repressor (CodY); elongation factor
Tu (Tuf); and enolase (Eno). Thus, the full protein sequences were obtained from GenBank
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and analyzed their length/mass and predicted function. This way, it was possible to filter the
initial candidates to two hits (fba and codY) which were further expressed in E. coli.

Table 1. Bacterial strains used in this study.

Bacteria / Serotype Strain/Isolated Sourcea

L.monocytogenes 1/2a V7 FDA

L.monocytogenes 1/2b F4260 CDC

L.monocytogenes 1/2c 7644 ATCC

L.monocytogenes 4a 19114 ATCC

L.monocytogenes 4b F4244 CDC

L.monocytogenes 4c 19116 ATCC

L.monocytogenes 4d 19117 ATCC

L.monocytogenes 4e 19118 ATCC

L.monocytogenes 4ab Murray B FDA

L.monocytogenes 3a 19113 ATCC

L.monocytogenes 3b 2540 ATCC

L.monocytogenes 3c 2479 SLCC

L.monocytogenes 7 2482 SLCC

L. innocua F4248 CDC

L. innocua 6a Li01 UFPel

L.welshimeri 35897 ATCC

L. seeligeri 3954 SLCC

L. seeligeri Ls02 UFPel

L. ivanovii SE98 USDA

L. grayii 19120 ATCC

L.marthii BAA-1595 ATCC

L. rocourtiae 109804 CIP

Bacillus subtilis 6633 ATCC

Bacillus thuringiensis DUP-6044 MFM-Purdue

Escherichia coliO157:H7 EDL933 CDC

Lactococcus lactis 11454 ATCC

Enterobacter aerogenes DUP-14591 MFM-Purdue

Lactobacillus paracasei DUP-13076 MFM-Purdue

Klebsiella pneumoniae — MFM-Purdue

Enterococcus faecalis — MFM-Purdue

Lactococcus lactis subsp. Lactis HK21 MFM-Purdue

Enterobacter cloacae HK8 MFM-Purdue

Bacillus cereus 11778 ATCC

Staphylococcus aureus 13301 ATCC

Pseudomonas aeruginosa 10145 ATCC

Salmonella enterica ser. Typhimurium DUP-1167 MFM-Purdue

Salmonella enterica ser. Enteritidis 13076 ATCC

a FDA: Food and Drug Administration, Washington, D.C.; CDC: Centers for Disease Control and Prevention, Atlanta, GA.; ATCC: American Type Culture

Collection, Rockville, MD.; SLCC: Special Listeria Culture Collection, Institute of Hygiene and Microbiology, Univ. of Würzburg, Germany; USDA: National

Center for Agricultural Utilization Research, Peoria, Illinois, USA.; MFM-Purdue: Molecular Food Microbiology Lab Collection, Purdue University.; UFPel:

Laboratório de Microbiologia de Alimentos Collection, FAEM-UFPel; CIP: Collection de l'Institut Pasteur, Paris, France.

doi:10.1371/journal.pone.0160544.t001
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Cloning and expression of recombinant protein target
Specific primers (Eurofins MWGOperon, Germany) were designed to target fba and codY,
(GenBank code: fba: ACK38405.11; codY: CAC99358.1) using Vector NTI 11.0 software (Invi-
trogen) in order to amplify the complete open reading frame (ORF) of both genes. To insert
fba and codY ORFs into pAE expression vector, the restriction sites for BamHI and KpnI
enzymes were incorporated into the forward and reverse primers (For-Fba: 50-GCGGATC
CATGCCTATCGTTAACA-30; Rev-Fba: 50-CGGGGTACCTTACGCTTTACCGTTA-3’; For-
CodY: 50-CGGGATCCATGACTTTATTAGAA-30; Rev-CodY: 50-CGGGGTACCTTAGT-
TATTTTTCAA-3’). The ORFs were amplified from the genomic DNA of L.monocytogenes
ATCC 19114 by PCR using an Eppendorf thermocycler (Mastercycler EP gradient S) with the
following standardized conditions: 94°C for 7 min, and then 35 cycles consisting of 94°C for 1
min, 50°C for 1 min, 72°C for 2 min, and a final extension of 72°C for 7 min. The amplicons
were digested with BamHI and KpnI and ligated into pAE using T4 DNA Ligase (Fermentas,
Thermo Fisher Scientific). The pAE-fba and pAE-codY constructs were inserted into E. coli
TOP10 (Invitrogen) by electroporation, and clones were selected on LB-agar containing ampi-
cillin (100 μg/mL). The recombinant plasmids were also transformed into E. coli BL21 (DE3)
pLysS or E. coli BL21 (DE3) Star competent cells (Invitrogen). The cells were grown until log
phase (OD600 = 0.5–0.7), when 0.5 mM IPTG was added for 3 h at 37°C. The cultures were
then harvested, suspended in lysis buffer (100 mMNaH2PO4, 10 mM Tris-HCl, and 20 mM
imidazole; pH 8.0), and sonicated (5 cycles of 15 s). Then, protein extracts were separated by
SDS-PAGE 12%, electrotransferred onto a Hybond-ECL nitrocellulose membrane (GE Health-
care) and immunoprobed with mAb-3F8 and anti-6xHis antibody (Sigma-Aldrich) [55].

Dot andWestern blot assays
Listeria spp. were grown in 50 mL of LEB or FB at 37°C for 18 h, centrifuged (7000 ×g, 5 min)
and the cell pellets were suspended in the sample solvent (4.6% SDS, 10% β-mercaptoethanol,
0.124 M Tris, and 20% glycerol; pH 6.9). Cells were sonicated four times for 15 s each for total
protein preparation. For cell fractionation, crude proteins were prepared from whole cell
lysates, and from supernatant, cell wall and cytoplasm as described before [5]. For the Western
blot assays, the proteins (~25 μg/well) were separated by sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis (SDS-PAGE; 10%-acrylamide; Bio-Rad, Hercules, CA, USA) and
blotted onto Immobilon-P membranes (Millipore Bedford, MA, USA). The membranes were
blocked with 5% skimmed milk for 1 h at room temperature (RT), washed with PBST, and
reacted with mAb-3F8 (0.6 mg/mL) and anti-InlA mAb-2D12 (1 mg/mL) diluted in 1:1000 in
PBST for 1 h at RT. After washing, the membranes were incubated with an HRP-conjugated
goat anti-mouse polyvalent antibody (Sigma, St Louis, MO, USA). Antibody-reactive bands
were developed using a chemiluminescence ECL kit (Thermo Fisher Scientific, Rockford, IL,
USA) or colorimetric substrate system (6 mg of DAB, 3.3-diaminobenzidine tetrahydrochlor-
ide; 10 μL of 30% H2O2; 9 mL of 50 mM Tris-HCl; pH 7.6; 1 mL of 0.3% nickel sulfate).

Dot blot assays were performed using five microliters of approximately 108 cells/mL of live
or heat-killed cell suspensions of Listeria spp., Salmonella enterica serovar Enteritidis, and
Escherichia coli O157:H7, spotted onto nitrocellulose membranes (Bio-Rad). The membranes
were allowed to air-dry for 15 min, and were then blocked with 5% skimmed milk in PBS for
30 min. Further steps were performed as described above for Western blot.
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Inhibition analysis of L.monocytogenes adhesion to epithelial cells by
mAb-3F8
Freshly grown washed cultures of L.monocytogenes were suspended in 1 mL of mammalian
cell culture medium (DMEM-10F; Dulbecco’s Modified Eagles Medium containing 10% fetal
calf serum) to obtain approximately 106 cells/mL. Bacteria were treated with mAb (1 mg/mL)
and incubated at 37°C for 20 min with gentle agitation, washed, and suspended in DMEM-10F
and added to HCT-8 cell (ileocecal cells; CCL 244; ATCC) monolayer in 24-well plate at a mul-
tiplicity of infection (MOI) of 10:1 (bacteria: HCT-8 cell) as before [56]. Non-adherent bacte-
rial cells were removed by washing and the cells were treated with 0.1% Triton X-100 to
disrupt cell attachment and bacterial adhesions were quantified by plating serial dilutions onto
BHI agar. All experiments were carried out using a positive control anti-InlA mAb-2D12 [42],
and a negative anti-N-acetylmuramidase mAb-C11E9 [34].

Immunoblotting to detect Listeria spp. in food samples
The mAb-3F8 and mAb-2D12 [42] were used to identify Listeria from food matrices by immu-
noblotting. Listeria monocytogenes ATCC 19114 and L. innocua (approximately 2 CFU/g)
strains were aseptically inoculated into 10 g of Brazilian Minas Frescal cheese (a ready-to-eat
soft cheese, Santa Clara brand, purchased from Nacional (Walmart) grocery store in Pelotas,
Southern of Rio Grande do Sul state, Brazil). The cheese was then incubated for 15 min at 25°C
to promote the interaction of bacteria with the cheese matrix. The samples were then placed in
stomacher bags containing 90 mL of FB in each bag, mixed for 2 min using a stomacher (MK
1204, ITR Ltd., Brazil), and incubated at 37°C for 18 h. Cheese samples without inoculated bac-
teria served as negative controls. Thereafter, 10 mL of each cheese supernatant were collected
carefully from the bags to avoid removing any large particles, transferred to 15 mL tubes, and
centrifuged (1000 ×g for 10 min). Finally, the pellets were washed twice with PBS-T and sus-
pended in 10 mL PBS. As positive controls, the same L.monocytogenes and L. innocua strains
were grown in 10 mL of FB and processed as above.

To perform the SDS-PAGE and Western blot, the 10 mL of bacterial suspensions were cen-
trifuged and suspended in 1 mL PBS and transferred to a 1.5 mL tube. After another round of
centrifugation, the bacterial pellet was suspended in 100 μL of 2X sample solvent buffer (4.6%
SDS, 10% β-mercaptoethanol, 0.124 M Tris, 20% glycerol, pH 6.9) and sonicated (3 times, 15
sec each) and heated for 10 min at 95°C. Samples were separated in SDS-PAGE (12%-acrylam-
ide) and transferred onto PVDF membranes and probed with peroxidase conjugated mAb-3F8
(mAb-3F8-HRP) and mAb-2D12 (mAb-3F8-HRP) and then developed with DAB [42]. The
Listeria counts from the inoculums and the enrichment broths were determined by plating the
cultures on BHI and MOX agar and incubating at 37°C for 24–48 h.

Construction of an antigen library using ORFeome display technology
The genomic DNA of L.monocytogenes ATCC 7644 was amplified with illustra Ready-to-go
GenomiPhi V3 DNA amplification kit (GE Healthcare, Freiburg, Germany) following the man-
ufacturer’s instructions. The amplicon was sonicated with four pulsed cycles of 2 min one
pulsed cycle of 1 min. After checking that DNA fragments had between 200 and 1,500 bp in an
agarose gel, a DNA-end repair reaction was performed with Fast DNA End repair kit (Thermo
Scientific, Langenselbold, Germany) as described by the manufacturer. Further, the resulting
DNA and cloned into pHORF3 phagemid [57] digested with PmeI (New England Biolabs) and
transformed into electrocompetent E. coli SS320 (Lucigen). Transformed cells were titrated
and stored at -80°C after overnight growth in a 24.5 cm² dish at 37°C. Afterwards, 1 mL of the
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E. coli containing the library was inoculated in 400 mL of 2xYT-GA (2x yeast extract and tryp-
tone medium, containing glucose 100 mM and ampicillin 100 μg/mL) and grown until OD600

� 0.5. Twenty-five mL of the culture was transferred to a 50-mL tube and 2.5 × 1011 CFU of
Hyperphage [58] was added. The tube was incubated 30 min at 37°C and 30 min at 37°C under
250 rpm, and then centrifuged (3,220 ×g for 10 min, RT). The pellet was suspended in 10 mL
of 2xYT-AK (2xYT containing ampicillin 100 μg/mL and kanamycin 25 μg/mL), and trans-
ferred to additional 390 mL of this medium, which was then incubated at 30°C for 24 h. The
culture was centrifuged (10,000 ×g, 10 min, 4°C) and the supernatant transferred to another
tube in which 50 mL of PEG-NaCl solution (PEG 6,000 20% (w/v), NaCl 2.5 M) was added.
The tube was incubated overnight at 4°C and centrifuged (10,000 ×g, 1 h, 4°C), then the pellet
was suspended in 10 mL of pre-chilled PBS and centrifuged again (20,000 ×g, 10 min, 4°C).
The supernatant was filtered with 0.45-μmmembranes and 2.5 mL of PEG-NaCl solution was
added. After 20 min on ice, it was centrifuged again (20,000 ×g, 30 min, 4°C), and the pellet
suspended in 1 mL PBS. This final suspension containing phage was titrated and had some
clones sequenced for library-quality checking.

Antigen panning for target confirmation
mAb-3F8 was diluted in panning solution (BSA 1% (w/v), dried skim milk 1% (w/v), PBS) and
coated on two wells (1.5 μg/well) of a Costar ELISA plate (Corning, Wiesbaden, Germany).
Two additional wells were coated with panning solution only; the plate was incubated over-
night at 4°C. The L.monocytogenes ATCC 7644 library (�1 × 1010 CFU/mL) was diluted in
panning solution and added to the panning solution well for pre-incubation for 30 min at RT,
while the wells containing mAb-3F8 were blocked with the same solution. The library was fur-
ther transferred to the wells containing the antibody and incubated 1.5 h at RT. Then, the wells
were washed and eluted with 10 μg/mL of trypsin diluted in PBS. The eluted phages were used
to infect E. coli TG1 (OD600 � 0.5), which was further infected with helperphage M13K07
(MOI 1:20). Infected E. coli TG1 cells were grown overnight at 30°C, 500 rpm. On the next day,
the cultures were centrifuged (3,220 ×g, 10 min, RT) and the supernatant containing phage
used instead of the library. In total, three panning rounds were done, and the phage eluted after
the 2nd and 3rd rounds were used to infect E. coli XL1-Blue MRF’, which were diluted, plated
on 2xYT-GA agar plates, and grown overnight at 37°C.

Phage production and ELISA for screening of mAb-3F8 target
The resulting plates from the 2nd and 3rd panning rounds were used to acquire 46 colonies
from each, which were transferred to a 96-well culture plate containing 2xYT-GA. The plate
was grown overnight at 34°C and then 20 μL was used to inoculate another plate with 180 μL/
well of the same medium, which was incubated 2 h at 37°C. Then, clones in each well were
infected withHyperphage (MOI 1:20), centrifuged (3,220 ×g, RT, 10 min), and the medium
was changed to 2xYT-AK; the plate was then incubated overnight at 30°C, 800 rpm. On the
next day, the plate was centrifuged again and 150 μL of the supernatant transferred to another
plate, in which 40 μL/well of PEG solution was added and incubated 1 h at 4°C. The plate was
centrifuged (1 h, 3,220 ×g, 4°C), the pellet suspended in 150 μL of PBS and centrifuged again
(10 min, 3,220 ×g, 4°C). Finally, 50 μL of each supernatant was added to 50 μL of PBS in a
Costar ELISA plate (Corning, Wiesbaden, Germany), which was incubated overnight at 4°C
for coating. Afterwards, the plate was blocked with 2%MPBS-T (PBS-T with 2% (w/v) of
skimmed milk powder) for 30 min at RT, and further incubated with 3F8 antibody (1 μg/mL)
for 1 h at RT. Then, goat anti-mouse IgA, M, G HRP-conjugated antibody (AntibodiesOnline,
Prod. ABIN376851, 1:4,000) was incubated 1 h at RT. A well with anti-M13 (pVIII) HRP-
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conjugated (1:40,000) served as positive control for phage production. The reactions were
developed with TMB solution for 15 min and read at 450 nm. Reactive clones had their phage-
mids extracted and sent for sequencing.

Peptide membrane for the epitope mapping of mAb-3F8
Based on the sequencing results of the screening, a 25-amino acid peptide was identified as the
potential mAb-3F8 epitope. To narrow down the amino acids that were important for the
interaction, a PepSpots membrane (JPT Peptide Technologies GmbH, Berlin, Germany) was
ordered containing 16 peptides with 9 amino-acids each, covering 24 of the 25 amino acids pre-
viously identified. The immunoblot was carried out following the manufacturer’s instructions.
Briefly, the membrane was activated with methanol, washed with TBS-T, and blocked with 2%
MTBS-T overnight at 4°C. Then, mAb-3F8 (1 μg/mL) was added and incubated 3 h at RT, fol-
lowed by the addition of goat anti-mouse IgA, M, G HRP-conjugated antibody (AntibodiesOn-
line, 1:4,000), which was incubated 2 h at RT. The membrane was then washed with TBS-T for
1 h at RT prior to the addition of substrate solution (SuperSignal West Pico, Thermo Scientific,
Langenselbold, Germany). The images were captured using ChemiDoc XRS equipment (Bio-
Rad, München, Germany).

Sequence and structure analysis of FBA
To access the location of the identified epitope of mAb-3F8, the structure of FBA was predicted
using RaptorX online software [59] using standard settings. COTH online software was used to
calculate the dimer interfaces for FBA [60]. All structure manipulation and image acquirement
were done with PyMol v1.3 software [61]. Multiple sequence alignment of full proteins was
done using ClustalOmega tool [55], while alignment of short sequences was done with T-Cof-
fee tool [62]. Phylogenetic analysis were done using ClustalPhylogeny [63]. The identities and
similarities were calculated with EMBOSS Needle [64].

Fig 1. Western blot assay with recombinant rCodY and rFBA proteins to determine the target of mAb-3F8. (A)Western
blot using mAb-3F8 as primary antibody shows that this mAb reacts with purified rFBA, as well as protein extract of L.
monocytogenes, but not with rCodY. (B) The reaction using Anti-His primary antibody as control shows that both rFBA and
rCodY were present in detectable amounts on the membrane.

doi:10.1371/journal.pone.0160544.g001
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Results

mAb-3F8-reactive protein is FBA class II
Following the MALDI-TOF mass spectrometry analysis, four proteins—fructose 1,6-bispho-
sphate aldolase (FBA) class II, transcriptional repressor CodY, elongation factor Tu (Tuf), and
enolase (Eno)–received the highest scores with 100 CI %, and thus were further analyzed using
Swiss-Prot and NCBI databases. FBA is a 284-amino-acid (aa)-long protein with a calculated
MW of 29,936 Da, and is close to our SDS-PAGE-estimated molecular mass (30-kDa) (Fig 1).
Thus, mAb-3F8-reactive 30-kDa protein was presumably considered the FBA class II
(lmo2556). CodY (lmo1280) is a 259-aa-long intracellular GTP binding protein with an
approximate MW of 28,614 Da [65] and is primarily located in the intracellular compartment,
and mAb-3F8 reacts with whole cells, thus CodY was less likely to be the target, but it was
cloned to validate our results. Tuf is a 395-aa-long protein with estimated mass of 43 kDa [66],
which is much higher than the expected 30 kDa. Likewise, Eno is a 430-aa-long protein with
estimated mass of 46 kDa [67] and this size is well above 30 kDa. Hence, these last two proteins
were excluded from being a potential target of mAb-3F8.

Next, we cloned both fba (encoding FBA) and codY (encoding CodY) into E. coli expression
vectors to produce rFBA and rCodY proteins and to confirm their reactivity with the mAb-
3F8. Both recombinant proteins were affinity purified and after immunoblotting, only rFBA
showed strong reactions with mAb-3F8 while rCodY did not (Fig 1A). Anti-6xHis antibody
was used as a positive control to the assay (Fig 1B). This confirms that the antigen for mAb-
3F8 is FBA class II protein.

FBA is detectable only in Listeria species
In our previous work, we have shown the specific reaction of mAb-3F8 with a single protein
band of about 30 kDa present in the eight Listeria species tested and the 13 serotypes of L.
monocytogenes [42]. In the current work, we showed again that the mAb-3F8 had no cross-
reaction with additional Gram-positive or Gram-negative bacteria tested in Western blot
(Staphylococcus aureus, Bacillus subtilis, B. cereus, B. thuringiensis, Salmonella enterica ser.
Typhimurium, S. enterica ser. Enteritidis, E. coli O157:H7, Lactococcus lactis, Enterococcus
aerogenes, Lactobacillus paracasei, Klebsiella pneumonia, and Enterococcus faecalis) (Fig 2A). It
is also shown that the target is recognized specifically in Listeria species both in Western blot
(Fig 2B), and dot blot using both live and heat-killed cells (Fig 2C). Since it is a non-described
target for Listeria spp., we also tested its expression pattern in the two most common selective
media (LEB, FB) used to isolate the pathogen. After a Western blot with whole cell lysates of
the 3 most frequent serotypes of L.monocytogenes (4b, 1/2a, and 1/2b), it is clear that FBA is
expressed regardless the medium used (Fig 2D).

FBA is present in all cellular fractions and supernatant, but its secretion
is not SecA2-dependent and it does not play role in adhesion
The analysis of Listeria spp. cellular fractions in Western blot revealed that FBA protein is pres-
ent in all cellular fractions, i.e. cell wall, and intracellular (cytoplasm and membrane) (Fig 3A).
Additionally, to the cell wall and intracellular fractions, Western blot with the secreted proteins
from L.monocytogenes and L.marthii was made and showed that the protein is found in the
culture supernatant (Fig 3B). Since translocation of many Listeria proteins to cell surface and
the extracellular milieu (i.e., secretion) is aided by SecA2, an auxiliary secretion system, we
examined the reaction of mAb-3F8 with protein preparations from cell wall and intracellular
fractions of ΔsecA2 deletion mutant of L.monocytogenes and L. innocua strains [5]. However,
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there was no difference in reaction of mAb-3F8 to proteins fromWT or ΔsecA2 deletion strains
in neither fractions, suggesting that SecA2 pathway is not essential for the translocation of FBA
protein to the cell wall or membrane (Fig 3C).

We also examined if FBA is involved in L.monocytogenes adhesion to mammalian cells.
Adhesion experiment using the human ileocecal cell line, HCT-8, indicated that pretreatment
of L.monocytogenes with mAb-3F8 did not block L.monocytogenes adherence, indicating that
it is probably not involved in adhesion. In contrast, anti-InlA mAb-2D12 used as positive con-
trol significantly (P< 0.05) reduced adhesion of this bacterium (Fig 3D), since InlA is a well-
known adhesion and invasion factor [68]. A negative control antibody, mAb-C11E9 that reacts
with N-acetylmuramidase, had no effect on the adhesion of L.monocytogenes as expected
[34,69]. These data indicate that FBA may not play a role in adhesion of L.monocytogenes on
human intestine.

FBA allows the detection of L.monocytogenes from food
Western blot analysis of the cheese samples inoculated with L.monocytogenes allowed the
detection of the two analyzed proteins: InlA (�88 kDa), and FBA (�30 kDa). Thus, it confirms
the presence of L.monocytogenes in the sample. The cheese sample inoculated with L. innocua

Fig 2. Western and dot blots showing the presence of FBA in Listeria spp. only. (A) SDS-PAGE 12% showing the protein preparations
of two Listeria species and many related bacteria (upper part). In Western blot using mAb-3F8, only those extracts from Listeria showed a
30-kDa band corresponding to FBA. (B)Western blot using mAb-3F8 showing the presence of FBA in other Listeria species, but not in E.
coliO157:H7 used as negative control. In this blot, mAb-2D12 (anti-InlA) was used together with mAb-3F8, showing an 88-kDa band
corresponding to InlA, which is present only in L.monocytogenes. (C) The results found in the Western blot were same as the dot blot, in
which only Listeria spp. (either live or heat-killed) could be detected when using mAb-3F8. (D)Western blot using both mAb-3F8 and -2D12
allows detection of three different serotypes of L.monocytogenes (4b, 1/2a, and 1/2b), no matter the medium used for their growth (LEB or
FB).

doi:10.1371/journal.pone.0160544.g002
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indicated the presence of a single band, corresponding to the 30-kDa FBA as expected. The
bands in the protein extracts of the strains had the same size of purified proteins used as con-
trol in the assay (Fig 4). The cells isolated from the cheese were plated on MOX plates, indicat-
ing the presence of Listeria spp. in inoculated samples.

mAb-3F8 epitope allows distinguishing Listeria spp. in sequence level
and is part of the catalytic site of FBA dimer
An antigen library of L.monocytogenes was built using ORFeome display technology. By
employing this library against mAb-3F8, it was possible to detect a 25-aminoacid peptide from
FBA that was possibly the epitope of the antibody. To narrow down the exact sequence
involved in the recognition, a peptide membrane was used, in which it was possible to define a
14-amino acid region as the epitope (Fig 5A). We also noticed that a 9-amino acid sequence
contributes mostly to the interaction with the antibody. When aligning FBA sequences from all
organisms tested in Western blot, we observed that those from Listeria spp. are isolated in the
cladogram, though it is closer to Bacillus species, and S. aureus (S1A Fig). An interesting

Fig 3. Cell localization and adhesion experiments for FBA characterization. (A)Western blot using mAb-3F8 show that FBA protein
is present in the cell wall and intracellular (membrane and cytoplasm) of three different Listeria species tested. The top band shows
reaction with anti-InlA mAb-2D12. (B)When using only mAb-3F8 in Western blot, it is possible to observe that FBA is also present in the
culture supernatant of two different Listeria species. (C) Due to the presence of FBA in the cell wall, a L.monocytogenesmutant (ΔsecA2)
was used to inquire the secretion pathway of FBA. However, no difference in band intensity was observed in the cell wall (CW) or
intracellular (Intra) fractions between the wild type (WT) and mutant strains, indicating that the secretory pathway of FBA is not
SecA2-dependent. (D) Adhesion experiments in vitro using HCT-8 cells show that mAb-3F8 has no inhibition activity, since it’s pre-
incubation with L.monocytogenes cells shows similar levels of adhered bacteria as the negative controls with PBS and mAb-C11E9. The
positive control mAb-2D12 (anti-InlA) was the only one to show significant reduction in adhesion.

doi:10.1371/journal.pone.0160544.g003
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finding is that the 14-amino acid peptide identified as mAb-3F8 epitope gives almost the same
effect on the cladogram (S1B Fig). In fact, these findings are in accordance with the identity
between the analyzed proteins, which show that only Bacillus spp. and S. aureus have>50%
identity with Listeria spp. when considering the identified epitope (S2 Table).

After predicting the structure of FBA with RaptorX software, it was possible to observe that
the epitope sequence represents a transition from a loop to α-helix in FBA’s structure (Fig 5B).
Since the prediction was made using FBA from Bacillus anthracis (PDB code: 3Q94) as tem-
plate that has no publication describing the structure and no detailed information regarding
this structure. However, when comparing the predicted structure with that from Giardia lam-
blia (glFBA, PDB code: 3GAY), it is likely that the epitope is part of the catalytic domain within
the dimeric form of the protein. This part is called G3P site—referring that it can bind the G3P
molecule—and is similar between the two proteins (Fig 5C). In this site, Arg257 (Arg280 in
glFBA) of the partner subunit, which is present in the identified epitope, may play a role in the
interaction with carbon 6 of FBP substrate.

Discussion
FBA, an enzyme present in both prokaryotes and eukaryotes, where FBA class I is associated
with animals and plants, and class II with bacteria, archae, and unicellular eukaryotes [70]. FBA
class II catalyzes the reaction of fructose-1,6-bisphosphate to D-glyceraldehyde-3-phosphate
and dihydroxyacetone phosphate, and its reverse reaction, steps that are important for the gly-
colysis and gluconeogenesis. Since it has many other functions besides the enzymatic activity,
FBA is considered a “moonlighting” enzyme and seem to be crucial for the viability of either
Gram-positive or Gram-negative bacteria, since its knockout turns many species unviable [71].

In the present study, we show that FBA class II from Listeria spp. is mainly a cytoplasmic or
membrane-associated protein. In agreement with our result, FBA was described to be present in
both membrane and cytosolic fractions of L.monocytogenes as determined by proteomic analysis

Fig 4. SDS-PAGE andWestern blot of bacteria from artificially contaminated cheese. (A) SDS-PAGE
(12%-acrylamide) showing the protein extracts from the bacteria after enrichment step using stomacher
bags. Protein extracts from pure cultures were used as control. (B)Western blot using both mAb-3F8 and
-2D12 on these protein extracts shows the expected detection bands: both InlA (88 kDa) and FBA (30 kDa)
for the pathogenic strain; and only FBA (30 kDa) for the non-pathogenic. Purified rInlA and rFBA, and the
pure cultures of L.monocytogenes and L. innocuawere used as positive control for the antibodies.

doi:10.1371/journal.pone.0160544.g004

Fructose 1,6-Bisphosphate Aldolase of Listeria

PLOSONE | DOI:10.1371/journal.pone.0160544 August 4, 2016 12 / 20



[72]. Moreover, our results also show that this protein can be detected in the cell wall of Listeria
spp., allowing the already described detection of the whole cells, as well as in the supernatant
[42]. Likewise, FBA was also found in the cell wall of Streptococcus pneumoniae [73], and in the
cell wall and the supernatant fraction ofMycobacterium tuberculosis [50]. This protein is present
inNeisseria meningitides, but was not detected in the supernatant fraction [53]. Additionally,
FBA was shown to be one of the most abundant soluble proteins of E. coli with more than 47
thousand protein copies per cell [74]. In accordance to these data, our Western blot results sug-
gest that this protein is abundantly expressed in the Listeria species tested as well.

The “moonlighting” protein FBA is present in many species, and it is known that this kind
of proteins can be involved in adhesion to host’s cells, binding to host’s proteins, or even the
modulation of the immune response [54]. In N.meningitidis, FBA is highly conserved and par-
ticipates in the adhesion of this bacterium to human cells [53]. Likewise, FBA from S. pneumo-
niae also provides adhesion to the host’s cells [52]. FBA fromMycobacterium tuberculosis has
been shown to bind human plasminogen suggesting an involvement of this enzyme in host-

Fig 5. Epitopemapping of mAb-3F8 and position of the epitope in FBA structure. (A) By using a peptide
membrane, which was incubated with mAb-3F8 as primary antibody, it was possible to identify a 14-amino
acid sequence as the epitope of mAb-3F8. In this sequence, it is also possible to observe that a 9-amino acid
region (yellow) gives a higher reaction and, thus, is likely the most important recognition part of the epitope.
Interestingly, Arg257 (orange), which may be part of the catalytic site of the dimeric form of FBA is present in
the epitope. (B) The position of the epitope in FBA structure shows it is a loop-to-helix transition, which has
many amino acid side chains exposed on the protein surface. (C) A closer look on the G3P site (part of the
catalytic site) shows that Arg257 of Listeria spp. FBA (listFBA, left part) can play role on binding G3P, since
binding pocket is similar to that fromGiardia lamblia FBA (glFBA, right part). For graphical reasons, FBP
molecule fitting in listFBA pocket has the same position of that one from glFBA, thus it may not represent the
real fitting of this molecule in the structure. Asterisk (*) indicate that the amino acid is present in the partner
subunit of the protein dimer.

doi:10.1371/journal.pone.0160544.g005
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pathogen interactions [50]. Similarly, FBA from Paracoccidioides spp. also binds to plasmino-
gen and is likely to contribute to pathogenesis [51]. Although FBA function as a “moonlight-
ing” protein is described in the literature for many pathogens, little is known about this protein
in Listeria genus. In the present study, we detected no role on adhesion when using HCT-8
cells, practically ruling out this FBA function in Listeria spp., although other cell types should
be further tested.

FBA is essential for the metabolism of many microorganisms, therefore, its sequence and
structure tends to be conserved among the same species, and even between different ones. This
characteristic has been explored to design broad-spectrum vaccines against Streptococcus pneu-
moniae, being able to protect mice against respiratory challenges of different strains [49,75]. In
another study, FBA from Candida albicans was used as diagnostic tool in an indirect detection
of Candida spp. infections, showing 87.1 and 92.8% of sensitivity and specificity, respectively
[76]. Following the principle that FBA allows broad-spectrum detection, we describe this
enzyme as a target for direct detection of the food-borne bacteria from Listeria genus. This is
the first time FBA is described as a biomarker for Listeria spp., and can open new possibilities
for the improvement on the detection of this pathogen both in food and in clinical samples.

Nevertheless, the fact that FBA is structurally conserved in different species is interesting,
especially because mAb-3F8 specifically recognizes FBA from Listeria spp., but not other
closely related bacteria. Thus, strategies for epitope mapping of mAb-3F8 were performed in
order to better understand the principle of the detection. By using pHORF phage display tech-
nology [77–80], we were able to build an ORFeome library and find a very short sequence (25
amino acids) that contained the epitope, which was studied in detail by using a peptide mem-
brane. This way, we could find an epitope with 14 amino acids that shares considerable identity
(78.6) and similarity (85.7) only with Bacillus spp., when considering the species tested in
Western blot. Bacillus spp. could not be recognized by mAb-3F8 in Western blot, therefore, we
assume that the 3 amino acid-difference between the 2 proteins—one of them is in the 9-amino
acid part that seems to be the most important for recognition—are enough to eliminate the
binding properties of mAb-3F8 (see S1 and S2 Texts). Interestingly, the identified epitope is
part of the catalytic site of the protein in its dimeric form. Thus, we show that an antibody can
be targeted to this protein in Listeria spp. and possibly block its activity via binding to the active
site. Considering that FBA is also studied as a target for antibiotic treatment [47,48], the use of
mAbs like 3F8 in therapy could be an intriguing possibility, but impairment of the enzymatic
activity should be verified.

As a proof of concept, FBA can be used as a biomarker to identify Listeria spp. directly from
contaminated food. Cheese was spiked with L.monocytogenes, which was further enriched and
detected using mAb-3F8 in Western blot. Using this mAb alone, it was possible to detect both
L.monocytogenes and L. innocua. When combining mAb-3F8 and mAb-2D12, which recog-
nizes InlA present only in L.monocytogenes, it was possible to distinguish the pathogenic spe-
cies from the non-pathogenic one. The principle of distinguishing non-pathogenic and
pathogenic Listeria relies on the possible overgrow of the former, which can impair the detec-
tion of the latter [44,45]. Although the detection of non-pathogenic species only means the
food is safe for consumption, it also indicates that the food production or storage environment
is prone to the persistence of the bacteria, including the pathogenic species. Thus, detecting
non-pathogenic species is important indicator for the requirement of improved sanitary and
hygienic practices during food production.
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Conclusions
In many countries, L.monocytogenes is a major public health concern and always a potential
economic burden regarding food industry. Besides, the increasing discovery of new species in
different environmental locations increases the importance of studying this bacterium. Here
we describe for the first time that FBA is a surface protein of Listeria spp., and that mAb-3F8
against this protein can specifically recognize the genus via a conserved epitope. Thus, both
mAb-3F8 and FBA have great potential as immunodiagnostic tools to detect Listeria spp. and,
if combined with another antibody, distinguish the pathogenic species. Thus, mAb-3F8 can be
further explored in an effort to improve immunoassays for Listeria detection. Additionally,
this work gives first descriptions of properties of Listeria FBA, as well as describes mAb-3F8
as an analytical tool to investigate the role of this enzyme in Listeria spp. physiology or
pathogenesis.
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