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Theoretically Optimal Duty Cycles for Chest and Abdominal 

Compression during External Cardiopulmonary Resuscitation 

 

Charles F. Babbs, MD, PhD, Keir Thelander, BS 

 

Biomedical Engineering Center, Purdue University, West Lafayette, Indiana, USA. 

 

[Acad. Emerg. Med. 1995; 2:698-707] 

 

ABSTRACT 

 

Objective: To use an electronic model of human circulation to compare the hemodynamic 

effects of different durations of chest compression during external CPR, both with, and without 

interposed abdominal compression (IAC). 

Methods: An electrical analog model of human circulation was studied on digital computer 

workstations using SPICE, a general-purpose circuit simulation program. In the model the heart 

and blood vessels were represented as resistive-capacitive networks, pressures as voltages, blood 

flow as electric current, blood inertia as inductance, and cardiac and venous valves as diodes. 

External pressurization of the heart and great vessels, as would occur in IAC-CPR, was 

simulated by the alternate application of damped rectangular voltage pulses, first between 

intrathoracic vascular capacitances and ground, and then between intra-abdominal vascular 

capacitances and ground. With this model, compression frequencies of 60, 80, and 100 

cycles/min and duty cycles ranging from 10% to 90%, both with and without IAC, were 

compared. 

Results: There was little difference in hemodynamics when the overall compression frequency 

was varied between 60 and 100 cycles/min; but the effects of duty cycle were substantial. During 

both standard CPR and IAC-CPR, total flow and coronary flow were greatest at chest 

compression durations equal to 30% of cycle time. Interposed abdominal compression 

substantially improved simulated systemic blood flow and perfusion pressure at all duty cycles, 

compared with standard CPR without abdominal compression. Mean arterial pressure > 75 mm 

Hg and artificial cardiac output > 2.0 L/min could be generated by 30% duty cycle compression 

with IAC. Coronary perfusion in the model is clearly optimized at 30% chest compression (i.e., 

high-impulse chest compression technique). 

Conclusion: Combined high-impulse chest compressions and IACs maximize blood flow during 

CPR in the electrical analog model of human circulation. 

 

Key words: abdominal; artificial circulation; blood flow; cardiac arrest; CPR; high impulse 

compression, HIC, interposed abdominal compression, IAC 
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INTRODUCTION 

 

Timing variables describe, in a fundamental way, how external CPR is done. The most obvious 

timing variables are the compression rate or frequency, or its inverse, the total cycle time. Other 

key timing variables describe the partitioning of the CPR cycle time into chest compression and 

chest relaxation phases. During ordinary standard CPR, the duty cycle of compression refers to 

the fraction of cycle time during which active chest compression is applied. The issue of the 

most effective compression frequency and duty cycle in standard external CPR is of considerable 

importance, owing to research over the past decade by Maier et al. [1, 2],  Swart et al. [3], and 

Swenson et al. [4] suggesting that shorter chest compression times comprising 30% of the total 

compression cycle, which they characterize as “high velocity, moderate-force, and brief-duration 

manual compressions,” are more effective in producing forward flow than what has come to be 

accepted as the standard, 50% duty cycle for chest compression.  

 

The optimization of timing variables in external CPR is further complicated by the addition of 

interposed abdominal compressions (IACs), which have proved to constitute a promising adjunct 

to conventional CPR [5]. This manual technique can supplement the use of adrenergic drugs to 

increase coronary perfusion pressure (CPP) and total blood flow during resuscitation [6-10]. 

Clinical studies confirm that IAC-CPR can improve perfusion pressures and CO2 excretion 

during CPR in humans [11-13], and a randomized trial has shown that short-term and long-term 

survival rates for patients resuscitated in the hospital with IAC-CPR can be twice those for 

control patients resuscitated by standard CPR [5, 14]. However, the exact technique by which 

abdominal compressions are best applied is controversial [15-18]. Differences in the site, area, 

angle, and force of IACs have been discussed elsewhere [15, 17]. With two notable exceptions 

[19, 20], the timing variables of IAC-CPR have been largely neglected, and the combination of 

high-impulse compression (HIC) with IAC-CPR has not been explored. 

 

To study the complex effects of varying chest and abdominal compression times, we turned to a 

computer model that has proved insightful in the past for understanding and predicting the 

hemodynamics of resuscitation and of cardiac assist devices [21-23]. Because such models are 

much simpler than intact animals and allow easy manipulation of system parameters, it is 

possible to evaluate a large number of timing variables and to understand their contribution to 

simulated flow. Our study was conducted to address the theoretically optimal duty cycle for 

chest compression during standard CPR and also to assess the theoretically optimal temporal 

partitioning of external compression between chest and abdominal phases during interposed 

abdominal compression CPR. 

 

 

METHODS 

 

Study Design 

 

We investigated CPR duty cycle variables using a simple resistive-inductive-capacitive model of 

circulation, in which flow can be generated by simulated external compression of the heart, the 

intrathoracic great vessels, the abdominal aorta, or the abdominal veins (by applying voltage 
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pulses to particular sets of capacitors), and in which phased chest and abdominal compressions 

of varying duty cycles can be simulated. 

 

Model of the Circulatory System 

 

Our electrical analog model of human circulation is shown in Figure 1. In the model the great 

vessels and cardiac chambers are modeled as capacitors, and capillary beds are modeled as 

resistors. The flow of electric current around the circuit (arrows) represents the flow of blood, 

and the action of the arterial and venous inductors models the inertia of the blood columns in the 

larger, longer vessels. Normal cardiac and venous valves are modeled as diodes, which permit 

flow of current in one direction only. Definitions of the symbols for circuit elements are provided 

in the legend. As indicated in Figure 1, current leaving the right side of the heart passes through 

the pulmonary system, first through the pulmonary artery capacitance, then the pulmonary 

capillary resistance, and then the pulmonary venous and left atrial capacitance, before entering 

the left ventricle. Current leaving the left side of the heart through the aortic valve can return to 

the right atrium via one of four pathways representing the vascular beds of the head and neck, 

myocardium, abdomen, and lower extremities. 

 

The coronary circulation is modeled as a simple resistive pathway between the thoracic aorta and 

the right atrium. Separate, pulsatile voltage sources, modeled by components labeled VIN, can 

be applied between any of the vascular capacitors and ground potential, which represents zero 

(ambient atmospheric) pressure, to mimic external compression of these structures during CPR. 

In the present study, values for VIN were the same for all intrathoracic structures (i.e., a 

“thoracic pump” model of CPR was used).  

 

Similar electrical models of the circulation have been described originally by Guyton [24] and by 

others [25-28]. In the present study we used the electrical circuit analysis program SPICE 

(Simulation Program for Integrated Circuit Evaluation) [29] to obtain solutions for instantaneous 

voltages at, and currents through, various test points or “nodes” in the circuit model on digital 

computer workstations. Minor changes were made in the previously published model [21, 22], 

for compatibility with the digital modeling approach, which is now used extensively by electrical 

engineers. In particular, to meet the technical requirements of SPICE software, a direct current 

(DC) path of some finite resistance is needed that connects the model to ground potential (i.e., a 

ground reference). If a low-resistance DC path were included, the result would be similar to a 

vascular puncture wound, allowing charge (blood) to leak from the circulatory system to the 

outside world. Accordingly, a very-high-resistance path (RGND, Fig. 1) was chosen, which 

allowed a negligible leak during the duration of the simulations. (A representative SPICE 

program for the circulatory model is available from the authors on request.) 
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Figure 1. Circuit diagram of the model.  Elements corresponding to vessels in the head, 

thorax, abdomen, and legs are identified.  Capacitors (-||-) model large-vessel 

compliance; inductors (-ooooo-) model inertia; resistors (-/\/\/\/\/\-) model capillary 

beds; diodes (--|>|--) model valves.  Voltage sources (--O--) are applied between earth 

ground and the thoracic and abdominal capacitors to model chest and abdominal 

compression.  Arrows indicate direction of current flow.  First letters identifying model 

components are C for capacitances, R for resistances, L for inductances, D for diodes 

(valves), and VIN for input voltage sources.  The remaining letters of component labels 

indicate anatomic counterparts as follows:  AA = abdominal aorta; A = aortic valve; 

ABD = abdominal capillaries; AO = thoracic aorta; CAR = carotid arteries; CR = 

cranial capillaries; COR = coronary capillaries; GND = ground; IVC = inferior vena 

cava; JUG = jugular veins; LA = left atrium; LE = legs; LL = lower limb arterial side; 

LV = left ventricle; M = mitral valve; N = Niemann’s valve at the thoracic inlet; P = 

pulmonic valve; PA = pulmonary artery; PUL = pulmonary capillaries; PV = 

pulmonary veins; RA = right atrium; RL = lower limb right (venous) side; RV = right 

ventricle; SVC = superior vena cava; T = tricuspid valve; V = venous valves in legs.  

Parallel source resistances R1 through R10 (100 ohms) and capacitances C1 through 

C10 (0.1 microfarads) provided for a 0.1 sec rise time constant in real time and ensured 

release of external pressure during the relaxation phase.  

 



 

5 

 

Circuit Components 

 

The initial values for the circuit components used in the model were the same as described 

previously [22]. Scale factors relating electrical to physiologic variables were 0.5 V = 1 mm Hg 

blood pressure (BP), 0.5 mA = 1 L/min blood flow, and 0.1 msec in simulation time = 1 sec in 

real-world time. Derivative scale factors for resistance and inertance were 1 mm Hg/(L/min) = 

1,000 , and 1 g/cm
4
 = 1.259 mH. Typical values of resistance and capacitance of vascular beds 

were selected with reference to published literature [22] and scaled to represent a hypothetical 

70-kg man with a normal, resting cardiac output (CO) of 5 L/min, arterial BP 120/80 mm Hg, 

and pulmonary artery pressure of 25/10 mm Hg. The effects of peripheral vasoconstriction 

caused by epinephrine were studied by increasing the normal peripheral vascular resistances of 

the abdomen and legs (RABD and RLE, Fig. 1) each by a factor of 5, in keeping with prior 

studies in animals [30=31]. 

 

External CPR 

 

We modeled compression of the chest and abdomen by application of slightly damped 

rectangular voltage pulses from the sources shown in Figure 1. To approximate the damping 

factors of a real mechanical system, external compression pulses were constructed with an RC 

(resistive-capacitive) rise time constant of 0.1 sec in real-world time (10 psec in simulation time), 

provided by the filters R1, C1 through R10, C10 placed in parallel with each voltage source. 

Sources VIN1 through VIN10 were set to deliver rectangular pulses of durations lasting from 

10% to 90% of total cycle time, as needed. 

 

The thoracic sources, VIN1 through VIN8, were set to deliver current during the chest 

compression phase, and the abdominal sources, VIN9 and VIN10, were set to deliver current 

during the abdominal compression phase. Chest compression was modeled with a 80-mm Hg 

(40-V) pulse, representing the pressure transmitted through the chest wall to the surfaces of the 

heart and great vessels. This chest compression of 80 mm Hg represents peak internal thoracic 

pressure generated as a result of external chest compression. The 80-mm Hg value was selected 

as being realistic on the basis of prior animal studies [32] and in keeping with prior simulation 

studies using the electronic model [21]. All cardiac chambers and intrathoracic great vessels 

were compressed equally in these simulations according to the thoracic pump paradigm. 

 

The abdominal compressions in simulations of IACCPR were added after a time delay equal to 

the length of the chest compression. Abdominal compression was modeled with a 100-mm Hg 

(50-V) pulse, representing the pressure transmitted through the abdominal wall to the surfaces of 

both the abdominal aorta and the inferior vena cava. To explore the effects of duty cycle on 

hemodynamics during standard and IAC-CPR, non-overlapping combinations of chest and 

abdominal compression times (10%/ 90%, 20%/80%, 30%/70%, etc.) were simulated at 

compression frequencies including 60 cycles/ min, 80 cycles/min, and 100 cycles/min. 
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Sampling Protocols 

 

Simulated chest and abdominal compressions were begun with a stagnant circulation at time zero 

and continued until a steady state was reached. Generally, steady state was reached sooner for 

intermediate duty cycles near 50%/50% (chest/abdomen) than it was for the extreme cases of 

10%/90% and 90%/10%. A digital sampling density of 100 samples/cycle was used to 

encompass all maximum and minimum values and to ensure accurate mean results. Digital 

values of the most informative data, based on results of preliminary studies--namely, aortic 

pressure, pulmonary flow, coronary flow, and cranial flow--were captured for ten complete 

compression cycles at steady state. Mean values for pressure and flow at steady state were found 

by averaging the 1,000 points in the time domain, spanning ten complete cycles. The non-

pulsatile cases of 0% and 100% duty cycles were modeled using DC sources in SPICE. Plots 

were made using Matlab (The Math-Works, Inc., Natick, MA) or similar software. 

 

 

RESULTS 

 

Steady-state Sampling Intervals 

 

Initial data were plotted vs. time to determine the time at which steady-state hemodynamics were 

established for each compression combination. For the extreme cases of 100%/0% and 0%/100% 

cycles, DC outputs were used. The transient responses to 90%/10% and 10%/90% were found to 

reach steady state at 100 real-time sec, so mean flows were taken for the range from 100 to 110 

sec. For the 80%/20% and 20%/80% cases, steady state was reached at 50 real-time sec, and 

mean flows were computed from 50 to 60 sec. All other cases were evaluated from 30 to 40 sec 

after onset of CPR to meet the steady-state criterion. As a check of the steady-state criterion, 

mean pulmonary flow was compared with the sum of mean systemic flows in the cranial, 

coronary, abdominal, and lower extremity vascular beds, and agreement within 1% was obtained. 

 

Waveforms 

 

Figure 2 illustrates representative time domain waveforms for simulated aortic pressure, 

pulmonary flow, coronary flow, and cranial flow across one complete cycle of 50%/50% IAC-

CPR at steady state. In these graphs, the full horizontal scale represents one compression cycle at 

a compression frequency of 80/min. The left half of each tracing represents the chest 

compression phase, and the right half of each tracing represents the abdominal compression 

phase. Cranial flow occurs primarily during chest compression, whereas coronary flow occurs 

primarily during abdominal compression. The waveforms for pressures and flows at compression 

frequencies of 60/min and 100/min were very similar to those shown in Figure 2. 
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FIGURE 2. Simulated time domain tracings of aortic pressure, pulmonary artery 

(total) flow, coronary flow, and cranial flow for one steady-state compression cycle of 

50%/50% interposed abdominal compression CPR. The horizontal time base represents 

one compression cycle at 80 compressions/min, from 30 to 30.75 sec after onset of 

CPR. The first, left-hand half of the cycle represents the chest compression phase, and 

the second, right-hand half of the cycle represents the abdominal compression phase. 
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Duty Cycle Effects 

 

The plots in Figure 3 illustrate thoracic aortic pressure, pulmonary flow, coronary flow, and 

cranial flow, as a function of the duty cycle during chest compression only (i.e., control CPR 

without IAC). Data are plotted for three different compression frequencies, 60/min (solid 

curves), 80/min (dashed curves), and 100/min (dotted curves). The outputs of the thoracic pump 

during CPR are relatively independent of compression frequency in the practical range from 60 

to 100 compression cycles/ min, as has been previously described during conventional or 

standard CPR without abdominal compression, total (pulmonary) flow and coronary flow are 

maximized at 30% duty cycle for chest compression only. Cranial flow, however, increases 

steadily as a function of duty cycle in the range of 10% to 80%, as reported for earlier 

experimental studies of chest compression duration that measured ultrasonic Doppler flow 

velocity index in the carotid arteries [36]. 

 
 

FIGURE 3. Mean aortic pressure, pulmonary artery (total) flow, coronary flow, and 

cranial flow for a computer-simulated human circulatory system during standard CPR 

at duty cycles for chest compression ranging from 0% to 100% percent of cycle time. 

Solid curves = 60 compressions/ min; dashed curves = 80 compressions/min; dotted 

curves = 100 compressions/min. 
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As shown in Figure 4 for 80-cycle/min CPR, the addition of IAC (solid curves) at 100 mm Hg, 

combined with thoracic pump CPR, improves total flow, myocardial flow, and cranial flow, 

compared with thoracic compression alone (dashed curves) at all duty cycle combinations. The 

results for 60 cycles/min and 100 cycles/min CPR were very similar to those for 80-cycles/min 

CPR. In terms of aortic pressure, total pulmonary flow, and coronary flow, the maximum 

average values during IAC-CPR occur at 30% chest compression time and 70% abdominal 

compression time. For cranial flow, the maximum occurs at 70%/30% chest/abdomen duty 

cycles; however, with IAC-CPR, cranial flow tends to plateau between 30% and 70% chest 

compression, so there is relatively little difference in cranial flow between the 30%/70% and 

70%/30% techniques. Thus, overall, the optimal duty cycle for standard CPR is 30% chest 

compression time, 70% chest relaxation time; and the optimal duty cycle combination for IAC-

CPR is 30% chest compression time, 70% abdominal compression time. 

 

 
 

FIGURE 4. Mean aortic pressure, pulmonary artery (total) flow, coronary flow, and 

cranial flow for a computer-simulated human circulatory system during standard CPR 

(dashed curves) vs. interposed abdominal compression (1AC)-CPR (solid curves) at 

duty cycles for chest compression ranging from 0% to 100% percent of cycle time.  
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Peripheral Vasoconstriction 

 

The plots in Figure 5 illustrate the effects of peripheral vasoconstriction, as would be produced 

by epinephrine. This effect was achieved by increasing the resistances of the legs and abdomen 

by a factor of five. The solid lines in Figure 5 represent complementary chest and abdominal 

compressions, and the dashed lines represent chest compression alone. The vertical scales are the 

same as in Figure 4. Peripheral vasoconstriction improves coronary and cranial flow, but total 

flow is decreased, as was found previously in animals [30]. Optimal compression cycle 

partitioning at 30%/70% chest/abdomen is not altered by peripheral vasoconstriction. 

 
 

FIGURE 5. Mean aortic pressure, pulmonary artery (total) flow, coronary flow, and 

cranial flow for a computer-simulated human circulatory system in the presence of 

peripheral vasoconstriction simulating epinephrine effect. Standard CPR is indicated 

by dashed curves; interposed abdominal compression (1AC)-CPR is indicated by solid 

curves. During IAC-CPR, abdominal compression was always complementary to chest 

compression; e.g. when chest compression lasted 40% of cycle time, abdominal 

compression lasted 60% of cycle time. Chest compression frequency was 80/min. With 

peripheral vasoconstriction, total flow is reduced but vital organ perfusion is increased. 
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DISCUSSION 

 

By modeling a complex biological system appropriately, an investigator can explore the 

implications of certain fundamental assumptions about how the system operates. In the present 

study we assumed that external pressures can impel blood (having inertial mass) to flow through 

resistive-capacitive networks forming a closed circuit similar to the mammalian circulatory 

system. The exploration of timing variables for conventional CPR and IAC-CPR in such a 

system suggests that the two innovative and nonstandard CPR modalities that have been shown 

to be effective both in animal studies and in clinical trials, namely IAC-CPR and HIC-CPR, can 

be profitably combined. Performance of IAC-CPR with HIC (i.e., shifting from 50% to 30% 

chest compression) is a clearly effective technique for enhancing systemic perfusion in the 

present model of the human circulatory system. The model predicts that the combined techniques 

can generate mean arterial pressures in excess of 75 mm Hg and artificial cardiac outputs in 

excess of 2.0 L/min, about 40% of normal resting cardiac output in man. These values begin to 

approach truly life-sustaining levels. 

 

Manually performed chest compressions lasting approximately 30% of the compression cycle 

time can be practically generated according to a repeated three-count cadence: one-two-three, 

one-two-three, one-two-three, etc. Chest pressure is applied on the count of one and released on 

the count of two. For IAC-CPR, abdominal pressure is applied on the count of two, continued on 

the count of three, and released on the count of one. It is helpful to begin this rhythm with 

abdominal pressure on and chest pressure off; then switch pressure states on the counts of one 

and two. 

 

Thus, in practice, the rescuer at the chest presses down on the count of one, releases pressure on 

the count of two, and is idle on the count of three. The rescuer at the abdomen releases pressure 

on the count of one, applies pressure on the count of two, and continues pressure on the count of 

three. (The reader may personally judge the simplicity of this cadence by performing simulated 

chest compression with the left hand and simulated abdominal compression with the right hand 

in pantomime.)  

 

Graphic validation of the 30%/70% duty cycle produced by this method can be confirmed 

experimentally as follows. Fill the bladders of two ordinary clinical BP cuffs with air. Let one 

represent the “chest” and the other represent the “abdomen.” Connect the air-loaded BP cuffs to 

pressure transducers and a two-channel graphic recorder. Then perform chest and abdominal 

compression on the two cuffs according to the one-two-three cadence just described. The degree 

to which a 30%/70% duty cycle is approximated by trainees after varying amounts of practice 

can be readily seen. 

 

An important prediction of the present computer simulations is that coronary flow is particularly 

benefited by the combination of 30% chest compression and 70% abdominal counterpulsation. 

The importance of coronary perfusion pressure (CPP) in promoting return of spontaneous 

circulation (ROSC) after CPR has long been recognized [37-39]. Previous work by Ralston and 

coworkers in our laboratory [40] indicates that ROSC after 20 min of experimental CPR is 

almost certain when myocardial perfusion is > 25 mL/min/100 g and almost impossible when 
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myocardial perfusion is < 15 mL/min/100 g. One might therefore conceive of a “survival 

threshold” for myocardial perfusion near 20 mL/min/100 g that must be exceeded if the heart is 

to withstand prolonged resuscitation efforts. Under these circumstances the optimization of 

myocardial flow generated during external CPR may be lifesaving. If one assumes the weight of 

a human heart to be 300 to 400 g, coronary perfusion < 60 to 80 mL/min may be inadequate for 

ROSC in prolonged cardiac arrest and CPR. Reference to Figures 4 and 5 indicates that coronary 

flow for simulated standard CPR without IAC at 50% duty cycle lies very near the survival 

threshold. However, if either 30% chest compressions, IACs, or both are adopted, then simulated 

coronary flow can be promoted to levels above Ralston’s proposed survival threshold. The 

simulations also suggest a rational mechanistic explanation for the observed effects on coronary 

perfusion. Because coronary perfusion occurs predominantly during chest recoil; a relatively 

longer perfusion time during “chest diastole” seems to favor mean coronary flow, as does the 

augmentation of diastolic CPP induced by IAC. Accordingly, the combined HIC-IAC 

modifications of present standard CPR may be especially important in promoting ROSC [39]. 

 

 

LIMITATIONS AND FUTURE QUESTIONS 

 

The present study was conducted in a relatively simple electronic model of the circulation, 

including only 32 passive components and two peak pressure levels (chest and abdominal). 

Much more complex models have been described [27]. Our intent, however, was to capture the 

essence of the circulatory hernodynamics in cardiac arrest and CPR rather than to include all 

details, which are better studied in animal and in clinical models. For example, autoregulatory 

effects and effects of hypoxia causing minute-to-minute changes in peripheral vascular 

resistances of various organs were not modeled. Ventilatory pauses were not modeled, and 

complex schemes for coordinating ventilations and compressions to good effect were not 

explored. There may be possible benefits to such schemes; however, they must ultimately be 

simple enough to be executed in the chaotic setting of a cardiac arrest. 

 

Mechanical factors acting on extravascular structures, such as diaphragmatic stabilization by 

IAC (during brief periods when rising abdominal compression may overlap falling chest 

compression) cannot be well studied by electronic models such as that described. In the present 

studies all vessels in the abdominal compartment were considered to be compressed equally, 

although suggestions as to improved IAC techniques [17] suggest that selective compression of 

the abdominal aorta is possible and may be of hemodynamic benefit. These limitations 

notwithstanding, we suggest that the differences in aortic pressures and regional blood flows as a 

function of the duty cycles for chest and abdominal compression, which are the main focus of the 

present study, are likely to persist in more complex models. Animal and eventually clinical 

studies will be required to verify these findings. It will be important to determine the feasibility 

of the three-count cadence technique described, including its effectiveness, and its safety. 

 

With regard to safety, experimental studies have demonstrated that with high-impulse 

techniques, there is the potential for rib fracture even in healthy young experimental animals 

with flexible rib cages [3]. Such risk is probably greater in older humans with more brittle 

anterior chest walls. Nevertheless, 30%-duty-cycle CPR is highly likely to be safe in view of 

previous clinical experience at Duke University Hospital, where HIC-CPR has been practiced 
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extensively for more than two years without obvious ill effects [2]. The complications 

attributable to IAC in all clinical series have been few [5, 14, 41, 42]. Currently there is only one 

reported case of IAC-related abdominal organ damage among more than 300 resuscitated 

patients described in the literature [43]. Initial concerns regarding the possibility of more 

frequent emesis during IAC-CPR than during conventional CPR have remained unsubstantiated. 

Interestingly, in anesthetized dogs, IAC-CPR produces less gastric insufflation than does 

standard CPR when ventilation pressure is applied to both the trachea and the esophagus [44]. 

Hence, there is little evidence to suggest that either HIC-CPR alone or IAC-CPR alone cause 

more complications than does conventional, standard CPR. However, prospective trials 

combining these techniques should address both safety and efficacy. 

 

 

CONCLUSION 

 

Modeling of fluid flow through resistive capacitive networks mimicking human circulation 

identifies perfusion maxima for the combination of 30% chest compression with 70% abdominal 

compression times. A simple three-count rhythm can be established to approximate this 

theoretically optimal timing of external compressions during CPR using a manual technique. We 

conclude that combining 30%/70% chest and abdominal compressions is worthy of exploration 

in future experimental and clinical studies of external CPR. 
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