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ABSTRACT 

 

Iron bound to certain chelators is known to promote the conversion of superoxide radicals (O2

) 

to hydroxyl radicals (HO') by the superoxide-driven Fenton reaction. The production of HO' by 

various iron chelates was studied using the reaction of dimethyl sulfoxide and HO' to produce 

methane sulphinic acid. Methane sulphinic acid was quantified by use of a simple colorimetric 

assay and used to determine the amounts of HO' produced. Superoxide was generated from 200 

M hypoxanthine and 0.05 U/ml xanthine oxidase in the presence of 0-100 M iron and 100 M 

of each chelator. The results of this preliminary investigation illustrate that, at physiological pH, 

the superoxide-driven Fenton reaction is significantly promoted by iron chelated to EDTA, 

nitrilotriacetate, and citrate, but is not promoted by the other anions studied. 

 

KEY WORDS: Citrate, deferoxamine, EDTA, nitrilotriacetate, superoxide, xanthine oxidase. 

 

 

 

NOMENCLATURE: ADP: adenosine diphosphate; DMSO: dimethyl sulphoxide; EDTA: 

ethylenediaminete­traacetic acid: NTA: nitrilotriacetate; MSA: methane sulphinic acid. 
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INTRODUCTION 

 

A currently popular hypothesis explaining the toxicity of superoxide radicals (O2

) in biological 

systems is is that the O2

 is converted in the presence of iron to highly toxic hydroxyl radicals 

(HO') via the superoxide driven Fenton reaction: 

 

 
 

 

Ferric iron is sparingly soluble at a pH of 7.4 (Ksp for Fe(OH)3 = 1 x 10
36

) [6]. Therefore, for the 

above reactions to be biologically significant, the Fe
+3

 must be chelated to remain in solution. 

Perhaps, when referring to biological systems it is more appropriate to write the above reactions 

as: 

 

 
 

in which iron is shown complexed to a chelator anion A
n

. The development of a simple, 

inexpensive method of measuring HO' in our laboratory[7] facilitated a re-examination of the 

effects of various iron chelators on Fenton chemistry. In this method the reaction of HO' radicals 

with dimethyl sulphoxide (DMSO) to form methane sulphnic acid (MSA) [8-11] is used to 

determine HO' quantitatively: CH3-SO-CH3 + HO'  CH3SOOH + CH'3). 

 

Dimethyl sulphoxide concentrations of 0.1 to 1.0 M can be used to ensure efficient trapping of 

nearly 100 percent of HO' radicals generated [12-14] without inhibition of enzymes, such as 

xanthine oxidase, that generate superoxide. Methane sulphinic acid is detected using a diazonium 

salt, Fast Blue BB, which forms a yellow complex with the sulphinate anion. This complex can 

be extracted into an organic solvent and detected spectrophotometrically. The objective of the 

present investigation was to study the role of iron in the presence of various chelators on the 

production of hydroxyl radicals from superoxide. 

 

 

MATERIALS AND METHODS 

 

Materials were purchased from the following sources: ADP, albumin, hypoxanthine, phytic acid, 

uric acid, and xanthine oxidase from Sigma Chemical Co. (St. Louis, MO), nitrilotriacetic acid 

and Fast Blue BB dye from Aldrich Chemicals (Milwaukee, WI), methane sulphinic acid from 

Fairfield Chemical Company (Blythewood, SC), deferoxamine from Ciba-Geigy, (Summit, NJ), 

DMSO, EDTA, sodium citrate, Na2HPO4 and NaH2PO4 from Fisher (Itasca, IL), and FeC13 from 

Mallinckrodt (Paris, KY). Absorbances were measured using a Perkin Elmer Lamba 3B 

spectrophotometer (Norwald, CN). 
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Superoxide was generated from hypoxanthine and xanthine oxidase in 0.04 M sodium phosphate 

buffer (pH 7.4), in the presence of 1.0 M DMSO. Stock FeC13 solutions were prepared in pH 2 

HCl; stock solutions of the chelators in the buffer. All solutions were prepared using 5 to 18 M 

water, pH 7.0, obtained from a Culligan D-45-P reverse osmosis system. Final concentrations in 

the 2 ml reaction volume were 100 M chelator (albumin was 0.4 g/ml), 0.2 mM hypoxanthine, 

0.05 U/ml xanthine oxidase, and 1.0 M DMSO. Fe
+3

 concentrations varied from 0-100 M. In 

addition to the chelator anions being studied, all experimental solutions included 4 x 10
-2

 M 

phosphate (present as Na2HPO4 and NaH2PO4) as well as chloride varying from 1.3 x 10
-4

 to 7.0 

x 10
-4

 M (since the Fe
+3

 was added as a solution of FeC13 in HCl).  

 

Tubes were prepared by adding, in order, the buffer, DMSO, chelator, FeC13, and hypoxanthine. 

The reaction was initiated by adding the xanthine oxidase, mixed for 1 min, and incubated at 

room temperature for 20 minutes. The assay for methane sulphinic acid was a modification of a 

previously published method [7]. The pH of the sample was lowered to 2.5, 100 L of 30 mM 

Fast Blue BB dye was added and the solution incubated at room temperature for 10 minutes. The 

methane sulphinic acid-dye complex was then extracted into 1 ml of a 3:1 mixture of toluene and 

butanol. The toluene:butanol mixture was washed with 2 ml of butanol-saturated water. One 

hundred microliters of 5% glacial acetic acid in pyridine was added to the organic phase to 

stabilize the color, and the absorbance of the organic phase at 420 nm determined. 

 

 

RESULTS 

 

The effects of added iron in the presence of various chelator anions upon HO' generation by the 

superoxide-driven Fenton reaction are shown in Figure 1. Iron added to solutions of phytate, 

ADP, urate, and albumin catalyzed only minimal formation of methane sulphinic acid, which 

was not significantly different from that produced in the presence of phosphate buffer alone. 

However, methane sulphinic acid generation in the presence of EDTA, NTA, and citrate anions 

was substantially higher than that in the phosphate buffer alone for all concentrations of iron. 

Even at zero added iron, the addition of EDTA caused production of methane sulphinic acid, 

perhaps by chelating trace amounts of Fe
+3

 in the reagents. Methane sulphinic acid production 

was not detected in the presence of 100 M deferoxamine. Samples containing all the reagents 

except xanthine oxidase did not produce detectable amount of methane sulphinic acid (results not 

shown), verifying that the response required the presence of enzymatically generated O2

. 
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FIGURE 1  Hydroxyl radical production from O2

 produced from the reaction of 

xanthine oxidase and hypoxanthine, with varying concentrations of iron, measured as 

MSA production in 1 M dimethyl sulphoxide, in the presence of 100 M of various 

chelators. Data points represent the means of triplicate determinations. Standard 

deviations for all the experiments were less than 5 M methane sulphinic acid,except 

when Fe = 100 M in the presence of EDTA (SD = 11 M). Included in "others" are 

phosphate buffer alone, albumin, ADP, urate, and phytate. NTA = nitrilotriacetate, Def 

= deferoxamine. 

 

 

DISCUSSION 

 

In addition to previous reports [7, 14, 15], the experiments just described demonstrate the 

advantages of using DMSO to trap HO' radicals with subsequent colorimetric determination of 

methane sulphinic acid. Of the previously-available molecular probes for determining HO', the 

aromatic compounds are the most convenient. When salicylates are used to trap HO', for 

example, the resulting hydroxylated aromatic derivatives can be detected by colorimetric [16], 

gas chromatographic [17], or fluorometric [19] methods. DMSO, as a trapping agent for HO', has 

the advantages of being soluble in both aqueous and organic solvents, of being non-toxic to 

biological systems [20-25] and of reacting very rapidly with HO' (k = 7 x 10
9
) [26] to yield a 

single hydroxylated product that has a larger molar extinction coefficient than that of the 

hydroxylated aromatic compounds. This method also requires less expensive instrumentation 

than gas chromatography and fluorescence spectroscopy. 
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Using this technique in the preliminary studies reported here, we found enhanced production of 

HO' for iron chelated with EDTA, NTA, and citrate, but low production for iron chelated with 

ADP-similar to results obtained by Baker and Gebicki [19]. Interestingly, the structures of the 

three chelators that most efficiently promoted HO' formation (EDTA, NTA, and citrate) all 

contain oxygen atoms in carboxyl groups that could chelate Fe
+3

. Chelators that showed little 

promotion of hydroxyl radical formation (ADP, phytate, and phosphate buffer) all have 

phosphate groups available for chelation. Studies by Graf et al. [21] have indicated that the best 

promoters of Fenton chemistry are chelators that have a readily available coordination site, 

EDTA, NTA, and ADP. No free sites were reported for phytate and deferoxamine. Our studies of 

the iron chelates of EDTA, NTA, and deferoxamine support their hypothesis; however, we 

observed that ADP was no better than phytate in promoting hydroxyl radical generation. Sibille 

et al. [8] have suggested that the reason deferoxamine is so effective in blocking HO' formation 

is that the strong chelation at all six positions [29] prevents the reduction of Fe
+3

 to Fe
+2

 by O2

 

and that chelation by tyrosines in lactoferrin and transferrin similarly prevents Fe
+3

 reduction, 

whereas the purple acid phophastases permit the reduction. 

 

In the case of EDTA-iron, the yield of HO' produced by the xanthine oxidase system was 

substantial and easily measured. However, the promotion of HO' formation by either EDTA or 

NTA is probably of little biological significance, since neither is found in vivo. With the 

exception of citrate, the hydroxyl radical generation found with the biologically available 

chelators tested in this study was approximately one tenth of that with EDTA-iron and was 

similar to that found with phosphate buffer. This lesser amount of HO' might still be important in 

a given setting, owing to the extreme reactivity and toxicity of hydroxyl radicals. Normal 

concentrations of non-protein bound iron in extracellular fluids have been estimated to be less 

than 5 M [30] but may be higher in pathological conditions [31, 32]. The observation that 20 

M HO' was formed even at 10 M Fe
+3

 in the presence of citrate is interesting, and suggests 

that citrate may have physiological significance as a promotor of Fenton chemistry. 

 

Investigation of the iron chelators that may support the superoxide-driven Fenton reaction in 

complex biological systems deserves much greater attention. Although this reaction is often 

invoked in theoretical discussions of free radical mediated cellular injury, the importance of the 

chelator has not been emphasized by many authors [33-38]. If the superoxide driven Fenton 

reaction is to be confirmed as a pathophysiological mechanism, it is important that a 

physiologically plausible iron chelator that supports Fenton chemistry be identified. 
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