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ABSTRACT 

 

This study was conducted to explore the functional relationship between oxygen concentration 

during tissue reoxygenation after ischemia and the extent of postischemic lipid peroxidation, an 

indicator of reoxygenation injury. Excised rat liver or kidney tissue was rendered ischemic for 1 

h at 37°C, minced into 1 mm
3
 fragments, and then reoxygenated for 1 h in flasks of buffered salt 

solution containing various amounts of oxygen. Production of malondialdehyde-like material 

(MDA) was measured to indicate lipid peroxidation. MDA production was minimal at oxygen 

tensions less than 10 mmHg, increased sharply from 10 to 50 mmHg, and plateaued at 

approximately 100 mmHg. A similar functional relationship was produced by a simple 

mathematical model of free radical mediated lipid peroxidation in biological membranes, 

suggesting that MDA production is indeed caused by free radical oxidation of membrane 

phospholipids and that the oxygen effect is governed by simple competition between chain 

propagation and chain termination reactions within the membrane. These experimental and 

analytical results confirm that relatively low concentrations of oxygen arc sufficient to produce 

oxidative damage in post-ischemic tissues. 

 

Key words: Deferoxamine, Free radicals, Hydroxyl radical, Lipid peroxidation, Methylene blue, 

Reoxygenation injury, Reperfusion injury, Superoxide ion, Xanthine oxidase  
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INTRODUCTION 

 

The concept of reperfusion or reoxygenation injury implies that an important component of 

tissue damage observed after a period of ischemia and reperfusion is caused by events during the 

reperfusion phase, which necessarily involve the return of molecular oxygen. By most accounts, 

the injury associated with reoxygenation is initiated by the formation of active oxygen species 

such as the superoxide radical (O2

) and hydrogen peroxide (H2O2). These can compound 

primary ischemic injury by a variety of possible mechanisms, including the generation of highly 

reactive hydroxyl radicals (HO) via the iron catalyzed Haber-Weiss reaction and subsequent 

initiation of lipid peroxidation in biological membranes, which then proceeds by radical chain 

mechanisms [1-5]. 

 

Many studies of reperfusion and/or reoxygenation injury, including our own [6, 7] and especially 

those utilizing isolated, perfused hearts [8-11], have been done using 95 to 100% oxygen for 

reoxygenation after ischemia or hypoxia. Ranges of oxygen concentration are generally not 

tested. If toxic free radicals were formed only at high oxygen tensions, for example PO2 >100 

mmHg, as might occur in vascular endothelial cells, then one simple strategy to minimize 

reoxygenation injury in clinical practice would be to resuscitate with room air rather than 

oxygen. 

 

To date, the oxygen requirements for free radical formation and/or lipid peroxidation in 

postischemic tissues have not been rigorously studied. Demopolous [12], for example, addressed 

this issue only in terms of idealized curves. The large rate constant for the addition of oxygen to 

lipid alkyl radicals (L + O2  LOO ; k = 9 x 10
6
 M

1
sec

1
) [13], would seem to indicate that 

only low PO2's are necessary for lipid peroxidation. However, there are many competing 

reactions and complexities of free radical chemistry in vivo that could allow for the formation of 

other products. 

 

If the toxic effects of oxygen after ischemia were to occur only at relatively high oxygen 

concentrations, while the beneficial effects of reoxygenation were achieved at lower 

concentrations, then a therapeutic window for postischemic oxygen therapy would exist that 

would permit restoration of aerobic metabolism with minimum reoxygenation injury. In support 

of this possibility are Negovskii's intriguing studies of the 1960s, in which dogs resuscitated 

from hemorrhagic shock with 100% oxygen developed microhemorrhages in the brain [14], 

while those similarly resuscitated with room air did not. On the other hand, if the toxic effects of 

oxygen in postischemic tissues appear at concentrations similar to those necessary to restore 

mitochondrial function, then the potential for reoxygenation injury is an inevitable 

accompaniment to oxygen therapy and must be suppressed by other strategies. 

 

To investigate oxygen effects after ischemia we used tissue slices incubated in short term organ 

culture, as originally described for the study of carbon tetrachloride toxicity by Tappel and 

coworkers [15, 16] and subsequently modified in our laboratory for the study of reoxygenation 

injury [17]. Tissue slices offer a useful and convenient compromise between biochemical and 

physiological model systems. The microscopic organization of tissues is preserved, while the 
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chemical composition, including, in particular, the PO2 of the incubation media, can be easily 

and precisely controlled to mimic the extracellular milieu in bulk tissues. When the thickness of 

the tissue slices is approximately 1 mm, the oxygen gradients that develop with distance from the 

surface are similar to those that develop in vivo with distance from perfused capillaries [18]. 

Moreover, tissues may be conveniently exposed to a cycle of ischemia and reoxygenation by pre-

incubating freshly excised tissue in humidified argon gas, prior to mincing and subsequent 

incubation in oxygen containing buffer. 

 

The production of tbiobarbituric acid reactive substances or malondialdehyde equivalents, for 

simplicity abbreviated here as MDA equivalents, provides a sensitive indicator of free radical 

dependent reoxygenation injury. Our previous studies with tissue slices [17] had shown that 

MDA equivalent production by postischemic rat liver and kidney is abolished by treatment with 

the iron chelator deferoxamine, the liposoluble, chain breaking antioxidant, BHT, and by 

methylene blue, which probably acts to inhibit production of superoxide by xanthine oxidase 

[19]. This simple system would thus appear to exhibit the classical features of reoxygenation 

injury as proposed by Saugstad [20] and McCord [1]--dependence upon enzymatically generated 

superoxide, upon the iron catalyzed Haber Weiss reaction, and upon free radical chain 

oxidations. Accordingly, we conducted the following study to determine the functional 

relationship between oxygen concentration during the post-ischemic period and one well-known 

indicator of reoxygenation injury. 

 

 

METHODS 

 

Materials 

 

TRIS buffer and 2-thiobarbituric acid were obtained from Sigma Chemical Company (St. Louis, 

MO 63178), trichloroacetic acid from Fisher Scientific Company (Fair Lawn, NJ 07410), and 

methylene blue, from Aldrich Chemical Company (Milwaukee, WI 53233). Deferoxamine, Lot 

#30315, was kindly provided by CIBAGEIGY Pharmaceuticals Division (Suffern, NY 10901). 

The TRIS-Ringer buffer solution consisted of 4.0 mM KC1, 100 mM NaCl, 2.0 mM CaCl2, 40 

mM TR1S buffer, and 200 mg/dL glucose, pH 7.4. TRIS buffer was chosen rather than 

phosphate because its solubility in the presence of calcium permitted a greater buffering capacity 

to neutralize lactic acid produced by tissues during ischemia than the usual phosphate buffers. 

 

Tissues 

 

Tissues were taken from 30 male Wistar rats which were anesthetized with sodium pentobarbitol 

(60 mg/ kg, i.p.). Rat liver and kidney were selected for study because they produce abundant 

MDA equivalents in this model of ischemia/reoxygenation [17], and so provide a good basis for 

the study of oxygen effects. The liver and kidneys were excised, and tissue samples of 

approximately 0.3-0.4 grams were then placed into stoppered 50 ml Erlenmeyer flasks 

containing argon saturated (anoxic) TRIS-Ringer solution. Liver and kidney tissues were 

separately divided among 9 flasks, making a total of 18 flasks, which included ischemic but not 

reoxygenated controls and eight flasks for each tissue that were resupplied with various amounts 

of oxygen at the end of ischemia. 
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Ischemia/Reoxygenation 

 

For the ischemic phase, the 50 ml Erlenmeyer flasks, with tissue samples and 3.9 ml of 

argonated TRIS-Ringer buffer were flushed with argon gas, re-stoppered, and kept in a warmed, 

37°C, non-shaking water bath for 50 min to create ischemia. The tissues were not minced or 

shaken at this time to minimize the diffusion of metabolites from the tissue into the media, which 

does not occur in vivo during ischemia. 

 

Tissue mincing and drug treatment 

 

After the 50 min of ischemia, the tissues were minced with iris scissors to a size of 

approximately 1 mm on a side. Mincing was done to provide greater surface area for subsequent 

oxygen diffusion during the reoxygenation phase and also to promote greater drug distribution 

into the tissue slices that were treated with drugs. In some experiments, deferoxamine or 

methylene blue was added prior to reoxygenation. These drugs were dissolved in 0.1 ml of TRIS 

Ringer buffer and added to the flasks to achieve a final concentration of deferoxamine 100 mg/L 

(150 M), or methylene blue 10 mg/L (27 M). Non-drug treated flasks received 0.1 ml buffer. 

After the addition of the treatment to each flask, the head spaces of the flasks were quickly 

flushed with argon gas. Because the density of argon is greater than that of oxygen, there was 

little contamination of the buffer and tissues with oxygen during the mincing and treatment 

phase. The flasks were then recapped, swirled gently, and returned to the 37°C water bath for 10 

min to allow drug diffusion into the tissue prior to reoxygenation. 

 

Reoxygenation 

 

After the 60 min of ischemic anoxia, a volume (V1) of argon was removed from each flask and a 

volume (V2) of oxygen gas was added so as to achieve a specified oxygen concentration ranging 

from 0 to 100%, and corresponding to calculated partial pressures of 0, 5, 10, 20, 40, 100, 250, 

500, and 700 mmHg. Argon was removed and oxygen was added via a stopcock and 18 gauge 

needle, inserted through the rubber stopper of each flask, to which a syringe could be attached. 

The correct volumes, V1 and V2 , of gases to withdraw and add back were calculated using the 

ideal gas law (PV = nRT).  

 

After introduction of oxygen, all flasks were returned to a 37°C shaking water bath for 60 min of 

reoxygenation. The PO2's within the flasks prepared by this procedure were checked by injecting 

the buffers into a Corning Model 165 pH Blood Gas Analyzer. Four samples were tested at each 

specified PO2. The relation between measured PO2 and calculated (target) PO2 is presented in 

Table 1. From the linear regression function for these data, the prevailing PO2 was calculated for 

all similarly prepared flasks. These measured values were used as the independent variable, PO2, 

in preparing plots. Metabolic oxygen demand of the tissues (about 0.2 ml O2/h) was negligible 

with respect to the amount of oxygen available in the flask, for all oxygen concentrations greater 

than 1%, hence we assumed that oxygen concentration in the flasks did not change as a result of 

tissue metabolism during the 1 h reoxygenation period. 
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Table 1. Target and Measured Oxygen Tensions in Experimental Flasks 

 

 
 

 

 

Thiobarbituric acid assay for malondialdehyde 

 

Malondialdehyde was measured by the spectrophotometric method of Buege and Aust [21]. 

Flask contents, including tissue and buffer were homogenized in a Teflon/glass homogenizer. 

The total homogenate was combined with 4.0 ml of TCA-TBA reagent [21] in a test tube and 

mixed thoroughly. Each tube was covered with a glass marble and heated for 15 min in a 

temperature controlled heating block (Dri-bath) at 90-95°C. After cooling, the flocculent 

precipitate was removed by centrifugation at 1500 g for 5 min. The absorbance of the 

supernatant was determined spectrophotometrically at 500, 530, and 560 nm against a blank 

containing 4 ml of TCA-TBA reagent, 3.9 ml buffer and 0.1 ml of the corresponding drug or 

buffer. Standard curves were prepared using authentic malonaldehyde (bis-dimethylacetal)  

[1,1,3,3-tetramethoxypropane], available from Aldrich Chemical Company, Inc. (Milwaukee, WI 

53233, Cat # 10,838-3). 

 

A simple double derivative technique [17, 22] was used to calculate the concentration of MDA 

equivalents in the spectrophotometer cuvet as 

 

  dbb2

AAA2
c

560500

560500530




 , 

 

where subscripts represent wavelengths in nanometers,  A  is absorbance, the constants b500 = 

A500/A530 for authentic MDA standard, and b560 = A560/A530 for authentic MDA standard,   is the 

molar extinction coefficient for authentic MDA (1.56 × 10
5
 M

1
cm

1
), and  d  is the light path 

length through the cuvet. This relationship, derived previously [17], provides a measure of 

concentration based upon the 530 nm peak of genuine MDA, which is insensitive to background 

interference that does not exhibit a peak at 530 nm. 
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Data analysis 

 

For each tissue type an analysis of variance (ANOVA) was run to test the null hypotheses that 

(1) MDA equivalent production was the same at all of the PO2's and (2) MDA equivalent 

production was the same for all drug treatments. The ANOVA was preceded by a Bartlett's chi-

square test for homogeneity of variance [23]. If the variances of compared data sets were not 

similar, a logarithmic transformation of the data was performed [24] and the ANOVA repeated 

on the transformed data. Specific comparisons were made using Duncan's multiple range test. A 

p-value of 0.05 was considered significant. 

 

 

RESULTS 

 

Figures 1 and 2 illustrate the effects of various PO2’s on the postischemic production of MDA 

equivalents in rat liver and kidney respectively. The data are plotted as mean  standard error for 

n = 10 organs in each group. In both liver and kidney of the rat, production of MDA equivalents 

increases sharply as PO2 increases from 0 to 50 mmHg, and then begins to plateau. MDA 

equivalent production was quenched in the methylene blue and deferoxamine treated tissues, 

compared to the untreated organs. In the untreated liver and kidney, all differences between 

reoxygenated and non-reoxygenated organs were statistically significant. Analysis of drug 

treatments showed that production of MDA equivalents in methylene blue and deferoxamine 

treated organs was significantly less than in untreated organs. 
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Fig. 1. Production of malondialdehyde equivalents (MDA) in rat liver slices during 1 h 

reoxygenation after 1 h warm ischemia at 37°C. Error bars represent  1 SEM. PO2, 

values plotted are measured levels determined during preliminary experiments (Table 

1) for each oxygen/argon mixture. Untreated liver generates MDA equivalents during 

reoxygenation in an oxygen dependent manner. Both methylene blue and 

deferoxamine strongly suppress MDA production. 
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Fig. 2. Production of malondialdehyde equivalents (MDA) in rat kidney slices during 

1h reoxygenation after 1 h warm ischemia at 37°C. Error bars represent  1 SEM. PO2 

values plotted arc measured levels determined during preliminary experiments (Table 

1) for each oxygen/argon mixture. Untreated kidney generates MDA equivalents 

during reoxygenation in an oxygen dependent manner. Methylene blue suppresses and 

deferoxamine abolishes MDA production. 
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DISCUSSION 

 

The present study illustrates the strong dependence of the formation of postischemic oxidation 

products, measured as MDA equivalents, upon the prevailing oxygen concentration. Preliminary 

computer modeling of this phenomenon by an approach previously described [25] suggested that 

in essence the oxygen dependence of membrane lipid peroxidation can be explained by a much 

simpler series of competing reactions in phospholipid membranes themselves. These reactions 

are as follows.  

 

 
 

where Ri is the rate of initiation (M/S), k values indicate rate constants for the bimolecular 

reactions (M
1

sec
1

), and LH indicates an oxidizable membrane lipid.  
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Swern [32] has given a general expression for the kinetics of such oxidations in which the 

oxidation rate is given by the expression 

 

 
 

in which hybrid constants k' and k" are defined as  

 

 

 
 

 

From this expression the shape of the function relating the rate of lipid oxidation to oxygen 

concentration, which is of immediate interest, can be expressed as a percentage of the maximal 

oxidation rate by the ratio 

 

 
 

in which the concentration of unsaturated lipids in membrane material per se can be estimated to 

be about 1 M from typical densities and molecular weights of membrane phospholipids and 

allowing about 30% of the interior membrane volume for proteins and non-oxidizable 

components. Then, taking the values for k2 through k6 just presented to obtain k" and plotting the 

results in relation to experimental data from the present study, one finds the relationships 

presented in Figure 3. On the whole, the shapes of the oxygen dependence curves that we 

obtained for liver and kidney experimentally are explained by the six-reaction model (dashed 

curve) for membrane lipid peroxidation within experimental error.  
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Fig. 3. Relative MDA equivalent (MDA) production as a function of oxygen tension 

obtained experimentally (solid curves) and theoretically (dashed curve), expressed as a 

percent of maximal response, assuming approximately 95% maximal response at 700 

mmHg. A conversion of 1 M oxygen = 0.7 mmHg partial pressure of oxygen was 

assumed in plotting the dashed curve, which was obtained from the expression  

r = 100 [O2]/(k" [LH] + [O2]), using a membrane compartment lipid concentration, 

[LH], of 1 M and a dimensionless hybrid constant, k" of 50 × 10
6

, as defined in the 

text. The oxygen effect is reasonably well predicted by the theoretical expression, which 

describes the balance of chain propagation and chain termination reactions in the 

membrane compartment. 
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Our interpretation of the observed oxygen effect in the tissue slice model is that it reflects the 

competition between chain propagation and chain termination reactions for lipid peroxidation 

within biological membranes. A related implication of this interpretation is that membrane lipids 

are indeed the major source of MDA-equivalents in this system, although it is well known that 

MDA-like materials can also be produced from the oxidation of nucleic acids, amino acids and 

certain complex carbohydrates [33-36]. The ability of the highly lipid soluble antioxidant, 

butylated hydroxytoluene (BHT), to abolish production of MDA equivalents under conditions of 

ischemia and reoxygenation identical to those of the present study [17] also suggests to us that 

most of the measured MDA-equivalents are coming from the lipid compartment. 

 

The pathophysiologic implication of the observed oxygen effect is that the critical extracellular 

PO2 necessary for reperfusion injury is relatively low. It we equate the oxygen concentration in 

our experimental incubation flasks with that in arterial blood, recognizing that diffusion into 

tissue must occur in each case, then about half the maximal effect is observed with a prevailing 

PO2 of only 40 mmHg. Since the normal arterial PO2 of a subject breathing room air is 

approximately 100 mmHg, this finding suggests the inevitability of some degree of membrane 

oxidation during reperfusion. We thus found no evidence for the existence of a therapeutic 

window of oxygen concentrations sufficient to restore aerobic metabolism after ischemia with 

minimal risk of reoxygenation injury.  

 

Indeed, our results are quite consistent with the proposition of Downey and coworkers [37] that 

reperfusion injury can occur without reperfusion in small myocardial infarcts supplied by 

tenuous collateral circulation. That is, even though a coronary artery occlusion is never re-

opened, oxygen radical injury may occur in the subepicardial regions and border zones of the 

resulting infarct, owing to residual oxygen delivery provided by collateral vessels. This 

proposition is supported by the clinical observation that plasma levels of MDA-like materials in 

patients with acute myocardial infarction, in the absence of thrombolytic therapy, are twice those 

of healthy subjects without infarction [38].  

 

Inhibition of MDA equivalent production in our tissue slice model, regardless of oxygen tension, 

by both deferoxamine and methylene blue is also interesting. This finding is consistent with a 

Haber-Weiss-Fenton mechanism for initiation of lipid peroxidation [39] as well as with the 

mechanism involving a ferrous-dioxygenferric chelate complex, proposed by Aust and 

coworkers [40-42], in which ferric iron must be partially reduced to the ferrous form, perhaps by 

superoxide.  
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We studied methylene blue because it is well absorbed into tissue slices [17] and because its 

mechanism of xanthine oxidase inhibition probably suppresses superoxide production by the 

enzyme without blocking oxidation of hypoxanthine or xanthine or formation of urate [19, 43, 

44]. The proposed chemistry is as follows. Methylene blue competes with molecular oxygen to 

accept electrons from xanthine oxidase, forming leukomethylene blue. The leukomethylene blue 

promptly autoxidizes back to the blue form with production of hydrogen peroxide directly, 

bypassing the formation of superoxide, as has been shown in vitro in the presence of 

cytochrome-c and oxygen [45]. Thus the net reaction in the presence of both xanthine oxidase 

and methylene blue is  

 

xanthine + O2 + 2 H
+
  uric acid + H2O2. 

 

Assuming this mechanism, one can interpret our results with methylene blue as further 

circumstantial evidence that both superoxide and xanthine oxidase are involved in postischemic 

lipid peroxidation. Further, the importance of superoxide as a reductant of chelated ferric iron 

[46] is indirectly confirmed, since the presumed excess H2O2, alone is inadequate to induce 

formation of MDA-like material. 

 

 

CONCLUSION 

 

This report characterizes experimentally the dependence of postischemic lipid peroxidation, 

indicated by formation of malondialdehyde-like materials in liver and kidney tissue, upon 

oxygen concentration, and suggests that the observed effect is explained fundamentally by the 

balance of chain propagation and chain termination reactions for free radical mediated lipid 

peroxidation within biological membranes. The process is clearly dependent upon the availability 

of oxygen and iron, and may also require superoxide production by xanthine oxidase or a related 

enzyme in rat liver and kidney. 
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