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ABSTRACT 

 

Animal studies and preliminary clinical observations suggest that the addition of interposed 

abdominal compressions (IAC) to ventilation and chest compression of standard 

cardiopulmonary resuscitation (CPR) augments blood flow, blood pressures, and immediate 

survival. To investigate the physical basis for enhanced circulation during IAC-CPR, we 

developed an electrical model of the circulation. Heart and blood vessels were modeled as 

resistive-capacitive networks, pressures as voltages, blood flow as electric current, blood inertia 

as inductance, and the cardiac and venous valves as diodes. External pressurization of the heart 

and great vessels, as would occur in CPR, was simulated by application by half-sinusoidal 

voltage pulses between vascular capacitances and ground. Closed-chest CPR was simulated by 

pressurization of all intrathoracic capacitances. IAC was simulated by similar pressurization of 

the inferior vena cava and abdominal aorta, 180 degrees out of phase with chest compression. 

During simulation of CPR, IAC improved cranial and myocardial perfusion at all levels of chest 

compression pressure by amounts linearly related to peak abdominal pressure, suggesting that 

the abdomen can function as a second, independent blood pump during CPR. Brain and heart 

flow were improved further during simulated vasoconstriction in kidneys, abdominal viscera, 

and extremities. Based on the fundamental properties of the cardiovascular system represented in 

the model, abdominal counterpulsation provides a rational basis for flow augmentation during 

CPR. 
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INTRODUCTION 

 

Manual abdominal counterpulsation involves pressing on the abdomen of a supine subject with 

one or both hands in counterpoint to ventricular ejection [1]. This manual technique is a 

noninvasive analog of intra-aortic balloon pumping, a mechanical technique in which inflation of 

an intra-aortic balloon is triggered during ventricular diastole to expel blood from the aorta into 

peripheral vascular beds. In animals with depressed cardiac output, manual abdominal 

counterpulsation augments diastolic pressure in the thoracic aorta and improves coronary flow [l, 

2]. 

 

This noninvasive technique is also applicable during circulatory arrest supported by 

cardiopulmonary resuscitation (CPR). Ralston [3] and Voorhees [4] and their coworkers in our 

laboratory have found that, compared to standard CPR, CPR with manually interposed 

abdominal compressions (IAC) generates approximately twice the diastolic arterial pressure, 

cardiac output, and oxygen uptake in dogs with electrically induced ventricular fibrillation. In 

these studies abdominal pressure, sensed in the bladder of a blood pressure cuff placed over the 

mid-abdomen, was always less than 150 mm Hg; none of 20 dogs suffered grossly observable 

intra-abdominal injury. Moreover, stimulation of esophageal regurgitation by abdominal 

counterpulsation has not been reported by any who have studied it. These observations suggest 

that IAC could be an effective and safe modification of basic life support. 

 

Confirmation of these promising results in the dog model of CPR is needed in other test systems, 

as are more comprehensive studies to determine how the technique can be applied optimally. For 

example, the shape of the curve relating flow augmentation to peak abdominal pressure is not yet 

known. Moreover the amount of flow augmentation may vary, depending on the physiologic 

state of the subject, particularly with regard to the degree of peripheral vasodilation, the 

competence of the cardiac and venous valves, and the relative compliance of veins and arteries. 

Each of these factors has been reported as crucial to the effectiveness of closed-chest cardiac 

massage, especially in producing coronary artery blood flow [5-9]. Quite possibly IAC may be 

relatively ineffective when peripheral resistance is low, when cardiac or venous valves are 

incompetent, or when arterial or venous compliance is low, and thus IAC may be limited in its 

clinical application.  

 

These physiologic variables are examined in this study of an electrical model of the circulation. 

Electrical models of the circulation permit easy testing of assumptions and straightforward 

manipulation of system parameters to define the conditions for theoretically optimal flow. 

Because such models are much simpler than intact animals, evaluation and understanding of their 

behavior are more straightforward, and it is much less likely that the observed results are due to 

the action of uncontrolled and unappreciated variables. In particular, if flow augmentation by 

abdominal counterpulsation can be demonstrated in an elementary electrical model of the 

circulation, then it is likely to represent a species-independent improvement in technique based 

on the general properties of circulatory systems represented in the model. 
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Accordingly, we conducted our study with the following objectives: 

 

1. To investigate the effects of IAC during CPR in an electrical model of the circulation; 

 

2. To characterize flow augmentation during IAC as a function of the peak value of abdominal  

    counterpressure; 

 

3. To study the effects of raised or lowered peripheral vascular resistance during CPR with IAC; 

 

4. To study the effects of altered arterial and venous compliance during CPR with IAC; and 

 

5. To study the effects of valve competence versus incompetence during CPR with IAC. 

 

 

MATERIALS AND METHODS 

 

Circulatory Model 

 

To conduct this research we constructed the simplified electrical analog of the circulation that is 

shown (Figure 1). The great vessels and cardiac chambers are modeled as capacitors, and 

capillary beds are modeled as resistors. The flow of electric current around the circuit (arrows) 

represents the flow of blood, and the action of the arterial and venous inductors models the 

inertance of blood columns in the larger, longer vessels. Normal cardiac and venous valves are 

modeled as germanium diodes, which permit flow of current in only one direction. Definitions of 

the symbols for circuit elements are provided in the figure legend. 

 

Application of external pressure to blood-containing structures was modeled by the application 

of voltage pulses between specific capacitors and ground potential, which represents zero 

(ambient atmospheric) pressure. The conversion factors for pressure to voltage, flow to current, 

compliance to capacitance, and inertia to inductance are listed in Table 1. The conversion factors 

for capacitance and inductance were scaled further so that the time course of current flow in the 

model during one-tenth millisecond simulated the flow of blood through the vascular tree in one 

second. Thus a heart rate of 1/sec is represented by a frequency of 10 kHz in the model. This 

frequency transformation by a factor of 10,000 permitted the use of routinely available electronic 

hardware, avoiding the need for either extremely large capacitors and inductors or extremely 

high voltages. 

 

Current leaving the right heart passes through the pulmonary system, first through the 

pulmonary-artery capacitance, then the pulmonary capillary resistance, and then the pulmonary 

venous and left atrial capacitances, before entering the left ventricle (Figure 1). Current leaving 

the left heart through the aortic valve can return to the right atrium by one of four pathways -- 

representing the vascular beds of the head and neck, myocardium, abdomen, and lower 

extremities. 
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Fig. 1. Circuit diagram of the model. Elements corresponding to vessels in the head, 

thorax, abdomen, and legs are identified. Capacitors (-||-) model large vessel 

compliance; inductors (-oooo-) model blood inertia; resistors (-/\/\/\/\-) model capillary 

beds; and diodes (-|>|-) model valves. Voltage sources (--O--) are applied between earth 

ground and the thoracic and abdominal capacitors to model chest and abdominal 

compression. Arrows indicate direction of current flow. Abbreviations identifying 

specific vascular elements in alphabetical order are: AA, abdominal aorta; A, aortic 

valve; ABD, abdominal capillaries; AO, thoracic aorta; CAR, carotid artery; COR, 

coronary capillaries; CR, cranial capillaries; FEM, femoral arteries or veins; IVC, 

inferior vena cava; JUG, jugular veins; LA, left atrium; LO EXT, lower extremity 

capillaries; LV, left ventricle; M, mitral valve; N, Niemann's valve at the thoracic inlet; 

P, pulmonic valve; PA, pulmonary artery; PUL, pulmonary capillaries; PV, pulmonary 

veins; RA, right atrium; SVC, superior vena cava; T, tricuspid valve; and V, venous 

valves in legs. 
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Abdominal and thoracic components of the aorta and vena cava were specified as discrete 

elements in the model to allow simulation of abdominal compression. The coronary circulation 

was modeled as a simple resistive pathway between the thoracic aorta and the right atrium. 

Separate voltage sources could be applied between ground and the thoracic and abdominal 

capacitors to mimic external compression of these structures during CPR. Similar electrical 

models of the circulation have been described by Guyton and coworkers [10] and by others [11-

14]; none, however, has used such a model to study CPR. 

 

 

TABLE 1. Cardiovascular variables and their electrical analogs 

 

 
 

 

One particular element was added to the model especially for CPR simulations. This element is 

Niemann's valve (denoted N in Figure 1), a functional venous valve at the level of the thoracic 

inlet between the jugular vein and the superior vena cava. This valve has been demonstrated by 

Niemann and Rosborough et al. [15, 16] as well as by Voorhees [17] and by Rudikoff [18] and 

their coworkers, to be of functional importance during CPR in dogs and in at least one human 

subject. This particular venous valve remains open during normal quiet breathing, but is closed 

by pulses of high intrathoracic pressures such as are generated during cough and during CPR. 

Niemann's valve appears responsible for the diminished venous pressure pulses measured in the 

jugular veins during CPR as compared to pressure pulses in other systemic veins. 

 

In general the model was planned deliberately to be uncomplicated in order to maintain 

simplicity of design and to allow straightforward interpretation of results. The influence of 

myocardial wall tension on coronary vascular resistance was omitted, because there are no data 

available to specify such an effect during CPR. Although the dynamic compliance of arteries and 

veins is known to decrease measurably as the vessels become more distended, the vascular 

compliances of the model were constant during any one simulation. (Altered vascular 

compliance was simulated separately by changing vascular capacitance and repeating the 

simulation.) 
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Fig. 2. Specification of model components. 
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Fig. 3. Oscilloscope trace showing pressure (voltage) waveforms applied to the thorax 

and abdomen of the model during simulation of closed-chest IAC-CPR. Maximal peak 

pressures representing 120 mm Hg are shown. The entire horizontal time base 

represents one compression cycle. 

 

 

An interstitial fluid compartment was not modeled, so that any exchange of fluid between 

intravascular and extravascular compartments during 20 minutes of CPR was not accounted for 

in the simulations. Finally, the action 'of the renin-angiotensin system in shock was not included. 

Rather, the model was limited to the "plumbing aspects" of the circulation. It was intended to 

simulate the movement of blood through resistive elements connected by elastic conduits in a 

closed circuit. Through manipulation of these primary physical elements, we sought to determine 

whether there is a way to produce a more effective artificial circulation than is achievable with 

standard CPR.  

 

On the basis of standard published descriptions of the normal cardiovascular system of a 70-kg 

man, it was possible to assign specific numerical values to all of the model components (Table 2) 

according to textbook principles of physiology (Figure 2). Off-the-shelf components with these 

values (within a tolerance of  10%) were then included in the model (Figure 1). This initial 

configuration was intended to represent an otherwise healthy individual just prior to onset of 

sudden cardiac death and CPR. Unfortunately, data specifying the magnitudes of vascular 

resistances and compliances during progression of actual cardiac arrest and CPR in man are not 

available. Therefore, as a working approach to the modeling problem, we began with the 

presumed normal values (Table 2), and then performed simulations with a range of other values 

to answer specific questions. 
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TABLE 2. Initial normal values of 25 passive components of the model 
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Operation of the Model 

 

In order to simulate cardiac arrest and CPR with our model, first it was necessary to specify the 

mechanism by which blood flow is generated during CPR. The mechanism believed to generate 

forward blood flow in most animal models [19] and in most human patients [20, 21] is termed 

the "thoracic pump mechanism." The thoracic pump mechanism of closed chest CPR [8, 22, 23] 

involves pressurization of the entire pulmonary vascular bed in such a way as to squeeze blood 

from the lungs, through the left heart, and into the periphery--even in the absence of direct heart 

compression. Left heart compression is not required, and the left heart is said to function as a 

"passive conduit [24]. To model thoracic pump CPR, scaled half-sinusoidal voltage pulses were 

applied to the four cardiac chambers, superior vena cava, aorta, and pulmonary arterial and 

venous capacitances together. The cardiac or CPR cycle length was always 0.75 second (75 sec 

in the model), corresponding to a compression rate of 80/min, and the duty cycle of chest 

compression was 50%. To model interposed abdominal compressions, half-sinusoidal voltage 

pulses exactly 180 degrees out of phase with the thoracic pressure pulses were applied between 

ground and the abdominal aortic capacitance and the abdominal venous capacitance (Figure 3). 

Values of abdominal counterpressure ranging from zero to 120 mm Hg were simulated, and the 

resultant flows were compared with those developed without abdominal counterpulsation. 

 

Measurement of Pressures and Flows 

 

Intravascular pressures in the model were determined by measuring the voltage with respect to 

ground potential with the aid of a Tektronix Model P6013A high-voltage probe, connected to a 

Tektronix Model D15 storage oscilloscope (Tektronics, Inc, Beaverton, OR). The relatively high 

100-M input impedance of the P6013A probe was required to ensure that leakage of charge 

(blood volume) through the probe to ground was negligible during the 120 msec necessary to 

simulate 20 minutes of CPR. In a typical experiment all elements of the model were charged to 

the same reference potential corresponding to the zero-flow intravascular pressure. This zero-

flow potential represents the equal pressure (about 20 mm Hg) that would exist in arteries and 

veins shortly after onset of ventricular fibrillation without CPR. Then thoracic and abdominal 

voltage sources were activated and the desired pressure waveform was recorded on the D15 

storage oscilloscope with a sweep speed of 20 sec per division. 
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Fig. 4. Oscilloscope trace showing pressures in the thoracic aorta (AO) and superior 

vena cava (SVC) during simulation of thoracic pump CPR without (A) and with (B) 

interposed abdominal compressions (IAC). Peak chest pressure was 80 mm Hg and 

peak abdominal counterpressure was 100 mm Hg in this simulation. The horizontal 

time base represents one complete cycle. The major effects of IAC occur during 

diastole (chest recoil); aortic diastolic pressure is raised to a greater extent than is 

central venous pressure. 
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Fig. 5. Effects of varying abdominal counterpressure on myocardial (coronary) flow 

for various levels of chest compression pressure during simulated cardiac arrest and 

CPR. Pc represents peak value of chest compression pressure and Pa represents peak 

value of abdominal counterpressure. Data points represent measured values and 

straight lines represent the multiple linear regression of the form, flow =  Pc +  Pa, 

with ( = 0.90 and  = 0.40 mL/min/mm Hg. 
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Fig. 6. Effects of varying abdominal counterpressure on cranial (brain) flow for 

various levels of chest compression pressure. Details are similar to those of Figure 5.  

 

(A) Simulations were performed with a functional Niemann's valve at the level of the 

thoracic inlet, in which case supranormal flows were possible. The multiple linear 

regression coefficients are  = 6.14 and  = 1.68 mL/min/mm Hg. 
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(B) Simulations performed with an incompetent Niemann's valve at the level of the 

thoracic inlet, in which case the multiple linear regression coefficients were reduced 

to = 3.45 and = 1.06 mL/min/mm Hg. 

 

 

 

Flow in the cranial, coronary, abdominal, and lower extremity vascular beds was determined by 

measuring the mean voltage developed across the vascular resistances and applying Ohm's law. 

Specifically if resistance (R) represents a capillary bed, and 1ê  is the mean voltage measured 

with respect to ground on the arterial side of the resistor during one simulation, and 2ê  is the 

mean voltage measured with respect to ground on the venous side of the resistor during an 

identical simulation, then the simulated flow through the capillary bed was calculated as: 

 

Flow =   R/êê 21  . 

 

For such calculations mean voltage was determined as the difference between the waveform 

recorded with the oscilloscope in the direct coupled mode and the steady-state waveform with 
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zero mean value recorded with the oscilloscope in the AC coupled mode. Cardiac output was 

determined as the sum of flows in all four peripheral vascular beds under any given test 

condition. 

 

Data Analysis 

 

In order to separate the effects of thoracic and abdominal compression pressure on peripheral 

perfusion of the various vascular beds, a multiple linear regression analysis was performed on 

flow data obtained with various combinations of chest and abdominal pressure. Multiple linear 

regression analysis was performed to fit a linear equation of the following form: 

 

Flow =  [chest pressure] +  [abdominal pressure] 

 

by the least-squares method. The regression coefficients  and  were found by solving the 

normal equations: 

 

   ii

2

i1i yxxzx  

 

and 

 

   2

iii1i yyxzy , 

 

where z is flow, x is chest pressure, and y is abdominal pressure [25]. Then the overall 

effectiveness of abdominal counterpulsation under various simulated physiologic conditions 

could be compared in terms of the value  and/or the ratio /. 
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Fig. 7. Effects of varying abdominal counterpressure on artificial cardiac output for 

various levels of chest compression pressure during simulated cardiac arrest and CPR. 

Details are similar to those of Figure 5. Data points represent summed values for all 

vascular beds with Niemann's valve competent. The multiple linear regression 

coefficients are  = 14.9 and  = 7.1 mL/min/mm Hg. 
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RESULTS 

 

Aortic and central venous pressures simulated for thoracic pump CPR are illustrated (Figure 4), 

with model parameters as indicated (Table 2) and blood volume of 5,000 mL. The full horizontal 

scale represents one compression cycle. Standard CPR without (Figure 4A) and with (Figure 4B) 

100 mm IAC applied to inferior vena cava and abdominal aorta during the second half of the 

cycle are represented. During the chest compression phase, aortic and central venous pressures 

were similar. During the chest recoil phase (diastole), an arteriovenous pressure gradient existed, 

which was augmented during abdominal counterpulsation. 

 

Effect of Abdominal Counterpressure 

 

The families of curves shown (Figures 5-7) reveal the general dependence of blood flow to the 

myocardium and brain, as well as total flow (cardiac output) on both chest and abdominal 

pressure in this model. The families of straight lines in each figure were computed from multiple 

regression analysis, and show that flow increased as a function of both chest pressure (Pc) and 

abdominal counterpressure (Pa) as described by the following expression: 

 

Flow = Pc + Pa. 

 

Even with zero chest pressure (bottom lines), abdominal pulsation generated measurable flow. 

Because the data points for each chest pressure fell along parallel lines, it appears that blood flow 

can be generated by two independent mechanisms (the "thoracic pump" and the "abdominal 

pump"), and that the results are additive. The values of brain perfusion with or without 

abdominal counterpulsation were dependent on the competence of Niemann's valve (Figures 6A 

and 6B). When Niemann's valve was competent, protecting the jugular venous bed from the high 

intrathoracic pressure pulses, then cranial flow exceeding 50% of normal could be established. 

When Niemann's valve was incompetent, substantially less artificial circulation to the brain 

could be generated. In either case, however, abdominal counterpulsation improved blood flow to 

the brain in a predictable way. 

 

Artificial cardiac output generated during CPR was similarly dependent on both chest and 

abdominal pressure (Figure 7). With the combination of maximal chest and abdominal pressures 

(each 120 mm Hg), blood flows approaching 50% of normal resting levels could be simulated in 

the model when normal values of peripheral resistance were simulated. 

 

Effect of Peripheral Vascular Resistance 

 

The effectiveness of both standard CPR and IAC-CPR was found to be critically dependent on 

caudal (peripheral) vascular resistance. As shown (Figure 8A), coronary flow was enhanced 

greatly in the presence of high peripheral vascular resistance in the abdomen and lower 

extremities. In these simulations peripheral resistances changes were modeled by first increasing 

values of resistance for abdominal viscera and extremities by multiples of 2, 5, 10, and 20, and 
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then by decreasing values of these resistances by factors of 1/2, 1/5, 1/10, and 1/20. Coronary 

and cranial resistances were maintained at previous normal levels. 

 

 

 
 

Fig. 8. Simulated effects of epinephrine produced by varying vascular resistance of 

abdominal and lower extremity beds (caudal resistance). Cranial and myocardial 

resistances were not changed. Data points represent measured values; 1.0 on the 

horizontal axis (log scale) represents normal peripheral resistance (Table 2). Smooth 

curves are hand-drawn trend lines. (A) Coronary flow was nearly doubled by 

abdominal counterpulsation (Pa = 100) in the presence of supranormal peripheral 

vascular resistance, and flows approaching 50% of normal resting myocardial 

perfusion were obtained. 
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Fig 8 (B) Brain flow was also enhanced with peripheral vasoconstriction. Solid curves 

were determined with Neimann's valve competent, dashed curves with Niemann's valve 

incompetent. Brain perfusion approaching normal resting levels was possible in the 

model when epinephrine effect was combined with abdominal counterpulsation, a 

result that has recently been confirmed experimentally [30]. 

 

 

The sigmoid curves (Figure 8A) indicate that the maximal beneficial effect of vasoconstriction 

was obtained when peripheral resistance was five to ten times normal. Under these circumstances 

there was a synergistic effect of vasoconstriction and abdominal counterpulsation. In the 

presence of peripheral vasoconstriction, abdominal counterpulsation at 100 mm Hg (upper curve) 

nearly doubled coronary perfusion. 
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Similar results were obtained for brain perfusion (Figure 8B). When Niemann's valve was 

functional (solid curves), supranormal flows were obtained in the model with the combination of 

abdominal counterpulsation and peripheral vasoconstriction. When Niemann's valve was short-

circuited and made incompetent, cranial perfusion generally was reduced, but still was 

augmented by the combination of abdominal counterpulsation and peripheral vasoconstriction. 

 

Venous versus Arterial Compliance 

 

Venous capacitance was found to be relatively unimportant in determining flow (Table 3); aortic 

compliance, however, was found to be quite important (Table 4). Coronary flow during IAC-

CPR, for example, was greater when abdominal aortic compliance was relatively high and/or 

thoracic aortic compliance was relatively low. Coronary flow during IAC-CPR was less when 

abdominal aortic compliance was relatively low and/or thoracic aortic compliance was relatively 

high. Interestingly, reduced compliance in both the abdominal and thoracic portions of the aorta, 

as would occur with generalized stiffening of the aorta by atherosclerosis, caused relatively slight 

reduction in the effectiveness of IAC-CPR. 

 

 

TABLE 3. Effects of varying venous compliance on coronary and cranial flows (mL/min) 

 

 
 

 

 



 

20 

 

TABLE 4. Effects of varying aortic compliance on coronary flow (mL/min) 

 

 
 

 

 

Valvular Function 

 

In addition to Niemann's valve, the cardiac valves were evaluated to determine whether their 

competence or incompetence altered flow during IAC-CPR. In general, a competent aortic valve 

was as effective as all four cardiac valves in maintaining cardiac output and coronary flow. Any 

combination of competent valves that included the aortic valve also produced maximal or nearly 

maximal blood flow. 

 

 

DISCUSSION 

 

By modeling a complex biological system appropriately, an investigator can explore the 

consequences of certain fundamental assumptions. In this study we assumed that external 

pressures can impel blood to flow through resistive-capacitive networks forming a closed circuit 

similar to the mammalian circulatory system. We found that rhythmic external pressure on 

"thoracic" structures could produce an artificial circulation, which was augmented substantially 

by the addition of rhythmic compression to the "abdominal" structures. During thoracic pump 

CPR, which is believed to be operative in most human patients [23], abdominal compression at 

100 mm Hg caused a predictable increase in total blood flow, brain flow, and coronary flow 

during simulated CPR. High peripheral resistance favored flow to the heart and brain. 

 

The results of the regression analysis presented (Figures 5-7) suggest that two independent 

mechanisms--a thoracic pump and an abdominal pump--can be brought into play to support the 

circulation during manual CPR. The action of the two mechanisms appears to be strictly additive 

for a given level of peripheral vascular resistance. Even when chest compression is highly 

effective, abdominal counterpulsation can further augment flow. When chest compression is 

ineffective, abdominal compression can offset the deficit in flow and increase perfusion by a 

large percentage. Indeed Rosborough and coworkers [26] have shown in intact dogs that blood 

flow can be generated during ventricular fibrillation with ventilation and abdominal compression 

alone. 



 

21 

 

Magnitude of Abdominal Pressure 

 

The effectiveness of the abdominal pump mechanism depends on the magnitude of abdominal 

counterpressure. In the simplified electrical analog that we have studied, the relationship is a 

linear one, and one may infer from our results that application of very large abdominal pressures 

may be used to generate normal or even supranormal perfusion. Such extreme extrapolation is 

probably erroneous for two distinct reasons: the risk of causing abdominal trauma, and the 

plateau effect associated with collapse of the aorta and abdominal veins in vivo. 

 

Considering the danger of abdominal trauma, one must realize that the total force required to 

produce enhanced perfusion, roughly 100 mm Hg pressure on the mid-abdomen, is nearly the 

same as that required to produce effective sternal compression. For example if one considers the 

area of two spread hands applying abdominal pressure to be 355 cm
2
 (18.3 cm x 18.3 cm), the 

total force required to generate 100 mm Hg abdominal pressure is exactly 100 lb. As a rule of 

thumb, therefore, one can estimate that application of one pound of force would be required to 

produce 1 mm Hg manual counterpressure. Although the surface area over which this force is 

distributed is relatively large compared to the area of the sternum that is compressed during CPR, 

and although no injury to abdominal viscera has been reported in animal studies of IAC-CPR [3, 

4]; application of forces in excess of 100 lb must at some point cause abdominal trauma, and also 

would be difficult to achieve by smaller individuals weighing less than 100 lb themselves. 

 

A second reason for avoiding very high abdominal pressures is that beneficial flow augmentation 

is likely to be limited by collapse of the abdominal aorta. If one supposes that the mechanism for 

flow augmentation involves blood being squeezed from the abdominal aorta into peripheral 

vessels to provide added stroke volume, it is clear that abdominal pressure in excess of that 

required to empty the abdominal aorta of blood will not further improve flow. In our modeling 

studies, we can calculate that the increase in effective stroke volume caused by 100 mm Hg 

abdominal counterpressure is equal to the additional cardiac output (710 mL/min) divided by the 

compression rate (80/ min), or 9 mL/cycle. This volume is likely to be less than the volume 

contained in the abdominal aorta of an adult human being at the beginning of abdominal 

compression. If one were to apply much higher pressures to the abdominal compartment of the 

model, however, the calculated increase in stroke volume for the electrical model might be 

greater than the expected abdominal aortic volume, and thus it would be unlikely that flow 

augmentation to such a degree could be obtained in vivo. Accordingly we believe that results 

obtained in the model with abdominal counterpressure in the range of 100 to 120 mm Hg will 

correspond to the maximal flow augmentation that one can reasonably expect in clinical practice. 
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Myocardial and Cranial Perfusion 

 

Perfusion of the myocardium during prolonged CPR seems to be especially important for 

immediate success of resuscitation. Recently one of us (SHR) has found that myocardial flow is 

an excellent predictor of survival after 20 minutes of CPR in dogs [7]. In particular, when 

myocardial flow was greater than 25 mL/min per 100 g tissue, all animals survived; when 

myocardial flow was less than 15 mL/min/100 g, no animal survived experimental CPR. There 

may be a threshold of myocardial perfusion near 20 mL/min/100 g that must be exceeded for 

effective resuscitation, in which case even modest improvements in coronary perfusion produced 

by abdominal counterpulsation could be lifesaving. 

 

Several investigators, including Ditchey [9] and Luce [27] and their coworkers, have expressed 

some concern that the coronary vascular bed can be perfused at all by conventional closed-chest 

CPR. Granted the thoracic pump mechanism, in which systolic arterial and venous pressures are 

essentially equal in the aorta and right atrium, coronary flow can occur only during diastole (i.e. 

chest recoil). Our modeling studies confirm that with the closed-chest thoracic pump mechanism 

the heart can be perfused during the chest recoil phase, provided that sufficiently high 

intrathoracic pressure pulses are generated. However, if inadequate flow is generated by thoracic 

compression alone (as might occur in stiff-chested or barrel-chested individuals), abdominal 

counterpulsation at 100 mm Hg may improve coronary perfusion substantially. Such 

improvement seems especially likely when one includes in the analysis the critical closing 

pressure of the myocardial capillary beds. In this case the aorto-atrial pressure difference must 

exceed a certain critical value (10 to 15 mm Hg) before any perfusion occurs. 

 

The importance of peripheral vasoconstrictors in enhancing coronary and cerebral perfusion, as 

classically described by Redding and Pearson [5, 6, 28], was confirmed emphatically in our 

model. Epinephrine especially, which is likely to produce coronary vasodilation as well as 

peripheral vasoconstriction [29], is likely to produce an effect in vivo similar to selective caudal 

vasoconstriction in the electrical model. In general, peripheral vasoconstrictors seem to be 

synergistic with abdominal compression, and combined use of the two therapeutic adjuncts is a 

strategy ripe for further investigation. Indeed, a study by Walker et al. [30] in dogs has 

demonstrated normal resting brain flows, measured by a thermal clearance technique, during 

experimental CPR with abdominal counterpulsation at 100 to 120 mm Hg and epinephrine 

infusion at 10 mg/kg/min. 

 

Of course any physical or electrical model such as that described in our study embodies a 

compromise between the advantages of simplicity and the advantages of complexity. Simple 

models are easy to interpret and understand. They succeed if they capture the essence of the 

phenomena under study. The quantitative predictions of such models can always be improved by 

making them more complex. Our model, for example, could have been made more realistic by 

including the differences between systolic and diastolic compliances of the cardiac chambers and 

aorta, the volume dependency of venous compliance, the critical closing pressures of myocardial 

and other capillary beds, the partial transmission of the intrathoracic pressure to the cranial 

cavity with resultant effects on cerebral perfusion pressure, the partial transmission of 

intrathoracic pressure to the abdominal cavity through motion of the diaphragm and vice versa, 
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the tendency of the inferior vena cava to collapse during chest and/or abdominal compression, 

and the influence of endogenous catecholamines, the metabolism of which is specified as a 

function of blood flow through the lungs and liver. These and other refinements of the model 

have been suggested by well-meaning colleagues. Our own bias, however, is strongly in favor of 

simpler models that provide insight into physical mechanisms, because the inclusion of each 

refinement would have required yet another assumption, and because IAC-CPR has already been 

studied in live animal models that include all of the previously mentioned complexities. 

 

 

CONCLUSION 

 

Our electrical simulations identify a theoretical and physical basis for the beneficial effects of 

abdominal counterpulsation and identify the abdominal pump as an independent flow generating 

mechanism during CPR. Because preliminary trials of IAC-CPR in 20 animals [3, 4] have shown 

no evidence for esophageal regurgitation, liver laceration, or other abdominal trauma as a result 

of manual abdominal compression at 120 mm, the theoretical benefits of IAC-CPR are likely to 

be achievable in vivo with acceptable risk. Enhancement of vital organ perfusion seems to be 

independent of peculiar anatomical differences between man and experimental animals, because 

the electrical model is totally independent of chest geometry. If IAC-CPR can be performed in 

human beings with low risk of abdominal injury, it would seem to be a valid and simple means 

of improving the effectiveness of CPR in a manner entirely compatible with existing protocols 

for basic and advanced life support, and without the use of additional mechanical equipment. 
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