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RESEARCH ARTICLE
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Abstract
Whole genome sequencing and analyses of Ureaplasma diversum ATCC 49782 was

undertaken as a step towards understanding U. diversum biology and pathogenicity. The

complete genome showed 973,501 bp in a single circular chromosome, with 28.2% of G+C

content. A total of 782 coding DNA sequences (CDSs), and 6 rRNA and 32 tRNA genes

were predicted and annotated. The metabolic pathways are identical to other human urea-

plasmas, including the production of ATP via hydrolysis of the urea. Genes related to patho-

genicity, such as urease, phospholipase, hemolysin, and a Mycoplasma Ig binding protein

(MIB)—Mycoplasma Ig protease (MIP) system were identified. More interestingly, a large

number of genes (n = 40) encoding surface molecules were annotated in the genome (lipo-

proteins, multiple-banded antigen like protein, membrane nuclease lipoprotein and variable

surface antigens lipoprotein). In addition, a gene encoding glycosyltransferase was also

found. This enzyme has been associated with the production of capsule in mycoplasmas

and ureaplasma. We then sought to detect the presence of a capsule in this organism. A

polysaccharide capsule from 11 to 17 nm of U. diversum was observed trough electron

microscopy and using specific dyes. This structure contained arabinose, xylose, mannose,

galactose and glucose. In order to understand the inflammatory response against these sur-

face molecules, we evaluated the response of murine macrophages J774 against viable

and non-viable U. diversum. As with viable bacteria, non-viable bacteria were capable of

promoting a significant inflammatory response by activation of Toll like receptor 2 (TLR2),
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indicating that surface molecules are important for the activation of inflammatory response.

Furthermore, a cascade of genes related to the inflammasome pathway of macrophages

was also up-regulated during infection with viable organisms when compared to non-

infected cells. In conclusion, U. diversum has a typical ureaplasma genome and metabo-

lism, and its surface molecules, including the identified capsular material, represent major

components of the organism immunopathogenesis.

Introduction
Ureaplasma diversum is a bovine ureaplasma that was first isolated in 1969. Initially, it was
defined as a non-pathogenic species, but recently it has been shown to cause damage to bovine
tissue cells and organs [1–9]. U. diversum is frequently found in the genital tract of cattle and is
associated with major genital disorders in these animals [5, 10, 11]. Cows infected with U.
diversum have shown infertility, placentitis, fetal alveolitis, and abortion or birth of weak calves
[7, 12, 13]. In bulls, U. diversummay cause low sperm motility, seminal vesiculitis, and epididy-
mitis [4, 6, 9, 13]. However, despite the description of these possible causal associations, the
relationship of U. diversum and reproductive disorders in bovine remains controversial, mainly
because high rates of positive vaginal cultures were also detected in animals with normal repro-
ductive rates [14].

U. diversum is a facultative intracellular microbe, i.e. can be detected inside cells or adhered
to their surfaces [15]. Recently, we have shown that the invasion of HEp-2 cells by this organ-
ism may lead to apoptosis [1], but as this phenomenon varied overtime. Thus, it is believed
that U. diversum exerts a temporal modulation of the host programmed cell death. Invasion of
bovine spermatozoids by U. diversum has also been linked to low sperm viability, suggesting
that U. diversum may contribute to the death of these cells [4]. U. diversum also was capable of
inducing significant TNF-alpha production in the uterus of experimentally infected mice [16],
which indicates that the presence of this microorganism in the reproductive tract of females
may significantly alter the homeostasis of the uterus microenvironment. Nevertheless, the
molecular mechanisms by which this organism exerts its virulence and pathogenicity on such
cells and tissues are mostly unknown [1, 15, 17, 18]. Very little genetic information of this bac-
terium is currently available [19, 20]. Therefore, the whole genome sequencing of U. diversum
was undertaken as the first step towards understanding the mechanisms by which this micro-
organism causes disease and establishes infection, as well as to gain new insights into the bio-
chemical pathways.

Results and Discussion

General genome features
The general genome features of U. diversum ATCC 49782 are summarized in Table 1 and Fig
1. The complete genome contains 973,501 bp in a single circular chromosome, with a low G+C
content of 28.2%. It uses the opal stop codon (UGA) for tryptophan. A total of 782 coding
DNA sequences (CDS), and 6 rRNA and 32 tRNA genes were predicted and annotated. Four
hundred and seventy CDSs (60.1%) have putative functions, while 272 CDSs (35.7%) encode
for hypothetical proteins. Predicted CDSs are summarized by role in Table 2.

Comparisons among U. diversum ATCC 49782 and the human ureaplasma serovars (10 ser-
ovars of U. urealyticum, and 4 serovars of U. parvum) [21] indicate a larger genome size in U.
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diversum (U. diversum– 0.97 Mbp; U. urealyticum—0.84–0.95 Mbp; U. parvum—0.75–0.78
Mbp) and a slight higher G+C content when compared to other ureaplasmas (U. diversum—

28.2%; U. urealyticum– 25–27%; U. parvum– 25%). U. diversum showed 782 CDSs; but U.
urealyticum and U. parvum have an average of 608 CDSs. The hypothetical CDSs in U. diver-
sum are 279, in U. urealyticum the average is 230 and in U. parvum the average is 201. These
genetic differences may reflect the host specificity of U. diversum.

Gene synteny and phylogeny
In the present study, we used the gene synteny to compare the genomes of U. diversum and
human ureaplasmas. CDSs that are conserved among the three species do not have the same
organization, suggesting significant genomic reorganization (Fig 2A).

Moreover, phylogenetic trees based on concatenated protein sequences were constructed
(Fig 2B). This protein concatenation approach has been frequently shown to increase resolu-
tion and robustness of phylogenetic analyses of mycoplasma species [22]. The phylogenetic
relationship between U. diversum and human ureaplasmas remained the same compared with
data from other studies with 16S rRNA and 16S-23S rRNA intergenic spacer [19, 20]. Urea-
plasmas continue to branch within Mycoplasma clades [22]; the genus name Ureaplasma
speaks to the fact that these organisms metabolize urea, and was coined before the era of DNA
sequence based taxonomy. Interestingly, the phylogeny of Ureaplasma species corresponds to
the evolutionary tree of the host animal species, suggesting coevolution between ureaplasmas
and animals [20]. Although determinants for host ranges and susceptibilities to mycoplasma
infections are currently unknown, Ureaplasma species have defined host ranges consisting of
specific animal species [19].

Metabolic pathways
Analyzing the predicted set of U. diversum CDSs, it was observed that the metabolic pathways
are identical to that of other ureaplasmas (Fig 3). The main CDSs for the urease activity was

Table 1. General features of the genome of Ureaplasma diversum ATCC 49782 compared to human ureaplasmas and other members ofMyco-
plasma, Acholeplasma and Phytoplasma species.

Parameter Udv Upa Uua Mmy Mbo Mpn Mge Mho Mgal Msy Mhy Msu Mhf Mhc Ala Pas

Genome (Mbp) 0.97 0.75–0.78 0.84–0.95 1.21 0.94 0.81 0.58 0.66 1.01 0.79 0.89 0.74 1.15 0.91 1.49 0.86

G+C content (%) 28.2 25 25–27 24 29.4 40 31.7 27.1 31 28 28 31.1 38.8 35.3 31 28

CDS 782 608 608 985 803 677 475 537 742 694 679 884 1545 1173 1380 754

Gene density (%) 82.5 95 93 83 89.5 88.7 90 89.8 91 91 88 89.9 94.2 92.8 90 73

Average CDS length (bp) 1013 1116 1010 982 1058 1011 1040 1107 1206 1058 1178 783 693 726 981 785

CDS with predicted function 470 407 378 581 526 333 323 345 469 464 412 293 299 286 1006 446

Hypothetical CDS 279 201 230 266 239 123 96 106 123 63 158 517 1246 887 NR 257

No. of tRNA genes 32 33 33 30 34 39 40 33 33 34 30 32 31 31 35 32

No. of rRNA genes

16S 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2

23S 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2

5S 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2

Udv = U. diversum, Upa = U. parvum (average between serotypes), Uua = U. urealyticum (average between serotypes), Mmy =M.mycoides subsp
mycoides, Mbo =M. bovis, Mpn =M. pneumoniae, Mge =M. genitalium, Mho =M. hominis, Mgal =M. galliseptcium, Msy =M. synoviae, Mhy =M.

hyopneumoniae, Msu =M. suis, Mhf =M. haemofelis, Mhc =M. haemocanis, Ala = Acholeplasma laidlawii, Pas = ‘Candidatus Phytoplasma asteris’.

NR = not reported.

doi:10.1371/journal.pone.0161926.t001
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annotated in the genome of U. diversum accordingly: urease (three-subunit urease + accessory
proteins), an ammonia/ammonium transporter, and a FOF1-ATPase. Ureaplasma generates
95% of its ATP through the hydrolysis of urea by urease [23, 24]. Hydrolysis of urea generates
an electrochemical gradient through accumulation of intracellular ammonia/ammonium. The
gradient fosters a chemiosmotic potential that generates ATP. However, as in human ureaplas-
mas [25], nickel and urea transporters were not identified. Urea transporters are considered
rare among bacteria and have been described in only few urease-positive organisms [26]. It is
believed that urea can simply diffuse across membranes into the cytoplasm, but whether or not

Fig 1. Diagram of the overall structure of Ureaplasma diversum ATCC 49782 genome. The dnaA gene
is at position zero. The distribution of genes is depicted on two outermost concentric circles. First concentric
circle: predicted coding DNA sequences (CDSs) on the plus strand. Second concentric circle: predicted
CDSs on the minus strand. The innermost circle represents the GC skew. The figure was generated using
DNAPlotter version 1.4 from Artemis 12.0, Sanger Institute.

doi:10.1371/journal.pone.0161926.g001
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this is the mechanism used by U. diversum to acquire this metabolite from the environment is
unknown.

The sources of the 5% of ureaplasma ATP production not from the urea hydrolysis are most
probably obtained from substrate phosphorylation [25]. CDSs coding for enzymes of the Emb-
den-Meyerhoff-Parnas (EMP, glycolysis) pathway were present, except for the glucose-6-phos-
phate isomerase, which catalyzes the step leading to fructose 6-phosphate production. The
absence of the enzyme was also observed in human ureaplasmas [26, 27]. Thus, it is believed
that an alternative enzyme may be acting for this pathway to be functional. The pyruvate
metabolism in U. diversum is incomplete; the U. diversum genome does not contain orthologs
for the pyruvate dehydrogenase complex. Therefore, the production of ATP from the oxidation
of pyruvate to acetate is unlikely. Other mycoplasmas and ureaplasmas also do not contain this
enzyme, but this in vitro activity has been described [27]. Moreover, the phosphotransferase
system (PTS) in U. diversum is incomplete. Only two putative PTS components genes were
annotated (a putative phosphotransferase enzyme IIB—gudiv_313; and a phosphotransferase
enzyme family - gudiv_380). The PTS is found only in bacteria which catalyzes the transport
and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and
other sugar derivatives [28]. Thus, it is believed that the use of glucose may have been abolished
in ureaplasmas. This can be an interesting evolutionary characteristic of genomic reduction.
Glycolysis is likely used only to provide substrates for the PPP pathway and for the synthesis of
glycerol.

As observed in other mycoplasma species as well as with U. parvum [25], the pentose phos-
phate pathway is incomplete, with the absence of CDSs encoding glucose-6-phosphate dehy-
drogenase and 6-phosphogluconate dehydrogenase. However, the pentose phosphate (PP)
pathway in mycoplasmas is considered to be functional [29]. Therefore, this is most likely the
case for ureaplasmas as well.

Table 2. Coding DNA sequences (CDSs) of Ureaplasma diversum ATCC 49782 genome classified by
TIGR role category.

Name Number %

Unclassified 33 4.22%

Amino acid biosynthesis 0 0.00%

Purines, pyrimidines, nucleosides, and nucleotides 13 1.66%

Fatty acid and phospholipid metabolism 6 0.77%

Biosynthesis of cofactors, prosthetic groups, and carriers 9 1.15%

Central intermediary metabolism 8 1.02%

Energy metabolism 20 2.56%

Transport and binding proteins 73 9.34%

DNAmetabolism 63 8.06%

Transcription 11 1.41%

Protein synthesis 85 10.87%

Protein fate 30 3.84%

Regulatory functions 4 0.51%

Signal transduction 3 0.38%

Cell envelope 55 7.03%

Cellular process 38 4.86%

Mobile and extrachromosomal element functions 8 1.02%

Unknown function 103 13.17%

Hypothetical proteins 279 35.68%

doi:10.1371/journal.pone.0161926.t002
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The Nicotinate/Nicotinamide metabolism appears to be incomplete but functional for
NADPH generation. The presence of the enzyme NAD kinase was observed in U. diversum.
This enzyme has been related to the interconversion of NAD+ and NADP+ in nicotinate/nico-
tinamide metabolism, which plays a critical role in maintaining the NADH/NADPH pool bal-
ance inside the bacterial cell [30].

As expected, CDSs for the de novo biosynthesis of purines or pyrimidines were not identi-
fied in U. diversum genome. We also did not identify the enzyme ribonucleoside diphosphate
reductase responsible for the conversion of ribonucleosides to deoxyribonucleosides. Like U.
urealyticum, U. diversum could import all its deoxyribonucleosides and/or deoxyribonucleo-
side precursors, or have a different mechanism for converting ribonucleosides to deoxyribonu-
cleosides. Moreover, the absence of the enzyme thymidine phosphorylase suggests that
thymidine is the precursor imported for dTTP production [30] or another enzyme, still
unknown, could supply this function.

Mycoplasmas are thought to be completely incapable of fatty acid biosynthesis from acetyl-
CoA, probably due to the loss of genetic material. Phospholipids, glycolipids and sterols are the
three major lipid constituents of cell membranes. This pathway has been poorly described in
mycoplasmas and not all enzymes are identified [29]. Ureaplasmas have been described in the
past as capable of de novo synthesis of saturated and unsaturated fatty acids [31]; however, our
metabolic network analyses identified a very limited number of known pathways related to
fatty acid biosynthesis in U. diversum. Among the few identified pathways, metabolic reactions
from glyceraldehyde-3-phosphate to cardiolipin are mostly preserved, but one enzyme is miss-
ing, the phosphatidyl glycerophosphatase. The role of this enzyme may be replaced by the

Fig 2. Gene synteny and phylogeny. (A) Syntenic maps of ureaplasma genomes. Sybil map usedU. diversum
ATCC 49782 as a reference genome. (B) Phylogenetic trees based on 32 concatenated proteins ofMollicutes.

doi:10.1371/journal.pone.0161926.g002
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enzyme cardiolipin synthase, which can convert cytidine 5' diphosphate diacylglycerol directly
to cardiolipin in the presence of phosphatidylglycerol. Moreover, phospholipids are of exclu-
sive bacterial origin, therefore excluding the possibility that it is provided by the serum lipids
normally present in broth media, the only possibility is that it is synthesized [32].

Transporters
Because of their genetic limitations, ureaplasmas must import more nutrients for cell growth
than do most other bacteria. A total of 37 transporter-related CDSs were identified in U. diver-
sum (Fig 3). ABC systems-related sequences represent 83.78% (31/37) of all transporter-related
CDSs. Nonetheless, mycoplasmas have fewer transporters than other bacteria, and it is believe
that these transporters have broader substrate specificities to compensate this limitation [32].
In U. diversum, a number of transport systems that are likely essential could not be found, such
as bases/nucleotides, nickel and urea transporters. Urea transporters in bacteria are relatively
rare. There are only three bacterial transporters classes, the ABC urea transporters, the Yut
transporter, and the UreI transporter [33]. No homologous gene for these proteins was found
in the genome of U. diversum. It is likely that CDSs of yet unknown function or other trans-
porters are participating in the transport of such molecules.

Virulence and pathogenicity mechanisms
To date, only few features have been associated with virulence of U. diversum, such as the activ-
ity of urease and phospholipase, and its ability to invade some eukaryotic cells [8]. After

Fig 3. Metabolic map of U. diversumATCC 49782. A view of the transporters and main metabolism pathways.
Metabolic products are shown in black and ureaplasma proteins in green. Enzymes that were not found inU.
diversum are shown in red.

doi:10.1371/journal.pone.0161926.g003
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analyzing the genome of U. diversum, it was possible to find CDSs that are likely related to bac-
terial pathogenicity and can expand our knowledge regarding the mechanisms by which U.
diversum causes disease. CDSs of urease (gudiv_255, gudiv_254, gudiv_253, gudiv_252,
gudiv_251, gudiv_250, and gudiv_249), phospholipase (gudiv_472), hemolysin (gudiv_91),
and a Mycoplasma Ig binding protein (MIB)—Mycoplasma Ig protease (MIP) system
(gudiv_161/gudiv_162 and gudiv_612/gudiv_613) were found and are described below in
more detail. In addition, CDSs that are likely related to the production of a capsular structure
(gudiv_216) and surface molecules were observed. A scheme of these virulence factors is found
in Fig 4A.

Urease. In addition to the hydrolysis of urea, the enzyme urease can also be a virulence
factor of ureaplasmas. The toxicity of urease is mediated by the amount of ammonium ions or
free ammonia generated from urea [34]. The urease activity of human ureaplasmas produces
ammonia, which can damage host tissues due to changes in the pH [35]. To date, there is no
data in the literature on the pathogenic effects of the expression of the urease gene by U. diver-
sum. Nevertheless, the analysis of the organization of the U. diversum urease gene cluster

Fig 4. Virulence and pathogenicity mechanisms. (A) Virulence map of U. diversum ATCC 49782. (B)
Schematic representation of the urease gene cluster from U. diversum ATCC 49782. Structural subunits:
ureA (gudiv_255), ureB (gudiv_254), and ureC (gudiv_253). Accessory proteins ureE (gudiv_252), ureF
(gudiv_251), ureG (gudiv_250), and ureD (gudiv_249) (C) Diagram of Ureaplasma diversumMultiple-Banded
Antigen-like protein (MBA-like—gudiv_653) and locus and similarity of MBA-like with the human ureaplasmal
Multiple-Banded Antigen (MBA) (Accession number: AF055358.2).

doi:10.1371/journal.pone.0161926.g004
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revealed the same organization of the human ureaplasma urease gene clusters [36]. There are
three CDSs encoding structural subunits, ureA (gudiv_255), ureB (gudiv_254), and ureC
(gudiv_253). Furthermore, downstream of ureC, four CDSs coding for accessory proteins
(ureE—gudiv_252, ureF—gudiv_251, ureG—gudiv_250, and ureD—gudiv_249) were found
(Fig 4B). A high identity of these CDSs when compared to CDSs of human ureaplasmas was
also observed (above 90%).

Phospholipase. An array of potent hydrolytic enzymes has been identified in mycoplas-
mas, including phospholipases, proteases and nucleases [37]. Phospholipase C, A1, and A2

(PLC, PLA1, PLA2) activities have been reported in human ureaplasmas, however, no genes
showed significant similarity to known sequences of PLC, PLA1, or PLA2 [38]. Orthologs to
these CDS, however, were not found in the U. diversum genome. This is somewhat surprising,
considering a recent report showing that U. diversum reference strains, including the ATCC
49782 sequenced herein, and clinical isolates have high phospholipase activity [8]. It has been
speculated that this phospholipase activity could have helped the in vitro invasion of Hep-2
cells by U. diversum [8]. Furthermore, it has been shown that a similar phospholipase activity
of U. diversum are able to interfere with prostaglandin E2 and prostaglandin F2a production by
bovine endometrial cells and induce premature labor [18]. In U. diversum, genes encoding
phospholipase D family protein (PLD) (gudiv_472) and triacylglycerol lipase (Lipase family,
such as phospholipases) (gudiv_748) were identified. Therefore, in contrast to human urea-
plasmas, the PLD is likely the true virulence factor of U. diversum linked to cell invasion and
premature labor in intrauterine infection, suggesting the phospholipase activity detected in our
previous study [8] was PLD rather than phospholipase C activity. Experimental studies should
be conducted with PLD to confirm this hypothesis.

Hemolysin. Hemolysins cause lysis of erythrocytes by forming pores of varying diameters
in the host cell membrane [39]. There is one CDS (gudiv_91) coding a putative hemolysin pro-
tein in the genome of U. diversum. The predicted protein sequence has 63.1% identity with the
hemolysin found in human ureaplasmas. In U. parvum serovar 3, this hemolysin has been
characterized as an α-hemolysin (hlyA) with both hemolysin and cytotoxic activities [25].
Other mycoplasmas also have hemolysins [40, 41], but no orthologs to these proteins were
found in the U. diversum genome. It seems that the mycoplasma or ureaplasma hemolysins
belong to a unique class of bacterial toxins; more studies are needed to better understand the
role of this enzyme in the pathogenesis of bovine ureaplasmas.

MIB-MIP system. Recently, a new virulence factor has been described inMollicutes: the
MIB-MIP system [42]. MIB acts as a high-affinity IgG binding protein, whereas MIP specifi-
cally cleaves the IgG heavy chain at an unconventional site, located between the VH and CH3
domains, and inactivate this molecule. This MIB–MIP system is encoded by a pair of genes
often found in several copies in a wide range of mycoplasmas that infect various hosts [42].
Accordingly, two copies of the MIB-MIP system (gudiv_161/gudiv_162 and gudiv_612/
gudiv_613) were found in the U. diversum genome. However, experimental studies should be
conducted to better understand the role of this enzyme in the pathogenesis of bovine
ureaplasmas.

Surface molecules. Although surface molecules of mycoplasmas are thought to play a cru-
cial role in interactions with their hosts, very few had their biochemical function defined [43].
CDSs linked to lipoproteins (n = 37), multiple banded antigen like protein (MBA-like) (n = 1),
membrane nuclease lipoprotein (n = 1) and variable surface antigen lipoproteins (possible
VsA) (n = 1) were found in the genome of U. diversum (Fig 4A). Possibly due to the absence of
a cell wall, mycoplasmas posses a larger number of membrane bound lipoproteins when com-
pared to other eubacteria [44]. These molecules can act as virulence factors and/or be targets of
humoral immunity [45]. They serve as potent cytokine inducers for monocytes/macrophages

Ureaplasma diversumGenome Provides New Insights about the Interaction with the Host

PLOS ONE | DOI:10.1371/journal.pone.0161926 September 7, 2016 9 / 22



and have cytolytic activity [46]. This immunogenicity of lipoproteins is probably caused by
their surface exposure and the presence of the amino-terminal lipoylated structure [47].

Among the detected lipoproteins, one CDS was identified as a membrane nuclease lipopro-
tein (gudiv_93). Membrane nuclease activity in mycoplasmas was first reported inM. pulmonis
[48]. Nuclease activity inMollicutes has been proposed as the mechanism by which these
organisms acquire the precursors for nucleic acid production [49], but it can also function as a
virulence factor. The characterization of nucleases inMollicutes reveals that these enzymes dif-
fer from each other [50], and have been implicated in host cytotoxicity. The membrane nucle-
ase MGA_0676, for example, is a remarkable pathogenic compound for the colonization and
infection persistence ofM. gallisepticum [51]. Additionally,M. pneumoniae nuclease
(Mpn133) acts as a virulence determinant by binding to and internalizing within human air-
way cells [50].

Another important lipoprotein that has been identified is a putative variable surface antigen
lipoprotein (gudiv_179) with 36% identity to the VsaA protein ofM. pulmonis. Antigenic vari-
ation of surface proteins is thought to be a survival strategy for many mycoplasmas [52].M.
bovis possess a large family of variable surface lipoproteins designated as Vsps, which are
encoded by 13 different genes. The Vsps undergo phase variation in the respiratory tract of
infected calves, which limits the microorganism elimination [53]. The experiments with vari-
able surface proteins support the hypothesis that the generation of antigenic variation in myco-
plasmas is critical for the bacterial survival for extended periods within the host, but do not
establish a link with disease severity [45].

Although with borderline similarity (33%) a multiple banded antigen like protein (MBA-
like) was annotated in the genome of U. diversum ATCC 49782 (gudiv_653) (Fig 4C). This pro-
tein showed the conserved domain of the Multiple Banded Antigen-MBA of human ureaplas-
mas. The MBA is a surface exposed lipoprotein that can undergo size and phase variation in
vitro and in vivo [54, 55]. The MBA is predicted to be a major human ureaplasma virulence fac-
tor and is the predominant antigen recognized by sera during infections in humans [56]. Ana-
lyzing the MBA locus composition among different human ureaplasmas [21], we can verify
that the MBA-like locus in U. diversum features a similar organization with the MBA locus of
U. parvum serovar 14 (UPA14) (Fig 4C). In particular, this area has two inverted hypothetical
proteins and a transposase recognition site. Furthermore, unlike other ureaplasmas, in UPA14
and U. diversum loci, the DNA pol III alpha subunit is not located adjacent to the locus. More
studies are needed to understand the biology and role of MBA-like in the pathogenicity of U.
diversum. Interestingly, the MBA-like (gudiv_653) and the variable surface antigen lipopro-
teins (gudiv_179) are in the same paralogous gene family in U. diversum. These two proteins,
added to fourteen other paralogous proteins (annotated as hypothetical proteins), may play a
critical role in modulating the immune response against U. diversum (S1 Table).

Capsule. In the analysis of the genome of U. diversum, a glycosyltransferase enzyme
(gudiv_216) was found [57]. Glycosyltransferase has also been described in the genome of
human ureaplasmas. This enzyme is known to connect lipids and sugars that constitute the
capsule of certain mycoplasmas [58]. InM.mycoides subsp.mycoides, the presence of glycosyl-
transferase is believed to be related to the attachment of galactan to the capsule [57]. Thus, we
decided to evaluate if a capsular structure is also present in U. diversum. By using electron
microscopy and the red ruthenium dye, a polysaccharide capsule extending from 11 to 17 nm
outside of U. diversum cells was observed for the first time (Fig 5A). In a previous study with U.
urealyticum, using the same dye utilized herein, a capsular structure was also observed, indicat-
ing that this may be a common feature of Ureaplasma species [13]. Increased virulence and
adhesion to host cells are associated with the presence of a capsule in certain bacterial species
[59]. For instance, theM. gallisepticum andM. hyopneumoniae capsules have been suggested
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as additional structures that assist the cytoadherence to host cells [60] in addition to the “bleb”
(a mycoplasma structure containing adhesins and accessory proteins) [61]. InM.mycoides
subsp.mycoides strains, the presence of a polysaccharide capsule causes host injury [62]. Other
studies have correlated the presence of a capsule and the resistance of mycoplasma to phago-
cytic cells. InM. dispar, the capsule has been considered the most important structure to inter-
fere the phagocytosis [63]. Therefore, the detection of a capsular structure in U. diversum
opens venues for new studies related to the virulence and pathogenicity of this bacterium.

The chemical composition of the capsular material of U. diversum ATCC 49782 was subse-
quently evaluated. Arabinose, xylose, mannose, galactose and glucose were the main compo-
nents detected in the capsular material of this bacterium (Fig 5B). The biochemical
composition of capsular polymers ofMollicutes has been little studied. The capsules ofM.

Fig 5. Capsule ofU. diversum. (A) Electron microscopy of cellsU. diversumATCC 49782 obtained in the cultured
isolates frommucovulvovaginal bovine semen and treated with red ruthenium dye, showing polysaccharide materials
(electrodense external region indicated with arrowheads). Bar 100 nm. (B) Percentage of monosaccharides in
capsular components ofU. diversumATCC 49782.

doi:10.1371/journal.pone.0161926.g005
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mycoides subsp.mycoides SC,M.mycoides subsp. capri andM. dispar are the only ones
described in the literature and are mainly composed of 1,6-galactose, polyglucan, and galact-
uronic acid polymers, respectively [64]. Probably, the capsular biosynthesis ofM.mycoides
subsp.mycoides is related to a glucose-dependent synthetic pathway due to the presence of a
UDP-glucose 4-epimerase (GalE) and a glucose-1-phosphate uridylyltransferase (GalU) that
uses glucose-1-phosphate to generate UDP-glucose [57]. In our in silico analysis, we did not
observe genes related to the biosynthesis of polysaccharides. However, the presence of two
genes of a sugar transporter was observed (Ribose/galactose ABC transporter—gudiv_307 and
gudiv_308). We believe it is likely that these sugars are captured by U. diversum and are incor-
porated using glycosyltransferase to form the capsule.

Host immune response against surface molecules. In order to better understand the
immune response against U. diversum surface molecules, we infect murine macrophages J774
with viable and nonviable microorganisms. In the analysis of cytokine production, there was
an increased production of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) in both condi-
tions compared to the negative control (p<0.05), but there was no statistical difference between
the profile triggered by the viable and nonviable ureaplasma (Fig 6A). Therefore, it is suggested
that surface molecules are the main determinants of immune system activation in U. diversum.
Surface molecules are composed of bacterial pathogen-associated molecular patterns (PAMPs)
that, when recognized by the innate immune system, trigger the production of pro-inflamma-
tory cytokines from manifold cells, causing inflammation [65–67]. The ability of surface mole-
cules ofMollicutes to induce the secretion of inflammatory cytokines such as IL-1β, TNF-α and
IL-6 have been reported in studies with different species, e.g. U. diversum [5], U. urealyticum
[68, 69], andM. fermentans [65].

The expression of Toll-like receptors (TLRs) and inflammasome pathway genes were also
evaluated using murine macrophages J774 infected with viable U. diversum cells. It can be
observed that U. diversum induced a higher gene expression of TLR2 when compared to the
uninfected cells (Fig 6B) (p<0.05). The gene expression of other TLRs are presented in S1 Fig.
The downregulation of TLR5, TLR8, TLR9 and TLR11 was als observed. These findings are
supported by the literature, which indicates that TLR2 is the main receptor for the immune
response ofMollicutes [45]. However, a study of U. urealyticum infecting macrophages demon-
strated the activation of TLR2 and TLR4 [70]. Moreover, the absence of TLR 2 was related to
the not recognition of bacterial lipoproteins ofM. fermentans [71, 72].

The results of the inflammasome expression assay demonstrate the up-regulation of genes
related to chemokine binding domains, interleukin-6, inhibitors of kinases and B cells, NF-kB,
and interferon regulatory prostaglandin endoperoxide (Fig 6C). In contrast, caspase 12, CD40
ligand, interferon gamma, interleukin 12A, and 33 families of ligand to NLR and tumor necro-
sis factor genes were downregulated. Several studies have demonstrated the importance of the
inflammasomes in response to mycoplasma infection [73]; however, the literature does not
define mechanisms involved in the inflammasome response against U. diversum. A study of
the development of gastric tumors using monocytes exposed toM. hyorhinis confirmed a high
production of IL-1β and IL-18-induced NLRP3-dependent mechanisms [74]. It has been
shown that monocytes and macrophages infected with live or inactivated by heat Acholeplasma
laidlawii have the capacity to promote the release of IL-1β by the presence of cytosolic ASC
(apoptosis-associated speck-like protein containing a carboxy-terminal CARD), promoting
inflammasome activation [75]. In the present study, the up-regulation of NLRPs was not
observed. Therefore, more studies are necessary to elucidate the involvement of inflammasome
activation in the immune response induced by U. diversum. This study is the first report of the
activation mechanisms involved in the immune response against Ureaplasma diversum. These
findings can contribute to the studies on macrophage activation for the regulated secretion of
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Fig 6. Host immune response against surfacemolecules. (A) IL-1β, IL-6, TNF-α and IL-10 levels in supernatant of
macrophage J774 culture after infection with viable and nonviableU. diversum ATCC 49782 strain compared to uninfected
cells. Statistical significance (p<0.05) is represented by the asterisk (*) (non-parametric Mann-Whitney analysis—One-tailed
test, GraphPad Prism1 version 6.01). (B) Gene expression of Toll-like receptors 2 in macrophage J774 culture after infection
withU. diversum ATCC 49782 strain compared to the uninfected cells. Statistical significance (p<0.05) is represented by the
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cytokines to prevent tissue damage caused by an exacerbated immune response. The results
described herein will also support further research to understand the possible effector mecha-
nisms that lead to effective protection against U. diversum infection.

Conclusion
The whole genome sequence described herein represents a valuable new resource for the study
of U. diversum on a genetic basis. Furthermore, extensive analyses of these data helped us to
detect important biological features of this mollicute and its mechanisms of pathogenicity. The
results of this study will help to better understand this microbe, and can direct future research
on the pathogenicity of this bacterium in cattle. Moreover, it will also aid the development of
new strategies for treatment, prevention and control of ureaplasma infections.

Material and Methods

Bacterial strain culture conditions and DNA extraction
Ureaplasma diversum ATCC 49782 was originally isolated from a cow with clinically acute
granular vulvitis in 1978 [10]. The virulence of this strain has been confirmed by many studies
[1–5, 7, 8, 76]. U. diversum ATCC 49782 was first cultured in 2 mL of ureaplasma medium
(UB) at 37°C, followed by propagation in 3,000 mL of the same broth. At the logarithmic
growth phase (based on colorimetric changes), the culture was centrifuged at 20,600 x g for 30
minutes at 25°C. The DNA was extracted using a PureLink™ Genomic DNAMini Kit (Life
Technologies, Brazil) following the manufacture’s instructions.

DNA sequencing, sequence assembly, gap closure and validation
The whole genome was sequenced from a paired-end library using Illumina HiSeq 2000 (Illu-
mina, Inc., San Diego, CA) at the Purdue University Genomics Core Facility. Average reads of
about 100 bases were assembled using ABySS 1.2.7. After assembly resulting from a 4,552X
genome coverage, eight remaining gaps were closed using conventional PCR, followed by
sequencing using Sanger method in both directions. The genome sequence of U. diversum
strain ATCC 49782 has been deposited in the GenBank1 database under the accession no.
CP009770.

Identification of CDS and annotation
First-pass annotation was achieved using the NCBI (National Center for Biotechnology Infor-
mation) prokaryotic genome annotation pipeline (PGAP). An initial set of CDSs was identified
using PRODIGAL [77] and analyzed using the annotation engine MANATEE from the Insti-
tute for Genomic Sciences (University of Maryland, School of Medicine, Baltimore, MD) [78].
Individual CDS were manually curated; evidence generated by the pipeline (including BER,
HMMs, PROSITE matches, TMHMM, and SignalP) was used to infer annotations. CDSs with
an HMM score below the trusted value, less than 40% identity, or only local similarities to
known protein sequences were called hypothetical proteins. tRNAs were located using tRNA-
scan-SE [79]. Lipoproteins and signal peptides were identified using LipoP and SignalP algo-
rithms, respectively [80, 81], and paralogous gene families were recognized using

asterisk (*) (non-parametric Mann-Whitney analysis—One-tailed test, GraphPad Prism1 version 6.01). (C) up-regulated
(green) and down-regulated genes (red) of the inflammasome pathways in macrophage J774 culture after infection with U.
diversum ATCC 49782 strain compared to uninfected cells. Statistical significance (p<0.05) is represented by the asterisk (*)
(non-parametric Mann-Whitney analysis—One-tailed test, GraphPad Prism1 version 6.01).

doi:10.1371/journal.pone.0161926.g006
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BLASTCLUST analysis (National Center for Biotechnology Information, NCBI, Bethesda,
MD) using 30% sequence identity and 70% covered length thresholds. Comparative analyses
with other bacterial genomes were performed based on genome annotations deposited in the
NCBI Genome database. Considering that the genome annotation of human ureaplasmas
deposited in GenBank, in particular of U. parvum serovars 3, may be outdated (U. parvum ser-
ovars 3 genome was one of the first bacterial genomes to be sequenced and annotated), we used
tblastn to search for possible misannotated sequences when an ortholog was not found. A dia-
gram of the overall structure of genome was generated using a DNAPlotter version 1.4 from
Artemis 12.0, Sanger Institute [82].

Comparative and phylogenetic analyses
Whole genome synteny comparisons among U. diversum, U. urealyticum and U. parvum were
performed using Sybil [83]. In Sybil, orthologs (homologous protein sequences from different
bacterial species) were used to define syntenic relationships between species/strains.

Phylogenetic analyses of the 41 mollicutes were also performed using a multiple sequence
alignment of 32 concatenated protein sequences from each organism (S2 Table). These pro-
teins were chosen based on previous reports of phylogenomic analyses in prokaryotes [84, 85]
according to their presence in all selected species, absence of additional fused domains, no sub-
jection to HGT, and completeness [84]. Following protein concatenation using the UNION
tool from EMBOSS [86], the sequences were aligned using MAFFT version 7 [87]. The result-
ing alignment was employed to build a phylogenetic tree using the neighbor-joining method
[88] and maximum likelihood, with 1,000 bootstrap replicates from MEGA 6 [89].

Capsule detection
The ureaplasma was cultured in 50 mL of UB media. Cells in the logarithmic growth phase
were collected by centrifugation at 20,600 x g for 30 minutes, and the pellets were suspended in
3% of glutaraldehyde and 0.2% of ruthenium red in 0.1M-cacodylate buffer (pH 7.4). Ruthe-
nium red is a polycationic dye that binds polysaccharides and is frequently used to detect bacte-
rial capsules [59]. After five washes with 0.05 M cacodylate buffer, the ureaplasmas were post-
fixed in 1% (w/v) osmium tetroxide, then dehydrated in a graded series of ethanol and embed-
ded in Spurr resin (Electron Microscopy Sciences, Fort Washington, PA, USA). Ultrathin sec-
tions collected on 200-mesh copper grids were stained with uranyl acetate and lead citrate
before examination in a JEOL 1010 Transmission Electron Microscope.

To extract and purify the capsular component, the bacterial strain was cultured in 2 liters of
UBmedia and then centrifuged (20,600 xg for 50 minutes) to retain the pellet. The pellet was
washed twice in PBS (137 mMNaCl; 2.7 mMKCl; 4.3 mMNa2HPO4; 1.47 mMKH2PO4) (to
avoid contamination of the polysaccharides derived from the culture medium), and resuspended
in 10 mL of the same buffer. The extraction of capsular polysaccharide continued by the phenol-
chloroformmethod [64]. To assess the monosaccharide composition, each polysaccharide was
hydrolyzed with 300 μL of 2 mol L-1 of trifluoroacetic acid, at 100°C for 8 h. The samples were
dried under nitrogen stream and then dissolved in water 300 μL and the pH was elevated to 8 by
addition of NH4OH. The samples were reduced with NaBH4 at room temperature for 4 hours,
then the cationic resin was added to remove salts, the samples were dried under nitrogen stream
and followed by dissolution/dryness process in methanol (500 μL, x 3) to remove the residual
borate. The alditol products were acetylated by addition of 200 μL of acetic anhydride-pyridine
(1:1, v/v), held overnight at room temperature. Methanol (200 μL) was added to stop reaction
and the samples were dried under nitrogen stream. The alditol acetates were analyzed by gas
chromatography coupled to mass spectrometry (GC-MS—Varian, model Saturn 2000) with Ion
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Trap analyzer. The chromatography was developed in a DB-225-MS fused silica capillary column
(30 m, 0.25 mm, i.d. and 0.25 m of film thickness). The temperatures were: injector 250°C and
the oven programmed from 50°C to 220°C at 40°C min-1. The monosaccharides (as alditol ace-
tates) were identified on the basis of their mass spectra at electron ionization (EI, 70eV) and
authentic standards (Sigma-Aldrich).

Macrophage interaction
Inoculations in murine macrophages J774 (ATCC1 TIB-67™) were performed with viable bac-
terial strain and bacterial strain inactivated by heat (100°C for 30 minutes) for 24 hours (MOI
1:100). The inactivation was confirmed by absence of a positive culture on ureaplasma medium
(UB). Negative controls without bacteria inoculation were also used. After 24 hours, the super-
natant of the bottles was collected and frozen at -80°C to perform the ELISA. The cells were
washed with trypsin and the cell suspension was placed in microtubes with RNA later for RNA
extraction procedures.

The dosage of the cytokines TNF-α, IL-1β, IL-6, IL-10 was set using Ready-SET-GO
enzyme-linked immunosorbent assay kit (eBioscience, San Diego, USA). The mRNA from
cells was extracted using TRIzol Plus RNA purification kit (Invitrogen, USA), following the
protocol supplied by the manufacturer. The cDNA was obtained using a retro-transcription
(RT) from the mRNA using the SuperScript1 III Reverse Transcriptase kit. cDNA was used
in a qPCR reaction to determine gene expression of TLR's 1–9 and 11 according to a previously
described protocol [90]. The RT-qPCR was run three independent times with at least five sam-
ples per group. Analysis of relative gene expression data was performed using the 2(-Delta
Delta C(T)) Method [91]. GAPDH served as housekeeping gene to assess the overall cDNA
content.

Gene expression of the inflammasome pathway was verified by quantitative PCR (qPCR)
methodology. The cDNA obtained was subjected to analysis using Mouse Inflammasomes RT2

Profiler™ qPCR Array kit (Qiagen-SABioscience, Brazil) for the expression of 84 key genes
involved in the function of inflammasomes, protein complexes involved in innate immunity, as
well as general NOD-like receptor (NLR) signaling (S3 Table). This array includes genes
encoding inflammasome components as well as genes involved in downstream signaling and
inhibition of the inflammasome function. In addition, this array includes other NLR family
members, which may potentially form additional inflammasomes and their downstream sig-
naling genes. All procedures were performed according to the manufacturer’s instructions.

Supporting Information
S1 Fig. Gene expression of Toll-like receptors in macrophage J774 culture after infection
with U. diversum ATCC 49782 strain compared to uninfected cells. Statistical significance
(p<0.05) is represented by the asterisk (�) (non-parametric Mann-Whitney analysis—One-
tailed test, GraphPad Prism1 version 6.01).
(TIF)

S1 Table. Analyses of paralogous gene families in Ureaplasma diversum ATCC49782.
(DOCX)

S2 Table. Cluster of orthologous groups (COG)/proteins used for phylogenetic analysis.
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S3 Table. Genes evaluated using Mouse Inflammasomes RT2 Profiler™ qPCR Array kit.
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