Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

6-2015

Perception of Diesel Engine Gear Rattle Noise

Brandon Sobecki Purdue University

Patricia Davies *Purdue University*

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Frank Eberhardt *Cummins Inc.*

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

Sobecki, Brandon; Davies, Patricia; Bolton, J Stuart; and Eberhardt, Frank, "Perception of Diesel Engine Gear Rattle Noise" (2015). *Publications of the Ray W. Herrick Laboratories*. Paper 142. http://docs.lib.purdue.edu/herrick/142

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

PERCEPTION OF DIESEL ENGINE GEAR RATTLE NOISE

Brandon Sobecki, Dr. Patricia Davies, Dr. J. Stuart Bolton, Ray W. Herrick Laboratories, Purdue University,

Frank Eberhardt, Cummins, Inc.

Research Motivation

- Sound quality is an important factor in the design of competitive engines
- Gear rattle is a phenomenon that can greatly affect the quality of the overall diesel engine sound
- Currently used metrics (such as Aweighed Sound Pressure Level) might not adequately address the role of gear rattle noise on the overall sound quality of the engine
- An understanding of human's response to the gear rattle noise is needed

• With this understanding, metrics may be developed to quantify the influence of gear rattle on overall sound

Introduction/ Motivation Subjective Test Background

Detectability

Annoyance

Conclusions

Gear Rattle Mechanism Background

Outline

Introduction/ Motivation Background	Detectability	Annoyance	Conclusions	
--	---------------	-----------	-------------	--

4

Subjective Test

- A subjective test was designed to
 - determine detectable levels of gear rattle
 - investigate the perception of growth and attenuation of gear rattle
 - determine the increase of annoyance ratings for sounds with increasing levels of gear rattle
- Subjective Test Setup
 - Test was conducted in a double walled sound booth at Herrick Labs
 - Signals were presented to subjects using Etymotic Research ER-2 earphones
- Subject Population
 - 40 Subjects tested in total (20 women and 19 men; 1 did not answer)
 - Median age: 24 (Ranged from 19-36)
 - 13 Subjects identified as having experience with diesel engines

Introduction/ Motivation	Subjective Test Background	Detectability	Annoyance	Conclusions
-----------------------------	-------------------------------	---------------	-----------	-------------

Test Procedure (IRB 1404014724)

- Signals were calibrated for consistent (and safe) playback
- Subjects were greeted, given a brief overview of the test, and signed inform consent document
- Subject's hearing was screened
- Part 1: Detectability
- Part 2: Annoyance
- Post-test comments were collected
- Subject's hearing was checked
- Subjects were compensated \$10 for their participation

Introduction/ Motivation	Rattle Characterization	Simulation	Subjective Test	Metric Specification	Conclusions	
-----------------------------	----------------------------	------------	-----------------	-------------------------	-------------	--

6

Outline

Introduction/ Subjective Test Motivation Background	Detectability	Annoyance	Conclusions	
--	---------------	-----------	-------------	--

Detectability Test Background

- An experiment was designed to investigate detectable levels of gear rattle in diesel engines
- A simulation method was developed to generate realistic gear rattle noise (Sobecki, Davies, Bolton, 2014)

- 3-Alternative Forced Choice (3AFC) test was used to investigate:
 - Detectable levels of gear rattle
 - Noticeable differences in gear rattle levels

Introduction/ Motivation Ba	jective Test ackground Detectability	Annoyance	Conclusions	
--------------------------------	---	-----------	-------------	--

Detectability Test – Trial Example

Signal Detection Theory

Introduction/ Motivation	Subjective Test Background	Detectability	Annoyance	Conclusions	
-----------------------------	-------------------------------	---------------	-----------	-------------	--

Signal Detection Theory

Introduction/ Motivation Subjective Test Background	Detectability	Annoyance	Conclusions	
---	---------------	-----------	-------------	--

11

Detectability Test

• Each subject participated in three runs to investigate thresholds (in random order)

Run	Backgr	ound Engine	Noise	Baseline Engine Level			
1		Engine 1			75 dB		
2		Engine 1		70 dB			
3		Engine 2		75 dB			
F							
	Introduction/ Motivation	Subjective Test Background	Detectability	Annoyance	Conclusions		

12

Detectability - Example Run 1

Detectability - Results

Detecting Changes in Gear Rattle Level

• Each subject participated in two runs to investigate discrimination thresholds

Run	Background Engine Noise	Background Level	Control Rattle Level	Initial Stimulus Rattle Level
4	Engine 1	75 dB	75 dB	79* dB
5	Engine 1	75 dB	75 dB	71 dB

* Set to 78 dB after 18 subjects (to allow subjects to start with 'incorrect' responses while maintaining safe listening levels)

Introduction/ Motivation	Subjective Test Background	Detectability	Annoyance	Conclusions	
-----------------------------	-------------------------------	---------------	-----------	-------------	--

Detecting Changes in Gear Rattle Level Example Runs

Detecting Changes in Gear Rattle Level Results

Outline

Introduction/ Subj Motivation Ba	ective Test ckground Detectability	Annoyance	Conclusions	
-------------------------------------	---------------------------------------	-----------	-------------	--

Part 2: Annoyance - Background

- A paired comparison test was used to investigate annoyance
 - Eight sounds (4-seconds each) were compared to every other sound in response to the question, "Which sound is more annoying?"
 - 56 total comparisons in random order
 - The BTL (Bradley-Terry-Luce) model was used to analyze the subject responses
- Signals used in paired comparison
 - 4 Gear rattle measurements (Baseline – Scissor Gear, 0.002, 0.006, and 0.010 inch backlashes)
 Increasing levels of gear rattle
 - 1 High gear rattle simulation
 - 3 Amplified Baseline measurements that were set to have equal loudness (EL) as the gear rattle measurements (Base .002 EL, Base .006 EL, Base .010 EL)

Part 2: Annoyance – BTL Analysis

Outline

Introduction/ Motivation Subjective Test Background	Detectability	Annoyance	Conclusions	
---	---------------	-----------	-------------	--

21

Conclusions

- In general, detectable rattle levels begin at 10 dB below the background (baseline) engine level
- A minimum change of 3 dB in rattle level (increase or decrease) is noticeable to subjects
- Diesel engine 'experts' responses differed from the general public
 - Better at detecting rattle by approximately 1-2 dB
 - Could detect attenuation of rattle with smaller changes (approximately 1 dB)
- Annoyance ratings increase with an increase in rattle
- Diesel 'experts' rated high rattle signals as more annoying than the general public

Introduction/ Motivation	Subjective Test Background	Detectability	Annoyance	Conclusions	
-----------------------------	-------------------------------	---------------	-----------	-------------	--

Acknowledgements

I would like to thank the members of the Walesboro Noise and Vibration Lab at Cummins for their help and advice throughout this research.

Thank you!

References

- M. Bodden and R. Heinrichs. Analysis of the time structure of gear rattle. In *Proceedings of the 1999 InterNoise Conference*, pages 1273-1278, Fort Lauderdale, Florida, USA, 1999.
- R. Brancati, E. Rocca, and R. Russo. A gear rattle model accounting for oil squeeze between meshing gear teeth. *Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering*, **219**: 1075-1083, 2005.
- H. Fastl and E. Zwicker. *Psychoacoustics: Facts and Models*. Springer, Berlin, New York, 2007.
 Gelfand
- A. L. Hastings. *Sound Quality of Diesel Engines*. PhD thesis, Purdue University, West Lafayette, Indiana, USA, August 2004.
- R. Ingham, N. Otto, and T. McCollum. Sound quality metric for diesel engines. In *Proceedings of the* 1999 Noise and Vibration Conference, pages 1295-1299, Traverse City, Michigan, USA, 1999. The Society of Automotive Engineers.
- M. Kahn, O. Johansson, and U. Sundbäck. Development of an annoyance index for heavy-duty diesel engine noise using multivariate analysis. *Noise Control Engineering Journal*. **45**: 157-167, 2003.

•

L. D. Mitchell. Gear noise: The purchaser's and the manufacturer's views. In *Proceedings of the Purdue Noise Control Conference*, pages 95-106, West Lafayette, Indiana, USA, 1971.

References

- R. Singh, H. Xie, and R. Comparin. Analysis of automotive neutral gear rattle. *Journal of Sound and Vibration*, **131**: 177-196, February 1989.
- R. Singh. Gear noise: anatomy, prediction and solutions. In *Proceedings of the 2009 InterNoise Conference*, Ottawa, Canada, August 2009.
- A. Szadkowski. Mathematical model and computer simulation of idle gear rattle. In *Proceedings of the* 1991 International Congress, Detroit, Michigan, USA, February 1991. The Society of Automotive Engineers.
 - G. Weisch, W. Stücklschaiger, A. de Mendonca, N. Monteiro, and L. dos Santos. The creation of a car interior noise quality index for the evaluation of rattle phenomena. In *Proceedings of the 1997 Noise and Vibration Conference*, pages 1177-1182, Traverse City, Michigan, USA, 1991. The Society of Automotive Engineers.