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Acoustical Treatments

Introduction

Modeling structural damping behavior.

Comparison of three computational methods:

Poro-elastic FEA - Biot theory.

Equivalent fluid FEA - Limp mass formulation.

Modal expansion method - Limp mass.

Based on Noise-Con 98 paper by Bolton, Lai, 
Gardner, et al.
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Background

Acoustic treatment is Thinsulate Acoustic 
Insulation (TAI), a fibrous material which 
provides both absorption and damping.

Thinsulate Acoustic Insulation entered the 
automotive market in 1995.
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Background - damping test
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Background - test data
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Analysis methods

3M commissioned Purdue University to study 
fibrous acoustical treatments. 

Modal expansion procedure was used at Purdue.

Comet / Safe, a commercially available poro-
elastic FEA code was used for 3M work.

Comet / Safe was used for both poro-elastic and 
equivalent fluid models.
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Comet/Safe FEA model
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Comet/Safe FEA model- detail

Air duct

Aluminum plate

Detail near fibrous layer

5 cm

Unit

force1/3 m

Fibrous material
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Aluminum plate properties

Thickness 1.27 mm

Length 1.0 m

Young’s modulus 71,000 MPa

Poisson’s ratio 0.33

Density 2700 kg/m3
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Material properties, poro-elastic

Porosity .99

Tortuosity (Structure factor) 1.2

Flow resistivity 8882 Rayls/m

Young’s modulus of solid 1000 Pa

Poisson’s ratio of solid 0

Solid bulk density 11.43 kg/m3

Fluid density 1.21 kg/m3

Speed of sound in fluid 343 m/s

Prandtl number in fluid .71

Specific heat ratio in fluid 1.4
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Boundary conditions - Treatment/air interface

p, vy

x

y

Volume velocity : vy = jw[(1-h)uy + hUy]

Uy

uy

Open surface
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Velocity results - Treated and untreated aluminum plate
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Velocity results - Treated and untreated steel plate
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Results - Normal particle displacement in 
fibrous treatment - 11 Hz
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Results - Parallel particle displacement in 
fibrous treatment - 11 Hz
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Results - Transverse / normal velocity ratio
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Equivalent fluid - SAFE model

Motivation:

Faster computations.

Input measured complex r, c.

In this case,  calculated r, c.

Based on limp model formulation.
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Equivalent fluid, normalized speed of sound
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Equivalent fluid,  normalized density
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Spatially averaged velocity results
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Viscoelastic damper - FEA model

Modeled constrained layer damper with ANSYS.

Matched basis weights.

Used published viscoelastic material properties.

Used modal strain energy method to determine 
modal damping.
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Viscoelastic damper comparison
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Future work

Test data.

3D models with complex equivalent fluid.

Optimize fibrous treatment for damping 
effect.

Characterize damping effect.
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Summary

Successfully duplicated modal expansion 
results using two FEA methods.

Three independent methods predicted  
damping effect due to fibrous treatment.

Damping effect seems to be on the order 
of constrained layer damper.

Damping results from interaction of panel 
nearfield and fibrous material.
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