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Distributed Model Predictive Control via Proximal

Jacobian ADMM for Building Control Applications

Xiaodong Hou, Yingying Xiao, Jie Cai, Jianghai Hu and James E. Braun

Abstract

This paper investigates a distributed model predictive control (DMPC) framework for building

control applications. The proposed framework is general in that it can be easily customized to solve the

dynamic optimization problem for a broad class of multi-zone buildings with relatively complex HVAC

systems. The Proximal Jacobian alternating direction method of multipliers (ADMM), a recent variant

of the traditional Gauss-Seidel sequential ADMM is employed and adopted to solve the centralized

optimization problem, which ultimately leads to an agent-based parallel updating scheme with guaranteed

convergence. A case study on the HVAC energy optimization of a multi-zone building is presented to

show the effectiveness of the proposed method.

I. INTRODUCTION

The building sector consumes over 40% of primary energy in the United States. Advanced

building control strategies, especially the model predictive control (MPC) approach, have shown

promise to reduce building’s heating, ventilation and air-conditioning (HVAC) energy consump-

tion through the dynamic optimization of the interaction of building thermal dynamics with

HVAC systems.

However, it has been commonly recognized in the building control community that the

engineering cost for building-specific optimal control designs and the implementation cost for

deploying advanced controls such as MPC are extremely high. In addition, centralized MPC for

large scale buildings usually suffers from poor scalability and high computational burden as the

corresponding HVAC configuration and inter-zonal thermal couplings are very complicated.
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Consequently, there has been a growing interest of applying distributed MPC (DMPC) strate-

gies in building control, since they enable the decomposition of the centralized optimization

problem into multiple small local problems (structurally or computationally), making it possible

for scalable and low computational implementations.

Distributed model predictive control has been studied extensively by the control community.

Many of the existing DMPC approaches are built on agent-based negotiation or distributed

optimization. For example, an iterative solution approach is introduced in [1] for constrained

linear systems coupled through the inputs, and agents negotiate with each other by “making

proposals” and evaluating proposals. Dual decomposition and Gauss-Seidel alternating direction

method of multipliers (ADMM) are applied to DMPC in [2] and [3]. In addition, the proximal

center decomposition method is proposed to solve the DMPC problem [4] for linear systems with

coupling in the dynamics; the method in [5] employs a parametric nonconvex decomposition

algorithm for DMPC of nonlinear systems with constraint couplings; a Jacobi (parallel) algorithm

for cooperative DMPC is provided in [6], considering either dynamic coupling or cost coupling.

Interested readers can refer to [7] and [8] for more recent work on DMPC. It should be noted that

the aforementioned literature either only considers couplings in the dynamics or only couplings

in the cost function, but not both.

On the other hand, there has been much effort of applying DMPC to the building control

(especially temperature regulation) problems in recent years. For instance, a DMPC controller

based on primal decomposition is given in [9] for a multi-zone building where local control

profiles are optimized by the local agents; however, it does not consider the case where there is

coupling in the objective function. A simlilar study in [10] utilizes Benders’ decomposition to

split the centralized problem. A dual decomposition based DMPC is used to solve the temperature

regulation problem of a multi-zone building served by a central air handling unit in [11]. However,

both of these two studies consider greatly simplified HVAC models.

From the above review, it is evident that there is no general DMPC framework that not only

takes dynamic couplings into account, but also handles couplings in the constraints and objective

functions. Such a framework is sorely needed because it can be customized to a broad class of

realistic building control applications in a straightforward fashion as many building problems

involve multiple thermal zones (couplings in thermal dynamics) served by a complex HVAC

system with multiple consumers or components (couplings in objective functions and resource

constraints).



This paper aims at providing such a DMPC framework for building control applications.

To this end, we start from a fairly general control formulation (system dynamics, cost function,

constraints). Through a series of transformations, the centralized optimization problem is cast into

a standard form. Then, a decomposition technique recently proposed in the literature, Proximal

Jacobian ADMM, is utilized to decompose the centralized problem into several smaller scale

local subproblems, each of which is solved iteratively by local agents in parallel. The convergence

of local solutions to a central optimal is also established under certain conditions.

While the proposed method may not always have superior performance compared to algorithms

or implementations designed specifically for a particular case study, our framework is suited for

a series of building control formulations and requries relatively less customization. This attribute

of the proposed method makes it amenable for a plug-and-play implementation, which could

significantly reduce engingeering costs. It is also worth mentioning that there have been some

attempts in this direction, which combine agent-based control with DMPC for building energy

minimization and demand reduction [12] [13].

The rest of the paper is organized as follows. In Section II, a description of the system structure

under study is given. In Section III, the problem formulation and transformations are presented.

The Proximal Jacobian ADMM method for solving DMPC problems is introduced in Section IV.

A multi-zone building control case study is presented in Section V to show the effectiveness of

the proposed method. Finally, some concluding remarks are given in Section VI.

II. SYSTEM DESCRIPTION

A. Notation

In this paper, the following notations will be used. N: set of non-negative integers. Rn: n-

dimensional Euclidean space. Rn×m: set of all n×m real matrices. A>: transpose of matrix A.

A � 0: matrix A is symmetric positive definite. ‖ · ‖: Euclidean norm of a vector or spectral

norm of a matrix. ‖x‖A =
√
x>Ax: A-norm of vector x ∈ Rn for A � 0. |P|: cardinality of a

set P . diag
(
A,B,C): block diagonal matrix with diagonal blocks as matrices A, B and C.



B. System Dynamics

Suppose the building under study consists of L thermal zones. The thermal dynamics of the

ith zone are characterized by the following discrete-time affine system,

xi(k + 1) = Aiix(k) +
∑
j∈Ni

Aijxj(k) +Biiui(k) +
∑
j∈Mi

Bijuj(k) + Fiwi(k), i = 1, . . . , L,

(1)

where k ∈ N, xi(k) ∈ Rni are the local state variables (zone air temperature, floor, wall

temperatures, etc.), ui(k) ∈ Rmi is the local control input (such as supply air temperature,

supply air flow rate, or sensible cooling), wi(k) ∈ Rpi is the uncontrollable input (ambient

temperature, solar radiation, occupants); Aij ∈ Rni×nj and Bij ∈ Rni×mi are constant system

matrices. We assume that there is one agent dedicated for the local optimization and decision

making of each zone, i.e, this agent will determine the control input as well as the corresponding

zone temperature profile of the given zone. Ni and Mi represent the set of agents that have

influence on the state xi through their local states and controls, respectively.

The overall building thermal dynamics are given by

x(k + 1) = Ax(k) +Bu(k) + Fw(k),

where x(k), u(k) and w(k) are the concatenations of the corresponding local variables. Note

that an agent may be coupled through states or control inputs with other agents. A fairly broad

class of buildings can be represented by this model as it encompasses the possible inter-zonal

thermal couplings (open space, window, corridor) and couplings across zones through control

inputs.

C. Constraints

Two common types of constraints in building problems are considered in this paper: local and

shared constraints. Firstly, each thermal zone and its HVAC equipment are subject to local state

and control input constraints of the form

xi(k) ∈ Xi(k), ui(k) ∈ Ui(k), i = 1, . . . , L, (2)

where Xi(k) and Ui(k) are assumed to be time-varying compact convex sets. These local

constraints usually arise due to thermal comfort requirements and HVAC operation constraints.



For example, zone air temperatures should be maintained inside comfort intervals; sensible

cooling injected into the room space from a rooftop unit (RTU) cannot exceed the RTU’s capacity.

Secondly, shared constraints often involve different HVAC equipment and their corresponding

agents, representing some “shared resources” in the whole system. For instance, several variable

air volume (VAV) units may be served by a central air handling unit (AHU), hence the total air

flow rate through individual VAVs is smaller than that provided by the AHU. In this study, we

consider shared constraints of the following form
L∑
i=1

hi(k)qi
(
xi(k)

)
≤ h0(k),

L∑
i=1

gi(k)ri
(
ui(k)

)
≤ g0(k), (3)

where hi(k), gi(k) ∈ R, i = 1, . . . , L, are time-dependent constants; qi(·) and ri(·) are convex

functions of xi and ui, respectively. Notice that qi and ri will be set to zero if the corresponding

zone or equipment is not involved in the shared constraint. The current formulation can be easily

generalized to the case with multiple shared constraints.

D. Objective Function

In many building control problems, the objective function to be minimized approximates the

total HVAC energy bill in a certain prediction horizon. Extra terms that represent demand charges

may also be included in the objective function. It is not uncommon to have couplings in the

objective function across different HVAC equipment. A simple example is given by different

HVAC components in a single building or a cluster of buildings all sharing the same cooling

source, e.g., a central chiller plant.

To accommodate the situation where there are multiple cooling/heating sources, we consider

the following infinite horizon global objective function,

J∞ =
∞∑
k=0

L∑
i=1

fi(xi, ui, xj∈Pi
, uj∈Qi

). (4)

Here, each fi represents the energy consumption of certain HVAC equipments that share one

cooling/heating source, and is assumed to be a closed, convex function in each argument; Pi
and Qi (not necessarily the same as Ni and Mi) represent the set of agents that have influence

on the local cost function of agent i through xj and uj , respectively.

Remark 1. The current formulation is very general as it takes into account couplings in states,

control inputs, and cost functions among different agents. Many systems in the literature can be

treated as special cases of this formulation.



III. PROBLEM FORMULATION

A. Centralized Optimization Problem

The MPC scheme replaces the infinite horizon objective function in (4) with a finite horizon

one. The prediction horizon is assumed to be N , and the corresponding optimization problem

is solved at each time step in a receding horizon fashion. For notational simplicity, the current

time index is assumed to be 0 and we will use x(k) and u(k) to represent the predicted state

and control input that are k steps after the current step.

The centralized optimization problem at each time instance can then be formulated as

minimize
x(k), u(k)

J =
N−1∑
k=0

L∑
i=1

fi(xi, ui, xj∈Pi
, uj∈Qi

)

subject to x(k + 1) = Ax(k) +Bu(k) + Fw(k),

L∑
i=1

hi(k + 1)qi
(
xi(k + 1)

)
≤ h0(k + 1),

L∑
i=1

gi(k)ri
(
ui(k)

)
≤ g0(k),

xi(k + 1) ∈ Xi(k + 1), ui(k) ∈ Ui(k),

i = 1, . . . , L, k = 0, 1, . . . , N − 1.

The above optimization problem can be more compactly represented as

minimize
x,u

J =
L∑
i=1

Fi(xi,ui,xj∈Pi
,uj∈Qi

) (5)

subject to x = Ωx(0) + Φu + Ψw,

Hq̂(x) ≤ h0, Gr̂(u) ≤ g0,

xi ∈ XNi, ui ∈ UNi, i = 1, . . . , L,

where XNi =
∏N

k=1Xi(k), UNi =
∏N−1

k=0 Ui(k), Fi(·) =
∑N−1

k=0 fi(·); Ω, Φ, Ψ are block matrices

that represent the overall dynamics in the whole prediction horizon, and

xi = [x>i (1) · · ·x>i (N)]>, ui = [u>i (0) · · ·u>i (N − 1)]>,

x = [x>(1) · · ·x>(N)], u = [u>(0) · · ·u>(N − 1)], w = [w>(0) · · ·w>(N − 1)]>,

H = diag(h>(1) · · ·h>(N)), G = diag(g>(0) · · · g>(N − 1)),



h(k) = [h1(k) · · ·hL(k)]>, g(k) = [g1(k) · · · gL(k)]>,

q̂(x) =
[
q̂>
(
x(1)

)
· · · q̂>

(
x(N)

)]>
, r̂(u) =

[
r̂>
(
u(0)

)
· · · r̂>

(
u(N − 1)

)]>
,

q̂
(
x(k)

)
= [q1(x1(k)) · · · qL(xL(k))]>, r̂

(
u(k)

)
= [r1(x1(k)) · · · rL(xL(k))]>.

If we stack x and u into a single optimization variable y = [u>, x>]>, then optimization

problem (5) is cast as

minimize
y

J =
L∑
i=1

Fi(yi,yj∈Pi∪Qi
) (6)

subject to Âeqy = b̂eq, Âinp̂(y) ≤ b̂in,

yi ∈ YNi, i = 1, . . . , L,

where yi = [u>i , x>i ]
>, YNi = UNi ×XNi, and

Âeq =
[
−Φ I

]
, b̂eq = Ωx(0) + Ψw,

Âin =

H 0

0 G

 , b̂in =

h0

g0

 , p̂(y) =

q̂(x)

r̂(u)

 ,
where I and 0 are identity matrix and zero matrix of proper dimensions, respectively. We call

yi the local private variable of agent i.

B. Consensus Constraint

Because of the couplings in constraints and the objective function, the centralized optimization

problem is not readily separable for a distributed solution.

The objective function can be decoupled by introducing local copies of coupling variables for

each agent and enforcing all the local copies to have the same value through extra consensus

constraints. For example, agent i is coupled with yj∈Pi∪Qi
in the local cost function Fi. Then, a

local copy of yj∈Pi∪Qi
for agent i can be introduced as ŷi. Notice that ŷi is used for the sake of

notational simplicity; whereas only copies of xj∈Pi
and uj∈Qi

need to be included in ŷi. With

these extra variables, the optimization problem becomes

minimize
y

J =
L∑
i=1

Fi(yi, ŷi) (7)

subject to Âeqy = b̂eq, Âinp̂(y) ≤ b̂in,

Eiy = ŷi, yi ∈ YNi, i = 1, . . . , L,



where Ei is a matrix with elements of value 0 or 1. Each row of Ei has only one non-zero

element, which enforces the local copy at agent i to be the same as the original variable at its

neighbouring agent j ∈ Pi ∪ Qi. Hence, all local copies of the same private variable will have

a consistent value.

IV. DISTRIBUTED SOLUTION VIA PROXIMAL JACOBIAN ADMM

By combining the two equality constraints and introducing a slack variable z0, the optimization

problem (7) can be equivalently transformed into

minimize
z

J =
L∑
i=0

Fi(zi) (8)

subject to Az = b, Cp(z) = d,

zi ∈ ZNi, i = 0, . . . , L,

where

A =

Âeq 0 0

E −Ib 0

 , C =
[
Âin 0 I

]
,

p(z) =
[
p̂>(y) ŷ> z>0

]>
, z =

[
y> ŷ> z>0

]>
,

b =
[
b̂>eq 0>

]>
, d = b̂in, E =

[
E>1 · · · E>L

]>
,

and ŷ = [ŷ>1 , . . . , ŷ
>
L ]
>; zi = [y>i , ŷ>i ]

> ∈ ZNi = {(yi, ŷi)|yi ∈ YNi} for i = 1, . . . , L; ZN0

is the positive orthant, and F0(z0) = 0. In addition, Ib is a block identity matrix of proper

dimension.

In the optimization problem (8), with the objective function being the sum of local cost func-

tions of individual agents, the only coupling that hinders a direct decomposition into subproblems

are the two equality constraints. To overcome this, we introduce the augmented Lagrangian

function and dual variables as follows.

A. Augmented Lagrangian and Dual Problem

First notice that, the elements in z can be re-ordered as z = [z>0 , . . . , z
>
L ]
>, where zi =

[y>i , ŷ>i ]
>, i = 1, . . . , L, is the decision variable of agent i (an additional agent will determine

z0). For the optimization problem (8), an augmented Lagrangian function is formulated as,

Lρ(z, λ, µ) =
L∑
i=0

Fi(zi) + λ>(Az− b) + µ>(Cp(z)− d) +
ρ1
2
‖Az− b‖2 + ρ2

2
‖Cp(z)− d‖2



=
L∑
i=0

Fi(zi) + λ>
( L∑
i=0

Aizi − b
)
+
ρ1
2

∥∥∥∥∥
L∑
i=0

Aizi − b

∥∥∥∥∥
2

+ µ>
( L∑
i=0

Cipi(zi)− d
)
+
ρ2
2

∥∥∥∥∥
L∑
i=0

Cipi(zi)− d

∥∥∥∥∥
2

=
L∑
i=0

Li(zi, λ, µ)− λ>b− µ>d + φ(z)

where λ, µ are the Lagrange multipliers, or dual variables; ρ1 > 0 and ρ2 > 0 are the penalty

parameters; Li(zi, λ, µ) = Fi(zi) + λ>Aizi + µ>Cipi(zi) and φ(z) = ρ1
2
‖
∑L

i=0 Aizi − b‖2 +
ρ2
2
‖
∑L

i=0 Cipi(zi)− d‖2. Notice that Ai are the columns of A that correspond to the elements

of zi; pi(zi) is the concatenation of the elements in p(z) with zi as argument; similarly, Ci is

obtained by picking out columns of C that correspond to the elements of pi(zi).

The dual function is obtained by minimizing the Lagrangian function with respect to the

primal variable z, d(λ, µ) = infz Lρ(z, λ, µ).

B. Precursor Algorithms

Many primal-dual based decomposition schemes have been proposed to solve (8). Dual de-

composition [2] can not be applied to our problem since the objective function is not strongly

convex in z0. The multi-block Gauss-Seidel ADMM [14] is a direct extension of the standard

ADMM [15] from the two-block case to the multi-block case. However, it is shown in [16] that

the multi-block Gauss-Seidel ADMM cannot guarantee convergenve. A variable splitting method

is presented in [17] [18], which transforms the multi-block setting into an equivalent two block

setting; however, it requires a large number of auxiliary decision variables and extra constraints.

C. Proximal Jacobian ADMM

From the perspective of implementation, a parallel update scheme across agents is preferred.

That is, all the agents perform local optimization simultaneously without having to wait other’s

updated information as in the serial scheme. One straightforward method is the Jacobian ADMM,

where at every iteration each agent will minimize the augmented Lagrangian function with respect

to its local decision variable zi, assuming other parts of z fixed. However, even in the simplest

two block setting, this scheme does not converge in general [19].

In this paper, we adopt the Proximal Jacobian ADMM method from [20], which builds on the

Jacobian ADMM with a proximal term ϕi

2
‖zi−zvi ‖2 added to regularize each agent’s subproblem



for some ϕi > 0. The multi-block Proximal Jacobian ADMM scheme is given in Algorithm 2. At

each iteration, local agents solve the local optimization problem (9) in parallel, followed by an

update on the dual variables using dual ascent. The dual variables can be thought as a coordinator

that facilitates the satisfaction of coupling constraints. Notice that i+ and i− represent the indices

before and after index i, respectively.

Algorithm 1 Proximal Jacobian ADMM
1: Initialize (z0, λ0, µ0), set v = 0;

2: repeat

3: Update zi (in parallel) according to

zv+1
i = argminzi∈ZNi

(
Li(zi, λv, µv) +

ϕi
2
‖zi − zvi ‖2 + φ(zvi−, zi, zvi+)

)
; (9)

4: Update λ and µ according to

λv+1 = λv + ρ1(Azv+1 − b);

µv+1 = µv + ρ2
(
Cp(zv+1)− d

)
;

5: v ← v + 1;

6: until some stopping criterion is satisfied.

Theorem 1. (Global Convergence) Suppose the following conditions hold,

1) qi(·) and ri(·) in (3) are linear functions in their respective argument, e.g., Cp(z) = Ĉz

for some constant Ĉ;

2) the parameters in Algorithm 1 satisfy ρ1, ρ2 > 0;

3) ϕi > (L− 1)
(
ρ1‖Ai‖2 + ρ2‖Ĉi‖2

)
, i = 1, . . . , L.

Then the sequence {Sv = (zv0, . . . , z
v
L, λ

v, µv)} generated by Algorithm 1 converges to a fixed

point of the mapping defined by (9), for i = 1, . . . , L.

Proof. See Appendix.

Parameters ϕi not only make such a parallel update structure possible, but also play a crucial

role in the convergence. Intuitively, values of ϕi represents how aggressively individual agents

should perform local updates: larger values indicate more conservativeness when updating local

decision variables. Parameters ρ1 and ρ2 reflect the penalty on the violation of coupling con-

straints: larger values indicate stronger emphasis on satisfaction of the coupling constraints, but



potentially could result in more iterations to reach optimal solutions. It often requires some fine

tuning of all parameters to obtain a desirable convergence behaviour.

V. CASE STUDY

The proposed method will be applied to a building control case study, which represents a class

of multi-zone buildings with local control equipments (RTU, zone-dedicated VAV and opening

controllable diffuser). The energy saving potential of coordination between the zones and the

corresponding HVAC equipments will be explored. We will also demonstrate the effectiveness

of the proposed method in deploying such an agent-based coordination strategy.

LL3 Multi-zone Coordination

Q1+Qgain1

Q2+Qgain2

Q3+Qgain3

Double facade

Zone 1

Zone 2

Zone 3

Ta

Ta

Ta

• Ta  :  ambient temperature
• Qi :  sensible cooling/heating
• Qgain i : internal gain ( i = 1,2,3)

South

T1

T2

T3

Fig. 1. Purdue Living Lab office room multi-zone thermal network structure

The case study building is the Purdue Living Lab 3 at the Center for High Performance

Buildings, West Lafayette, IN, USA. The Purdue Living Lab 3 is a large open space office,

whose thermal structure is given in Fig. 1. The room space is divided into three zones according

to their relative distance to the south facing double facade. There is a significant load imbalance

across the three zones due to different occupancy schedules, solar radiation, and couplings to

the ambient through the double facade.

Cooling/heating into the room is provided by a central AHU, which receives chilled water

from an air cooled chiller. It is assumed that the supply air at constant temperature goes into

the room space through three overhead controllable diffusers, one for each zone. These diffusers

allow continuously adjustable air flow rates. This feature provides the energy-saving potential by



coordination between zones and diffusers, utilizing couplings between zones (direct air exchange)

and building’s thermal storage (concrete, furnitures, etc.).

A. Model Description

1) Envelope model: A multi-zone thermal network linear state-space model in the form of (1)

was obtained. Model parameters were estimated from building construction information. For each

zone i, Ni represents the adjacent zones, andMi is empty. The controllable input Qi = u+i −u−i
is the total sensible cooling/heating provided to zone i. u−i ≥ 0 is the cooling energy provided by

AHU through diffuser i into zone i. We assume that the supply air temperature is fixed and u−i is

proportional to the diffuser opening or the air flow rate. u+i ≥ 0 is the VAV’s gas reheat towards

zone i. Local state variable xi includes the average zone air temperature Ti, lumped wall and

ceiling temperatures. The exogenous input wi includes solar radiation, outdoor air temperature,

double facade temperature and internal gains Qgain,i (occupancy, computers, etc.). Data of the

exogenous inputs are collected during May, 2015.

2) Objective function: The objective function (4) characterizes the total HVAC energy bill in

a prediction horizon,
N∑
k=1

(
Pe(k) · Pow

(
3∑
i=1

u−i (k)

)
+ Pg ·Gas

(
3∑
i=1

u+i (k)

))
where Pow is the power consumption function, fitted by a fourth order convex polynomial

for every ambient temperature, and correlates the power consumption rate to the total sensible

cooling. Gas denotes the gas used for the VAV reheat, which is assumed to be a linear function

of u+i . Pg is the constant gas price, and Pe(k) is the Time of Use (TOU) electricity price, which

will be specified later. Notice that Gas is separable with respect to the local decision variables

whereas Pow is not; thus this objective function is a special case of (4).

3) Constraints: Local constraints (2) of agent i (zone i) consist of a diffuser constraint u−i ∈

[u−i,min, u
−
i,max], which models the minimum and maximum openings of the diffuser; and a thermal

comfort constraint Ti ∈ [Ti,min, Ti,max].

Because the three overhead diffusers are served by the same AHU and VAV, their total air

flow is bounded by the supply air flow from the AHU, or equivalently, the total sensible coolings

going into the room is bounded by the AHU capacity: Cmin ≤ u−1 + u−2 + u−3 ≤ Cmax. Another

shared constraint captures the thermal couplings between zones. Since we have a linear thermal

dynamics model, this constraint can be cast in the standard form of Section III.



Remark 2. Notice that all the upper and lower bounds of the constraints could be time-varying,

determined by either the ambient temperature or the occupancy preferences.

B. Controllers

The performance of three different controllers will be compared: 1) baseline controller; 2)

centralized MPC; 3) distributed MPC using Proximal Jacobian ADMM.

1) Baseline controller: A simple feedback-type controller is designed to maintain the zone

temperatures at the upper/lower bounds. Each diffuser will be adjusted locally by the correspond-

ing agent without coordinating with each other. Zone temperatures are allowed to float freely

between upper and lower bounds. Whenever the temperature in zone i is about to go above the

pre-specified upper bound, diffuser i opens more to maintain it at its temperature upper bound.

Clearly, this greedy control strategy is not able to utilize inter-zonal coordination.

2) Centralized MPC: This controller solves the centralized optimization problem (5) in a

receding horizon fashion, and only the first control input is applied at each step.

3) Distributed MPC: Three agents solve problem (8) cooperatively using Algorithm 1, and

only the first control input of each agent is applied. The following stopping criterion is used:

200 ≤ v ≤ 600, and max(‖zv− zv−1‖, ‖Azv−b‖, ‖Ĉzv−d‖) ≤ 0.001, where v is the iteration

number.

C. Simulation Setup

TOU electricity prices are used in the simulation: $0.1/kwh for on-peak hours (10am-17pm)

and $0.03/kwh for off-peak hours (17pm-10am). The gas price is assumed to be $0.03/kwh. The

sampling time step is 0.5h and the prediction horizon N = 12h is used for both the centalized

MPC and the distributed MPC. After a three-day warm-up period, the simulation is run for

7 days. It is assumed that 9am-17pm are occupied hours. The local thermal comfort interval

for each zone is assumed to be [21.5◦C, 23.5◦C] during occupied hours and [20.5◦C, 24.5◦C]

during unoccupied hours. Other parameters are set to be: u+i,min = 0, u+i,max = 2kw, u−i,min = 0,

u−i,max = 4kw, Cmin = 0, Cmin = 6kw. Optimization problems are solved numerically by CVX

[21].

D. Simulation Results

The simulation results of the baseline controller, centralized MPC and distributed MPC are

given in Fig. 2, Fig. 3 and Fig. 4, respectively. We only plot the first two days’ zone temperature



and control profiles due to space limitation. The total energy bills with the three controllers are

summarized in TABLE 1 with the energy saving percentages of both MPCs compared to the

baseline controller marked in parentheses.

TABLE I

Control Strategy Energy Consumption ($)

Baseline Conroller 91.65

Centralized MPC 82.35 (10.15%↘)

Distributed MPC 83.64 (8.74%↘)

Several observations can be made based on the simulation results. Zone 1 has the highest load

among all three zones during most of the days simulated, since physically it is closest to the

double facade, and thus most heavily influenced by the ambient. With the baseline controller,

each diffuser only focuses on its own local zone temperature in a short prediction window; thus

there is no coordination between zones and the thermal storage of the building is not utilized.

However, with both the centralized MPC and the distributed MPC, local agents are able to take

advantage of the building’s thermal storage as well as the TOU electricity pricing: agents 2 and

3 pre-cool zones 2 and 3 before 10am when the electricity price is low, in order to store extra

cooling energy in the building thermal mass and release it into the room space during the peak

hours. In addition, we can observe some coordination between agent 2 and agent 3 as they shift

their pre-cooling peaks to different periods so that the total power level is relatively flat. The

reason that agent 1 does not pre-cool zone 1 even though the three zones have similar thermal

mass is that zone 1 is coupled to the double facade. If agent 1 also pre-cooled zone 1, much

of the pre-cooling energy would be lost due to the coupling with double facade, resulting in a

lower energy storage efficiency.
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Fig. 2. Baseline controller
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Fig. 3. Centralized MPC
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Fig. 4. Distributed MPC

E. Computation Time

With the stopping criteria defined in Section V.B, DMPC is able to terminate in less than 400

iterations most of the times, resulting a computation time of 3 minutes (assuming a perfectly syn-

chronized parallel computation setting), which is much smaller than the 0.5h decision/sampling

time. To further demonstrate the superiority of the proposed algorithm to the standard Gauss-

Seidel ADMM, where different agents perform updates in serial instead of in parallel, we compare



their convergence speed. Specifically, we plot the maximum absolute violation of the shared

equality constraints, as well as the objective function value at each iteration in Fig. 5.
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Fig. 5. Convergence comparison under same ρ1 and ρ2

From the plots, it is noted that both algorithms achieve almost feasible solutions after approx-

imately 100 iterations. As for the objective function values, the proposed algorithm takes about

400 iterations to converge to the optimal value, compared to 300 iterations with the serial multi-

block Gauss-Seidel ADMM. However, if implemented in a truly parallel scheme and ignoring

communication overheads, the proposed algorithm will take much less time to converge. And

as the number of agent increases, this advantage will become increasingly more significant.

Finally, for this particular case study, the proposed distributed solution does not outperform

the centralized MPC in terms of convergence/computation time due to the relatively small scale

of the problem and the very strong couplings (in the thermal dynamics and cost functions).

However, many real life building control problems have significantly larger size, which makes

the centralized problem very difficult or even impossible to solve. In comparison, with the

distributed solution, a central coordinator only needs to update the dual variable without solving

any optimization problem, making the DMPC scheme much more scalable to problem size.

VI. CONCLUSION

This paper presents a DMPC framework via the Proximal Jacobian ADMM method for

building control applications. The proposed framework can be applied to solve a class of problems



involving multi-zone buildings served by multiple HVAC equipment. The distributed solution

method using Proximal Jacobian ADMM leads to an agent-based parallel updating scheme with

guaranteed convergence. The case study for the HVAC energy minimization of a multi-zone

building not only demonstrates the effectiveness of the proposed DMPC solution, but also shows

the benefit of coordination between zones and their local control equipment. Future directions

include incorporating demand charges into the objective function and investigating more realistic

case studies.

VII. APPENDIX

Proof of Theorem 1. This proof is based on the work in [20], with some modifications.

Assumption 1. S∗ = (z∗0, . . . , z
∗
L, λ

∗, µ∗) is a solution to problem (8), thus satisfies its KKT

condition.

Proof. First write out the first order optimality condition of the unconstrained strongly convex

optimization problem (9),

si1 =−A>i

(
λv + ρ1

(
Aiz

v+1
i +

∑
j 6=i

Ajz
v
j − b

))
− Ĉ>i

(
µv + ρ2

(
Ĉiz

v+1
i +

∑
j 6=i

Ĉjz
v
j − d

))
+ ϕi(z

v
i − zv+1

i ) ∈ ∂F̂i(zv+1
i ), (10)

where F̂i = Fi+ IZNi
, and IZNi

(zi) is a convex indicator function that takes the value of 0 if zi

is inside ZNi, +∞ othewise. By Assumption 2, (z∗0, . . . , z
∗
L, λ

∗, µ∗) satisfies the KKT condition

of problem (8),

si2 = −A>i λ
∗ − Ĉ>i µ

∗ ∈ ∂F̂i(z∗i ), i = 0, 1, . . . , L, (11)

Az∗ = b, Ĉz∗ = d.

Observing (10) and (11), from the monotonicity property of subdifferential of convex functions,

one has

(si1 − si2)
>(zv+1

i − z∗i ) ≥ 0, (12)

Notice λv+1 = λv + ρ1(Azv+1−b), and µv+1 = µv + ρ2(Ĉzv+1−d). Rewrite si1 in terms of

λv+1 and µv+1, then plug si1 and si2 in to (12), one obtains

−
(
λv+1 − λ∗ + ρ1

∑
j 6=i

Aj

(
zvj − zv+1

j

))>
Ai(z

v+1
i − z∗i )



−
(
µv+1 − µ∗ + ρ2

∑
j 6=i

Ĉj

(
zvj − zv+1

j

))>
Ĉi(z

v+1
i − z∗i ) + ϕi(z

v
i − zv+1

i )>(zv+1
i − z∗i ) ≥ 0.

The above inequality holds true for all i = 0, 1, . . . , L. Sum up the inequalities for all i and use

the facts that
∑

j 6=i Aj

(
zvj − zv+1

j

)
= A

(
zv− zv+1

)
−Ai

(
zvi − zv+1

i

)
and

∑
j 6=i Ĉj

(
zvj − zv+1

j

)
=

Ĉ
(
zv − zv+1

)
− Ĉi

(
zvi − zv+1

i

)
, one obtains

−
(
λv+1 − λ∗

)>
A(zv+1 − z∗)−

(
µv+1 − µ∗

)>
Ĉ(zv+1 − z∗)

+
L∑
i=0

(zvi − zv+1
i )>(ϕiI + ρ1A

>
i Ai + ρ2Ĉ

>
i Ĉi)(z

v+1
i − z∗i )

−
(
zv − zv+1

)>(
ρ1A

>A + ρ2Ĉ
>Ĉ
)
(zv+1 − z∗) ≥ 0. (13)

Notice that A(zv+1 − z∗) = Azv+1 − b = 1
ρ1
(λv+1 − λv), and Ĉ(zv+1 − z∗) = Ĉzv+1 − d =

1
ρ2
(µv+1 − µv). Substitute them into (13) and re-arrange terms yields

1

ρ1
(λv − λv+1)>(λv+1 − λ∗) + 1

ρ2
(µv − µv+1)>(µv+1 − µ∗)

+
L∑
i=0

(zvi − zv+1
i )>(ϕiI + ρ1A

>
i Ai + ρ2Ĉ

>
i Ĉi)(z

v+1
i − z∗i )

≥ −
(
zv − zv+1

)>(
A>(λv − λv+1) + Ĉ>(µv − µv+1)

)
≥ −1

2

L∑
i=0

(ρ1
κi
‖Ai

(
zvi − zv+1

i

)
‖2 + κi

ρ1
‖λv − λv+1‖2

)
− 1

2

L∑
i=0

(ρ2
κi
‖Ĉi

(
zvi − zv+1

i

)
‖2 + κi

ρ2
‖µv − µv+1‖2

)
=
−
∑L

i=0 κi
2ρ1

‖λv − λv+1‖2 + −
∑L

i=0 κi
2ρ2

‖µv − µv+1‖2

−
L∑
i=0

( ρ1
2κi
‖Ai

(
zvi − zv+1

i

)
‖2
)
−

L∑
i=0

( ρ2
2κi
‖Ĉi

(
zvi − zv+1

i

)
‖2
)

(14)

The last inequality in (14) is due to the traingle inequality.

Define Pz = diag
(
ϕ0I + ρ1A

>
0 A0 + ρ2Ĉ

>
0 Ĉ0, . . . , ϕLI + ρ1A

>
LAL + ρ2Ĉ

>
LĈL

)
� 0, and

P = diag
(
Pz,

1
ρ1
, 1
ρ2

)
� 0. Then we calculate the difference of two consecutive elements in the

sequence Pv = ‖Sv − S∗‖2P ,

‖Sv − S∗‖2P − ‖Sv+1 − S∗‖2P = ‖Sv − Sv+1‖2P + 2
(
Sv − Sv+1

)>
P
(
Sv+1 − S∗

)
.



Notice that
(
Sv−Sv+1

)>
P
(
Sv+1−S∗

)
is the first term (most left hand side) of inequality (14),

after simple manipulations one obtains

‖Sv − S∗‖2P − ‖Sv+1 − S∗‖2P ≥
L∑
i=0

(zvi − zv+1
i )>

(
ϕiI +

(
1− 1

κi

)(
ρ1A

>
i Ai + ρ2Ĉ

>
i Ĉi

))
(zvi − zv+1

i )

+ (1−
L∑
i=0

κi)

(
1

ρ1
‖λv − λv+1‖2 + 1

ρ2
‖µv − µv+1‖2

)
,

If we assume κi < 1
L

, then 1−
∑L

i=0 κi > 0. And the assumption ϕi > (L−1)(ρ1‖Ai‖2+ρ2‖Ĉi‖2)

implies ϕiI +
(
1− 1

κi

)(
ρ1A

>
i Ai + ρ2Ĉ

>
i Ĉi

)
� 0. Therefore,

‖Sv − S∗‖2P − ‖Sv+1 − S∗‖2P ≥ β‖Sv − Sv+1‖2P . (15)

for some β > 0. Sum up inequality (15) for all v yields
∞∑
v=0

‖Sv − Sv+1‖2P ≤
1

β

(
‖S0 − S∗‖2P − ‖S∞ − S∗‖2P

)
≤ 1

β
‖S0 − S∗‖2P ,

which means that the sequence Qv =
∑
‖Sv − Sv+1‖2P is monotonically increasing and upper

bounded. Therefore, Qv converges lim
v→∞
‖Sv − Sv+1‖2P = 0.

In addition, (15) tells us Pv = ‖Sv − S∗‖2P is a monotonically decreasing sequence, and this

sequence is bounded below by 0. Thus, ‖Sv−S∗‖2P also converges (not necessarily to 0). Then,

Sv converges to a fixed point of the mapping defined by (9).

REFERENCES

[1] J. Maestre, D. M. De La Pena, E. Camacho, and T. Alamo, “Distributed model predictive control based on agent

negotiation,” Journal of Process Control, vol. 21, no. 5, pp. 685–697, 2011.

[2] Y. Wakasa, M. Arakawa, K. Tanaka, and T. Akashi, “Decentralized model predictive control via dual decomposition,” in

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE, 2008, pp. 381–386.

[3] F. Farokhi, I. Shames, and K. H. Johansson, Distributed MPC via dual decomposition and alternative direction method of

multipliers. Springer, 2014.

[4] I. Necoara, D. Doan, and J. A. Suykens, “Application of the proximal center decomposition method to distributed model

predictive control,” in Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE, 2008, pp. 2900–2905.

[5] J.-H. Hours and C. N. Jones, “A parametric nonconvex decomposition algorithm for real-time and distributed nmpc,” IEEE

Transactions on Automatic Control, vol. 61, no. 2, pp. 287–302, 2016.

[6] D. Groß and O. Stursberg, “On the convergence rate of a jacobi algorithm for cooperative distributed mpc,” in 52nd IEEE

Conference on Decision and Control. IEEE, 2013, pp. 1508–1513.

[7] R. Scattolini, “Architectures for distributed and hierarchical model predictive control–a review,” Journal of Process Control,

vol. 19, no. 5, pp. 723–731, 2009.



[8] P. D. Christofides, R. Scattolini, D. M. de la Peña, and J. Liu, “Distributed model predictive control: A tutorial review and

future research directions,” Computers & Chemical Engineering, vol. 51, pp. 21–41, 2013.
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