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Janus Dendritic Ligands for Nanoparticle Assemblies

Abstract
This project was conducted in the laboratory of Professor Christopher B. Murray at the University of
Pennsylvania. The project described herein includes the synthesis of a Janus dendrimer as well as
complimentary dendrimers of hydrophobic and hydrophilic nature to study the self-assembly and
organizational properties of these molecules on gold surfaces. A complete synthesis and characterization of
these molecules is described, as well as grafting the molecules onto both gold nanoparticle and thin film
surfaces. How the different dendritic molecules guide self-assembly of the nanoparticles and how the Janus
molecule assembles itself on a gold surface was studied. To characterize these systems, TEM and solid state
UV-vis were employed, and general trends are described herein.
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This project was conducted in the laboratory of Professor Christopher B. Murray at the 
University of Pennsylvania. The project described herein includes the synthesis of a 
Janus dendrimer as well as complimentary dendrimers of hydrophobic and hydrophilic 
nature to study the self-assembly and organizational properties of these molecules on 
gold surfaces. A complete synthesis and characterization of these molecules is described, 
as well as grafting the molecules onto both gold nanoparticle and thin film surfaces. How 
the different dendritic molecules guide self-assembly of the nanoparticles and how the 
Janus molecule assembles itself on a gold surface was studied. To characterize these 
systems, TEM and solid state UV-vis were employed, and general trends are described 
herein.  
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Introduction 
 

The study of coordination and self-assembly behavior of ligands on nanoparticle 
(NP) surfaces are of critical importance to nanotechnology as it provides the key to 
understanding and engineering various properties such as solubility,1,2 electronic 
conduction,3 optical properties,4,5 and catalytic activity.6 Typically, NPs are synthesized 
with commercially available ligands for solubility in either organic or aqueous media. 
Ligands used for the synthesis of particles synthesized in organic media usually consist 
commercially available alkyl containing molecules that have either acid, amine, 
phosphonate, or thiol surface binding groups.7,8 On the other hand, aqueous synthesis of 
nanoparticles involves polar ligands such CTAB, ascorbic acid, citric acid, or 
polyethylene glycol derived molecules.9,10 In both cases, synthesis utilizing commercially 
available ligands have produced NPs with good control of size and shape. 

One way ligands are placed on the surface of NPs is post-synthesis surface 
modification through ligand exchange. To this end many different types of ligands such 
as polymeric,11–13 dendritic,14–17 liquid crystalline18–20 and small molecules21 have been 
grafted to surfaces to introduce certain solubility, steric, optical, magnetic and electronic 
properties.22 In most cases, the nature of ligands is limited to being either hydrophilic or 
hydrophobic, introducing aqueous compatibility or dispersibility properties in organic 
solvents, respectively. 
 Amongst all surface modification methods, of particular importance are the 
directions that allow the formation of particles with multiple surface functionalities. 
These can be achieved by creating islands of certain functionalities on particle surfaces. 
Particles with only two anisotropic surface domains, with close to a 50:50 ratio, are 
generally referred to as Janus particles after the two-faced Roman god Janus,23 while 
particles with a larger number of domains are called patchy particles.24 The interest in 
formation of such domains is their similarity to anisotropy found in nature such as in 
heme25 and  pollens,26 as well as their potential application in electronics,27 photonic 
crystals,28 and drug delivery.29,30 
 Literature methods for preparation of patchy particles are achieved by liquid 
phase deposition (LPD) and vapor phase deposition methods (VPD), and generally 
involve the functionalization of one part of the particle while masking another by using a 
template,31 particle assembly,32 glancing angle deposition,33 lithography34,35 or physical 
forces such as surface tension.31 However, most of these methods are applied to micron 
or submicron sized particles, can only guarantee the formation of particles with only a 
few large patches (1-5), and have limited production volume.24 To the best of my 
knowledge there is no literature method capable of creating highly precise 2-3nm size 
consistent patches over an entire surface. The goal of this project is to create a patchy 
surface using dendritic ligands. The size range of interest is much smaller than the 
resolution of common fabrication techniques and requires the development of bottom-up 
synthetic protocols. 

Herein a conceptually different method for preparation of patchy particles that 
only involves a simple solution phase ligand exchange step and produces highly uniform 
coverage with less than 3 nm surface anisotropy domains is presented. To achieve such 
precise control, a dendritic ligand with Janus character will be engineered equipped with 
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surface binding disulfide groups and therefore can be used for ligand exchange. 
Hydrophobic and hydrophilic moieties will be mounted by covalent linkage on different 
branches of the same building motif and therefore are inseparable by means of self-
segregation. These moieties are located on the periphery of the dendron, to allow for 
interaction between the different groups as well as the surrounding environment, which 
will influence self-assembly and organization of the molecule. To achieve this, a stepwise 
introduction of each of the different groups will be utilized, which allows for flexibility in 
ligand design. To characterize the dendritic system, NMR and MALDI-TOFF will be 
employed to confirm the structure and purity of the compounds. The hydrophobic or 
hydrophilic branches of neighboring dendritic ligands should self-assemble to form well 
defined patches of either hydrophobic or hydrophilic nature about 2 nm in size.  

Moreover, this strategy also solves problems associated with production difficulty 
of common patchy particle fabrication techniques as it only involves a single solution 
phase ligand exchange and therefore can be scaled up without limitations. 
Complimentary ligands of only hydrophobic or hydrophilic nature will be also 
synthesized, to highlight the unique property of the Janus molecule. How this set of 
ligands play a role in the self-assembly of NPs will also be presented, to show the 
complete set of properties of the ligands. To gain further insights into the self-assembly 
properties of the ligands, NPs with different ligands on their surfaces will be combined, 
and their self-assembly properties will be studied. To characterize all self-assemblies, 
TEM will be used to visualize the NPs and estimate the interparticle spacing. 
Confirmation of the long-range crystallinity and trends in interparticle spacing will be 
achieved with solid state UV-vis. To elucidate the patchy surface that the Janus dendron 
creates on a surface, a thin film of Au will be employed. This is due to Au being electron 
rich, which appears very dark when visualizing with TEM, and a very thin film of Au 
will be lighter than an Au NP. The contrast of the Au surface is important for this study, 
because stains will be employed to visualize the different moieties of the Janus dendron, 
where a stain will bind to the oxygen rich, hydrophilic group of the molecule. The results 
of these studies are described herein.  
 

Materials and Methods 
Materials 
Potassium Iodide (99 %), p-toluenesulfonyl chloride (≥ 98 %), and triethylene glycol 
monomethyl ether (≥ 97 %) and were purchased from Sigma-Aldrich and used without 
further purification. Methyl 3,4,5-trihydroxybenzoate (98 %), 1-bromodecane (97 %), 4-
dimethylaminopyridine (≥ 99 %), and lithium aluminum hydride (95 %) were purchased 
from Aldrich and used without further purification. 3,5-dihydroxybenzoate (97 %), 2,6-
ditertbutyl 4-methyl pyridine (98 %), and oxalyl chloride (98 %) were purchased from 
Acros Organics. All chemicals were used as received. Thionyl chloride (> 98 %) was 
purchased from TCI and used without further purification. Uranyl acetate was purchased 
from Spi Chem and was used without further purification. Potassium carbonate (reagent 
grade), sodium sulfate (anhydrous, reagent grade), silica gel (230-400 mesh, grade 60), 
triethyl amine (reagent grade), dimethylfomamide, tetrahydrofuran, methanol, hexanes, 
and ethyl acetate were purchased from Fisher Scientific and used without further 
purification. All solvents were ACS grade or higher. Dichloromethane was purchased 



 3 

from Fisher Scientific and was dried with activated molecular sieves (3A, 4 to 8 mesh, 
purchased from Acros Organics) before use. 
 
Techniques 
NMR. 1H NMR (500 MHz) and 13C NMR (126 MHz) spectra were recorded on Bruker 
UNI500 or BIODRX500 NMR spectrometer. 1H and 13C chemical shifts (δ) are reported 
in ppm while coupling constants (J) are reported in Hertz (Hz). The multiplicity of 
signals in 1H NMR spectra is described as “s” (singlet), “d” (doublet), “t” (triplet), “q” 
(quartet), “p” (pentet), “dd” (doublet of doublets) and “m” (multiplet). All spectra were 
referenced using solvent residual signals (CDCl3: 1H, δ 7.27 ppm; 13C, δ 77.2 ppm).36 
Heteronuclear single quantum coherence (1H-13C HSQC) and heteronuclear multiple 
bond coherence (HMBC) experiments were used to confirm NMR peak assignments.  
Mass Spectroscopy. Matrix-assisted laser desorption/ionization time of flight (MALDI-
TOF) mass spectrometry was performed on Bruker Ultraflex III (Maldi-Tof-Tof) mass 
spectrometer using dithranol as matrix. 
X-ray scattering. Small-angle transmission X-ray scattering was performed using a 
Multi-angle X-ray scattering instrument equipped with a Bruker Nonius FR591 40 kV 
rotating anode generator operated at 85 mA, Osmic Max-Flux optics, 2D Hi-Star Wire 
detector, and pinhole collimation, with an evacuated beam path. Measurements were 
performed on thin glass coverslips (0.1 mm) and collected for roughly 2 hours. Samples 
were prepared by dropcasting colloidal solutions which were allowed to dry slowly in a 
partially enclosed chamber. The same samples were used for solid-state UV-Vis 
experiments. 
Optical Extinction Spectra. Optical extinction spectra were collected using a Cary 5000 
UV-VIS-NIR, for solid films. Spectral band-pass was set to 2 nm and integration time to 
0.25 seconds. Solution-phase measurements were collected on an Analytical Spectral 
Devices QSP 350-2000 UV-VIS-NIR spectrometer. 
Electron Microscopy. TEM micrographs were collected using a JEOL 1400 microscope 
operated at 120 kV. The TEM was calibrated using a MAG*I*CAL® TEM calibration 
standard. 
Ligand Exchange with Dendrimers. Ligand exchange of oleylamine-capped Au NPs 
was performed using 0.25 mL of Au NPs in hexanes at 80 mg/mL added to 20 mg of the 
replacement ligand disulfide dissolved in 3 mL of chloroform. Each reaction was stirred 
for 1 hour at room temperature, then the reaction was stopped by precipitation of the NPs 
with methanol. After centrifugation, the solid pellet of NPs was redispersed in hexanes 
and precipitated a second time with a mixture of isopropanol and ethanol. For the 
hydrophilic ligands, after ligand exchange the NPs were redispersed in methanol and 
precipitated with toluene.  
Self Assembly of NCs. NC self-assembly was performed using previously-described 
methods.37 A solution containing the NCs was made with hexanes at a defined 
stoichiometry and concentration (5-10 mg/mL). This solution was cast onto a diethylene 
glycol surface formed by loading 1.7 mL diethylene glocol into 1.5 cm2 x 1.0 cm deep 
well machined from Teflon. The evaporating droplet was covered immediately with a 
glass slide to slow evaporation, which was allowed to occur over 12 hours. Once dry, the 
floating film was transferred to TEM grids by scooping up sections from below. Residual 
diethylene glycol was removed under vacuum before imaging. 



 4 

Synthetic procedures and details 
 

 
Methyl 3,4,5-tris(dodecyloxy)benzoate 2.[ref]. To a stirred solution of methyl 3,4,5-
trihydroxybenzoate 1 (5g, 27.17 mmol) and 1-bromododecane (27g, 108.4 mmol) in 
DMF (45 mL) was added potassium carbonate (18.7g, 135.5 mmol) and the resulting 
mixture was stirred at 90 °C for 12 hours. The reaction was cooled to room temperature, 
diluted with CHCl3 (XX mL) and then washed with H2O (3 x 100 mL) and 1 M HCl (3 x 
100 mL). The organic layer was dried over anhydrous Na2SO4, filtered, and the filtrate 
was concentrated under reduced pressure. The product was purified by dissolving in 
small amount of CHCl3 and precipitated out by adding excess MeOH affording pure 
methyl 3,4,5-tris(dodecyloxy)benzoate 2 as a white solid (16.5 g, 88%). 1H NMR 
(CDCl3) δ 7.25 (s, 2H), 4.01 (td, J = 6.5, 4.1 Hz, 6H), 3.88 (s, 3H), 1.86 – 1.78 (m, 4H), 
1.78 – 1.70 (m, 2H), 1.50 – 1.44 (m, 6H), 1.37 – 1.25 (m, 48H), 0.88 (t, J = 6.9 Hz, 9H); 
13C NMR (CDCl3) δ 167.16, 153.05, 142.64, 124.87, 108.26, 73.71, 69.42, 52.30, 32.17, 
32.16, 30.56, 29.98, 29.96, 29.95, 29.92, 29.89, 29.86, 29.79, 29.62, 29.59, 29.54, 26.31, 
26.29, 22.92, 14.33. 
 

 
(3,4,5-Tris(octadecyloxy)phenyl)methanol 3. To a stirred solution of LiAlH4 (2.48g, 
65.35 mmol) in THF (100 mL) at 0 oC was added methyl 3,4,5-tris(dodecyloxy)benzoate 
2 (14.7g, 21.78 mmol) portionwise over a period of 10 minutes and the resulting mixture 
was stirred at 0 oC for 30 minutes under nitrogen atmosphere. The reaction mixture was 
then allowed to warm up to room temperature for 30 minutes after which it was stirred at 
60 oC for an additional 3 hours. Then it was cooled to 0 oC and quenched slowly by 
adding small portions of cold water while monitoring the evolution of hydrogen bubbles. 
The mixture was then concentrated under reduced pressure, dissolved in CHCl3 (200 mL) 
and washed with 1 M HCl (2 x 50 mL), dried over anhydrous Na2SO4, filtered, and the 
filtrate was concentrated under reduced pressure. The residue was redissolved in the 
smallest possible amount of warm CHCl3 and mixed with MeOH to induce precipitation. 
The precipitate was collected by filtration and dried to obtain pure (3,4,5-
tris(dodecyloxy)phenyl)methanol 3 as a white solid (13.38g, 93 %). 1H NMR (CDCl3) δ 
6.54 (s, 2H), 4.57 (s, 2H), 3.94 (dt, J = 13.5, 6.5 Hz, 6H), 1.81 – 1.73 (m, 6H), 1.46 (td, J 
= 9.7, 8.9, 5.2 Hz, 6H), 1.37 – 1.24 (m, 48H), 0.88 (t, J = 6.9 Hz, 9H); 13C NMR (CDCl3) 
δ 153.52, 137.88, 136.23, 105.63, 73.66, 69.36, 65.91, 32.17, 32.15, 30.56, 29.98, 29.96, 
29.93, 29.89, 29.87, 29.85, 29.66, 29.65, 29.62, 29.59, 26.37, 26.33, 22.92, 14.33. 
 
 
 
 

O

O

O
O

O
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5-(Chloromethyl)-1,2,3-tris(octadecyloxy)benzene 4. To a stirred solution of (3,4,5-
tris(octadecyloxy)phenyl)methanol 3 (5g, 7.56 mmol) in CH2Cl2 (100 mL) was added 
DMF (0.05 mL), and thionyl chloride (3.09g, 25.99 mmol, 1.89 mL), and the resulting 
mixture was stirred for 3 hours at room temperature under nitrogen atmosphere. The 
reaction mixture was then concentrated under reduced pressure and the residue was 
redissolved in the smallest possible amount of warm CHCl3 and mixed with MeOH to 
induce precipitation. The precipitate was collected by filtration and dried to obtain pure 
5-(chloromethyl)-1,2,3-tris(octadecyloxy)benzene 4 as a white solid (5.03g, 98%). 1H 
NMR (CDCl3) δ 6.57 (s, 2H), 4.51 (s, 2H), 3.96 (dt, J = 13.9, 6.5 Hz, 6H), 1.77 (dt, J = 
31.0, 7.4 Hz, 6H), 1.47 (t, J = 7.6 Hz, 6H), 1.36 – 1.25 (m, 48H), 0.88 (t, J = 6.8 Hz, 9H); 
13C NMR (CDCl3) δ 153.29, 138.42, 132.45, 107.14, 77.43, 73.44, 69.17, 46.89, 32.08, 
32.07, 30.49, 29.90, 29.88, 29.85, 29.81, 29.78, 29.74, 29.55, 29.54, 29.51, 26.28, 26.24, 
22.81, 14.18. 
 
 

 
Methyl 3,4,5-tris(dodecyloxy)benzoate 5. To a stirred solution of methyl 3,4,5-
tris(dodecyloxy)benzoate 2 (5g, 7.26 mmol) in THF (10 mL) was added potassium 
hydroxide (1.22g, 21.77 mmol), H2O (2 mL), and MeOH (2 mL). The reaction mixture 
was stirred at 80 oC for 4 hours. The solvents were evaporated under reduced pressure, 
and the resulting product was acidified with 1 M HCl before being extracted with 
chloroform (3 x 75 mL). The organic layer was dried over anhydrous Na2SO4, filtered, 
and the filtrate was concentrated under reduced pressure to yield 3,4,5-
tris(dodecyloxy)benzoic acid 5 as a pure white solid (4.85g, 99 %). 1H NMR (CDCl3) δ 
7.31 (s, 2H), 4.09 – 3.95 (m, 6H), 1.81 (p, 4H), 1.78 – 1.70 (m, 2H), 1.52 – 1.42 (m, 6H), 
1.39 – 1.22 (m, 48H), 0.88 (t, J = 6.8 Hz, 9H); 13C NMR (CDCl3) δ 171.82, 153.03, 
143.20, 124.33, 108.74, 73.75, 69.40, 32.17, 32.16, 30.57, 29.98, 29.96, 29.93, 29.93, 
29.89, 29.87, 29.80, 29.64, 29.62, 29.60, 29.54, 26.33, 26.28, 22.92, 14.32; MALDI-TOF 
(m/z): [M+Na]+ calcd. for C43H78O5Na, 697.57; found 702.354. 
 

 
2-(2-(2-methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate 6. A stirred solution of 
triethylene glycol monomethyl ether (20 g, 121.95 mmol) and 4-toluenesulfonyl chloride 
(22.08 g, 115.90 mmol) in dichloromethane (75 mL) was cooled to 0 oC under a nitrogen 
atmosphere before the addition of triethylamine (14.78 g, 20.25 mL, 146.34 mmol). The 
resulting reaction mixture was allowed to warm up to room temperature and was stirred 
for 12 hours. The mixture was then washed with 1 M HCl (2 x 50 mL) and 1 M Na2O3 (2 
x 50 mL), and the organic layer was dried over anhydrous Na2SO4, filtered, and the 
filtrate was concentrated under reduced pressure to give pure 2-(2-(2-
methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate as a colorless oil (33.37 g, 86 
%). 1H NMR (500 MHz, Chloroform-d) δ 7.46 (d, J = 8.3 Hz, 2H), 7.05 (d, J = 8.1 Hz, 

O

O

O
O

OH

O O O OTs
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2H), 3.83 (t, 2H), 3.33 (t, 2H), 3.26 – 3.23 (m, 2H), 3.22 (s, 4H), 3.18 – 3.13 (m, 2H), 
2.99 (s, 3H), 2.10 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 144.06, 132.36, 129.16, 
127.04, 77.42, 71.03, 69.69, 69.58, 69.56, 68.80, 67.71, 57.84, 20.59. 
 
 

 
Methyl 3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzoate 7.[ref] . To a stirred 
solution of methyl 3,4,5-trihydroxybenzoate 1 (2.17g, 11.78 mmol) and 2-(2-(2-
methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (15g, 47.11 mmol) in DMF (30 
mL) was added potassium carbonate (8.13g, 58.89 mmol) and potassium iodide (200 mg, 
catalyst) and the resulting mixture was stirred at 80 oC for 12 hours. The reaction was 
cooled to room temperature, then washed with H2O (3 x 75 mL) and 1 M HCl (3 x 50 
mL). The organic layer was dried over anhydrous Na2SO4, filtered, and the filtrate was 
concentrated under reduced pressure. The crude product was purified with column 
chromatography (hexanes ! 5% MeOH:EtOAc) to afford pure Methyl 3,4,5-tris(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)benzoate 7 as a pale yellow oil (5.2 g, 74%). 1H NMR 
(CDCl3) δ 7.10 (s, 2H), 4.04 (t, 2H), 4.01 (t, J = 4.9 Hz, 4H), 3.68 (s, 3H), 3.67 (t, J = 4.5 
Hz, 4H), 3.61 (t, 2H), 3.55 – 3.51 (m, 6H), 3.48 – 3.42 (m, 12H), 3.35 – 3.31 (m, 6H), 
3.16 (s, 9H); 13C NMR (CDCl3) δ 166.03, 151.94, 142.27, 124.51, 108.65, 72.03, 71.55, 
70.43, 70.30, 70.22, 70.15, 70.11, 69.25, 68.55, 58.53, 51.69; MALDI-TOF (m/z): 
[M+Na]+ calcd. for C29H50O14Na, 645.31; found 646.342. 
 
 

 
(3,4,5-Tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)methanol 8. To a stirred 
solution of LiAlH4 (1.34g, 35.33 mmol) in THF (50 mL) at 0 oC was added Methyl 3,4,5-
tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzoate 7 (5.5g, 8.83 mmol) portionwise 
over a period of 10 minutes and the resulting mixture was stirred at 0 oC for 30 minutes 
under nitrogen atmosphere. The reaction mixture was then allowed to warm up to room 
temperature for 30 minutes after which it was stirred at 60 oC for an additional 3 hours. 
Then it was cooled to 0 oC and quenched slowly by adding small portions of cold water 
while monitoring the evolution of hydrogen bubbles. The mixture was then concentrated 
under reduced pressure, dissolved in CHCl3 (200 mL) and washed with H2O (2 x 50 mL), 
dried over anhydrous Na2SO4, filtered, and the filtrate was concentrated under reduced 
pressure to give pure (3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)methanol 
8 as a pale yellow oil. (4.58g, 87 %). 1H NMR (CDCl3) δ 6.63 (s, 2H), 4.57 (d, J = 5.9 
Hz, 2H), 4.17 (t, 4H), 4.13 (t, 2H), 3.83 (t, 4H), 3.78 (t, 2H), 3.73 – 3.70 (m, 6H), 3.64 
(ddd, J = 13.1, 6.0, 3.5 Hz, 12H), 3.55 – 3.53 (m, 6H), 3.37 (d, J = 1.4 Hz, 9H); 13C NMR 
(CDCl3) δ 152.93, 138.09, 136.84, 106.89, 72.48, 72.17, 72.15, 71.00, 70.94, 70.92, 
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70.76, 70.73, 70.72, 70.04, 69.10, 65.49, 59.22, 0.20; MALDI-TOF (m/z): [M+Na]+ 
calcd. for C28H50O13Na, 617.31; found 618.411. 
 
 

 
5-(Chloromethyl)-1,2,3-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene 9. To a 
stirred solution of (3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)methanol 8 
(4.58g, 7.70 mmol) in CH2Cl2 (75 mL) was added DMF (0.05 mL), and thionyl chloride 
(2.75g, 23.10 mmol, 1.68 mL), and the resulting mixture was stirred for 3 hours at room 
temperature under nitrogen atmosphere. The reaction mixture was then concentrated 
under reduced pressure to obtain pure 5-(chloromethyl)-1,2,3-tris(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)benzene 9 as a yellow oil (4.72g, 100 %). 1H NMR 
(CDCl3) δ 6.36 (s, 2H), 4.23 (s, 2H), 3.92 – 3.81 (m, 6H), 3.56 (t, 5H), 3.50 (t, 2H), 3.47 
– 3.41 (m, 6H), 3.38 – 3.33 (m, 12H), 3.27 – 3.22 (m, 6H), 3.07 (d, J = 1.9 Hz, 9H); 13C 
NMR (CDCl3) δ 151.97, 137.76, 132.19, 107.54, 77.43, 71.66, 71.26, 71.24, 70.09, 
69.97, 69.90, 69.80, 69.78, 69.04, 68.27, 58.20, 45.93; MALDI-TOF (m/z): [M+Na]+ 
calcd. for C28H49O12Na, 635.28; found 636.112. 
 

 
3,4,5-Tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzoic acid 10. To a stirred solution 
of Methyl 3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzoate 7 (2g, 3.21 mmol) 
in THF (10 mL) was added potassium hydroxide (0.54g, 9.64 mmol), H2O (2 mL), and 
MeOH (2 mL). The reaction mixture was stirred at 80 oC for 4 hours. The solvents were 
evaporated under reduced pressure, and the resulting product was acidified with 1 M HCl 
before being extracted with chloroform (3 x 75 mL). The organic layer was dried over 
anhydrous Na2SO4, filtered, and the filtrate was concentrated under reduced pressure to 
yield 3,4,5-Tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzoic acid 10 as a yellow oil 
(1.75g, 89.6 %). 1H NMR (CDCl3) δ 7.33 (s, 2H), 4.22 (t, 2H), 4.18 (t, J = 5.0 Hz, 4H), 
3.85 (t, 4H), 3.79 (t, 2H), 3.73 – 3.69 (m, 6H), 3.66 – 3.61 (m, 12H), 3.55 – 3.51 (m, 6H), 
3.35 (d, J = 1.7 Hz, 9H); 13C NMR (CDCl3) δ 170.68, 152.61, 143.52, 124.49, 109.91, 
72.74, 72.23, 71.13, 70.99, 70.97, 70.89, 70.85, 70.81, 69.95, 69.20, 59.29; MALDI-TOF 
(m/z): [M+Na]+ calcd. for C28H48O12Na, 631.29; found 632.244.  
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Methyl 3-hydroxy-5-((3,4,5-tris(dodecyloxy)benzyl)oxy)benzoate 12. To a stirred 
solution of methyl 3,5-trihydroxybenzoate 11 (4.45g, 26.49 mmol) and 5-(chloromethyl)-
1,2,3-tris(dodecyloxy)benzene 4 (6g, 8.83 mmol) in DMF (100 mL) was added potassium 
carbonate (3.66g, 26.49 mmol) and potassium iodide (0.20g, 1.20 mmol) and the 
resulting mixture was stirred at 85 oC for 12 hours. The reaction was cooled to room 
temperature, then washed with H2O (3 x 50 mL) and 1 M HCl (3 x 50 mL). The organic 
layer was dried over anhydrous Na2SO4, filtered, and the filtrate was concentrated under 
reduced pressure. The product was purified using column chromatography (hexanes ! 
30:5 hexanes:ethyl acetate) to afford pure methyl 3-hydroxy-5-((3,4,5-
tris(dodecyloxy)benzyl)oxy)benzoate 12 as a white solid (3.77 g, 53%). 1H NMR 
(CDCl3) δ 7.25 (dd, J = 2.3, 1.3 Hz, 1H), 7.14 (dd, J = 2.3, 1.2 Hz, 1H), 6.66 (t, J = 2.3 
Hz, 1H), 6.61 (s, 2H), 4.94 (s, 2H), 4.02 – 3.95 (m, 6H), 3.90 (s, 3H), 1.78 (dq, J = 14.2, 
7.5, 7.1 Hz, 6H), 1.50 – 1.44 (m, 6H), 1.32 – 1.23 (m, 48H), 0.90 – 0.86 (m, 9H); 13C 
NMR (CDCl3) δ 167.26, 160.03, 157.39, 153.37, 137.78, 131.99, 131.79, 109.81, 108.02, 
107.50, 106.26, 73.79, 70.71, 69.28, 52.43, 32.08, 32.07, 30.40, 29.90, 29.89, 29.88, 
29.85, 29.84, 29.81, 29.79, 29.75, 29.57, 29.53, 29.53, 29.51, 26.25, 22.83, 14.23; 
MALDI-TOF (m/z): [M+Na]+ calcd. for C51H86O7Na, 833.63; found 834.82. 
 

 
Methyl 3-((3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)-5-((3,4,5-
tris(dodecyloxy)benzyl)oxy)benzoate 13. To a stirred solution of 5-(chloromethyl)-
1,2,3-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene 9 (0.83g, 1.356 mmol) and 
methyl 3-hydroxy-5-((3,4,5-tris(dodecyloxy)benzyl)oxy)benzoate 12 (1g, 1.232 mmol) in 
DMF (45 mL) was added potassium carbonate (0.56g, 4.07 mmol) and potassium iodide 
(0.2g, 1.2 mmol), and the resulting mixture was stirred at 90 oC for 12 hours. The 
reaction was cooled to room temperature, then washed with H2O (3 x 30 mL) and 1 M 
HCl (3 x 30 mL). The organic layer was dried over anhydrous Na2SO4, filtered, and the 
filtrate was concentrated under reduced pressure. The product was purified using column 
chromatography (hexanes ! 5% MeOH:EtOAc) to afford pure methyl 3-((3,4,5-tris(2-
(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)-5-((3,4,5-
tris(dodecyloxy)benzyl)oxy)benzoate 13 as a pale yellow waxy solid (0.95 g, 50.5%). 1H 
NMR (CDCl3) δ 7.30 (dd, J = 2.4, 1.3 Hz, 1H), 7.27 (dd, J = 2.4, 1.3 Hz, 1H), 6.79 (t, J = 
2.3 Hz, 1H), 6.66 (s, 2H), 6.62 (s, 2H), 4.95 (s, 4H), 4.16 (dt, J = 10.3, 5.1 Hz, 6H), 3.96 
(dt, J = 15.3, 6.5 Hz, 6H), 3.90 (s, 3H), 3.85 (t, 4H), 3.79 (t, 2H), 3.74 – 3.71 (m, 6H), 
3.67 – 3.62 (m, 12H), 3.56 – 3.52 (m, 6H), 3.37 (d, J = 5.9 Hz, 9H), 1.80 – 1.72 (m, 6H), 
1.50 – 1.43 (m, 6H), 1.34 – 1.24 (m, 48H), 0.88 (td, J = 7.0, 1.9 Hz, 9H); 13C NMR 
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(CDCl3) δ 166.87, 160.01, 159.87, 153.51, 153.01, 138.55, 138.31, 132.22, 131.96, 
131.44, 131.03, 128.96, 108.63, 108.41, 107.51, 107.37, 106.50, 73.60, 72.51, 72.15, 
72.12, 71.01, 70.92, 70.88, 70.75, 70.72, 70.71, 70.52, 69.92, 69.35, 69.13, 68.32, 59.18, 
52.42, 38.93, 32.12, 32.10, 30.54, 29.94, 29.92, 29.88, 29.83, 29.62, 29.57, 29.54, 29.11, 
26.33, 26.31, 23.94, 23.16, 22.87, 14.28, 14.22, 11.14; MALDI-TOF (m/z): [M+Na]+ 
calcd. for C79H134O19Na, 1409.94; found 1412.76. 
 
 

 
3-((3,4,5-Tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)-5-((3,4,5-
tris(dodecyloxy)benzyl)oxy)benzoic acid 14. To a stirred solution of methyl 3-((3,4,5-
tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)-5-((3,4,5-
tris(dodecyloxy)benzyl)oxy)benzoate 13 (0.95 g, 0.684 mmol) in THF (10 mL) was 
added potassium hydroxide (0.115 g, 2.05 mmol), H2O (2 mL), and MeOH (2 mL). The 
reaction mixture was stirred at 50 oC for 4 hours. The solvents were evaporated under 
reduced pressure, and the resulting product was acidified with 1 M HCl before being 
extracted with chloroform (3 x 75 mL). The organic layer was dried over anhydrous 
Na2SO4, filtered, and the filtrate was concentrated under reduced pressure to yield the 
pure 3-((3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)-5-((3,4,5-
tris(dodecyloxy)benzyl)oxy)benzoic acid 14 as a pale yellow solid (0.815 g, 87%).1H 
NMR (CDCl3) δ 7.35 (dd, J = 2.4, 1.2 Hz, 1H), 7.31 (dd, J = 2.4, 1.3 Hz, 1H), 6.81 (t, J = 
2.3 Hz, 1H), 6.66 (s, 2H), 6.62 (s, 2H), 4.96 (s, 2H), 4.94 (s, 2H), 4.18 – 4.13 (m, 6H), 
3.99 – 3.93 (m, 6H), 3.83 (t, 4H), 3.78 (t, 2H), 3.73 – 3.70 (m, 6H), 3.66 – 3.62 (m, 12H), 
3.55 – 3.53 (m, 6H), 3.36 (d, J = 3.6 Hz, 9H), 1.81 – 1.71 (m, 6H), 1.50 – 1.42 (m, 6H), 
1.30 – 1.22 (m, 48H), 0.89 – 0.85 (m, 9H); 13C NMR (CDCl3) δ 169.91, 160.05, 159.81, 
153.51, 152.95, 138.45, 138.32, 132.02, 131.71, 131.39, 109.10, 108.87, 108.16, 107.58, 
106.55, 73.62, 72.48, 72.11, 70.94, 70.86, 70.83, 70.67, 70.66, 70.58, 69.85, 69.36, 69.05, 
59.17, 59.15, 32.13, 32.10, 30.55, 29.94, 29.92, 29.89, 29.84, 29.83, 29.63, 29.58, 29.55, 
26.34, 26.32, 22.87, 14.29; MALDI-TOF (m/z): [M+Na]+ calcd. for C78H132O19Na, 
1395.93; found 1397.713. 
 
 

 
Methyl 3,5-bis((3,4,5-tris(dodecyloxy)benzyl)oxy)benzoate 15. To a stirred solution of 
methyl 3,5-trihydroxybenzoate 11 (0.297g, 1.77 mmol) and 5-(chloromethyl)-1,2,3-
tris(dodecyloxy)benzene 4 (3g, 4.42 mmol) in DMF (45 mL) was added potassium 

O

O
O

O

O O O O

OOOO

OOOO

O
OH

O

O

O
O

O

O
O

O

O

O

O



 10 

carbonate (0.731 g, 5.30 mmol) and potassium iodide (0.2 g, 1.2 mmol) and the resulting 
mixture was stirred at 90 oC for 12 hours. The reaction was cooled to room temperature, 
then washed with 1 M HCl (3 x 50 mL) and H2O (3 x 50 mL). The organic layer was 
dried over anhydrous Na2SO4, filtered, and the filtrate was concentrated under reduced 
pressure. The product was purified using column chromatography (100:5 hexanes:ethyl 
acetate) to afford pure Methyl 3,5-bis((3,4,5-tris(dodecyloxy)benzyl)oxy)benzoate 15 as 
a white solid (2.44 g, 95%).1H NMR (CDCl3) δ 7.31 (d, J = 2.3 Hz, 2H), 6.81 (t, J = 2.4 
Hz, 1H), 6.63 (s, 4H), 4.96 (s, 4H), 3.99 (q, J = 6.6 Hz, 12H), 3.91 (s, 3H), 1.83 – 1.75 
(m, 12H), 1.52 – 1.46 (m, 12H), 1.34 – 1.27 (m, 96H), 0.92 – 0.88 (m, 18H); 13C NMR 
(CDCl3) δ 166.83, 159.96, 153.50, 138.29, 132.16, 131.49, 108.55, 107.39, 106.41, 
73.56, 70.85, 69.30, 52.32, 32.14, 32.12, 30.55, 29.95, 29.93, 29.90, 29.85, 29.83, 29.81, 
29.62, 29.59, 29.56, 26.34, 26.31, 22.87, 14.26; MALDI-TOF (m/z): [M+Na]+ calcd. for 
C94H164O10Na, 1476.22; found 1479.089. 
 
 

 
3,5-Bis((3,4,5-tris(dodecyloxy)benzyl)oxy)benzoic acid 16. To a stirred solution of 
methyl 3,5-bis((3,4,5-tris(dodecyloxy)benzyl)oxy)benzoate 15 (2g, 1.38 mmol) in THF 
(10 mL) was added potassium hydroxide (0.23g, 4.13 mmol), H2O (2 mL), and MeOH (2 
mL). The reaction mixture was stirred at 90 oC for 4 hours. The solvents were evaporated 
under reduced pressure, and the resulting product was acidified with 1 M HCl before 
being extracted with chloroform (3 x 75 mL). The organic layer was dried over 
anhydrous Na2SO4, filtered, and the filtrate was concentrated under reduced pressure to 
yield the pure 3,5-bis((3,4,5-tris(dodecyloxy)benzyl)oxy)benzoic acid 16 as a pale yellow 
solid (1.73g, 87.3%). 1H NMR (CDCl3) δ 7.40 (d, J = 2.4 Hz, 2H), 6.87 (t, J = 2.4 Hz, 
1H), 6.65 (s, 4H), 4.98 (s, 4H), 3.99 (q, J = 6.8 Hz, 12H), 1.84 – 1.76 (m, 12H), 1.50 (t, J 
= 7.7 Hz, 12H), 1.33 – 1.25 (m, 96H), 0.92 – 0.88 (m, 18H); 13C NMR (CDCl3) δ 171.84, 
160.04, 153.53, 138.33, 131.48, 131.40, 109.07, 108.22, 106.50, 77.43, 73.61, 70.93, 
69.35, 32.15, 32.13, 30.56, 29.97, 29.95, 29.92, 29.91, 29.87, 29.86, 29.83, 29.78, 29.64, 
29.60, 29.58, 26.36, 26.33, 22.89, 14.28; MALDI-TOF (m/z): [M+Na]+ calcd. for 
C93H162O10Na, 1462.21; found 1465.025. 
 
 
 

O

O
O

O

O
OH

O

O

O

O



 11 

 
Methyl 3,5-bis((3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)benzoate 
17. To a stirred solution of methyl 3,5-trihydroxybenzoate 11 (0.25g, 1.48 mmol) and 5-
(chloromethyl)-1,2,3-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene 9 (2g, 3.26 
mmol) in DMF (45 mL) was added potassium carbonate (1.02 g, 7.41 mmol) and 
potassium iodide (200 mg, catalytic amount), and the resulting mixture was stirred at 90 
oC for 12 hours. The reaction was cooled to room temperature, then washed with H2O (3 
x 50 mL) and 1 M HCl (3 x 50 mL). The organic layer was dried over anhydrous Na2SO4, 
filtered, and the filtrate was concentrated under reduced pressure. The product was 
purified using column chromatography (hexanes ! 5% MeOH:EtOAc) to afford pure 
methyl 3,5-bis((3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)benzoate 17 
as a golden oil (1.74 g, 89 %).1H NMR (CDCl3) δ 7.25 (s, 2H), 6.77 (t, J = 2.3 Hz, 1H), 
6.65 (s, 4H), 4.93 (s, 4H), 4.14 (dt, J = 10.4, 5.2 Hz, 12H), 3.89 (s, 3H), 3.83 (t, J = 5.0 
Hz, 8H), 3.77 (t, 4H), 3.73 – 3.69 (m, 12H), 3.65 – 3.61 (m, 24H), 3.54 – 3.50 (m, 12H), 
3.35 (d, J = 6.0 Hz, 18H); 13C NMR (CDCl3) δ 166.86, 159.88, 152.96, 138.43, 132.24, 
131.99, 108.53, 107.45, 107.34, 72.50, 72.11, 72.10, 70.97, 70.85, 70.71, 70.68, 70.67, 
70.53, 69.89, 69.07, 59.18, 52.45; MALDI-TOF (m/z): [M+Na]+ calcd. for 
C64H104O28Na, 1343.66; found 1345.061. 
 

 
3,5-Bis((3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)benzoic acid 18. 
To a stirred solution of methyl 3,5-bis((3,4,5-tris(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)benzoate 17 (1.74 g, 1.32 mmol) in THF (10 
mL) was added potassium hydroxide (0.22 g, 3.96 mmol), H2O (2 mL), and MeOH (2 
mL). The reaction mixture was stirred at 50 oC for 4 hours. The solvents were evaporated 
under reduced pressure, and the resulting product was acidified with 1 M HCl before 
being extracted with chloroform (3 x 75 mL). The organic layer was dried over 
anhydrous Na2SO4, filtered, and the filtrate was concentrated under reduced pressure to 
yield the pure 3,5-bis((3,4,5-tris(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)benzoic acid 18 as a pale yellow oil (1.52g, 
88%). 1H NMR (CDCl3) δ 7.28 (d, J = 2.4 Hz, 2H), 6.76 (t, J = 2.3 Hz, 1H), 6.63 (s, 4H), 
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4.92 (s, 4H), 4.14 – 4.10 (m, 12H), 3.82 – 3.79 (m, 8H), 3.76 – 3.74 (m, 4H), 3.71 – 3.65 
(m, 12H), 3.63 – 3.59 (m, 24H), 3.52 – 3.49 (m, 13H), 3.33 (d, J = 4.8 Hz, 18H); 13C 
NMR (CDCl3) δ 168.98, 159.72, 152.84, 138.34, 131.94, 131.87, 108.79, 107.84, 107.42, 
77.43, 72.37, 71.99, 71.97, 70.84, 70.73, 70.58, 70.56, 70.43, 69.75, 68.96, 59.04, 59.03; 
MALDI-TOF (m/z): [M+Na]+ calcd. for C63H102O28Na, 1329.65; found 1332.078. 
 
 

 
11,11'-disulfanediylbis(undecan-1-ol) 20. Compound 20 was prepared following 
previously reported literature.38  
 
 

 
Disulfanediylbis(undecane-11,1-diyl) bis(3,4,5-tris(dodecyloxy)benzoate) 21. To an 
oven dried round bottom flask was added 3,4,5-tris(dodecyloxy)benzoic acid 5 (1.0 gram, 
1.48 mmol) and DCM (20 mL). The solution was stirred for 10 minutes under nitrogen 
atmosphere before thionyl chloride (0.53 g, 4.45 mmol) was added, then the reaction 
mixture was stirred at room temperature for 3 hours under nitrogen. The reaction mixture 
was then concentrated under reduced pressure, and the crude product was dissolved in 
DCM (20 mL) and cooled to -10 oC. To the stirred solution was added 11,11'-
disulfanediylbis(undecan-1-ol) 20 (0.26 g, 0.65 mmol), Et3N (0.30 g, 2.97 mmol, 0.41 
mL), and DMAP (0.05 g, 0.41 mmol). The reaction mixture was allowed to warm up to 
room temperature and stirred overnight, then was washed with 1 M HCl (2 x 50 mL). The 
organic layer was dried over anhydrous Na2SO4, filtered, and the filtrate was 
concentrated under reduced pressure. The crude product was purified with column 
chromatography (100:1 hexanes:ethyl acetate) to afford pure disulfanediylbis(undecane-
11,1-diyl) bis(3,4,5-tris(dodecyloxy)benzoate) 21 as a white solid (1.09g, 96%). 1H NMR 
(CDCl3) δ 7.25 (s, 2H), 4.28 (t, J = 6.7 Hz, 2H), 4.01 (t, J = 6.5 Hz, 6H), 2.67 (t, 2H), 
1.84 – 1.72 (m, 8H), 1.70 – 1.63 (m, 2H), 1.56 (s, 2H), 1.50 – 1.44 (m, 6H), 1.26 (s, 
61H), 0.88 (t, J = 6.9 Hz, 9H); 13C NMR (CDCl3) δ 166.70, 153.00, 142.60, 125.28, 
108.29, 73.71, 69.42, 65.34, 39.37, 32.16, 32.15, 30.55, 29.97, 29.95, 29.94, 29.92, 29.91, 
29.88, 29.86, 29.79, 29.75, 29.75, 29.72, 29.63, 29.61, 29.59, 29.55, 29.51, 29.47, 29.44, 
28.98, 28.76, 26.32, 26.28, 26.24, 22.91, 14.32; MALDI-TOF (m/z): [M+Na]+ calcd. for 
C108H198O10S2Na, 1742.43; found 1744.684. 
 

 
Disulfanediylbis(undecane-11,1-diyl) bis(3,4,5-tris(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)benzoate) 22. To an oven dried round bottom flask was 
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added 3,4,5-Tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzoic acid 10 (0.5 g, 0.82 
mmol) and DCM (12 mL). The solution was stirred for 10 minutes under nitrogen 
atmosphere before thionyl chloride (0.488 g, 4.12 mmol) was added, then the reaction 
mixture was stirred at room temperature for 3 hours under nitrogen. The reaction mixture 
was then concentrated under reduced pressure, and the crude product was dissolved in 
DCM (20 mL) and cooled to -10 oC. To the stirred solution was added 11,11'-
disulfanediylbis(undecan-1-ol) 20 (0.12 g, 0.296 mmol), Et3N (0.358 g, 3.29 mmol, 0.50 
mL), and DMAP (0.05 g, 0.41 mmol). The reaction mixture was allowed to warm up to 
room temperature and stirred for 24 hours, then was concentrated under reduced pressure. 
The crude product was purified with column chromatography (hexanes ! 1:100 
MeOH:EtOAc) to afford pure disulfanediylbis(undecane-11,1-diyl) bis(3,4,5-tris(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)benzoate) 22 as a yellow oil (0.368 g, 78 %). 1H NMR 
(CDCl3) δ 7.22 (s, 2H), 4.20 (t, J = 6.8 Hz, 2H), 4.17 – 4.10 (m, 6H), 3.79 (t, 4H), 3.72 (t, 
2H), 3.67 – 3.62 (m, 6H), 3.60 – 3.55 (m, 12H), 3.48 – 3.44 (m, 6H), 3.29 (s, 9H), 2.60 (t, 
J = 7.4 Hz, 2H), 1.67 (p, J = 6.9 Hz, 2H), 1.59 (p, J = 7.4 Hz, 2H), 1.37 – 1.27 (m, 5H), 
1.21 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 166.19, 152.33, 142.64, 125.42, 109.17, 
72.47, 72.00, 70.88, 70.75, 70.74, 70.62, 70.61, 70.58, 69.71, 68.96, 65.29, 59.07, 59.05, 
39.20, 29.58, 29.55, 29.35, 29.30, 29.28, 28.82, 28.59, 26.06; MALDI-TOF (m/z): 
[M+Na]+ calcd. for C78H138O28S2Na, 1609.87; found 1608.389. 
 
 

 
Disulfanediylbis(undecane-11,1-diyl) bis(3-((3,4,5-tris(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)-5-((3,4,5-
tris(dodecyloxy)benzyl)oxy)benzoate) 23.  
To an oven dried round bottom flask was added 3-((3,4,5-Tris(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)-5-((3,4,5-
tris(dodecyloxy)benzyl)oxy)benzoic acid  23 (0.35 gram, 0.25 mmol) and DCM (20 mL). 
The solution was stirred for 10 minutes under nitrogen atmosphere before thionyl 
chloride (0.089 g, 0.75 mmol) was added, then the reaction mixture was stirred at room 
temperature for 3 hours under nitrogen. The reaction mixture was then concentrated 
under reduced pressure, and the crude product was dissolved in DCM (20 mL) and 
cooled to -10 oC. To the stirred solution was added 11,11'-disulfanediylbis(undecan-1-ol) 
X  (0.047 g, 0.11 mmol), Et3N (0.056 g, 0.51 mmol, 0.08 mL), and DMAP (0.05 g, 0.41 
mmol). The reaction mixture was allowed to warm up to room temperature and stirred 
overnight, then was washed with 1 M HCl (2 x 50 mL). The organic layer was dried over 
anhydrous Na2SO4, filtered, and the filtrate was concentrated under reduced pressure. The 
crude product was purified with column chromatography (hexanes ! EtOAc ! 1:100 
MeOH:EtOAc) to afford pure disulfanediylbis(undecane-11,1-diyl) bis(3-((3,4,5-tris(2-
(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)-5-((3,4,5-
tris(dodecyloxy)benzyl)oxy)benzoate) 23 as a brown oil (0.133 grams, 36%). 1H NMR 
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(CDCl3) δ 7.28 (dd, J = 2.4, 1.3 Hz, 1H), 7.26 (d, J = 3.7 Hz, 1H), 6.77 (t, J = 2.3 Hz, 
1H), 6.65 (s, 2H), 6.61 (s, 2H), 4.93 (d, J = 2.0 Hz, 4H), 4.28 (t, J = 6.8 Hz, 2H), 4.14 (dt, 
J = 10.2, 5.1 Hz, 6H), 3.99 – 3.91 (m, 6H), 3.83 (t, 4H), 3.78 (t, 2H), 3.73 – 3.69 (m, 6H), 
3.65 – 3.61 (m, 12H), 3.55 – 3.50 (m, 6H), 3.35 (d, J = 6.6 Hz, 9H), 2.65 (t, 2H), 1.81 – 
1.70 (m, 8H), 1.64 (p, J = 7.3 Hz, 2H), 1.50 – 1.43 (m, 6H), 1.40 (d, J = 8.2 Hz, 1H), 1.36 
– 1.23 (m, 62H), 0.88 – 0.84 (m, 9H); 13C NMR (CDCl3) δ 166.39, 159.92, 159.80, 
153.45, 152.96, 138.51, 138.27, 132.57, 131.88, 131.37, 108.62, 108.38, 107.51, 106.92, 
106.50, 73.53, 72.46, 72.09, 72.06, 70.95, 70.89, 70.82, 70.68, 70.66, 70.64, 70.49, 69.86, 
69.28, 69.08, 65.45, 59.11, 39.23, 32.06, 32.04, 30.48, 29.88, 29.86, 29.82, 29.82, 29.78, 
29.76, 29.75, 29.66, 29.63, 29.62, 29.56, 29.51, 29.48, 29.40, 29.38, 29.34, 28.84, 28.65, 
26.27, 26.25, 26.10, 22.81, 14.23; MALDI-TOF (m/z): [M+Na]+ calcd. for 
C178H306O38S2Na, 3139.14; found 3143.823. 
 

 
Disulfanediylbis(undecane-11,1-diyl) bis(3,5-bis((3,4,5-
tris(dodecyloxy)benzyl)oxy)benzoate) 24.  
To an oven dried round bottom flask was added 3,5-Bis((3,4,5-
tris(dodecyloxy)benzyl)oxy)benzoic acid 16 (0.8 g, 0.56 mmol) and DCM (20 mL). The 
solution was cooled at 0 oC for 10 minutes under nitrogen atmosphere before 2,6-ditert 
butyl 4-methyl pyridine (0.228g, 1.11 mmol) and oxalyl chloride (0.14 g, 1.11 mmol) 
were added, then the reaction mixture was warmed to room temperature and stirred for 3 
hours under nitrogen. The reaction mixture was then concentrated under reduced 
pressure, and the crude product was dissolved in DCM (20 mL) and cooled to -10 oC 
under nitrogen atmosphere. To the stirred solution was added 11,11'-
disulfanediylbis(undecan-1-ol) 20 (0.102 g, 0.25 mmol), Et3N (0.242 g, 2.22 mmol, 0.10 
mL), and DMAP (0.05 g, 0.41 mmol). The reaction mixture was allowed to warm up to 
room temperature and stirred overnight, then was washed with 1 M HCl (2 x 50 mL). The 
organic layer was dried over anhydrous Na2SO4, filtered, and the filtrate was 
concentrated under reduced pressure. The crude product was purified with column 
chromatography (100:1 hexanes:ethyl acetate) to afford pure disulfanediylbis(undecane-
11,1-diyl) bis(3,5-bis((3,4,5-tris(dodecyloxy)benzyl)oxy)benzoate) 24 as a white solid 
(0.213g, 26 %). 1H NMR (500 MHz, Chloroform-d) δ 7.31 (d, J = 2.3 Hz, 2H), 6.80 (t, J 
= 2.3 Hz, 1H), 6.63 (s, 4H), 4.96 (s, 4H), 4.31 (t, J = 6.7 Hz, 2H), 3.98 (dt, J = 10.0, 6.5 
Hz, 12H), 2.67 (t, J = 7.4 Hz, 2H), 1.83 – 1.74 (m, 14H), 1.67 (p, J = 7.3 Hz, 2H), 1.48 
(p, J = 7.3 Hz, 13H), 1.37 – 1.27 (m, 110H), 0.91 – 0.88 (m, 18H); 13C NMR (126 MHz, 
CDCl3) δ 166.42, 159.94, 153.50, 138.31, 132.58, 131.46, 108.59, 107.03, 106.48, 73.56, 
70.89, 69.31, 65.45, 39.29, 32.13, 32.11, 30.54, 29.94, 29.92, 29.89, 29.88, 29.84, 29.83, 
29.81, 29.76, 29.71, 29.69, 29.67, 29.62, 29.58, 29.55, 29.45, 29.42, 29.39, 28.89, 28.70, 
26.33, 26.30, 26.17, 22.87, 14.27; MALDI-TOF (m/z): [M+Na]+ calcd. for 
C208H366O20S2Na, 3271.70; found 3275.524. 
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Disulfanediylbis(undecane-11,1-diyl) bis(3,5-bis((3,4,5-tris(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)benzoate) 25.  
To an oven dried round bottom flask was added 3,5-Bis((3,4,5-tris(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)benzoic acid 18 (0.413 g, 0.316 mmol) and 
dichloromethane (12 mL). The solution was cooled at 0 oC for 10 minutes under nitrogen 
atmosphere before 2,6-ditert butyl 4-methyl pyridine (0.123g, 0.632 mmol) and oxalyl 
chloride (0.57 g, 0.632 mmol) were added, then the reaction mixture was warmed to 
room temperature and stirred for 3 hours under nitrogen. The reaction mixture was then 
concentrated under reduced pressure, and the crude product was dissolved in DCM (20 
mL) and cooled to -10 oC under nitrogen atmosphere. To the stirred solution was added 
11,11'-disulfanediylbis(undecan-1-ol) 20 (0.058 g, 0.142 mmol), triethylamine (0.138 g, 
1.26 mmol, 0.19 mL), and DMAP (0.05 g, 0.41 mmol). The reaction mixture was allowed 
to warm up to room temperature and stirred overnight, then was concentrated under 
reduced pressure. The crude product was purified with column chromatography (hexanes 
! ethyl acetate ! methanol) to afford pure disulfanediylbis(undecane-11,1-diyl) bis(3,5-
bis((3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzyl)oxy)benzoate) 25 as a 
yellow oil (0.35 g, 64 %). 1H NMR (CDCl3) δ 7.24 (d, J = 2.3 Hz, 2H), 6.74 (t, J = 2.3 
Hz, 1H), 6.64 (s, 4H), 4.91 (s, 4H), 4.26 (t, J = 6.8 Hz, 2H), 4.15 – 4.10 (m, 12H), 3.83 – 
3.79 (m, 8H), 3.79 – 3.72 (m, 4H), 3.72 – 3.66 (m, 12H), 3.66 – 3.57 (m, 24H), 3.54 – 
3.48 (m, 12H), 3.33 (d, J = 6.1 Hz, 18H), 2.63 (t, J = 7.4, 2.3 Hz, 2H), 1.76 – 1.69 (m, 
2H), 1.65 – 1.59 (m, 2H), 1.51 (t, J = 7.5 Hz, 1H), 1.41 – 1.20 (m, 14H); 13C NMR 
(CDCl3) δ 166.36, 159.77, 152.88, 138.36, 132.55, 131.87, 108.47, 107.42, 106.84, 
72.41, 72.02, 72.00, 70.88, 70.85, 70.74, 70.61, 70.58, 70.56, 70.47, 69.80, 69.76, 68.99, 
68.92, 65.46, 62.97, 59.07, 39.18, 32.86, 29.63, 29.60, 29.58, 29.36, 29.34, 29.29, 28.79, 
28.58, 26.04, 25.85; MALDI-TOF (m/z): [M+Na]+ calcd. for C148H246O56S2Na, 3006.57; 
found 3011.625. 
 

Results and Discussion 
 
Ligand Synthesis and Design.  

To develop methods capable of creating small, yet precisely controlled patches, 
the dendritic ligands were designed with the surface anchoring unit (sulfur based 
functional group) on the apex while covalently mounting both hydrophobic and 
hydrophilic parts on dendron periphery. This approach gives us an efficient access to 
desired trifunctional Janus dendron where both hydrophobic and hydrophilic moieties are 
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present on the periphery allowing both of them to interact with each other as well as to 
surrounding media thus influencing the self-assembly and organization properties.  
 
Scheme 1. Synthesis of hydrophobic building blocks 4 and 5. 

 
 
Scheme 2. Synthesis of hydrophilic building blocks 9 and 10. 

 
 
 

To obtain the targeted Janus ligand, the hydrophobic and hydrophilic building 
blocks 4 and 9 were synthesized separately through similar pathways through functional 
group transformation, as shown in Schemes 1 and 2.16,17 The first step in each of the 
syntheses is to decorate methyl 3,4,5-trihydroxybenzoate with the hydrophobic or 
hydrophilic moiety through Williamson ether synthesis affording intermediates 2 and 7. 
Reduction using LiAlH4 yields the corresponding alcohols 3 and 8 which can be readily 
converted into benzyl chlorides 4 and 9 using thionyl chloride, as shown in Schemes 1 
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and 2. These intermediates were brought together by a strategy that involves stepwise 
introduction of hydrophobic and hydrophilic parts into dendritic backbone while the 
surface binding unit 15 was installed at the last step. The synthesis was started by 
Williamson etherification of methyl 3,5-dihydroxybenzoate 11 with equimolar nonpolar 
building block 4 giving access to monofunctionalized benzoate 12 (Scheme 3). An 
analogous reaction between 12 and hydrophilic building block 9 gave benzoate 13, a 
Fréchet type second generation (G2) asymmetric dendron 13 where both hydrophobic 
and hydrophilic parts are present. Methyl ester of 13 was then hydrolyzed to the 
corresponding carboxylic acid 14, which is ready to be attached to the corresponding 
surface binding unit. Similar to acid 14, we have synthesized the second generation 
symmetric dendrons containing only hydrophobic or hydrophilic moieties as control 
systems. Williamson etherification of methyl 3,5-dihydroxybenzoate 11 with excess of 
either building block 4 or 9 gave access to corresponding second generation symmetric 
dendrons 15 and 17 which upon hydrolysis gave desired acids 16 and 18 (Scheme 3). 

 
 

 

Scheme 3. Synthesis of Second Generation Dendrons 14, 16 and 18ª 

 
ªReagents and conditions: (i) K2CO3, KI, DMF, 80 °C, 12h; (ii) KOH, THF/H2O/MeOH, 3h, 50 °C. 

 

The final targets, a series of dendrons with dithiol surface anchoring units, were 
synthesized via an esterification reaction between dendritic acids and dithiol bearing 
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molecule 20. To build a complete library of ligands, first generation hydrophobic and 
hydrophilic dendrons 21 and 22 were also synthesized (Scheme 4). This library will 
provide us with the ability to study the differences between ligands within the generation 
as well as the effect of different generations. Scheme 4 shows the last step for the 
synthesis of dendrons 21-25. Synthesis were carried out as one pot two-step process 
where acid chlorides were first generated in situ from carboxylic acids and then reacted 
with alcohol 20. For the second generation ligands, base 2,6-ditert butyl 4-methyl 
pyridine and oxalyl chloride were used instead of SOCl2 to generate the acid chloride. 
When reacted with only SOCl2, the second generation ligands do not proceed to the 
desired product, which could be due to the presence of an acidic hydrogen para to the 
carboxylic acid in the second generation ligands.   
 

Scheme 4. The synthesis of dithiol dendrons 21-25ª 

 
ªReagents and conditions: (i) SOCl2, CH2Cl2, rt, 3h, then 20, Et3N, DMAP, CH2Cl2, -10°C!rt, 12h; (ii) I2, CH2Cl2, rt, 
12h. 

 
Ligand Exchange with Gold Nanoparticles and Self-Assembly.  

To study how the various dendritic ligands affect the self-assembly properties of 
NPs, each dendrimer was grafted onto 8 nm Au NP surfaces using solution phase ligand 
exchange (denoted with Au@ligand). A ligand exchange approach was chosen because it 
is already well known how to synthesize Au NPs with commercially available ligands to 
produce uniform NPs of a controlled size. The introduction of a new ligand in the NP 
synthesis could change the parameters of the NP synthesis, and developing the new 
conditions for NP synthesis is outside of the scope of this project. A ligand exchange 
process is quick, straightforward, and effective, particularly with a ligand containing a 
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sulfur group. The ligand exchange process was carried out in solution phase where 
oleylamine stabilized gold particles were mixed with an excess dendritic ligands and 
allowed to stir at room temperature. This step introduced dendritic ligands on 
nanoparticle surfaces without affecting the size of inorganic core, which can be seen in 
Figure 1.   

 

Figure 1. Size distribution of the Au nanoparticles before and after each ligand exchange. 

 
The NPs were then allowed to self-assemble on liquid-air interface, following a 

previously reported procedure,37 the results of which are shown in Figure 2. For each of 
the ligands tested (21, 23 and 24), the NPs self-assemble into a hexagonal close packed 
(hcp) crystalline structures. The inter-particle spacing was analyzed for each of the self-
assembly structures, the results of which are shown in Table 1. As expected, we noticed 
the change in inter-particle spacing during every ligand exchange step. The as 
synthesized oleylamine caped particles showed edge to edge inter-particle space of 2.0 
nm which was gradually increased to 2.7, 3.1 and 5.2 nm for Au@23, Au@21 and 
Au@24, respectively. An increase in inter-particle spacing is expected as higher 
generation introduces larger steric bulk. However, the case of Janus dendron 23 is 
somewhat special. It is a generation 2 dendron and is larger than corresponding 
generation 1 dendron 21 by means of molecular weight (1558 vs 860 per thiolate), but 
still introduces less inter-particle spacing (2.7 nm vs 3.1 nm). This is perhaps due to the 
presence of flexible polyethyleneglycol containing branch combined with the fact that per 
surface area smaller number of ligand 23 (compared to ligand 21) would be present. 
Therefore, it would result in overall smaller inter-particle distance.  

Ligands 22 and 25 were grafted onto NPs, but these NPs were not self-assembled. 
This is due to the solubility of the hydrophilic ligands, which make Au@22 and Au@25 
soluble in solvents such as methanol. Being dispersible in only solvents such as methanol 
or chloroform in problematic for self-assembly investigation because of the densities and 
miscibility’s of these solvents. For successful self-assembly, the NPs have to be dispersed 
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in a solvent that is less dense and not miscible with another liquid layer, which is where, 
upon evaporation, the assembled NPs will form. The PEG ligand is also soluble in the 
typical surface for a liquid-air interface self-assembly, diethylene glycol, which leads to 
challenges investigating self-assembly.   
 

 
Figure 2. Self-assembly of NCs, a) as-synthesized NCs, b) G1 hydrophobic 21, c) G2 
hydrophobic 24, and d) Janus.  

To study how the different ligands interact with each other mixtures of the NPs 
with the various ligands on their surfaces were studied. To achieve this, the NPs with 
each of the respective ligands were mixed together to result in three different 
combinations: Au@21 and Au@24, Au@21 and Au@Janus, and Au@24 and Au@Janus. 
For each of the three combinations, self-assemblies of the NPs were studied. As can be 
seen from Figure 3a and 3b, the mixtures of Au@21 and Au@24, as well as Au@21 and 
Au@Janus self-assemble into well-organized hcp crystalline structures. The inter-particle 
spacing analysis of these mixtures show that when NPs with G1 hydrophobic ligands 21 
are mixed with NPs with 24 hydrophobic ligands self- assemble, the space in between 
each particle is an intermediate between single component assemblies of Au@21 and 
Au@24. For the case when Au@21 hydrophobic are mixed with Au@Janus self-
assemble, the interparticle spacing is similar to that of Au@21 hydrophobic. This result is 
consistent with the results observed for single component cases where inter-particle 
spacing introduced by these ligands are not very different. When Au@Janus are mixed 
with Au@24 there is no ordered crystalline structure observed, which is most likely due 
to the fact that the difference between the two ligands is too large to allow the formation 
of a uniform crystalline film. 

a
) 

b
) 

c
) 

d
) 
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Figure 3. TEM image of self-assembled monolayers of NCs obtained with mixtures of 
NPs with different dendritic ligands: a) Au@21 and Au@24, b) Au@21 and Au@Janus, 
c) a multilayer of Au@21 and Au@24, and d) Au@Janus and Au@24. 

 
 To confirm the crystallinity and the effects of interparticle spacing of the self-
assemblies, UV-vis was performed. All of the Au NPs with different ligands have the 
same maximum absorption wavelength when analyzed with solution-phase UV-vis, 
shown in Figure 4, which is due to the NPs not being immobilized. To perform solid-state 
UV-vis, a solution of NPs were allowed to slowly evaporate on a glass slide, to allow for 
self-assembly to occur. From solid-state UV-vis, a redshift in the absorption wavelength 
maximum is observed, which can be seen from Figure 4. This shift is representative of 
the changes in interparticle spacing, which is consistent with previous research.16,39 
Contact angle measurements were also performed, as a quantitative technique to observe 
the change in hydrophobicity of NPs with the various ligands grafted onto their surface. 
As expected, the NPs with the hydrophobic ligands on their surfaces had a large contact 
angle, those with hydrophilic ligands had a smaller contact angle, and the Janus ligand 
has an intermediate contact angle. The results of the contact angle, solid-state UV-vis 
measurements, and interparticle spacing for each of the NPs are listed in Table 1.    
 

a
) 

b
) 

c
) 

d
) 
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Figure 4. UV-vis measurements of nanoparticles with the various ligands grafted on their 
surface a) Solution phase and b) solid-state UV-vis measurements.   

Table 1. Summary of interparticle spacing, absorption wavelength maximum, and 
contact angle measurements for each set of NPs studied.  

 
 
 

Center-to-
Center (nm), 
from TEM 

Edge-to-
Edge (nm), 
from TEM 

λmax (nm) 
Contact 

Angle (º) 
 

As synthesized 
Au NPs 10.0 2.0 596 71.8 

Au@Janus 10.7 2.7 550 65.3 
Au@21 11.1 3.1 547 85.0 
Au@24 13.2 5.2 544 89.2 

Au@Janus and 
Au@21 11.3 3.3 547 - 

Au@21 and 
Au@24 12.0 4.0 545 - 

Au@Janus and 
Au@24 - - - - 

Au@22 - - - 58.3 

Au@25 - - - 48.8 

 
 
Visualizing the Janus Dendron on Au NPs. 

When considering the Janus dendron synthesized in this work, there should be a 
patchy surface on the Au NPs, due to the hydrophobic and hydrophilic moieties being 
covalently bound to each other, but still assembling with neighboring Janus dendrons. 
The patches that these moieties create should be less then 5nm in size. To visualize how 
the Janus dendrimer self assembles on the surface of the Au NPs, two different stains 
were employed, uranyl acetate and caesium carbonate. For both of these stains, the 
uranium or caesium should bind to oxygen, resulting in the oxygen rich PEG branch of 
the Janus dendron appearing much darker when visualizing with TEM than the oxygen 
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poor alkyl chain branch. As can be seen from Figure 5, for both of the stains, no change 
to the surface of the Au@Janus NPs can be observed. One reason for this could be due to 
the Au NPs already being particularly electron rich, making them very dark when 
visualizing with TEM, which can lead to challenges visualizing any stains. Another factor 
may be that a TEM with higher resolution may be required to visualize sub-5 nm patches.   

 

 
Figure 5. Au@Janus NPs stained with a) uranyl acetate and b) caesium carbonate. 

 In an attempt to visualize the Janus ligand, a 3 Angstrom thick layer of gold was 
deposited onto a TEM grid using e-beam epitaxy. The Janus ligand was then deposited 
onto the layer of gold, and was then stained with uranyl acetate. As can be seen in Figure 
6, there are darker, patchy regions on the TEM grid that are 2-3 nm in size, which is 
similar to what we expected. It is difficult to determine the nature of these darker patches 
using only the TEM, and without confirmation from EDS or EELS, it would be 
inappropriate to claim that these patches are caused by the stain binding to the 
hydrophilic moiety of the Janus ligand, and they may be a uranyl acetate salt.  
 

 
Figure 6. TEM of Au thin film with the Janus ligand that was stained with uranyl acetate.  

 

b
)

a
)
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Conclusion 
I have demonstrated a flexible route to synthesize novel dendritic ligands, 

including the Janus ligand which includes both hydrophilic and hydrophobic moieties. 
The self assembly properties of the series of ligands were studied, which revealed that the 
NPs assemble into hcp crystalline structures, with precise interparticle spacing that 
increases with an increase in the dendron generation. Mixtures of NPs with different 
ligands were assembled, and mixtures of Au@21 and Au@24 as well as Au@21 and 
Au@Janus assembled well into hcp crystalline structures. Lastly, to study the assembly 
properties of this Janus ligand, it was bound to a thin film of gold, then stained with a 
uranyl acetate solution. TEM images reveal that it may be possible to visualize the patchy 
surface that the Janus ligand creates, but further studies, such as high resolution TEM and 
EDS or the synthesis of a larger ligand, are required for definitive proof.  
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