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Abstract: The search for hypothetical optimal solutions of landscape composition is a major issue
in landscape planning and it can be outlined in a two-dimensional decision space involving
economic value and landscape diversity, the latter being considered as a potential safeguard to
the provision of services and externalities not accounted in the economic value. In this paper, we
use decision models with different utility valuations combined with weighted entropies respectively
incorporating rarity factors associated to Gini-Simpson and Shannon measures. A small example
of this framework is provided and discussed for landscape compositional scenarios in the region of
Nisa, Portugal. The optimal solutions relative to the different cases considered are assessed in the
two-dimensional decision space using a benchmark indicator. The results indicate that the likely best
combination is achieved by the solution using Shannon weighted entropy and a square root utility
function, corresponding to a risk-averse behavior associated to the precautionary principle linked to
safeguarding landscape diversity, anchoring for ecosystem services provision and other externalities.
Further developments are suggested, mainly those relative to the hypothesis that the decision models
here outlined could be used to revisit the stability-complexity debate in the field of ecological studies.

Keywords: decision models; non-expected utility methods; weighted Shannon entropy; weighted
Gini-Simpson index; economic values; landscape diversity; precautionary approach; landscape
services; system manifold

1. Introduction

There are two distinct uses for the word entropy in landscape ecology, either related to the scientific
field of thermodynamics or to information theory, and though there is a formal analogy these concepts
are claimed to represent scientific disciplines [1].

In this paper we will focus on the information theory perspective, recalling that Shannon [2]
derived the entropy of the set of probabilities p1, · · · , pn denoted H = −K ∑n

i=1 pi log pi (with K > 0)
as a measure of uncertainty. Therefore, as Lindley [3] pointed out, Shannon introduced two
fundamental ideas: that information is a statistical concept and that, on the basis of frequency
distribution, there is an essentially unique function which measures the amount of information;
function H is correlatively said to be a measure of the amount of uncertainty represented by a
probability distribution [4] or the average randomness of a stochastic system [5]. Shannon based his
deductive axiomatic procedure on previous work done by Hartley [6] aiming to compare capacities of
several systems to transmit information, a concept there defined to be proportional to the number of
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selections, using a measure outlined as the logarithm of the number of possible sequences of symbols,
following an analogy with the physical entropy in statistical mechanics first introduced by Boltzman.
About a decade later, statistical entropy was introduced in ecological studies either as a measure of
community stability by MacArthur [7] or as a diversity index of assemblages of species by Margalef [8],
who used Shannon’s formula as equivalent to Brillouin’s expression [9] and interpreted it as the
average number of bits per individual [10]. Pielou [11] reviewed the theme, stating that diversity
in an ecological system is directly related to the amount of uncertainty regarding the identity of an
individual selected at random from a community.

Shannon entropy was not the only source for diversity measures in ecology; the other main
example was ascribed to Simpson’s concentration measure [12], published in 1949, here denoted
C = ∑n

i=1 p2
i , also reformulated as D = 1− C, which is usually referred to as Gini-Simpson index

of diversity (e.g., [13,14]). In 1961, Rènyi [15] outlined a generalization of Shannon entropy as a
1-parameter functional family, and Hill [16], about a decade later, used the exponential form of
Rènyi’s generalized entropy to derive what he called diversity numbers, which were shown to be
related with Shannon and Simpson diversity measures. In the 1980s, Rao introduced a generalization
of Gini-Simpson index (see [13]), commonly mentioned as quadratic entropy and interpreted as
the abundance-weighted mean distance between species [17], expressed as Q = ∑s

i=1 ∑s
j=1 dij pi pj.

A review of diversity measures relative to community assemblages with focus on semantic content
and distinction between simplex and complex issues was made by Ricotta [18].

In a process that can be classified as transference of concepts from community studies in ecology
to broader space scales concerning landscapes or regions, thus replacing relative abundance of species
in a community for land cover types (or habitats) areal proportions, we get into diversity metrics in
landscape characterization and research (see [19–21] for a review). Landscape composition can be
defined as the variety and abundance of different land cover types within the landscape [22] and
different diversity indices measure distinct aspects of the partition of abundance between landscape
elements [23]. In this paper, we will not deal with landscape spatial entropy measures related with
heterogeneity and fragmentation of the habitats (see [1]).

There is a considerable body of evidence indicating, in the absence of legal constraints, change in
human-dominated landscapes is substantially driven by economic values (e.g., [24]). Such land-use
decisions are usually considered to follow utility maximization strategies associated with land
conversion [25], although it can be argued that public preferences, for instance relative to forest
management, are not influenced solely by the particular attributes of competing management
objectives [26].

Non-expected utility models were developed in environmental and natural resources economics
as a consequence for the realization that models must accommodate preferences that are non-linear
in the probabilities [27], thus becoming an alternative to traditional expected utility methodology.
For instance, recently, researchers concluded that a non-expected utility model was needed to evaluate
environmental risks and preferences related to forest wildfires in Poland [28].

In this paper, we present two original decision models that combine expected utility and weighted
entropies, which is a novel example of the non-expected utility framework, and discuss how the
optimal points of the models using different utility valuations generate solutions to the composition
of the landscape mosaic that will be assessed relative to the trade-off between economic value and
landscape diversity.

2. Methodology

2.1. Background

A review of non-expected utility theory was made by Starmer [29], in which individuals made
decisions based on finite lotteries as a function of a vector of fixed consequences X = (x1, x2, · · · , xn)

mapped into real values named utilities, denoted u(X) = (u(x1), · · · , u(xn)), which are associated
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with the correspondent vector of unknown probabilities p = (p1, · · · , pn). In this context,
individuals are facing a decision problem of uncertainty and are assumed to maximize the functional
W(p) = ∑n

i=1 u(xi)π(pi), where {π(pi)}i=1,··· ,n are decision weights. The general explanation for
this concept is that when individuals are choosing between two lotteries they tend to perceive
the probabilities subjectively, and transfer to decision weights with some systematic deviation
between the decision weights and the objective probabilities [30]. The weighting function of the
probabilities π(·) : [0, 1]→ [0, 1] is assumed to be continuous and non-decreasing, verifying the
boundary conditions π(0) = 0 and π(1) = 1 (e.g., [31,32]).

A non-expected utility framework involving the sum of expected utility and Shannon entropy
defined as a measure of risk was discussed as a decision-making model, later reframed into a
normalized expected utility-entropy measure of risk [33]. Also, there are other utility-based motivations
for different entropy measures, anchoring decision theoretic models (e.g., [34,35]).

Weighted Shannon entropy was conceived as a quantitative-qualitative measure of information,
denoted I = −c ∑n

i=1 ui pi log pi with c > 0, introduced and axiomatized by Belis and Guiasu [36]
incorporating objective probabilities {pi}i=1,··· ,n and subjective utilities {ui}i=1,··· ,n. About a decade
later, Aggarwal and Picard [37], following a paper of Emptoz [38], generalized to the concept of entropy
of degree β, defined as:

Hβ =
n

∑
i=1

ui pi

(
1− pβ−1

i

)
/
(

1− 21−β
)

with β 6= 1. (1)

Using l’Hôpital’s rule, we get the result lim
β→1

Hβ = I (with c = 1/ log 2) thus allowing for

an extension, using natural logarithms, to: H1 × log 2 = H′1 = −∑n
i=1 ui pi log pi. Also, a direct

substitution shows that H2/2 = H′2 = ∑n
i=1 ui pi(1− pi), a formula named the weighted Gini-Simpson

index (e.g., [39–41]) or weighted Simpson index [42]. Next, we shall consider that for β = 1, 2
the term H′β stands for two different weighted entropies related through Equation (1), except for a
multiplicative constant.

In addition, there are other links between H′1 and H′2 that we can highlight. Near x = 1 we
have the first order Taylor’s approximation log x ∼= x − 1, so it follows that − log pi

∼= 1− pi and
the weighted Gini-Simpson index becomes the weighted average of the first order approximation of
information values (− log pi) in Shannon entropy (when pi < 0.5 the approximation may be considered
quite poor).

2.2. Decision Models

To be considered relevant the problem must embody dimension n ≥ 3 associated with a n− 1
simplex of compositional proportions. In any case, we will be dealing with a functional denoted
Wβ = ∑n

i=1 ui pi + H′β for β = 1, 2 where the term ∑n
i=1 ui pi stands for expected utility E[U]. It can be

shown that the functional Wβ for each value of β = 1, 2 and for a fixed set of positive utilities {ui}i=1,··· ,n
reduces to a real function which is smooth and concave, allowing determination of constrained
maximum points with the method of Lagrange multipliers. In any case, there is only one optimal
vector of proportions p∗ =

(
p∗1 , · · · , p∗n

)
such that ∑n

i=1 p∗i = 1 - a solution which is shown to be
insensitive to a positive linear transformation of the utilities, or change in units, thus becoming
irrelevant to assess the optimal proportions for an area.

2.2.1. The Case for β = 1

For β = 1 we get:

W1 =
n

∑
i=1

ui pi −
n

∑
i=1

ui pi log pi =
n

∑
i=1

ui pi(1− log pi). (2)
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We can rewrite W1 = ∑n
i=1 uiπ1,i with the decision weights defined with the expression

π1,i = p1,i(1− log p1,i) for i = 1, · · · , n. It is clear that p1,i = 1 is equivalent to π1,i = 1, and
(using l’Hôpital’s rule) we have the result lim

p1,i→0+
π1,i = 0, allowing for the continuity statement

defining the range 0 ≤ π1,i ≤ 1. The real function W1 was previously presented and discussed
(see [43]); in summary, W1 is a differentiable concave function in the interior of the simplex, attaining
minimum and maximum values in the domain. The minimum value is minW1 = min

i=1,··· ,n
ui and it

is possible to locate the maximum point with a Lagrange multiplier method, the coordinates of the
maximum point thus being evaluated by computing p∗1,i = exp(−α∗/ui) for i = 1, · · · , n, the optimal
value of the Lagrange multiplier (α∗) defined implicitly by the equation α∗ : ∑n

i=1 exp(−α/ui) = 1
which can be solved with numerical methods providing a unique solution.

2.2.2. The Case for β = 2

For β = 2 we have:

W2 =
n

∑
i=1

ui pi +
n

∑
i=1

ui pi(1− pi) =
n

∑
i=1

ui pi(2− pi) (3)

In parallel with what was shown in the previous section relative to Equation (2), now we get
W2 = ∑n

i=1 uiπ2,i with the decision weights here defined as π2,i = p2,i(2− p2,i) for i = 1, · · · , n.
Also, we see that p2,i = 0 implies π2,i = 0 and p2,i = 1 entails π2,i = 1, so we get 0 ≤ π2,i ≤ 1. The real
function W2 displayed in Equation (3) was also previously studied (see [44]), and, analogously to what
was stated relative to function W1 shown in Equation (2), it is also a smooth and concave real function
with minimum value evaluated like minW2 = min

i=1,··· ,n
ui, while the maximum point is attainable with a

Lagrange multiplier method checked for the feasibility of solutions verifying altogether the full set
of inequalities ui > (n− 1)/ ∑n

i=1 1/ui, for i = 1, · · · , n. In general, the set of inequalities doesn’t
hold and we have to proceed with an algorithm obtaining the maximum point coordinates defined
with the expression p∗2,i = 1− (k− 1)/

(
ui ∑k

i=1 1/ui

)
and 2 ≤ k ≤ n. When k < n we have n− k

null coordinates in the optimal solution. Whether k = 2 we get the simple results p∗2,i = ui/
(
ui + uj

)
and p∗2,j = uj/

(
ui + uj

)
.

2.3. Decision Space

The decision space is conceived with two dimensions: economic value stricto sensu, meaning
economic assessment relative to forest products with market valuation, and landscape diversity.
Economic value will be computed with the standard weighted average formula V = ∑n

i=1 v1 p∗i , where
{vi}i=1,··· ,n is a set of economic values and

{
p∗i
}

i=1,··· ,n is the set of optimal proportions which will be
computed for the cases W1 and W2 and different utility valuations.

Landscape diversity shall be assessed with the Hill number N1 = exp
(
−∑n

i=1 p∗i log p∗i
)

defined
in [15], which can be interpreted as the “number” of abundant habitats - making an analogy with
the correspondent statement of Alatalo concerning species [45]. The option for this bi-dimensional
decision space refers to the precautionary principle, as it is acknowledged that the resilience of a system
can be lost because of optimal control strategies focused on a single variable [46], and it is believed that
the trade-off between economic value and landscape diversity can be relevant to safeguard ecosystem
services and other externalities. Also, a benchmark indicator represented by the formula B = V × N1

will be used to help the discussion of results. Lastly, we consider that the decision models we compare
here are tools for optimizing landscape composition, not prescriptive methods.

3. Results

We used data from another source (see Table 1 in [47]), which reports the average economic
values of different forest habitats in the region of Nisa, Portugal, expressed in euros per hectare (€/ha).
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This simple example has dimensions n = 4, corresponding to four forest habitats or land cover types:
holm oak; blue gum; cork oak and umbrella pine. Since our aim is merely to illustrate the methodology,
the characterization of such economic values will be ignored except for highlighting that they just
reflect forest products with market valuation and do not account for externalities and ecosystem
services as other approaches do (e.g., [48]).

Table 1. Soil occupation economic values vi (/ha) of four forest habitat types in the region of
Nisa, Portugal and different utility valuations according to exponent ω . Codes: Qr-Quercus
rotundifolia (holm oak); Eg-Eucalyptus globulus (blue gum); Qs-Quercus suber (cork oak); Pp-Pinus
pinea (umbrella pine).

Utilities ui ω
Forest Habitat Type

Qr Eg Pp Qs

vi (€/ha) 1 112 136 494 618√
vi 0.5 10.583 11.662 22.226 24.860

vi
2 2 12,544.0 18,496.0 2.4404×105 3.8192×105

In Table 1 we present the economic values (vi) as well as their utility valuation using the power
function denoted ui = vi

ω (e.g., [49]) with ω = , 1 , 2. Those three cases are relative to different
geometries of utility function, since utility theory states that risk-averse behavior is typically related to
concave utility transformations, thus utility transformations (ui) herein considered are: linear neutral
with ω = 1, square-root (concave) with ω = 0.5 and quadratic (convex) with ω = 2.

Applying formulas previously mentioned in Sections 2.2.1 and 2.2.2 to data in Table 1 we
computed the results summarized in Table 2, relative to the optimal proportions in each case,
respectively obtained with the maximization of W1 and W2 using the utilities specified by the exponent
ω of the power value function.

Table 2. Optimal proportions relative to the maximization of expected utility and weighted entropies
models W1 and W2 with data specified in Table 1.

Decision Model ω
Forest Habitat Type—Optimal Proportions

Qr Eg Pp Qs

W1 1 p∗1,1 = 0.02 p∗1,2 = 0.05 p∗1,3 = 0.43 p∗1,4 = 0.50
W2 1 p∗2,1 = 0 p∗2,2 = 0 p∗2,3 = 0.44 p∗2,4 = 0.56
W1 0.5 p∗1,1 = 0.11 p∗1,2 = 0.14 p∗1,3 = 0.35 p∗1,4 = 0.40
W2 0.5 p∗2,1 = 0 p∗2,2 = 0 p∗2,3 = 0.47 p∗2,4 = 0.53
W1 2 p∗1,1

∼= 0 † p∗1,2
∼= 0 ‡ p∗1,3 = 0.42 p∗1,4 = 0.58

W2 2 p∗2,1 = 0 p∗2,2 = 0 p∗2,3 = 0.39 p∗2,4 = 0.61
† 5.3635 × 10−8; ‡ 1.1725 × 10−5.

In Table 3 we assess the results presented in Table 2, by evaluating the economic value
(V = ∑n

i=1 v1 p∗i in €/ha) and landscape diversity associated with each solution, the last computed with
the second Hill number N1. Each case is benchmarked by the indicator value B = V × N1. The values
of the measures relative to the indifference solution, or maximum landscape diversity, where each
forest habitat type occupies 25% of the area and thus the correspondent value of the second Hill
number is N1 = 4 and the benchmark indicator evaluates as the sum of economic values at stake.
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Table 3. Results shown in the bi-dimensional decision space with the dimensions defined as economic
value (V) and landscape diversity (N1); B = V × N1 is a benchmark indicator.

Decision Model
Measures

V N1 B

W1
ω = 1

530.46 2.5536 1354.6
W2 563.44 1.9856 1118.8

W1 ω = 0.5
451.46 3.4973 1578.9

W2 559.72 1.9964 1117.4

W1
ω = 2

565.92 1.9745 1117.4
W2 569.64 1.9518 1111.8
p0 340.00 4.0000 1360.0

4. Discussion

In the example analysis we would attain the minimum value of the benchmark indicator with
the whole area occupied by holm oak forest (Qr), scoring B = 112, as we have in that case V = 112
and N1 = 1. On the other hand, the maximum landscape diversity would provide B = 1360 with
the average economic value of V = 340 and N1 = 4. A similar value for B is attained with the
decision model W1 and neutral utilities (ω = 1), enhancing economic value to ca. V = 530, which
is about 86% of the maximum of 618, and a diversity number of ca. N1 = 2.55, meaning that the
number of abundant habitats is over 63% of the maximum of 4. The highest value of the benchmark
indicator is achieved with the decision model W1 and square root utilities, ca. B = 1579, leading to an
economic value of V = 451, about 73% of the maximum, and a diversity number of N1 = 3.5, over
87% of the maximum value, which seems to be the most suitable compromise within the decision
space, if we consider that landscape diversity is a general potential safeguard relative to ecosystem
services and other externalities not accounted in the economic value. In fact, the number of patch
types may indicate the level of resource diversity while the proportions may determine the dominance
of critical resources [49], and it is believed that more variation in a landscape generally leads to greater
genetic and species diversity and this, in turn, stabilizes populations and strengthens the different
ecosystem elements in the landscape which provides for more varied ecosystem services, which may
enhance the resilience of the local economy [50]. Even so, the framework here discussed has two major
limitations: it presupposes that the habitats are spatially interchangeable in the whole area considered,
which would not be the case in most actual situations where there will be ecological constraints
associated with heterogeneity and fragmentation in patches; and also, it does not account for the
distinction between the ecological value of the habitats concerning differences between abundant or
rare, even endangered, species. The last issue could be bypassed with a parallel assessment using
ecological values for conservation of the habitats, or a broader version of economic values incorporating
externalities such as ecosystem or landscape services.

In summary, comparing the optimal proportions of the decision models W1 and W2 relative to
the same set of utilities in a small dimension example (n = 4), the analysis shows that W1 performs
in a considerably more conservative way relative to differences in utilities enhancing landscape
diversity, except for the quadratic risk-prone transformation where both models perform about the
same. The link to this difference is rooted in the fact that each model incorporates a rarity valuation
measure, which for W1, defined in Equation (2), is the nonlinear factor r1,i = − log p1,i (e.g., [51]) and
for W2 is the linear function r2,i = 1− p2,i as we can check in Equation (3); when the habitat i vanishes
we get respectively the results lim

p1,i→0+
(− log p1,i) = +∞ and lim

p2,i→0+
(1− p2,i) = 1, the infinite rarity

value helping counteracting extinction.
Highlighting areas for future research, we point out that the trends of the results presented here

should be tested relative to an analogous higher dimensional problem, and also using other utility
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valuation functions such as the logarithmic or negative exponential and a valuation procedure that
incorporates an ecological assessment of singularities.

Also, the framework we describe in this paper could be helpful in revisiting the diversity-stability
debate relative to dynamic equilibrium points in ecological studies. In general, when dealing with
equilibrium points in dynamic systems we consider minima under potential formulation and, in
probability formulation, we look for the opposite: we consider maxima, while minima are excluded [52].
Thus, we could think of optimal solutions of the models here discussed as minimum points of the
symmetric forms −W1 and −W2 considered to be potential functions governing dynamic systems.
The utilities {ui}i=1,··· ,n then could better be replaced by some kind of time indexed characteristic
positive values of the different habitats, say {wi(t)}i=1,··· ,n, for example relative to a measure of their
resilience. In fact, we can go back to 1937 and Volterra’s works [53] and find a symmetric form
of weighted Shannon entropy, though conceived with whole numbers, not proportions, which is
to be minimized concerning an entity called “vital action” of the community, when searching for
an equilibrium. About six decades later, we find weighted Simpson index as a potential function
characterizing an inverse measure for antigenic diversity of virus populations [54].

Concerning the object landscape, a recent review based on agent-based modeling of landscape
dynamics shows a cornucopia of methods with emphasis on comparative approaches, pursuing the
continuation of innovative modeling for understanding landscape change, its causes and consequences
for sustainability in the Anthropocene [55].
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