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ABSTRACT: We present a bioclimatological diagnosis of mainland Portugal, namely the thermotype and ombrotype maps
following Rivas-Martínez’s worldwide bioclimatic classi$cation system. In order to obtain this diagnosis, we produced maps
of bioclimatological indices using, as base data, geostatistical interpolations of air temperature and precipitation.We performed
uncertainty propagation obtaining uncertainty measures for the produced maps: mean absolute errors and root mean squared
errors. For the non-linear indices, besides the usual approximation using Taylor expansion, we devised error formulae, for
which we showed that the propagated uncertainties are upper bounds on the true uncertainty measures. We compared the
obtained uncertainty measures to those reported on a previously published work, which used a different methodological
framework to obtain the same diagnosis. Although the approach we used here implies a great number of interpolations and
subsequent calculation steps, it permitted the use of a large amount of data relative to precipitation. An F-test showed that
the estimated mean squared errors for the maps of ombrothermic indices were signi$cantly lower than those produced by the
former methodological framework.
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1. Introduction

Rivas-Martínez’s worldwide bioclimatic classi$cation sys-
tem (RMWBCS) has been developed and improved by
Rivas-Martínez et al. in successive attempts since 1982
(Rivas-Martínez, 1996), being the last version having been
published by Rivas-Martínez et al. (2011). The different
versions attempt to show better relationships with veg-
etation patterns known throughout the world, classify-
ing the Earth in $ve major macrobioclimates (tropical,
Mediterranean, temperate, boreal and polar), with several
subdivisions.
The most relevant bioclimatological indices used in the

RMWBCS, which are undoubtedly related to species and
vegetation distribution (del-Arco et al., 2002; Gavilán,
2005), are very simple algebraic expressions of tem-
perature and precipitation data. RMWBCS has been
particularly useful in studies including bioclimatological
characterization of plant communities (Costa et al., 2012),
bioclimatological description of regions (Cano et al.,
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2012), potential vegetation mapping (del-Arco et al.,
2006; Capelo et al., 2007; Peinado et al., 2011), vegetation
surveys (Loidi et al., 2007) and even in the establishment
of knowledge-transfer paths between botanical gardens
under climate change scenarios (Monteiro-Henriques and
Espírito-Santo, 2011).
Climatological and bioclimatological maps have long

been proposed by several authors and were usually based
on expert-knowledge accumulated over several years
of research and analyses (Thornthwaite, 1948; Font
Tullot, 2000; Rivas-Martínez et al., 2011). Nowadays,
interpolation techniques side by side with computational
power allow the production of high-resolution maps
of climatological variables (e.g. Hijmans et al., 2005;
Ninyerola et al., 2007a, 2007b), climatological indices
(e.g. Peel et al., 2007), as well as of bioclimatological
indices (e.g. Mesquita and Sousa, 2009). Therefore, mod-
ern approaches obtain (bio)climatological diagnosis of a
certain territory applying conditional clauses over maps of
(bio)climatological indices, on geographical information
systems (GIS); examples can be found in Peel et al. (2007)
and Mesquita and Sousa (2009).
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On the basis of RMWBCS, Mesquita and Sousa
(2009) published maps of bioclimatological indices and a
bioclimatological diagnosis for mainland Portugal using
geostatistical techniques. The authors used air temperature
and precipitation data from 128 climatological stations
(corresponding to 96 Portuguese and 32 Spanish ones),
referring to the 1961–1990 period, having rejected data
series with less than 18 years of measurements. For each of
the 128 data points, 13 bioclimatological indices were cal-
culated. Six of them are indispensable to produce the $nal
diagnosis maps, speci$cally: annual positive temperature
(Tp), compensated thermicity index (Itc), annual ombroth-
ermic index (Io), ombrothermic index of the warmest
bimonth of the summer quarter (Ios2), ombrothermic
index of the summer quarter (Ios3) and ombrothermic
index of the summer quarter plus the previous month
(Ios4). The other seven are auxiliary indices necessary to
obtain the former. The six indispensable indices were then
interpolated (mapped) for mainland Portugal using four
different mathematical techniques. Using cross validation
(leave one out) the authors produced six evaluation mea-
sures for each interpolation (see also Mesquita, 2005).
The authors considered as best performing techniques: (i)
kriging with external drift of a multiple linear regression
for indices Itc, Io, Ios4 and Tp; and (ii) multiple linear
regression followed by ordinary kriging of the residuals
for Ios2 and Ios3. The six maps (with 1× 1 km spatial
resolution) obtained with the best techniques were used
to construct the $nal diagnosis maps of thermotypes and
ombrotypes, for the territory of Portuguese mainland. The
$rst column of Table 1 presents a résumé on Mesquita and
Sousa’s work.
Our aim was equally to produce a bioclimatological

diagnosis for mainland Portugal according to RMWBCS,
although using a different methodological framework and
keeping track of the uncertainties associated with the pro-
duced maps of bioclimatological indices.

2. Methodology

In this work, in spite of using the data of each climatologi-
cal station to $rstly calculate the bioclimatological indices
and, subsequently, execute the geostatistical interpolation
of the obtained indices (as e.g. in Mesquita and Sousa,
2009), we collected, as base data, geostatistical interpo-
lations of precipitation and air temperature for mainland
Portugal and, afterwards, calculated RMWBCS indices.
The uncertainties associated with the base data were prop-
agated using appropriated techniques. The indices maps
were then used to obtain the bioclimatological diagnosis of
mainland Portugal according to RMWBCS. The following
subchapters present a detailed description of the method-
ology used.

2.1. Base data

The base data employed in this work come from the spatial
interpolations of the precipitation and air temperature of

mainland Portugal, achieved by means of geostatis-
tical methodologies obtained by Nicolau (2002), for
precipitation, and Silva (2005) for air temperature (see
also Silva et al., 2007).
Nicolau (2002) aimed at discussing the performance

of different mathematical techniques used for the spatial
interpolation of point-associated information, in the con-
struction of precipitation maps. As a result, for the territory
of the Portuguese mainland, she carried out and produced
a remarkable set of different analysis and precipitation
maps, testing 10 different interpolation methods. The pre-
cipitation series used were previously treated by, namely:
pre-selection (rejecting precipitation series with less than
19 years of measurements); adjustment; and no-data $ll-
ing (among other tests and corrections). The result was
a total of 439 series (corresponding to Portuguese clima-
tological and udometric stations), used for the production
of the $nal maps, covering the period between 1959/1960
and 1990/1991. A $nal set of 17 precipitation maps with
1× 1 km spatial resolution was produced, using kriging
interpolation and altitude as external drift. Five evaluat-
ing measures were applied to each of the produced maps,
obtained with cross validation (leave one out); Table 2
shows two of them used in this work: the mean absolute
errors (MAE) and the root mean squared errors (RMSE).
The MAE of an estimator T of a parameter � (here � is
a precipitation or a temperature value in a location and T

is the geostatistical interpolator) is de$ned as the expected
value of |T − �|, and, similarly for the RMSE, as the square
root of the expected value of (T − �)2. These error evalu-
ation measures can thus be estimated averaging the abso-
lute differences (or its squares) between the geostatistical
estimates and the registered values, across all the used
data points. The geostatistical estimate for each station’s
location is obtained after removing that location from the
data set.
As to the air temperature data, Silva (2005), after

a pre-selection of the temperature series covering the
1961–1990 period (rejecting series presenting less then
20 years of measurements), used 98 sampled points (corre-
sponding to 88 Portuguese and 10 Spanish climatological
stations) to produce temperature maps, comparing eight
different interpolation methods. To evaluate the methods
performance, Silva opted for an external validation keep-
ing 15% of the points apart for a subsequent evaluation and
producing four evaluation measures (see Table 3 for MAE
and RMSE). After selecting the best interpolation tech-
nique (multiple linear regression using altitude and dis-
tance from the coastline, with residuals kriging), 13 $nal
maps were constructed employing the whole set of points,
similarly with a 1× 1 km spatial resolution. Subsequently
to his work, Á. Silva (2006; pers. comm.) interpolated the
mean minimum and maximum monthly air temperatures
using the same methodology, as some of them are needed
for the calculation of Itc; howeverMAE and RMSE are not
available (consequently we could not calculate uncertainty
propagation for Itc). Table 1 shows a comparative résumé
of the three works referred in this article.

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)
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Table 1. Comparative résumé of the work of Mesquita and Sousa (2009), Nicolau (2002) and Silva (2005).

Mesquita and Sousa (2009) Nicolau (2002) Silva (2005)

No. of input data points (Portuguese+Spanish) 96+ 32 439 88+ 10
Data pre-treatments

Pre-selection X X X
Adjustment X
No-data $lling X

Interpolation techniques
Polynomial interpolation X
Thiessen polygons X
Triangulation X
Inverse distance weighting X X
Splines X X
Simple linear regression X X
Multiple linear regression X X
Ordinary kriging X X X
Kriging with external drift Xa Xa

Simple linear regression with residuals kriging X
Multiple linear regression with residuals kriging Xa Xa

Co-kriging X X
Neuronal networks X

Evaluation methodology
Cross validation (leave one out) X X
External validation (leave 15% out) X

Evaluation measures
Mean error X X X
Maximum error X
Mean absolute error X X X
Root mean squared error X X X
Percentage mean absolute error X X
Pearson correlation X X X

aSelected technique by the authors for the production of $nal maps.

Table 2. Evaluation measures for the estimated precipitation,
obtained with cross validation; drawn from Nicolau (2002).

Symbols Precipitation MAE (mm) RMSE (mm)

P Annual (total) 101.42 150.80
P1 January mean 16.78 25.01
P2 February mean 16.00 23.18
P3 March mean 10.40 16.04
P4 April mean 8.19 12.16
P5 May mean 6.84 10.36
P6 June mean 4.28 6.33
P7 July mean 1.97 2.88
P8 August mean 1.88 2.95
P9 September mean 4.61 7.31
P10 October mean 10.97 15.91
P11 November mean 13.02 18.77
P12 December mean 16.40 23.99

2.2. Base data adjustments

Because the base data came from different sources, some
previous adjustments were made in order to allow their
concurrent use.
As to the air temperature, Silva (2005) treated 30 years

of data, whereas, Nicolau precipitation data (2002) covers
a period longer by 2 years, since she treated hydrological,
and not civil year series. However, this difference is not
expected to be relevant, because only mean values are
concerned. Both authors used the same projection and

Table 3. Evaluation measures for the estimated air temperatures,
obtained through external validation; drawn from Silva (2005).

Symbols Temperature MAE (∘C) RMSE (∘C)

T Annual mean 0.381 0.444
T1 January mean 0.520 0.602
T2 February mean 0.601 0.743
T3 March mean 0.414 0.522
T4 April mean 0.378 0.449
T5 May mean 0.299 0.370
T6 June mean 0.347 0.439
T7 July mean 0.520 0.657
T8 August mean 0.485 0.647
T9 September mean 0.519 0.624
T10 October mean 0.393 0.475
T11 November mean 0.536 0.646
T12 December mean 0.541 0.653
Tmin12 December mean minimum N/Av N/Av
Tmin1 January mean minimum N/Av N/Av
Tmin2 February mean minimum N/Av N/Av
Tmax12 December mean maximum N/Av N/Av
Tmax1 January mean maximum N/Av N/Av
Tmax2 February mean maximum N/Av N/Av

N/Av, not available.

georeferencing system, obsolete now: datum Lisbon;
Hayford ellipsoid (or International 1924) and Mercator
Transverse projection, with mainland Portugal parameters
and coordinates origin in the Fictitious Point west of
the S. Vicente Cape (Instituto Geográ$co Português,
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2009). Therefore, no projection adjustments were needed
for the indices calculation. However, the bioclima-
tological data here produced have been transformed
to the updated coordinate system PT-TM06-ETRS89,
using the Bursa-Wolf transformation parameters pro-
vided by the IGP (Instituto Geográ$co Português,
2009).
Even if the maps produced by Silva and Nicolau have

the same 1× 1 km spatial resolution and coordinate sys-
tem, a 570m displacement exists between the two grids of
interpolated points (or pixels). Given that the original sur-
faces resulting from the interpolations were not accessible,
a possible solution would be interpolating the values from
one of the grids to the locations of the other grid points,
using GIS simple interpolation techniques (e.g. bilinear
or cubic convolution). However, given the displacement
and spatial resolution of the data, this procedure would
result in a set of smoothed values, particularly inmountain-
ous areas. Thus, the interpolation of new values between
the original ones, while keeping the latter, was the chosen
option. The Resample tool of ArcMap™ 9.2 SP5 (the used
GIS software) was employed, selecting the cubic convo-
lution technique and choosing a spatial resolution which
allowed the maintaining of the original values [in this case:
111.(1)m]. As a result, points were added to the original
grids, thus achieving $nal grids with a spatial resolution
of 111.(1)× 111.(1)m. Consequently, the initial displace-
ment was reduced to approximately 60m, that can be con-
sidered negligible in view of the magnitude of other errors
associated with the base data.
Silva and Nicolau did not use the same Portuguese bor-

derline to cut out the $nal maps (estuaries and lagoons
were treated differently by the authors: Silva (2005)
excluded the air temperature data relative to these areas).
Similarly, a number of locations next to the frontier lost
cartographical representation (because the corresponding
pixel centre fell out of the chosenmask). Given the unavail-
ability of the original interpolated surfaces, as previously
referred, these data absences were $lled up with the near-
est neighbour values, employing the Nibble tool from
the same GIS software. For both reasons, the use and
interpretation of values associated to the borderline, as
well as to estuaries and lagoons, must be considered with
caution.

2.3. Maps of bioclimatological indices

In order to obtain the maps of bioclimatological indices,
the Map Algebra tool (from the used GIS software),
which allows point-to-point operations between super-
posed grids, was used to perform algebraic calculations
with the collected base data, following the formulas pro-
posed by RMWBCS (Rivas-Martínez et al., 2011).
Table 4 contains the list of the 13 maps of bioclimato-

logical indices produced for mainland Portugal (needed to
construct RMWBCS diagnosis maps). The abbreviations
were kept as close as possible to those of Rivas-Martínez
et al. (2011). For theMap Algebra instructions please refer
to Monteiro-Henriques (2010).

Table 4. Bioclimatological indices computed for mainland
Portugal.

Symbols

Tmax Mean temperature of the warmest month of the
year

Tmin Mean temperature of the coldest month of the
year

Tp Annual positive temperature (sum of the positive
monthly mean temperatures, in Celsius degree
×10)

Pp Positive precipitation (sum of the monthly
precipitation, relative to months with positive
mean temperature)

M_maiusc Mean maximum temperature of the coldest
month (M parameter, in the RMWBCS)

M_minusc Mean minimum temperature of the coldest
month (m parameter, in the RMWBCS)

Ic Simple continentality index, or annual thermal
amplitude

It Thermicity index
Itc Compensated thermicity index
Io Annual ombrothermic index
Ios2 Ombrothermic index of the warmest bimonth of

the summer quarter
Ios3 Ombrothermic index of the summer quarter
Ios4 Ombrothermic index of the summer quarter plus

the previous month

2.4. Uncertainty propagation and signi$cance tests

Error and uncertainty propagation, especially when related
to GIS operations and data processing, is a well-known and
relatively studied problem (Heuvelink, 1998; Heuvelink
and Burrough, 2002; Zhang and Goodchild, 2002).
Nonetheless, its execution is complex, and implemen-
tations capable of automatic and seamless propagation
in current GIS are not yet known. Still, it is important
to quantify uncertainty and assess how gravely can the
output of models be affected by the use of input infor-
mation that contains it (Bachmann and Allgöwer, 2002;
Canters et al., 2002; Oksanen and Sarjakoski, 2005; Van
Niel and Austin, 2007). Thus, uncertainty propagation
for the maps of bioclimatological indices here pro-
duced results pertinent for possible future analysis using
this data.
In this subchapter we present the formulae used in

the propagation of the uncertainty measures (MAE and
RMSE) associated to the base data. The propagation of
uncertainties is a consequence of the algebraic calculations
carried out for the construction of the maps of bioclimato-
logical indices, and is usually analytically deduced, or sim-
ulated using the Monte Carlo method (Heuvelink, 1998).
Coupled with geostatistical approaches, the Monte Carlo
method allows the spatial analysis of uncertainties (see
e.g. Temme et al., 2009; Hengl et al., 2010). In this work
we focused on global measures of uncertainty (MAE and
RMSE), which would allow the statistical comparison of
our results to previous works. Our approach is particularly
useful in the following common situation: the researcher
has access to the variables maps and global error measures,

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)
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Table 5. Ombrotype and respective lower and upper horizons
thresholds.

Ombrotypes Ombrotypes horizons Io

Ultrahyperarid Lower 0.0–0.1
Upper 0.1–0.2

Hyperarid Lower 0.2–0.3
Upper 0.3–0.4

Arid Lower 0.4–0.6
Upper 0.6–1.0

Semiarid Lower 1.0–1.4
Upper 1.4–2.0

Dry Lower 2.0–2.7
Upper 2.7–3.6

Subhumid Lower 3.6–4.6
Upper 4.6–6.0

Humid Lower 6.0–8.5
Upper 8.5–12.0

Hyperhumid Lower 12.0–17.0
Upper 17.0–24.0

Ultrahyperhumid Lower 24.0–33.9
Upper >33.9

but not to the original data (e.g. meteorological stations
data), nor to maps depicting error variation in space.
For maps with the spatial representation of uncertainties

associated with the variables maps used as base data in our
work, please refer to the original works of Silva (2005) and
Nicolau (2002).
As said before, the bioclimatological indices of RMW-

BCS are of very simple calculation, and can be written
linearly as x+ k, k · x, x± y or non-linearly as x/y, or com-
binations of these four expressions, where x and y are
climatological variables (Tables 2 and 3) or bioclimato-
logical indices (Table 4) and k is a constant. We propa-
gated the uncertainties in x and y, aiming to state the MAE
and RMSE of the bioclimatological indices in terms of the
known MAE and RMSE of x and y.
Assuming that the geostatistical interpolator is unbiased

and that the errors of the estimated temperature and pre-
cipitation are independent in each location, as well as
between different locations, it is straightforward to show
that:

MAEx±k = MAEx; RMSEx±k = RMSEx

MAEkx = |k|MAEx; RMSEkx = |k|RMSEx

MAEx±y ≤ MAEx +MAEy;

RMSEx±y =

√
RMSE2

x
+ RMSE2

y

Taylor expansion is frequently used to approximate
errors coming from a non-linear expression (Heuvelink,
1998; Zhang, 2006). Consider x̂ an estimate of x, and
"x = x − x̂ the error associated to that estimate. Using the
$rst order expansion of x/y around x̂∕ŷ we have:

x

y
≈

x̂

ŷ
+

1
ŷ

(
x − x̂

)
−

x̂

ŷ2

(
y − ŷ

)

and
"x∕y ≈

1
ŷ
"x −

x̂

ŷ2
"y

thus, the uncertainty measures may be estimated as
MAE-T and RMSE-T:

MAE − T x

y

≈
1
n

n∑

i=1

(
1
ŷi
MAEx +

||̂xi||
ŷ2
i

MAEy

)

RMSE − T x

y

≈

√√√√1
n

n∑

i=1

(
1

ŷ2
i

RMSE2
x
+

x̂2
i

ŷ4
i

RMSE2
y

)

where n is the number of sites for which x and y have been
estimated.
As these expressions are only approximate, we also

deemed the error propagation under the following pes-
simistic perspective:

|||"x∕y
||| =

|||||

x̂ + "x

ŷ + "y

−
x̂

ŷ

|||||
≤

|||||||

x̂ + ||"x||
ŷ −

|||"y
|||
−

x̂

ŷ

|||||||
This perspective is similar to combining the error signs

in x and y in the most unfavourable way to produce the
maximum propagated uncertainty for the values coming
from x̂∕ŷ.
We considered replacing |"x| and |"y| by MAEx and

MAEy, respectively:

MAE∗
x

y

=
1
n

n∑

i=1

|||||

x̂i +MAEx

ŷi −MAEy

−
x̂i

ŷi

|||||
Similarly, we considered replacing |"x| and |"y| with

RMSEx and RMSEy, thus obtaining (recall that |"|2 = "2):

RMSE∗
x

y

=

√√√√√1
n

n∑

i=1

(
x̂i + RMSEx

ŷi − RMSEy

−
x̂i

ŷi

)2

For the case of Io, we found through aMonte Carlo study
that MAE x

y

≤ MAE∗
x

y

and RMSE x

y

≤ RMSE∗
x

y

. We gener-

ated 1000 samples with size n from the normal distribu-
tion for the errors in temperature and in precipitation, and
compared the ‘true’ (MAE and RMSE) and approximate
(MAE* and RMSE*) uncertainty measures for Io. These
unfavourable uncertainty measures (worst-case analysis)
will be denoted by MAE-W and RMSE-W.
Some indices imply the use of conditional clauses, e.g.

Ios2 is calculated from the mean temperatures and precip-
itations of the warmest bimonth of the summer quarter.
We neglected errors coming from the use of conditional
clauses (e.g. the error in deciding which is the warmest
bimonth of the summer quarter).
Assuming that "x/y are normally distributed with mean

zero (as in the simulation study), we also checked for
statistically signi$cant differences between our results and
those obtained by Mesquita and Sousa (2009) using an
F-test, where the alternative hypothesis was that RMSE2

were different. The p-values of the test were computed
using the function pf () of the R statistical software, version
3.0.1 (R Core Team, 2013).
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Figure 1. Methodological frameworks used in Mesquita and Sousa (2009) and in this work.

2.5. Bioclimatological diagnosis

Finally, we constructed the bioclimatological diagnosis for
mainland Portugal, presenting two of the most important
bioclimatological maps producible from RMWBCS: the
thermotype and ombrotype maps.
A thermotype map is obtained with conditional clauses

over three maps: macrobioclimates, Itc and Tp; thus an
intermediate layer of macrobioclimates was constructed
according to the RMWBCS, using conditional clauses of
the ombrothermic indices (Io, Ios2, Ios3 and Ios4). In
Portugal, only Mediterranean and temperate macrobiocli-
mates are present. The ombrotype map is also obtained
with conditional clauses over Io (corresponding to a sim-
ple classi$cation of Io in prede$ned intervals). Yet, we did
minor adjustments to the subdivision of ombrotypes (the
limits between each ombrotype upper and lower horizons),
given that the ombrotypes limits suggested by RMWBCS
have exponential adjustment (R2 = 0.9961). The new sub-
divisions (see Table 5)were computed after the logarithmic

transformation of the Io scale, thus avoiding the system-
atic spatial under-representation of the upper horizons. The
major divisions (between each ombrotype) were kept as in
the RMWBCS.
The conditional clauses used were implemented

using the referred Map Algebra tool of the mentioned
GIS software, following the thresholds proposed by
Rivas-Martínez et al. (2011).
Figure 1 shows themethodological frameworks followed

by Mesquita and Sousa (2009) and in this work.

3. Results

3.1. Maps of bioclimatological indices

Figures 2 and 3 show themaps produced for each bioclima-
tological index (It index is omitted as practically undistin-
guishable from Itc at the presented scale). Each raster map
has 111.(1)× 111.(1)m resolution and is projected accord-
ing to the parameters of PT-TM06-ETRS89 coordinate

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)
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Figure 2. Bioclimatological indices maps produced for mainland Portugal (Tmax, Tmin, Tp, Pp, M_maiusc and M_minusc).

system (Instituto Geográ$co Português, 2009), neverthe-
less users of this information should recall that the used
base data has 1× 1 km resolution. This information can be
downloaded both in coloured JPG and ESRIGRID formats
from http://home.isa.utl.pt/∼tmh/.

3.2. Uncertainty propagation and signi$cance tests

As to the uncertainty propagation, Table 6 resumes all the
calculated uncertainty measures and compares them with
the results ofMesquita and Sousa (2009). MAE come from
Mesquita (2005).
For the simulation study, 1000 samples of size

n= 7 251 544 were generated as normal variates with
zero mean and standard deviation equal to 53.262 for Tp
and 150.794 for Pp (the RMSE for Tp and Pp, respectively,
in Table 6). The maximum (across the 1000 values) ‘true’

MAE for Io was 0.7256 while the minimum MAE-W
was 0.8784. Concerning the RMSE, the maximum ‘true’
RMSE for Io was 0.9265, while the minimum RMSE-W
was greater than 1.14.
As the produced RMSE-W proved (in the simulation

test) to be higher than the real (unknown) RMSE, we
ran the signi$cance F-tests using the squared RMSE-W.
Table 7 shows the results of those tests, comparing the
squared RMSE propagated for the worst case with those
obtained by Mesquita and Sousa (2009).

3.3. Bioclimatological diagnosis

Finally, Figure 4 presents the obtained thermotype and
ombrotype maps for mainland Portugal according to the
last version of RMWBCS (Rivas-Martínez et al., 2011).
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Figure 3. Bioclimatological indices maps produced for mainland Portugal (Ic, Itc, Io, Ios2, Ios3 and Ios4).

These maps can also be downloaded from http://home.isa.
utl.pt/∼tmh/.

4. Discussion

The produced maps of bioclimatological indices presented
quite satisfactory MAE and RMSE. Comparing with the
previous work of Mesquita and Sousa (2009), all the prop-
agated uncertainties presented lower values, either using
Taylor’s formula or the worst-case analysis. The method-
ological framework we used implies a large number of
geostatistical interpolations: 32 (corresponding to pre-
cipitation and temperature variables). Note that Mesquita
and Sousa’s (2009) needed only six to achieve the same

diagnosis maps. From these 32 interpolations we ought
to additionally compute 13 indices maps (seven auxiliary
and six indispensable to produce the $nal diagnosis). The
fact that our approach uses a high number of geostatisti-
cal interpolations and subsequent algebraic calculations
could have lead to in?ated $nal estimated errors, as error
accumulates and ampli$es in each consecutive calcula-
tion. However, our approach permits the use of much
more precipitation data as an input: Nicolau (2002) used
not only data from climatological stations, but also data
coming from the much more numerous udometric stations
(where only data relative to precipitation is collected).
The methodological framework followed by Mesquita
and Sousa (2009) does not allow the use of data from
udometric stations, as temperature data is lacking from
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Table 6. MAE and RMSE estimated in this work and those estimated by Mesquita and Sousa (2009).

This work Mesquita and Sousa (2009)

Indices MAE RMSE MAE RMSE

Tmax 0.502 0.652 N/Ap N/Ap
Tmin 0.520 0.602 N/Ap N/Ap
Tp 45.720 53.262 57.938 74.378
Pp 101.419 150.794 N/Ap N/Ap
Ic 1.023 0.887 N/Ap N/Ap
Itc N/Av N/Av 12.218 15.601

MAE-T MAE-W RMSE-T RMSE-W

Io 0.075 0.773 0.089 1.139 1.005 1.751
Ios2 0.102 0.104 0.095 0.110 0.115 0.160
Ios3 0.153 0.157 0.122 0.141 0.176 0.255
Ios4 0.229 0.235 0.170 0.195 0.268 0.445

MAE-T, mean absolute errors propagated using Taylor’s formula; MAE-W, mean absolute errors propagated for the worst case; RMSE-T, root mean
squared errors propagated using Taylor’s formula; RMSE-W, root mean squared errors propagated for the worst case. N/Av, not available, as the error
of maximum and minimum temperatures where also not available. N/Ap: not applicable, as the index interpolation is not needed in the respective
approach.

Table 7. F-tests checking for signi$cant differences between
RMSE2 associated with bioclimatological indices.

Indices F statistic df1 df2 p-value

Tp 1.8251 127 13 0.2198
Io 2.3751 127 453 5.303e-11
Ios2 2.1538 127 453 7.328e-09
Ios3 3.2583 127 453 <2.2e-16
Ios4 5.2347 127 453 <2.2e-16

df1, degrees of freedom of RMSE2 from Mesquita and Sousa (2009);
df2, degrees of freedom of RMSE2 propagated for the worst case, from
our work.

those sites and indices cannot be computed beforehand.
Therefore, concerning precipitation data, the density of
1.2 input data points per 1000 km2 referred in Mesquita
and Sousa (2009), is increased to 4.9 per 1000 km2 in our
approach, which certainly contributes to lower estimation
errors.
Comparing to Mesquita and Sousa (2009), RMSE

for Tp reduced 28% in our approach, although this
difference did not result signi$cant in the F-test. The
magnitude of the differences in RMSE for the ombroth-
ermic indices (Io, Ios2, Ios3 and Ios4) was higher (from
35% to 56%) and all resulted signi$cantly different in the
F-test.
Taking into account that Nicolau (2002); Silva (2005)

and Mesquita and Sousa (2009) used similar interpolation
techniques, analyzing mostly the same period of time over
the same region, and used similar criteria to pre-select data
series, we conjecture that the magnitude of the differences
between RMSE for the ombrothermic indices is proba-
bly mostly related to the fact that Nicolau (2002) used
a much greater number of input data points (accounting
also for quality issues such as no-data $lling and series
adjustment), permitting to improve signi$cantly the qual-
ity of the precipitation estimations. In fact, Mesquita and
Sousa (2009) referred that the obtained predictions for
Io were too low in areas lacking climatological stations.
Some residual areas of the centre east of Portugal presented
very low and even negative values of Io, which produced

some unexpected areas of ultrahyperarid, hyperarid and
arid ombrotypes (their absence from Portugal is widely
accepted by experts). Such ombrotypes did not arise from
our approach.
The produced bioclimatological maps and diagnosis

were very satisfactory. A $rst assessment of their useful-
ness and relationship with vegetation patterns at a local
scale can be found in Monteiro-Henriques (2010); they
were also revealed to be useful in other vegetation studies,
at a regional scale, as can be attested in Pinto-Cruz et al.

(2011).
Nevertheless, the belts found in the thermotype and

ombrotype maps must be interpreted as climatologically
similar zones, potentially containing characteristic ?ora
and vegetation and not be assumed beforehand as the exact
limits of ?ora and vegetation actually occurring in such
areas. In the RMWBCS these thresholds are de$ned within
a global perspective, consequently, they inevitably need to
be adjusted to the local limits/ecotones (Gavilán, 2005).
As RMWBCS proposes a $ner subdivision of ombrotype
and thermotype intervals (in upper and lower horizons),
the adjustments up to the closest threshold can never be too
large, and are frequently regarded as just negligible by the
researcher, in view of the uncertainty normally associated
to such limits. For this reason, the RMWBCS can be
applied even at the local scale satisfying the researcher in
his vegetation studies, allowing the potential comparison
with other distant regions.
As our main conclusion, we showed that, at least in the

Portuguese case, it is preferable to perform more geosta-
tistical interpolations and calculation steps in the imple-
mentation of RMWBCS (as it allows the use of udo-
metric stations data), than performing less geostatistical
interpolations (as it implies the discharge of data from
udometric stations and use only data from climatological
stations).
Finally it is worth mentioning that the uncertainty prop-

agation procedure is rather time-consuming (the process
was much longer than the construction of the correspon-
dent indices maps).
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Figure 4. Maps of thermotypes and ombrotypes for mainland Portugal.
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