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Abstract
For an SEIRS epidemic model with stochastic perturbations on transmission from the
susceptible class to the latent and infectious classes, we prove the existence of global
positive solutions. For sufficiently small values of the perturbation parameter, we
prove the almost surely exponential stability of the disease-free equilibrium whenever
a certain invariantRσ is below unity. HereRσ <R, the latter being the basic
reproduction number of the underlying deterministic model. Biologically, the main
result has the following significance for a disease model that has an incubation phase
of the pathogen: A small stochastic perturbation on the transmission rate from
susceptible to infectious via the latent phase will enhance the stability of the
disease-free state if both components of the perturbation are non-trivial; otherwise
the stability will not be disturbed. Simulations illustrate the main stability theorem.
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1 Introduction
In recent years, a number of articles have been published on stochastic differential equa-
tion models of population dynamics of infectious diseases. In comparison with models de-
scribed by ordinary differential equations (ode), the stochastic differential equation (sde)
models provide of course a means of accommodating randomness in the model. Two
themes of special interest in the modeling of population dynamics of a disease are the sta-
bility of equilibrium points and the optimal control of interventions such as vaccination,
quarantine, public health education and others. For sde models, optimal control problems
and solutions are presented in [] of Cai and Luo, [] of Ishikawa and in []. In the stochas-
tic setting, stability of equilibria and the long term persistence or extinction of a disease in
a population have been studied in most of the sde models in the literature. Such studies use
different versions of stability. Stochastic perturbation has also been studied in multigroup
models, such as in [–] for example. In many cases it has been proved that the introduc-
tion of stochastic perturbations into an ode epidemic model system can possibly render
an unstable disease-free equilibrium of the ode system to become stable in the stochastic
differential equation system. This phenomenon was highlighted in [] by Chen et al., []
by Gray et al. and in [] for instance.

Since the basic models such as [] by Li et al. on diseases of the SEIRS type, many vari-
ations have been presented in the literature, such as [] of Melesse and Gumel. Starting
with an ode model of SEIRS type, in this paper we study the effect of stochastic pertur-
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bations on the stability of the disease-free equilibrium of the system. The models in []
and in [] have perturbations of the transmission rate from the S-class to the I-class. The
latter models do not include a latent infection compartment such as the E compartment
in SEIR type models. The current paper is among the first studies of a disease model with
a latent infection compartment, having a perturbation of the disease transmission. In the
literature there are stochastic models such as in [] and [] having latent infection com-
partments, but with the stochastic perturbations not directly aimed at transmission. We
prove the existence of solutions which are almost surely global and positive. We also study
stability of the disease-free equilibrium. In particular, we introduce an invariant Rσ of the
model that is related to the basic reproduction number R of the underlying determinis-
tic model, with Rσ < R. With the given type of randomness in the system, we prove that
there is a greater chance of the disease vanishing from the population. The main results
are illustrated with simulations.

2 Preliminaries
Notation . ByRn

+ (resp.Rn
++) we denote the set of points inR

n having only non-negative
(resp. strictly positive) coordinates.

We assume throughout the paper that we have a complete probability space (�,F ,P),
equipped with a filtration, {Ft}t≥, that is right continuous and with F containing all the
subsets having measure zero. We consider a one-dimensional Wiener process W (t) on this
filtered probability space.

Consider the k-dimensional stochastic differential equation, for some multi-dimensional
Wiener process B(t):

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t), with x() = x. (.)

A solution is denoted by x(t, x). Assume that f (, t) = g(, t) =  for all t ≥ , so that the
origin point is an equilibrium point of equation (.).

By L we denote the infinitesimal generator (see for instance []) associated with the
function displayed in equation (.), defined for a function V (t, x) ∈ C,(R+ ×R

k).

Definition . (See []) The equilibrium x =  of the system (.) is said to be almost
surely exponentially stable if for each initial value x in a given subset, we have

lim sup
t→∞


t

ln
∣
∣x(t, x)

∣
∣ <  (a.s.).

The limit lim supt→∞

t ln x(t) is called the Lyapunov exponent of x(·).

The following lemma was utilized in [] and proved in []. For completeness we include
the simple proof.

Lemma . For k ∈ N, let X(t) = (X(t), X(t), . . . , Xk(t)) be a bounded R
k-valued function

and let (t,n) be any increasing unbounded sequence of positive real numbers. Then there is
a family of sequences (tl,n) such that, for each l ∈ {, , . . . , k}, (tl,n) is a subsequence of (tl–,n)
and the sequence Xl(tl,n) converges to a chosen limit point of the sequence Xl(tl–,n).
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Proof Let b be an upper bound for the functions Xi(t). In the compact set [, b], we can
choose a limit point in the closure of the set {X(t,n)|n ∈ N} and select a convergent sub-
sequence (t,n) of (t,n) for which the limit is the chosen limit point. In the same way we
can start with the sequence (t,n) and pick a subsequence (t,n) for which (X(t,n)) is con-
vergent, etc. �

The function that we now introduce will be important in the stability analysis. Consider
any p ∈ [, ] and let q =  – p. Now we define the function

h : R++ →R+ by the rule x �→ 
x
(
p( – x) + qx

). (.)

Let h∗ : [, ] →R+ be the function defined by

h∗(p) =

⎧
⎨

⎩
p( – p) for  ≤ p ≤ 

 ,

( – p) for 
 < p ≤ .

Proposition . Let p, h and h∗ be as above, and let h = h|(,] be the (domain-) restriction
of h to (, ]. Then h∗(p) is the absolute minimum of h.

Proof If p = 
 , then h(x) = (x)– and the result follows easily. Thus, for the remainder of

the proof we exclude the case p = 
 . Then we observe that h tends to +∞ if x → + and

also, h tends to +∞ as x → +∞. Using calculus we find that h′(x) is continuous on R++

and has exactly one root x, which is x = p · |q – p|–. Therefore, the minimum of h is
h(x) whenever x ≤  and is h() otherwise. Further, x ≤  if and only if  ≤ p ≤ 

 . The
rest of the proof follows readily. �

3 The model
Melesse and Gumel [] present a model for a disease of SEIRS type that may cause differ-
ent stages of infectiousness in a patient. In a special case of the mentioned model, in this
paper we study the effect of stochastic perturbations on the stability of the disease-free
equilibrium. The population, which at any time t consists of N(t) individuals, is regarded
as being divided into four compartments or classes. These are called the susceptible, ex-
posed, infectious and removed classes. Their sizes, at any time t, are denoted by S(t), E(t),
I(t) and R(t), respectively. The equations of motion of the system are assumed to be given
by the system (.) of stochastic differential equations. If σ =  then the system reduces to
a system of ode, which can be called the underlying deterministic model or the underlying
system of ode. For the system (.), the underlying system of ode coincides with a special
case of the model in []. Inflow into the population is assumed to be all into the class of
susceptibles, and it is at a rate μK . Additionally there is flow from the recovered class
into the class of susceptibles at a rate αR, due to loss of infection-acquired immunity. The
mortality rates in the different classes are denoted by μi (i = , , , ) and this allows for
higher mortality rates in classes which have been affected by the disease, such as also in
[] of Beretta et al. Hence the condition (.) below. The symbol β denotes the effective
contact rate. The parameters α and α determine the rates at which individuals in the
population pass from classes E to I and (respectively) from I to R.
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We further assume that W is a standard Brownian motion. The aim of the paper is to
have stochastic perturbations on the transmission rate. We do this by introducing two
complementary pairs of stochastic perturbation terms. The non-negative constants σ , p
and q are such that σ determines the intensity of the perturbation, while p and q are the
relative weights attached to the split parts of the perturbation. We assume that

 ≤ p ≤  and p + q = 
(
see Remark .(b)

)
.

The first pair of perturbation terms (–σpSE dW and +σpSE dW ) constitutes randomness
in the transmission rate from the class S to the class E. Let us explain the presence of
the factor E (instead of I) in this component of the perturbation. We note that, for any
equilibrium point P∗ of the underlying system of ode, there is a proportionality,

I∗ =
α

α + μ
E∗,

and this motivates the presence of the factor E in the first pair of complementary per-
turbation terms. This form of the first pair of terms is particularly significant since we
are specifically concerned with what happens near disease-free equilibrium. The second
pair of complementary perturbation terms can be understood in view of the infection ul-
timately driving the susceptibles (via the E class) into the I class. The shorter the average
latent period, the more relevant does the latter perturbation become. All the parameters
are non-negative or positive constants. So for instance, if α = , then the model is said to
be of the SEIR type, but for α 
= , the model is referred to as SEIRS.

The system of stochastic differential equations is as follows:

dS =
[
μ(K – S) – βSI + αR

]
dt – σS(pE + qI) dW ,

dE =
[
βSI – (α + μ)E

]
dt + σpSE dW ,

dI =
[
αE – (α + μ)I

]
dt + σqSI dW ,

dR =
[
αI – (α + μ)R

]
dt.

(.)

Throughout the paper we assume that

μ ≤ min{μ,μ,μ}. (.)

The basic reproduction number of the underlying deterministic model, see [], is

R =
αβK

(μ + α)(μ + α)
. (.a)

The following invariant Rσ of the model (.) shall feature in the main theorem on al-
most sure extinction of the I-class. In describing Rσ we use the number h∗ = h∗(p) from
Section :

Rσ =
αβK

(μ + α)(μ + α + 
σ Kh∗)

. (.b)
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We introduce the following set:

�K =
{

x ∈R

++|x + x + x + x ≤ K

}
. (.)

Proposition . Suppose that, for some T , there is a local solution

X(t) =
(
S(t), E(t), I(t), R(t)

)
on t ∈ [, T)

for the system, with X(t) ∈ R

+ for each t ∈ [, T). If N() ≤ K , then N(t) ≤ K for each

t ∈ [, T).

Proof Given any such local solution X(t), then

d(N – K)
dt

= –μ(N – K) – (μ – μ)E – (μ – μ)I – (μ – μ)R.

The condition X(t) ∈R

++ together with μ ≤ min{μ,μ,μ} ensures that

(μ – μ)E + (μ – μ)I + (μ – μ)R ≥ .

Consequently,

d(N – K)
dt

+ μ(N – K) = –(μ – μ)E – (μ – μ)I – (μ – μ)R ≤ .

Solution of the first order linear ordinary differential equation reveals that if N() < K ,
then N(t) < K for all t ∈ [, T). �

We now prove the existence of solutions which are almost surely global and positive.

Theorem . Given any initial value X = (S, E, I, R) ∈ �K , then the system (.) ad-
mits a unique solution X(t) = (S(t), E(t), I(t), R(t)) on t ≥ , and this solution remains in �K

almost surely.

Proof The coefficients of the system (.) are locally Lipschitz continuous. By [], Theo-
rem ., for the given initial value X ∈ �K there is a unique local solution X(t) over the
interval t ∈ [, τen), where τen is the explosion time.

There is a number m ∈ N which is sufficiently large to allow S, E, I, R ∈ (/m, K).
For each n ∈N∩ [m,∞), let us write

Dn =
{

t ∈ [, τen) : S(t) ≤ 
n

or E(t) ≤ 
n

or I(t) ≤ 
n

or R(t) ≤ 
n

}
.

Then we define stopping times τn and τ∞ by taking τn to be the infimum of Dn if Dn 
= ∅
and otherwise τn = ∞. The set D∞ and the random variable τ∞ are defined as

D∞ =
{

t ∈ [, τen) : S(t) ≤  or E(t) ≤  or I(t) ≤  or R(t) ≤ 
}

,

τ∞ = lim
n→∞ τn = inf D∞.
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For each γ > , let �(γ ) be the subset of � defined thus:

�(γ ) =
{∈ �|τ∞(w) ≤ γ

}
.

We shall prove by contradiction that τen = ∞ (a.s.). So let us assume to the contrary that
there exist T , C ∈R with C > , and with T < τen such that P(�(T)) = C.

Let us define the function V(X), for X = (S, E, I, R), by the formula:

V(X) = ln
K
S

+ ln
K
E

+ ln
K
I

+ ln
K
R

.

By Proposition ., each of the four terms of V(X(t)) are non-negative for every t ∈ [, τ∞).
We set up a contradiction by calculating upper and lower bounds on expectations of V.

Firstly we calculate an upper bound. For every u ∈ [, τ∞ ∧ T) we have

dV
(
X(u)

)
=

–
S(u)

{[
μ

(
K – S(u)

)
– βS(u)I(u) + αR(u)

]
du

– σS(u)
(
pE(u) + qI(u)

)
dW (u)

}

–


E(u)
{[

βS(u)I(u) – (α + μ)E(u)
]

du + σpS(u)E(u) dW (u)
}

–


I(u)
{[

αE(u) – (α + μ)I(u)
]

du + σqS(t)I(u) dW (u)
}

–


R(u)
{
αI(u) – (α + μ)R(u)

}
du

+


{[

σ
(
pE(u) + qI(u)

)] +
(
σpS(u)

) +
(
σqS(u)

)}du.

We remove some negative terms and deduce the following inequality:

dV
(
X(u)

) ≤ [
βI(u)

]
du + σ

(
pE(u) + qI(u)

)
dW (u) + (α + μ) du

– σpS(u) dW (u) + (α + μ) du – σqS(u) dW (u) + (α + μ) du

+


{(

σ
(
pE(u) + qI(u)

)) +
(
σpS(u)

) +
(
σqS(u)

)}du.

Now let

ρ = βK + (α + μ) + (α + μ) + (α + μ) +


(
σ (p + q)K

) +



(σpK) +



(σqK),

and for t ∈ [, τ∞ ∧ T], let M(t) be

M(t) = σ

∫ t



[
pE(t) + qI(u) – pS(u) – qS(u)

]
dW (u).

Now we have the following inequality:

∫ t


dV

(
X(u)

) ≤ ρt + M(t).
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Therefore, for any k ∈N∩ [m,∞) we have

V
(
X(t ∧ τk)

)
– V

(
X()

) ≤ ρ(t ∧ τk) + M(t ∧ τk) (a.s.).

The stochastic process M(t) is a local martingale and therefore for any m ∈ N∩ [m,∞)
we have E[M(t ∧ τm)] = M() = . Consequently,

E
[
V

(
X(T ∧ τm)

)] ≤ ρ(T ∧ τm) + V
(
X()

) ≤ ρT + V
(
X()

)
,

and we have the upper bound which we set out to find. We now search for a lower bound
for E[V(X(T ∧ τm))]. Note that if w ∈ �(T) and we evaluate V(X(ζ )) for ζ = w(τm), then
we get

V
(
X(ζ )

) ≥ ln(mK).

We can deduce the lower bound:

E
[
V

(
X(T ∧ τm)

)] ≥ C ln(mK).

These two bounds yield

C ln(mK) ≤ E
[
V

(
X(T ∧ τm)

)] ≤ ρT + V
(
X()

)
.

We can choose a value of m sufficiently big, so that

C ln(mK) > ρT + V
(
X()

)
,

leading to a contradiction. Therefore we must have τ∞ = ∞ almost surely. This completes
the proof of Theorem .. �

Remark . (a) In the remainder of this paper we assume that sample paths are restricted
to �, which is defined as follows:

� =
{
ω ∈ �|(S(t,ω), E(t,ω), I(t,ω), R(t,ω)

) ∈ �K for all t ≥ 
}

.

(b) Let us briefly consider a slightly different form of the stochastic perturbation. In the
first equation of the model (.), the (dS) equation, let us consider a perturbation of the
form (σE + σI)S dW , with σ and σ both non-negative and at least one of them being
non-zero. Now let σ = σ + σ. We set p = σ/σ and q = σ/σ . Then p, q ∈ [, ], p + q = 
and

(σE + σI)S dW = σS(pE + qI) dW .

The introduction of p and q simplifies the analysis when we get to deal with the func-
tion h(·).
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4 Stability theorems
The concept of stability of a deterministic system of differential equations ramifies into
different forms when dealing with stochastic differential equations. In this paper we shall
focus on almost sure exponential stability, which is conceptually uncomplicated. We prove
that when the basic reproduction number R of the underlying deterministic model is be-
low unity, then the disease-free equilibrium is almost surely exponentially stable. We also
prove stronger results on I(t) converging to zero, in terms of the analog Rσ of R.

Theorem . If R < , then the disease-free equilibrium of the system (.) is almost surely
exponentially stable.

The proof of Theorem . will be presented following a discussion which is relevant to
all the stability results that we derive in this paper.

Item . A construction and notation.

The following construction is crucial for the proofs of the stability theorems. We fix a
positive real number b and let a ≥  and a ≥ . Let us write (S(t), E(t), I(t), R(t)) = X(t).
We define the following stochastic processes:

z
(
X(t)

)
= a

(
K – S(t)

)
+ bE(t) + I(t) + aR(t),

Q(t) =
K – S(t)
z(X(t))

, Ez(t) =
E(t)

z(X(t))
, Iz(t) =

I(t)
z(X(t))

and Rz(t) =
R(t)

z(X(t)
.

Note that for every t >  we have

aQ(t) + bEz(t) + Iz(t) + aRz(t) = . (.)

Since (see Remark .) we assume the sample paths to be in the subset �, it follows that
z(X(t)) >  for all t > . Let

V
(
X(t)

)
= ln z

(
X(t)

)
.

For every sample path w of the Wiener process W (t), there exists an unbounded increasing
sequence (τw

n ) of positive time values for which

lim sup
t→∞

LV
(
X(t, w)

)
= lim

n→∞LV
(
X

(
τw

n , w
))

.

Fix such a sequence. Then by Lemma . there exists a subsequence (tw
n ) for which the

following limits exist:

q = lim
n→∞ Q

(
X

(
tw
n , w

))
, f = lim

n→∞ Ez
(
X

(
tw
n , w

))
, i = lim

n→∞ Iz
(
X

(
tw
n , w

))
,

r = lim
n→∞ Rz

(
X

(
tw
n , w

))
and s = lim

n→∞ S
(
tw
n , w

)
.

(.a)

Let us write

�(w) = lim
n→∞L

(
V

(
X

(
tw
n , w

)))
. (.b)
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Item . A useful inequality for LV (X(u)).

Using Itô’s formula we can express the stochastic process V (X(t)) as

V
(
X(t)

)
= V

(
X()

)
+

∫ t


LV

(
X(u)

)
du + M(t),

with M(t) being the Itô integral

M(t) =
∫ t


(σa)

pS(u)E(u) + qS(u)I(u)
z(X(u))

+ (σb)
pS(u)E(u)

z(X(u))
+ (σ )

qS(u)I(u)
z(X(u))

dW (u).

Since

(σa)
pS(u)E(u) + qS(u)I(u)

z(X(u))
+ (σb)

pS(u)E(u)
z(X(u))

+ (σ )
qS(u)I(u)
z(X(u))

≤ σa
(

pK

b

+ qK
)

+ σbpK

b

+ σqK ,

and the latter is a (bounded) fixed number, it follows that

lim
t→∞


t

∫ t



[
(σa)

pS(u)E(u) + qS(u)I(u)
z(X(u))

+ (σb)
pS(u)E(u)

z(X(u))
+ (σ )

qS(u)I(u)
z(X(u))

]

du < ∞.

Thus we may apply the strong law of large numbers for local martingales, as from [] for
instance, and we deduce that

lim
t→∞


t

M(t) =  (a.s.).

Since also

lim
t→∞


t

V () = ,

it follows that

lim sup
t→∞


t

V
(
X(t)

)
= lim sup

t→∞

t

∫ t


LV

(
X(u)

)
du (a.s.). (.)

Now we calculate LV (X(t)).

LV (X) =

z
[
–a

(
μ(K – S) – βSI + αR

)
+ b

(
βSI – (α + μ)E

)

+
(
αE – (α + μ)I

)
+ a

(
αI – (α + μ)R

)]

–
(σS)

z

(
a(pE + qI) + ab(pE + qI)pE + a(pE + qI)qI

)

–
(σS)

z

(
(pbE) + pqbEI + (qI)).
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For our further analysis it will suffice to have a suitable function dominating LV . From the
last equation we obtain

LV (X) ≤ 
z
[
–a

(
μ(K – S) – βSI

)
+ b

(
βSI – (α + μ)E

)
+

(
αE – (α + μ)I

)

+ a
(
αI – (α + μ)R

)]
–

(σS)

z

(
(pbE) + pqbEI + (qI)).

Now we introduce notation from Item ., to obtain the following inequality:

LV (X) ≤ –a(μQ – βSIz) + b
(
βSIz – (α + μ)Ez

)
+

(
αEz – (α + μ)Iz

)

+ a
(
αIz – (α + μ)Rz

)
–

(σS)


(pbEz + qIz). (.)

Remark . In the proofs of the stability theorems we shall need to prove that, for paths
w ∈ �,

lim sup
t→∞


t

∫ t


LV

(
X(u, w)

)
du < .

To this end we note here that it suffices to prove that

lim sup
t→∞

LV
(
X(t, w)

)
< .

Proof of Theorem . Since R <  we have the inequality

cβK – (α + μ) < , with c =
α

μ + α
.

Now we can choose a >  sufficiently small such that

(c + a)βK – (α + μ) < .

We can also choose positive real numbers a and a sufficiently small such that

(
c + a +

a

α + μ

)
βK – (α + μ) + aα < . (.)

Now let b = c + a(μ + α)–, and with these values of a, b and a we define z(X(t)) as
in Item .. It suffices to prove that � < . We modify the inequality (.) ignoring the
last term, using S < K and noting that b(α + μ) – α = a. Then we deduce the following
inequality:

LV (X) ≤ –aμQ + (a + b)βKIz – aEz – (α + μ)Iz + aαIz – a(α + μ)Rz. (.)

We form limits as in equations (.a) and (.b), and after rearranging the terms we obtain

� ≤ –aμq +
[
(a + b)βK – (α + μ) + aα

]
i – af – a(α + μ)r.
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The coefficients of q, f and r are negative, and by inequality (.) the coefficient of i is also
negative. Since aq + bf + i + ar = , it follows that at least one of these limits {q, f , i, r} must
be non-zero. Hence � <  and the proof is complete. �

Theorem . implies that if a disease-free equilibrium is locally asymptotically stable
with respect to the underlying ode-system, then it is almost surely exponentially stable
with respect to the stochastic model, in particular, the perturbations do not disrupt the
stability of the disease-free equilibrium.

Remark . In the sequel we shall use a special form of the inequality (.), taking a =
a = . Then z = bE + I and from (.) we obtain the inequality

LV (X) ≤ b
(
βSIz – (α + μ)Ez

)
+

(
αEz – (α + μ)Iz

)
–

(σS)


(pbEz + qIz).

Since bEz =  – Iz, and with h(·) being the function as in equation (.), we can write

(pbEz + qIz) = Izh(Iz).

Since  < Iz < , by Proposition . we have h(Iz) ≥ h∗(p). Therefore we can write

LV (X) ≤ b
(
βSIz – (α + μ)Ez

)
+

(
αEz – (α + μ)Iz

)
–

(σS)


Izh∗(p). (.)

We now present the main result of this paper, which proves that the stochastic pertur-
bation improves the stability of the disease-free equilibrium for small values of the pertur-
bation parameter.

Theorem . If the following conditions hold:
() Rσ < ,
() σ  ≤ cβ

Kh∗ with c = α
μ+α

,
then (E(t), I(t)) almost surely converges exponentially to .

Proof Let us assume the conditions () and () of the theorem to hold. In particular then,
the condition () is equivalent to

cβK – (α + μ) –


σ Kh∗ < .

Choose any positive number a to be sufficiently small such that

(
c +

a

α + μ

)
βK – (α + μ) –



σ Kh∗ < .

This can be written

bβK – (α + μ) –


σ Kh∗ < , with b = c +

a

α + μ
. (.)
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Using this value of b in the inequality (.) while a =  = a, yields

LV (X) ≤ Izg(S) – aEz, where g(S) = bβS – (α + μ) –
(σS)


h∗. (.)

The quadratic function g(ζ ) of equation (.) reaches an absolute maximum when ζ =
bβ(σ h∗)–. By assumption () it follows that cβ(σ h∗)– ≥ K . Therefore also

bβ

σ h∗
>

cβ
σ h∗

≥ K .

Considering that  < S ≤ K , it follows that g(S) ≤ g(K) and therefore

LV (X) ≤ Izg(K) – aEz.

Therefore (see the notation in Item .) we have

� ≤ ig(K) – af .

Now we observe that g(K) coincides with the left hand side of the inequality (.). Since
at least one of f and i must be non-zero, it follows that � < . This completes the proof of
Theorem .. �

In Section  we shall further reflect on Theorem .. Also, Theorem . below combines
very well with Theorem .. However, while our main result Theorem . focused on
small perturbations, let us briefly address the case of larger perturbations. The following
theorem asserts that, for sufficiently large values of the perturbation parameter σ , the
disease will eventually vanish from the population.

Theorem . The pair (E(t), I(t)) almost surely converges exponentially to  if

σ  >
(cβ)

(α + μ)h∗
with c =

α

μ + α
.

Proof Let a be sufficiently small to support the inequality:

σ  >
[(c + a

μ+α
)β]

(α + μ)h∗
,

and let b = c + a(α + μ)–. Now we revisit the construction presented under Item .,
using the constant b as selected and a =  = a. Then similar to the proof of Theorem .,
we obtain an inequality,

LV (X) ≤ Izg(S) – aEz, where g(S) = bβS – (α + μ) –
(σS)


h∗.

The inequality σ  > (bβ)

(α+μ)h∗
is equivalent to

(
bβ

σ h∗

)

– (α + μ) < .
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Therefore,

g(S) = –
σ h∗



(
S –

bβ

σ h∗
S
)

– (α + μ)

= –
σ h∗



(
S –

bβ

σ h∗

)

+
(

bβ

σ h∗

)

– (α + μ)

< –
σ h∗



(
S –

bβ

σ h∗

)

< .

This implies that � ≤ ig(s) – af < , and the proof is complete. �

Theorem . If (E(t), I(t)) almost surely converges exponentially to , then

lim
t→∞ S(t) = K (a.s.) and lim

t→∞ R(t) =  (a.s.).

Proof This proof is by contradiction, so let us suppose, to the contrary, that (on a subset
�lim of � of positive measure) we have limt→∞(K – S(t)) + R(t) > . Let z be as in Item .,
with a = b = a = . Then, since limt→∞ E(t) =  while limt→∞(K –S(t))+R(t) > , it follows
that f =  on �lim. Similarly it follows that i =  on �lim. Therefore from the inequality (.)
it follows that on �lim we have

� ≤ –μq – (α + μ)r.

Therefore, � < . This implies that z converges to  and, consequently, that limt→∞(K –
S(t)) + R(t) = , which is a contradiction. This completes the proof. �

Remark . (a) Theorem . is much more significant than Theorem . because in dis-
ease modeling, in practice one is more interested in smaller perturbations rather than the
larger perturbations. Let us denote the bounds on σ specified in Theorems . and .
by θ and θ respectively. If θ > θ, then these theorems can be combined, guaranteeing
the disease-free equilibrium to be almost surely exponentially stable irrespective of the
magnitude of σ .

(b) Of course, Theorem . serves to extend Theorems . and ..

5 Simulations
Theorem . suggests that Rσ is an approximation for a threshold that decides stability
in a way similar to the basic reproduction number. Simulations show that it is a rather
useful approximation. For a non-negative stochastic process, almost sure convergence to
 can be tested by computing the (approximation over finitely many paths, of the) mean
of sample paths. If the mean of I is not asymptotically stable, then I is not almost surely
exponentially stable. The simulations that were run produced trajectories of the mean of
I which consistently appears to converge to a value which is smaller than, or at least not
bigger than, in the deterministic case.

These simulations are obtained by considering an influenza infection of the type in []
and []. The relevant parameter values for α, α, μ, μ and μ are taken directly from
[] and other parameters values are derived. Our value for /α is obtained by taking the
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sum of the average times spent in the I(·)-compartments (of []). The value of μ is taken
as .μ. The parameter β is not kept fixed in these simulations. Here we note that
infections that are aerially transmitted will spread faster when people are in high density
locations with poor ventilation. So for instance the same disease has a higher value for
the effective contact rate, when considered in a concentration camp as compared to an
ordinary small village or rural area.

Initial values in millions are S() = , E() = , I() = . and R() = ..
Using the Euler-Maruyama scheme, we simulate the trajectories of one sample path of

the I-class of the model,
the mean of I , taken over , sample paths and indicated as ‘I (ave)’, and
the I-class trajectory ‘I determ’ (broken line) of the underlying deterministic model,

with the parameter values as explained above. We take
K =  (in millions),

and the values of the other parameters are all given, with one-day as time unit, in the
accompanying Table .

Parameters such as p and σ are difficult to compute. We choose p = . for simulation.
The parameters β and σ are varied in order to obtain different values of Rσ .

In Figure  we show trajectories for the case β = . and σ = ., for which we get
Rσ = .. In this case we cannot deduce stability of the disease-free equilibrium from
Theorem ., since condition () is not satisfied. In fact we observe the mean value of I as
seeming to converge to a positive value. The given I-path also does not seem to converge
to . We do note, however, that after  days (a relatively long period) it gives a mean I
value (computed as ,), which is lower than in the deterministic case (,).

In Figure  we show a case in which we take β = ., σ = ., and we calculate
R = . and Rσ = . ≤ . However, condition () is not satisfied. The I-trajectory
shown does not seem to converge to , although the mean seems to converge to . This
further demonstrates the need for condition () in Theorem . (other than condition ()
just being utilized in the proof ). In this case the deterministic model has a non-trivial equi-
librium value I∗ for I . For the stochastic case we observe that the mean seems to converge
to a value smaller than I∗.

Table 1 Numerical values of the fixed parameters

Parameter Value

μ0 (60× 365)–1 = 4.566× 10–5

μ1 4.566× 10–5

μ2 1.025μ0 = 4.680× 10–5

μ3 4.566× 10–5

α1 1.9–1 = 0.5263
α2 0.2
α3 (83.33)–1 = 0.012

Figure 1 Condition (1) of Theorem 4.6 is
violated.
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Figure 2 Condition (2) of Theorem 4.6 is
violated.

Figure 3 Theorem 4.6 guarantees the almost
sure extinction of the I-class.

In Figure  we use β = ., σ = ., and then we haveR = . andRσ = ..
This time the parameters selection fulfills all the conditions of Theorem ., and indeed
what we see appears to be in line with the assertion of the theorem.

6 Conclusion
In this paper we constructed an SEIRS model, with stochastic perturbations which can be
viewed as linked to the transmission rate out of the class of susceptibles. We proved that
the system of stochastic differential equations permits solutions that are almost surely
global and positive. The model permits a disease-free equilibrium which we showed to be
almost surely exponentially stable whenever the basic reproduction number of the under-
lying deterministic model is below unity, and even slightly beyond under given conditions.

Biologically we observe, in particular, the following effect of a stochastic perturbation on
the disease transmission in the case of a deterministic compartmental model which allows
for a latently infectious class. Given a small stochastic perturbation on the transmission
rate from susceptible to infectious via the latent phase, the stability of the disease-free
state will be improved if both components of the perturbation are non-trivial. If any one
of the components of the perturbation is zero, then the stability will not be disturbed. The
simulations confirm the proven results and also provide further insights, such as about
the behavior of the mean of the I-class trajectories.
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