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Tez Danışmanı: Prof. Dr. Metin Orhan KAYA

OCAK 2015





Kaan YILDIZ, a M.Sc. student of ITU Graduate School of Science Engineering and
Technology 511131122 successfully defended the thesis entitled “DYNAMIC ANAL-
YSIS OF ADAPTIVE AIRCRAFT WINGS MODELLED AS THIN-WALLED
COMPOSITE BEAMS”, which he prepared after fulfilling the requirements specified
in the associated legislations, before the jury whose signatures are below.

Thesis Advisor : Prof. Dr. Metin Orhan KAYA ..............................
Istanbul Technical University

Jury Members : Prof. Dr. Erol UZAL ..............................
Istanbul University
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DYNAMIC ANALYSIS OF ADAPTIVE AIRCRAFT WINGS MODELLED AS
THIN-WALLED COMPOSITE BEAMS

SUMMARY

There has been a growing interest in the development of the smart material
systems technology due to their incorporation in various structures ranging from
aeronautical/aerospace, automotive, helicopter and turbo-machinery rotor blades,
robot manipulators. Using adaptive materials, the dynamical characteristics of
the structure could be controlled in a predictable manner to avoid the dynamical
instabilities such as structural resonances.

In this thesis, dynamic behaviour of aircraft wings is investigated and control of natural
frequencies is achieved using piezoelectric actuation. Two different models namely,
Timoshenko beam and thin-walled composite beam are used in this study. Natural
frequencies of both model are obtained and using active control their variations are
examined.

First, thin walled composite beam theory is introduced with detailed formulation
including the effects of primary and secondary warping. This beam model also
incorporates a number of non-classical effects such as material anisotropy, transverse
shear deformation and warping restraint. Moreover, the directionality property of
thin-walled composite beams produces a wide range of elastic couplings. In this
respect, constitutive equations and energy expressions are given. Equations of motion
are derived using Hamilton principle.

Second, in order to determine natural frequencies without piezoelectric influence,
free vibration problem is formulated for an anti-symmetric lay-up configuration, also
referred as Circumferentially Uniform Stiffness (CUS). Due to the anti-symmetry
in lay-ups this configuration generates the coupled motion of transverse-lateral
bending-shear. The equations of motion are discretized using Extended Glaerkin
Method (EGM) to determine the natural frequencies of the system. The effect of
transverse shear on the natural frequencies is also investigated by simply including
and excluding transverse shear in the free vibration analyses, which has found to be
significant for higher modes.

For validation purposes, analyses are conducted for a box beam thin walled composite
beam and results are compared with the literature. Then, the analyses are repeated for
a diamond shaped cross-section section and the results of different cross-sections are
compared and discussed.

Active vibration control is introduced to gain an ability to control dynamic
characteristics of structures. Implementation of piezoelectrically induced moments
regarding the boundary moment is explained and two different control laws, namely
proportional and velocity feedback control laws and their effects are investigated.
The equations of motion that includes the effect of piezoelectric layers are cast into
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the state-space representation to obtain the dynamic response of the beam. Before
analyzing thin-walled composite beams, a numerical example is solved to attain
a deeper understanding about the effect of piezoelectric materials on the natural
frequencies. This beam model is developed using the first order shear deformable
theory (Timoshenko beam theory) and then solved to determine the natural frequencies
with and without piezoelectric layers influence for various boundary conditions and
lay-ups.

Next, the similar analyses are also carried for thin walled composite beams
highlighting the effects of piezoelectric layers, material anisotropy and transverse shear
on the natural frequencies for varying feedback gains. Besides, several control laws
such as proportional feedback gain and velocity feedback gain are used for vibration
control and their results are compared. In addition, optimal control law is implemented
and dynamic response of the structure is investigated using different control laws.

In conclusion, for a diamond shaped thin-walled composite aircraft wing, active
vibration control is achieved using adaptive materials. Piezoelectric materials are
used as sensors and actuators to provide closed-loop feedback control system. In
future studies, response of the structure to the external forces will be investigated and
controlled by using adaptive materials.
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İNCE CİDARLI KOMPOZİT KİRİŞ OLARAK MODELLENMİŞ
UYARLANABİLİR UÇAK KANATLARININ DİNAMİK ANALİZİ

ÖZET

Akıllı veya uyarlanabilir malzeme sistemleri teknolojilerinin geliştirilmesine gittikçe
büyümekte olan bir ilgi gözlenmektedir. Bu ilginin en büyük sebebi bu tarz
malzemelerin havacılık ve uzay, otomotiv, helikopter ve turbomakinelerin palleri
ve robot kolları gibi çeşitli farklı yapılara kolayca uyarlanabilmesi ve kullanılabilir
durumda olmasından kaynaklanmaktadır. Akıllı veya uyarlanabilir malzemelerin
kullanımı ile, yapıların dinamik karakteristiklerinin öngörülebilir bir şekilde kontrol
edilmesi mümkündür. Bu kontrol sayesinde yapısal rezonans ve çırpınma gibi bir
takım dinamik kararsızlıkların önüne kolaylıkla geçilebilir.

Yapılmış olan bu tez çalışmasında, uçak kanatlarının dinamik davranışları incelenmiş
ve piezoelektrik eyleyiciler yardımı ile doğal frekansların kontrolü sağlanmıştır. Bu
tez boyunca iki farklı model kullanılmıştır. Bunlar sırasıyla Timoshenko kiriş ve ince
cidarlı kompozit kiriş modelidir. Her iki model için de yapıların doğal frekansları
hesaplanmış ve daha sonrasında akıllı malzemelerin yardımıyla doğal frekansların
kontrolü sağlanarak, değişimleri incelenmiştir. Ayrıca yapının dinamik cevabı da farklı
kontrol yasaları altında incelenmiştir.

İlk olarak, ince cidarlı kompozit kiriş teorisi tanıtılmıştır. Verilen formülasyon
birincil ve ikincil çarpılma etkilerini içermektedir. Ayrıca bu kiriş modeli bir takım
klasik olmayan etkileri de formülasyonunda barındırmaktadır. Bu klasik olmayan
etkiler kısaca malzeme eşyönsüzlüğü, enlemesine kayma deformasyonu ve çarpılma
kısıtlamasıdır. Diğer taraftan, ince cidarlı kompozit kirişlerin yönlülüğü, geniş bir
elastik bağlaşım meydana getirmektedir. Bu bağlamda temel denklemler ve enerji
ifadeleri verilmiştir. Daha sonrasında ise Hamilton Prensibi aracılığıyla genel hareket
denklemlerinin eldesi gerçekleştirilmiştir.

Daha sonra serbest titreşim problemi açıklanmıştır. Bu problemi incelerken iki
farklı kompozit konfigürasyonundan bahsedilmiş ve antisimetrik konfigürasyon, başka
bir deyişle Circumferentially Uniform Stifness (CUS) konfigürasyonu kullanılarak
dikey-yatay eğilme ve enlemesine kayma bağlaşımlı hareket denklemleri elde
edilmiştir. Ayrıca, sırasıyla kayma etkilerini içeren ve içermeyen iki farklı teoriden
bahsedilmiştir. Bu teoriler Shearable ve Unshearable Theory olarak literatürde
bulunmaktadırlar. Serbest titreşim problemi hareket denklemlerine bir çözüm elde
etmek için sayısal bir yöntem kullanılmıştır. Denklemlerin karmaşıklığı ve bağlaşımlı
olması analitik bir çözüm elde edilmesini imkansız kılmaktadır. Kullanılan sayısal
yöntem Extended Galerkin Method olarak bilinmektedir ve bu kısımda açıklanmıştır.
Bu metod, hareket denklemlerini ayrıklaştırmakta ve bunu şekil fonksiyonları önererek
gerçekleştirmektedir. İfadeler, şekil fonksiyonları ve genelleştirilmiş koordinatların
çarpımı olarak tanımlanmaktadır. Bu yöntemin diğer sayısal yöntemlere göre
üstünlüğü ise, önermiş olduğu şekil fonksiyonunun sadece geometrik sınır şartlarını
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sağlamasının yeterliliğidir. Bu yöntemle hareket denklemleri çözülmüş ve doğal
frekanslar elde edilmiştir.

Kanat elmas kesite sahip olacak şekilde modellenmeden önce oluşturulan matematik
modelin doğruluğunu test etmek amacıyla referans kitaptan alınan sayısal bir örnek
çözülmüştür. Çözülen bu örnek için elde edilen sonuçlar ve referans kitapta verilen
sonuçlar karşılaştırılmıştır. Karşılaştırma sonucunda Extended Galerkin Metodu ile
elde edilen sonuçlar ile kitap tarafından verilmiş olan sonuçların birbiriyle çok iyi bir
uyum içerisinde olduğu görülmüştür. Böylece geliştirilmiş olan matematik modelin
doğruluğu kanıtlanmıştır. Daha sonrasında kanat ince cidarlı kompozit kiriş olarak
modellenmiştir. Serbest titreşim bölümünün sonucu olarak ise uçak kanatları için
titreşim kontrolü yokluğunda doğal frekanslar elde edilmiştir.

Devamında aktif titreşim kontrolü konsepti, yapısal karakteristikler üzerinde bir
kontrol sağlanması amacıyla sisteme eklenmiştir. Aktif kontrol tanımı ver-
ilmiş,piezoelektrik malzemeler tarafından indüklenen momentlerden bahsedilmiş ve
sınır momenti hakkında detaylı bilgi verilmiştir. Ayrıca, uygulanmış olan iki farklı
kontrol yasasından bahsedilmiştir. Bunlar sırasıyla ortantısal geribesleme kontrol
yasası ve hıza bağlı geribesleme yasası olarak adlandırılmaktadırlar. Aktif kontrolün
sisteme katılması ile çözüm yönteminde modifikasyonlar yapılacağından durum uzay
gösterimi anlatılmış ve sonuçlar elde edilmiştir.

Aktif geribesleme kontrolü uyarlanabilir malzemeler aracılığıyla sağlanmıştır.
Piezoelektrik katmanlar ana yapının içerisine simetrik bir şekilde gömülmüş ve
piezoelektrik eyleyiciler tüm kiriş uzunluğu boyunca yayılmıştır. Bunun sonucu
olarak, kirişin uç noktasında bir sınır momenti indüklenmiş ve bunlar hareket
denklemlerini etkilemek yerine sınır şartlarında tekil moment ifadeleri olarak yer
almışlardır. Orantısal ve hıza bağlı geribesleme kontrol yöntemleri kullanılmış
ve elyaf açısı dağılımının temel frekanslar üzerindeki etkisi incelenmiştir. Doğal
frekanslar elde edilirken kütle ve katılık matrislerine piezoelektrik katmanların etkisi
de eklenmiştir. Bu etkinin ihmal edildiği durum için de analizler yapılmış ve sonuçlar
karşılaştırıldığında doğal frekanslarda yaklaşık olarak %5’lik bir fark ortaya çıkmıştır.
Literatürdeki çoğu çalışmalarda bu etkiler ihmal edilirken, yapılan bu tez çalışmasında
bu etkinin önemine de vurgu yapılmıştır.

Son olarak, piezoelektrik etkileri iyice algılamak ve anlamak amacıyla Timoshenko
kiriş teorisini içeren bir örnek çalışma göz önüne alınmış ve orantısal geribesleme
kontrol yasası uygulanarak doğal frekanslar bu örnek kiriş için elde edilmişlerdir.
Bu örneğin hareket denklemleri ince cidarlı kiriş modelindeki denkemler kadar zor
olmadığından analitik bir çözüm elde etmek mümkün olmuştur. Analitik yöntemin
yanısıra, problem yarı-analitik yöntem olan Differential Transform Method (DTM)
ve Extended Galerkin Method (EGM) ile tekrar çözülmüştür. Elde edilen sonuçlar
ilgili yerlerde tablo halinde verilmiştir. Bir sonraki adımda ise, uçak kanadımız
artık elmas kesitli ince cidarlı kiriş olarak ele alınarak üzerine kontrol yasaları
uygulanmıştır. Değişen kontrol kazançları ile doğal frekanslar elde edilmiş ve
grafik olarak gösterilmişlerdir. Daha sonra modeli daha iyi analiz etmek amacıyla
uzunluk ve narinlik oranı gibi parametreler değiştirilerek doğal frekansların incelendiği
çalışma yapılmıştır, sonuçlar grafik üzerinde gösterilmişlerdir. Optimal kontrol yasası
tanıtılmış ve yapıya uygulanması gerçeklenmiştir. Ayrıca, kiriş ucuna uygulanan Dirac
Delta impulsu altında yapının dinamik cevabı incelenmiş, çeşitli kontrol yasaları için
karşılaştırma yapılmıştır.
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Sonuç olarak, elmas şeklinde ara kesite sahip olan ince cidarlı kompozit uçak kanadı
için, aktif titreşim kontrolü akıllı malzemeler aracılığıyla sağlanmıştır. Piezoelektrik
malzemeler kapalı devre geribesleme kontrol sistemini sağlamak amacıyla algılayıcı
ve eyleyici olarak kullanılmışlardır. Gelecek çalışmalarda ise yapının dışarıdan
gelecek olan kuvvetlere vereceği cevabın incelenmesi ve kontrolünün sağlanması
gerçekleştirilecektir.
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1. INTRODUCTION

Thin walled composite beams are being used widely in many advanced fields ranging

from aerospace to mechanical, civil and naval constructions. The growing interest of

thin walled structures arise from their incorporation in these fields in order to bring new

designs to perfection, making them efficient, able to operate in extreme environmental

conditions [1].

Thin walled composite beam theory involves with a wide range of elastic couplings

due to its directionality property. In this respect, considering each possible case, it is

likely to analyze the dynamic behaviours of the structures and especially, instabilities

can be avoided. Moreover, this theory incorporates a number of non-classical effects

such as material anisotropy, transverse shear deformation and warping restraint which

enables modelling much more accurately.

Practice of adaptive materials into structures is one of the most attracting subjects

in past decades. Utilization of these materials has expanded the use and capabilities

of thin walled structures. It became possible to meet the demanding requirements of

complex environments, with the contribution of adaptive materials. Static and dynamic

response, stability and control of structures have been enhanced with adaptive material

technology.

In this study, the closed-loop vibrational behaviour of aircraft wing is investigated.

The wing is modelled as a thin-walled composite beam with a diamond shaped

cross-section. In order to inspect relevant coupling case, an anti-symmetric lay-up

configuration i.e. Circumferentially Uniform Stiffness (CUS) is employed and coupled

motion of transverse-lateral bending and transverse shear is generated. The active

feedback control is performed by using piezoelectric ceramics as adaptive materials.

The piezoelectric layers are symmetrically embedded in the host structure and the

piezoactuator is spread over the entire beam span. As a result of this, a boundary

moment is induced at the beam tip and in this case, the control is achieved via the

boundary moment feedback control yielding an adaptive change in the dynamical
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characteristics of the beam. The cases of proportional and velocity feedback control

procedures are applied and the effect of ply-angle orientation on the fundamental

frequencies are investigated and discussed.

1.1 Literature Review

From a historical perspective, the assumption of thin-walled beams came into being

in late 1930s. After the World war II, strong studies were made on the theory,

and many books were published related to the issue such as Librescu and Ohseop’s

monograph named "Thin-walled composite beams: Theory and Application", [1].

Also, some studies are made on linear static and dynamic behaviour of thin-walled

composite beams of closed cross-section such as the study of "Theory of anisotropic

thin-walled closed-cross-section beams" presented by Berdichevsky, Armanios and

Badir [2]. In last two decades, many studies are made to develop the thin walled

composite beam theory and enlarging its area of integration in various structures

such as aeronautical/aerospace vehicles, automobiles, helicopter and turbo machinery

rotor blades and other mechanical, civil to naval constructions. The behaviour

of two non-classical impacts namely elastic bending-shear coupling and restrained

torsional warping in the behaviour of thin walled composite beams is researched in

Rehfield’s work, intimately [3]. Also, in purpose of isolating the impact of coupling

on the free vibration of closed section beams under extension-twist or bending-twist

coupling using the assumption that is revised by Armanios and Badir, Danicilia made

her research named “The influence of coupling on the free vibration of anisotropic

thin-walled closed-section beams” [4].

Despite the aircraft wing is modeled as a beam with solid cross-section commonly

in the literature, there are only few researches are made to investigate the dynamic

analysis of thin-walled composite beams. Uniquely, Librescu’s work "Free Vibration

of Anisotropic Composite Thin-walled Beams of Closed Cross-Section Contour" led

the approach of the dynamic behaviour of thin-walled composite beams [5]. In his

work mentioned, the impact of directionality property of advanced composite materials

and non-classical impacts are introduced. In another study, Librescu investigated the

dynamic aeroelastic response and the related robust control of aircraft swept wings,

subjugated to gust of wind and fulminating type loads.
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Regarding control concept of the structures, use of piezoelectric actuators firstly

introduced by Bailey and Hubbard (1985). The actuators are located at outer surface

of the beam and their mechanical models are developed by Crawley and Luis (1987).

New theories concerning embedded piezoactuators and sensors are developed by Lee

(1990), Wang and Rogers (1991), Batra and Ghosh (1995) and Mitchell and Reddy

(1995). Tzou used piezoelectric shells and generated boundary moment to obtain

control ability on structures (1993) [6]. Active control are applied to thin walled

composite beams by Librescu and his colleagues [1, 7–9] in late 1990s.

There are many studies in active vibration control of structures using adaptive

materials, especially piezoelectric in last decade. Their implementation to the thin

walled aircraft structures offers great improvements in design efficiency. Librescu has

taken the role of a pioneer in this field [10–12]. Also, advanced control systems such as

optimal control, are implemented in structures [13] and new aircraft wing geometries

are being investigated [14].

1.2 Purpose of Thesis

The dynamic behaviour of a thin walled beam with diamond cross section is

investigated. It is aimed to control the dynamic behaviour of the aircraft wing so

that any instabilities can be avoided. Active vibration control of the aircraft wing is

achieved by adaptive materials and variation of the natural frequencies versus control

gain is examined.

Firstly, the aircraft wing is modelled as a diamond shaped thin walled composite

beam. An anti-symmetric composite lay-up, also known as Circumferentially Uniform

Stiffness Configuration, is used and transverse bending-lateral bending-shear coupled

motion is generated and investigated. The governing equations of motion are derived

using Hamilton’s principle and solution is obtained numerically by Extended Galerkin

Method. Validation of the solution and mathematical model is accomplished by a

numerical example from Ref. [1].

Secondly, as mentioned, in order to prevent dynamical instabilities such as resonance

or flutter, active vibration control as a closed loop control system is implemented into

the structure. Prior to introduction of active control into thin walled composite beams,
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it is tested on a Timoshenko beam and variation of natural frequencies is determined

versus proportional feedback gain. Afterwards, two different control laws are used

to control the natural frequencies of the thin walled structure and as a result in a

predictable manner it is achieved. Proportional feedback control law has no big impact

on natural frequencies while velocity feedback law shows much better control ability.

In the absence of velocity feedback law, no damping is obtained as expected. On the

other hand, when velocity feedback law is implemented, damping is acquired as an

output.

In conclusion, for thin walled composite beams, the model is validated by solving

a numerical example. Then, as main focus, the aircraft wing is modelled as a thin

walled beam and natural frequencies are obtained. Afterwards, in order to obtain a

good knowledge on how active vibration control works, a Timoshenko piezo-laminated

beam has been taken into consideration and variation of natural frequencies is

calculated. Lastly, active vibration is applied to diamond shaped thin walled aircraft

wing and natural frequencies, their variations, damping ratios and dynamic response

of the beam are obtained.

1.3 Overview

This section is devoted to provide a detailed information to reader, about what each

chapter is interested in. Readers who would like to earn a comprehensive knowledge

about thin walled structures and active vibration control, should refer to each chapter

one by one.

Chapter 2 deals with structural modelling of the thin walled composite beams.

Kinematic assumptions and variables are mentioned firstly. Then detailed expressions

and formulation of displacement and strain field are given. Also details of constitutive

equations and energy expressions are pointed out. Using energy expressions and

utilizing Hamilton’s principle, the equations of motion are derived. All derivations

and formulations on this chapter are based on linear theory.

Chapter 3 defines the free vibration problem and underlines its importance. Two

different structural composite configurations are mentioned here and the one,

Circumferentially Uniform Stiffness Configuration, which is employed in this study,
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is investigated broadly. Equations of motion are rearranged for the coupling which the

structural composite configuration involves. Determination of stiffness quantities are

mentioned and a chart is provided for it. Shearable and unshearable model are given

and solution methodology is examined. Solution of the equations for free vibration

problem gives the natural frequencies and validation is acquired. Eventually in this

chapter, the results are provided for a diamond shaped beam.

In Chapter 4, one can learn the concept of active vibration control, how it is

implemented into structures using adaptive materials. Modified equations of motion

due to piezoelectric actuation are derived. Boundary moment control law is introduced

and two different closed loop feedback control laws are explained and their equations

are provided. Due to active vibration, solution methodology differs a little bit and state

space representation is used. Then a case study is taken into account, piezo-laminated

Timoshenko beam. Its equations of motion are given and solutions are obtained

analytically and numerically. Afterwards, thin walled aircraft wing is considered again

and natural frequencies are obtained as well as their variations and damping factors.

Additionally, implementation of optimal control law is achieved and dynamic response

of the beam is investigated.

Chapter 5 concludes the whole study briefly. Besides it mentions about how study will

be extended and continued.
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2. STRUCTURAL MODELLING AND FORMULATION

This chapter focuses on thin walled composite beam theory, formulation and its

applications. The theory which is quite complicated and can be thought as combination

of bar and shell structures, considerably differs from other beam theories due to its

non-classical effects. These non-classical effects can be listed as material anisotropy,

transverse shear deformation and warping restraint. In order to model thin walled

structures such as aircraft wings, ship hulls, pipes, culvert and box girder bridges,

in a precise and accurate way, thin walled composite beam theory offers a great

opportunity. The implementation of that theory promises great results compatible

with experimental results. In the following subsequent subsections, formulation and

structural modelling of the theory are given in a detailed way.

2.1 Thin Walled Composite Beam Theory

Continuous development of technology has created new opportunities for humans to

improve their designs and aspects of engineering. The foremost new design idea for

structural mechanics is using high strength to density structures. This can be achieved

by either adapting new materials like composites or changing the shape of the geometry

to hollow type closed sections. Both changing the geometry and adapting composites

into the structures lead to thin walled composite beam theory.

This most challenging and modern field of structural mechanics was firstly introduced

by Librescu and Song. The formulation of modern linear theory of thin-walled

composite beams provides powerful mathematical tool to make related calculations

and is investigated in next subsections. There are some kinematic assumptions made

and the most important ones are listed below.

1. The shape of the cross-section does not deform in its own plane.

2. The rate of twist φ ′ varies along x-coordinate(spanwise). This assumptions yields a

non-uniform torsional model which is also referred as the restrained-torsion model.
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3. The material properties vary in both circumferential and normal direction

(anisotropy).

4. A static statement also implies that the circumferential stress resultant Nss , which

is known as hoop stress is negligibly small.

2.1.1 Displacement Field

In this section the formulation of displacement field which consists of in plane and

out-of plane displacements, is derived. Here, a cantilever beam is considered and its

geometry before and after deformation can be seen in Figure 2.1. Beam has a length

L, characteristic length d and wall thickness h. S point, located at mid-contour, moves

to S′ with translations of u,v,w and rotation of φ .

Figure 2.1: Beam geometry before and after deformation

The expressions of these translations and rotation is given separately in the following

subsections.

2.1.1.1 In-plane displacements

Considering the beam as two-dimensional and focusing on cross section helps us to

obtain expressions for in-plane translations. The two dimensional figure of the cross

section before and after deformation can be seen in Figure 2.2.
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Figure 2.2: Beam geometry and kinematic variables

The in-plane translations of point S(x,y) at mid-contour are given as:

u(x,y,z,t) = u0(z, t)− yφ(z, t) (2.1)

v(x,y,z,t) = v0(z, t)+ xφ(z, t) (2.2)

Here t denotes time while u0 and v0 denote displacements of pole point P. Also rotation

of the cross-section is represented with the symbol of φ(z, t). The detailed derivation

of these expressions can be found in Ref. [1, 15].

2.1.1.2 Out-of plane displacements

Out-of plane displacement expression varies for open and closed cross-sections. The

difference between them originates from torsional shear strain expressions. Since our

interest lays in the aircraft wings, open cross-section beams are not investigated in this

thesis.

For a closed cross-section beams the torsional shear strain corresponds a constant shear

flow with respect to tangential axis. The direct shear strain for a single-cell closed

cross-section beam is given as Ref. [1, 8].

γsz =−
dx
ds

γxz +
dy
ds

γyz +2nφ
′ (2.3)

For closed cross-section beam, Vlasov’s assumption for the shear strain is given as

γsz =
∂ut

∂ z
+

∂w
∂ s

(2.4)
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Considering these two shear strain expression yields

∂w
∂ s

= θx(z, t)
dy
ds

+θy(z, t)
dx
ds
− rn(s)φ ′(z, t) (2.5)

Here, θx and θy represents the rotation about x and y axes respectively, defined as

θx(z, t) = γyz− v′0 (2.6)

θy(z, t) = γxz−u′0 (2.7)

The axial displacement expression for mid-surface (n = 0) can be obtained by

integrating Eq. 2.5

w(s,z, t) = w0(z, t)+ y(s)θx(z, t)+ x(s)θy(z, t)−Fw(s)φ ′(z, t) (2.8)

This expression is valid for both open and closed cross-section beams. The function

Fw in Eq. 2.8 is known as primary warping function. Secondary warping is related to

contributions of the points off the mid-surface and needs to be taken into account when

considering thick-walled beams. Eventually, Eq.2.9 defines the axial displacement

with contributions from both primary and secondary warping effects.

w(s,z, t) = w0(z, t)+
[

y(s)−n
dy
ds

]
θx(z, t)+

[
x(s)+n

dx
ds

]
θy(z, t)

−
[

Fw(s)−nrt(s)
]

φ
′(z, t)

(2.9)

Here, expression of the primary warping function is given as

Fw =
∮

C
[rn(s)−ψ(s)]ds (2.10)

The other terms in Eq. 2.9 with n multipliers in front of them are related to secondary

warping and importance of them increases while dealing with thick-walled beams.
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2.1.2 Strain Field

Strain field is expressed with the similar common small displacements assumption

equations

εxx =
∂u
∂x

; εyy =
∂v
∂y

; εzz =
∂w
∂ z

; (2.11)

γxy =
1
2

(
∂u
∂y

+
∂v
∂x

)
; γyz =

1
2

(
∂v
∂ z

+
∂w
∂y

)
; γxz =

1
2

(
∂u
∂ z

+
∂w
∂x

)
(2.12)

Regarding the first assumption, the cross-sections do not deform in its own plane,

obtained translation equations are substituted into strain field equations, Eq. 2.11 and

2.12 yields

εxx = 0; εyy = 0; γxy = 0; (2.13)

which means that the first assumption holds. Furthermore, the non-zero strain

components can be arranged as below using newly obtained translation expressions

εzz(s,z,n, t) = ε
(0)
zz (s,z,n, t)+nε

(1)
zz (s,z, t) (2.14)

where

ε
(0)
zz (s,z,n, t) = w′0(z, t)+ y(s)θ ′x(z, t)+ x(s)θ ′y(z, t)

−φ ′′(z, t)
[∫ s

0
rn(λ )dλ −

∫ s
0

∮
rn(s)ds∮

ds dλ

] (2.15)

and

ε
(1)
zz (s,z, t) =

dy
ds

θ
′
y(z, t)−

dx
ds

θ
′
x(z, t)−φ

′′(z, t)rt(s) (2.16)

Furthermore, the shear strain components off the mid-line contour can be expressed in

terms of displacements

Γsz(s,z,n, t) = γ
(0)
sz (s,z,n, t)+ γ

(t)
sz (s,z,n, t)+nγ

(1)
sz (s,z, t) (2.17)
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Γnz(s,z,n, t) = γ
(0)
nz (s,z,n, t) (2.18)

where

γ
(0)
sz (s,z,n, t) =

dx
ds

[
u′0(z, t)+θy(z, t)

]
+

dy
ds

[
v′0(z, t)+θx(z, t)

]
(2.19)

γ
(t)
sz (s,z, t) = ψ(s)φ ′(z, t) where ψ(s) =

∮
rn(s)ds∮

ds
(2.20)

γ
(1)
sz (s,z, t) = 2φ

′(z, t) (2.21)

and

γ
(0)
nz (s,z,n, t) =

dy
ds

[
u′0(z, t)+θy(z, t)

]
− dx

ds

[
v′0(z, t)+θx(z, t)

]
(2.22)

The superscript (.)(0) denotes the strain components which has a numerical value

different from zero at mid-line contour only while (.)(1) denoting the strains which

are different from zero off the mid-line contour.

2.1.3 Constitutive Equations

The ith layer’s constitutive equations of an N layered thin-walled composite beam are

given as


σss
σzz
σzn
σsn
σsz


(i)

= [Q]
(i)


εss
εzz
εzn
εsn
εsz


(i)

(2.23)

Here, [Q] is known as the reduced stiffness matrix.

The membrane stress resultants Nss, Nzz, Nsz; the transverse shear resultants Nss, Nss

and the stress couples Nss, Nss, Nss are shown on a beam element in Figure 2.3.

In Figure 2.4, geometry of an N layered thin-walled composite beam is seen. Both

Cartesian (x,y,z) and curvilinear (s,n,z) coordinates are apparent on the figure.

The stress resultants symbolize forces while the stress couples stand for moments. The

stress resultants have the unit force per unit length and the stress couples have the unit

of moment per unit length. Their expressions are given below
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(a) Stress Resultants

(b) Stress Couples

Figure 2.3: (a) Stress resultants, (b) stress couples

Figure 2.4: N-layered composite beam

• The stress resultants 
Nss
Nzz
Nsz
Nzn
Nsn

 =
N

∑
i=1

∫ n(i)

n(i−1)


σss
σzz
σsz
σzn
σsn


(i)

dn (2.24)

• The stress couples {
Lzz
Lsz

}
=

N

∑
i=1

∫ n(i)

n(i−1)

{
σzz
σsz

}
(i)

ndn (2.25)

The thickness and tangential shear stiffness of the layered composite beam are

assumed to be uniform along the tangential axis, s, constitutive equations for closed

cross-section beams are expressed as
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Nss
Nzz
Nsz

 =

A11 A12 A16
A12 A22 A26
A16 A26 A66




εss

ε
(0)
zz

γ
(0)
sz + γ

(t)
sz

+


B12
B22
B26

ε
(1)
zz +


B16
B26
B66

γ
(1)
sz (2.26)

Nzn = A44γzn (2.27)

Nsn = A45γzn (2.28)

{
Lzz
Lsz

}
=

[
B12 B22 B26
B16 B26 B66

]
εss

ε
(0)
zz

γ
(0)
sz + γ

(t)
sz

+

{
D22
D26

}
ε
(1)
zz +

{
D26
D66

}
γ
(1)
sz (2.29)

The constitutive equations contain some stiffness quantities known from classical

laminate theory and they are expressed in Ref. [16] as

A jk =
N

∑
i=1

∫ n(i)

n(i−1)

Q(i)
jk dn (2.30)

B jk =
N

∑
i=1

∫ n(i)

n(i−1)

Q(i)
jk ndn (2.31)

D jk =
N

∑
i=1

∫ n(i)

n(i−1)

Q(i)
jk n2 dn (2.32)

Here, these stiffness quantity terms are called extensional stiffness, coupling stiffness

and bending stiffness respectively.

The transverse shear stiffness quantities are also given as

Alm =
N

∑
i=1

∫ n(i)

n(i−1)

k2
lmQ(i)

jk dn (2.33)

In this expression, Reissner’s transverse shear correction factor is used. klm =
√

5/6

Fourth kinematic assumption involves here with the constitutive equations. The

circumferential stress resultant Nss, which is known as hoop stress is negligible

compared to other stresses and becomes zero. By this assumption, tangential strain

becomes

εss =−
1

A11

(
A12ε

(0)
zz +A16γ

(0)
sz +A16γ

(t)
sz +B16γ

(1)
sz +B12ε

(1)
zz

)
(2.34)
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Eventually, constitutive equations for single cell closed thin-walled beams are obtained

as below



Nzz
Nsz
Lzz
Lsz
Nzn
Nsn


=


K11 K12 K13 K14 0
K21 K22 K23 K24 0
K41 K42 K43 K44 0
K51 K52 K53 K54 0
0 0 0 0 A44
0 0 0 0 A45





ε
(0)
zz

γ
(0)
sz

γ
(1)
sz /2
ε
(1)
zz

γ
(0)
nz


(2.35)

2.1.4 Energy Expressions

In order to derive the equations of motion for thin-walled composite beams, Hamilton’s

principle is utilized. Hamilton’s principle requires strain energy and kinetic energy

expressions as well as work done by external forces to obtain equations of motion.

U , K and We represent strain or potential energy, kinetic energy and work done by

external forces, respectively. The displacements denoted by ∆i = ∆i(x,y,z, t) satisfy

the boundary conditions ∆i = ∆̄i and the variations of the displacements also fulfill the

condition δ∆i = 0 at two arbitrary times, t0 and t1. Hamilton’s principle ensures that

the following expression which is also called as variational, is constant for the motion’s

original path from time t0 to t1 and given as

δJ =

t1∫
t0

δ (U−K−We)dt = 0 (2.36)

where J and δ are Hamilton function and variation operator, respectively. The strain

and kinetic energy expressions are respectively

U =
1
2

∫
V

σi jεi j dV (2.37)

K =
1
2

∫
V

ρ∆̇i∆̇i dV (2.38)

To handle the kinetic energy in the variational formulation,

t1∫
t0

δKdt =
t1∫
t0

ρ∆̇iδ ∆̇i dt

= ρ∆̇iδ∆i

∣∣∣∣t1
t=t0

−
∫ t1

t0 ρ∆̈iδ∆i dt
(2.39)
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Here, ˙(.) presents the partial derivative with respect to time t. Hamilton principle

stipulates that δ∆i(x,y,z, t0) = δ∆i(x,y,z, t1) = 0 yielding the first term on the right

hand side of Eq. 2.44 is removed thereby updating the expression of δJ

δJ =

t1∫
t0

δ (U + K̄−We)dt = 0 (2.40)

where δ K̄ =−ρ∆̈iδ∆i.

2.1.4.1 Strain energy

The strain energy per unit volume can be expressed as multiplication of stress and

strain. In order to obtain total strain energy of the beam, the strain energy per unit

volume should be integrated all over the volume. Since εxx, εyy and γxy are assumed

and found as zero, the strain energy is calculated with non-zero strain components as

U =
1
2

L∫
0

∮
C

∫
h

[σzzεzz +σszΓsz +σnzΓnz](i) dndsdz (2.41)

The integration through the wall thickness is carried out and using stress resultant and

stress couple expressions, the strain energy can be re-expressed as

U = 1
2

L∫
0

∮
C

∫
h

{
σzz

[
ε
(0)
zz +nε

(1)
zz

]
+σsz

[
γ
(0)
sz + γ

(t)
sz +nγ

(1)
sz

]
+σnzγ

(0)
nz

}
(i)

dndsdz

U = 1
2

L∫
0

∮
C

{
Nzzε

(0)
zz +Lzzε

(1)
zz +Nsz[γ

(0)
sz + γ

(t)
sz ]

+Lszγ
(1)
sz +Nnzγ

(0)
nz

}
dsdz

(2.42)

Inserting the strain expressions given by Eqs. 2.15, 2.16 and 2.19 - 2.22 into the energy

expression and integrating around the mid-line contour C yields the following strain

energy expression

U = 1
2

L∫
0

{
Tzw′0 +Mzφ

′−Bwφ ′′

+δS

[
Mxθ ′x +Myθ ′y +Qx(u′0 +θy)+Qy(v′0 +θx)

]
+δNS

[
−Mxv′′p−Myu′′P

]}
dz

(2.43)
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Above energy expression contains tracers δS and δNS which shape the strain energy

for two different models, shearable and unshearable, respectively. The detailed

information regarding these two models is not included in this section. The details

concerning these models is given in the following Free Vibration chapter.

The one dimensional stress resultants and stress couples in the strain expression are

given as

Tz(z, t) =
∮
C

Nzz ds (2.44)

Qx(z, t) = δS

∮
C

(
dx
ds

Nsz +
dy
ds

Nzn

)
ds (2.45)

Qy(z, t) = δS

∮
C

(
dy
ds

Nsz−
dx
ds

Nzn

)
ds (2.46)

Mx(z, t) =
∮
C

(
xNzz +

dy
ds

Lzz

)
ds (2.47)

My(z, t) =
∮
C

(
yNzz−

dx
ds

Lzz

)
ds (2.48)

Mz(z, t) =
∮
C

[ψ(s)Nzz +2δSLsz] ds (2.49)

Bw(z, t) =
∮
C

[Fw(s)Nzz− rt(s)Lzz] ds (2.50)

δU =

[
Tzδw0 +(B′w +Mz)δφ −Bwδφ ′

+δS (QxδuP +QyδvP +Mxδθx +Myδθy)

+δNS

(
M′xδvP +M′yδuP +Mxδv′P +Myδu′P

)]L

z=0

−
L∫
0

{
T ′z δw0 +(B′′w +M′z)δφ +δS

[
Q′xδuP +Q′yδvP

+(M′x−Qy)δθx +
(
M′y−Qx

)
δθy
]
+δNS

[
M′′x δvP +M′′y δuP

]}
dz

(2.51)

Here, the expressions represent axial force, shear forces, bending moments, twist

moment (Saint-Venant moment) and warping torque (bimoment) respectively. The unit

of Tz, Qx, Qy is f orce, while Mx, My, Mz have the unit of f orce.length. The remaining

bimoment Bw has the unit of f orce.length2.
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The virtual variation of the displacements in the strain energy δU is taken as Eq.

2.51. Integration by parts is applied to above expression in order to obtain the virtual

displacements without any differentiation.

2.1.4.2 Kinetic energy

The kinetic energy expression of the beam is written in terms of density and resultant

velocity

K =
1
2

∫
V

ρ(i)
(
u̇2 + v̇2 + ẇ2) dV (2.52)

Substituting the displacements u, v and w

K = 1
2
∫

V
ρ(i)

{[
u̇P− (Y − yP)φ̇

]2
+
[
v̇P +(X− xP)φ̇

]2
+
[
ẇ0 +X θ̇y +Y θ̇x−Fw(s)φ̇ ′+nrt(s)φ̇ ′

]2}dV
(2.53)

Also it is known that X = x+ ndy
ds and Y = y− ndx

ds . Expanding the terms yields a

very complex and long expression. Integration through the wall thickness and around

mid-line contour requires a lot of formidable calculations. Therefore a parametric

programming software, Mathematica is used to handle calculations. As a result,

reduced mass terms are introduced and given in Appendix A. Also it has to be

mentioned that these mass terms are valid for only symmetrically laminated beams

with pole point P at origin.

For symmetrically laminated beams, the mass terms are given as

(m0,m2) =
N

∑
i=1

∫ n(i)

n(i−1)

ρ(i)(1,n
2)dn (2.54)

The variational kinetic energy is

t1∫
t0

δ K̄ dt =−
t1∫

t0

∫
V

ρ(i) (üδu+ v̈δv+ ẅδw) dV dt (2.55)
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Arranging the above expression with introducing Ki terms, the variation may be written

t1∫
t0

δ K̄dt =−
t1∫
t0

dt

L∫
0

{
K1δu0 +K2δv0 +K3δw0 +(K4−K′7)δφ

+δNS
[
K′5δu0 +K′6δv0

]
+δS

[
K6δθx +K5δθy

]
dz

−
t1∫
t0

dt
[

K7δφ +δNS(K5δu0 +K6δv0)

]∣∣∣∣
z=0,L

(2.56)

The Ki terms are given below with corresponding reduced mass terms

K1 = b1ü0−b2φ̈ (2.57)

K2 = b1v̈0 +b3φ̈ (2.58)

K3 = b1ẅ0−b7φ̈ ′+δS(b2θ̈x +b3θ̈y)+δNS(−b2v̈′0−b3ü′0) (2.59)

K4 = b3v̈0−b2ü0 +(b4 +b5 +b14 +b15)φ̈ (2.60)

K5 = b3ẅ0− (b9−b17)φ̈
′+δS[(b6−b13)θ̈x +(b5 +b15)θ̈y]

+δNS[−(b6−b13)v̈′0− (b5 +b15)ü′0]
(2.61)

K6 = b2ẅ0− (b8 +b16)φ̈
′+δS[(b4 +b14)θ̈x +(b6−b13)θ̈y]

+δNS[−(b4 +b14)v̈′0− (b6−b13)ü′0]
(2.62)

K7 =−b7ẅ0 +(b10 +b18)φ̈
′+δS(−(b8 +b16)θ̈x− (b9−b17)θ̈y)

+δNS((b8 +b16)v̈′0 +(b9−b17)ü′0)
(2.63)

K8 =−b3ü0−b2v̈0 (2.64)

Again these Ki functions and the variation of kinetic energy have tracers of δNS and

δS. As mentioned before, they classify the system as shearable or unshearable models

which detailed explanation of these models is given in the following chapter.

Since this study focuses on the free vibration problem, the work done by external loads

such as surface loads, end tractions and body forces are not included in this study.

19



2.1.5 Equations of Motion

The equations of motion is obtained by Hamilton’s principle as well as boundary

conditions. The most general equations of motion and boundary conditions for a

thin-walled composite beam are given below with tracers of δS and δNS again

δu0 : −K1 + px +δSQ′x +δNS(−K′5 +m′y +M′′y ) = 0 (2.65)

δv0 : −K2 + py +δSQ′y +δNS(−K′6 +m′x +M′′x ) = 0 (2.66)

δw0 : −K3 + pz +T ′z = 0 (2.67)

δφ : −K4 +K′7 +b′w +mz +B′′w +M′z = 0 (2.68)

δθx : δS(−K6 +mx−Qy +M′x) = 0 (2.69)

δθy : δS(−K5 +my−Qx +M′y) = 0 (2.70)

The boundary conditions at the root and the tip section of the beam are derived through

the non-integral terms in the strain energy expression. They are defined at z = 0 and

z = L as

δu0 : u0 = ū0 or −nzQ̃x−δSQx +δNS(−K5 +M′y) = 0 (2.71)

δNSδu′0 : u′0 = ū′0 or My−nzM̃′y = 0 (2.72)

δv0 : v0 = v̄0 or −nzQ̃y−δSQy +δNS(−K6 +M′x) = 0 (2.73)

δNSδv′0 : v′0 = v̄′0 or Mx−nzM̃′x = 0 (2.74)

δw0 : w0 = w̄0 or Tz−nzT̃z = 0 (2.75)

δφ : φ = φ̄ or K9−nzM̃z +B′w +Mz = 0 (2.76)
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δφ
′ : φ

′ = φ̄
′ or −nzB̃w +Bw = 0 (2.77)

δSδθx : θx = θ̄x or Mx−nzM̃′x = 0 (2.78)

δSδθy : θy = θ̄y or My−nzM̃′y = 0 (2.79)

The equations of motion and boundary conditions will be modified in next chapters due

to structural configurations and used shearable model. Also, they will be expressed in

terms of ai j stiffness quantities which will be introduced in next chapters.
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3. FREE VIBRATION

In order the analyze the dynamic behaviour and vibration characteristics of structures,

it is imperative to investigate natural frequencies and mode shapes of the systems.

With the knowledge of these, dynamic stabilities like structural resonance and flutter

may be prevented from occurrence. This section of thesis focuses on free vibration

characteristics of thin walled composite beams.

First, structural composite configurations used in thin walled composite beams are

examined. Then governing system of equations are obtained regarding implemented

structural composite configuration. Then shearable and unshearable theories are

elaborated and solution methodology is profoundly explained. Finally, mass and

stiffness matrices are obtained and natural frequencies are calculated.

3.1 Structural Composite Configuration

Two structural composite configurations exist while dealing with thin walled

composite beams. These structural configurations produce different structural

couplings. These configurations firstly introduced in Ref. [3] and named as

Circumferentially Asymmetric Stiffness Configuration(CAS) and Circumferentially

Uniform Stiffness Configuration(CUS). Circumferentially Uniform Configuration

states that ply angles act as even function while in Circumferentially Asymmetric

Stiffness Configuration ply angles act as odd function.

It is important to examine elastically coupled motion of structures in order not to miss

out any critical case resulting from coupling. These cases may emerge unexpectedly

in practice unless they are carefully considered in design - analysis phase.

Using Circumferentially Uniform Stiffness Configuration gives an opportunity to

investigate two different couplings. These couplings are lateral bending-transverse

bending-shear and extension-twist, simulating coupled motion. On the other hand,
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using Circumferentially Asymmetric Stiffness Configuration, one can investigate the

extension-bending-shear and bending-shear-torsion couplings.

The elaborated derivation for CUS configuration investigated in this thesis and given

in the next subsection. Its illustration can be seen in Figure 3.1.

Figure 3.1: CUS configuration

Circumferentially Uniform Stiffness Configuration also referred as antisymmetric

configuration exhibits some simplifications in the equations of motion due to its ply

angle orientation. These simplifications are simply given below.

The stiffness quantities of C̄16, C̄26 , C̄36, C̄45 have the same sign with its counterpart

in opposite wall. This valid for top-bottom and left-right walls. Simply,

C̄(T )
16 = C̄(B)

16 ; C̄(T )
26 = C̄(B)

26 ; C̄(T )
36 = C̄(B)

36 ; C̄(T )
45 = C̄(B)

45 (3.1)

C̄(L)
16 = C̄(R)

16 ; C̄(L)
26 = C̄(R)

26 ; C̄(L)
36 = C̄(R)

36 ; C̄(L)
45 = C̄(R)

45 (3.2)

This relation also applies to Ai j’s, extensional stiffness quantities, and Di j’s, bending

stiffness quantities. They are given as
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Ā(T )
16 = Ā(B)

16 ; Ā(T )
26 = Ā(B)

26 ; Ā(T )
36 = Ā(B)

36 ; Ā(T )
45 = Ā(B)

45 (3.3)

Ā(L)
16 = Ā(R)

16 ; Ā(L)
26 = Ā(R)

26 ; Ā(L)
36 = Ā(R)

36 ; Ā(L)
45 = Ā(R)

45 (3.4)

D̄(T )
16 = D̄(B)

16 ; D̄(T )
26 = D̄(B)

26 ; D̄(T )
36 = D̄(B)

36 ; D̄(T )
45 = D̄(B)

45 (3.5)

D̄(L)
16 = D̄(R)

16 ; D̄(L)
26 = D̄(R)

26 ; D̄(L)
36 = D̄(R)

36 ; D̄(L)
45 = D̄(R)

45 (3.6)

These ply angle configuration may also be implemented into the open section

thin-walled beams. However, this subject is not an interest of this thesis and it is

not included.

3.2 Governing Equations of Motion

It is stated that the aircraft wing is modelled as a thin-walled composite beam with

Circumferentially Uniform Stiffness structural configuration. The beam is cantilever

at the root, z = 0, free at the tip, z = L. In the subsequent subsections, the equations of

motion for a defined beam above can be found investigating two different couplings.

In order to arrange the equations for structural configurations and coupling, new

stiffness quantities are resorted. These stiffness quantities are denoted as ai j’s and

they are obtained by introducing displacement quantities into the equations of motion.

Each of ai j defines a different coupling and their expression are given in Appendix A,

specifying which coupling they are involved.

Their calculations are related to some other quantities studied in previous chapters of

this thesis. In order to clarify and prevent a confusion about calculations, a chart is

provided in Figure 3.2.

3.2.1 Extension-Twist Coupled Motion

The equations of motion for extension-twist coupling is given in here. The solution to

these equation is not included in the thesis. The equations are introduced only to give

an idea about the motion of the beam for this coupling.
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Figure 3.2: Evaluation of the stiffness quantities, ai j
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The governing equations of motion for extension-twist are

δw0 : a11w′′0 +a17φ
′′ = b1ẅ0 (3.7)

δφ : −a66φ
′′′′+a77φ

′′+a17w′′0 = [(b4 +b5)+δn(b14 +b15)]φ̈ − (b10 +δnb18)φ̈
′′

(3.8)

The boundary conditions at root, z = 0

w0 = 0; φ = 0; φ
′ = 0 (3.9)

The boundary conditions at tip, z = L

δw0 : a11w′0 +a17φ
′ = 0 (3.10)

δφ : −a66φ
′′′+a77φ

′+a17w′0 =−(b10 +δnb18)φ̈
′ (3.11)

δφ
′ : a66φ

′′ = 0 (3.12)

Here, tracer δn denotes secondary warping effects and in this study those effects are

taken into account. Therefore tracer δn takes value of 1.

3.2.2 Lateral Bending-Transverse Bending-Shear Coupled Motion

In this section, the equations of motion of a thin-walled composite beam is given for

lateral bending-transverse bending-shear coupling. The equations are treated with two

models, shearable and unshearable models, respectively.

The tracer of δn is mentioned in previous chapter. Its function is the same and takes

value of 1.

3.2.2.1 Shearable model

This model includes shear effects and consists of 49 stiffness quantities, 28

independent and 21 off-diagonal (coupling). As it can be interpreted from the numbers,

this model relatively difficult due to inclusion of shear effects.

The equations of motion for shearable model
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δu0 : a34θ
′′
x +a44(u′′0 +θ

′
y) = b1ü0 (3.13)

δv0 : a25θ
′′
y +a55(v′′0 +θ

′
x) = b1v̈0 (3.14)

δθx : a33θ
′′
x +a34(u′′0 +θ

′
y)−a55(v′0 +θx)−a25θ

′
y = (b4 +δnb14)θ̈x (3.15)

δθy : a22θ
′′
y +a25(v′′0 +θ

′
x)−a44(u′0 +θy)−a34θ

′
x = (b5 +δnb15)θ̈y (3.16)

The boundary conditions at root, z = 0

u0 = 0; v0 = 0; θx = 0; θy = 0 (3.17)

The boundary conditions at tip, z = L

δu0 : a34θ
′
x +a44(u′0 +θy) = 0 (3.18)

δv0 : a25θ
′
y +a55(v′0 +θx) = 0 (3.19)

δθx : a33θ
′
x +a34(u′0 +θy) = 0 (3.20)

δθy : a22θ
′
y +a25(v′0 +θx) = 0 (3.21)

3.2.2.2 Unshearable model

In this model, transverse and lateral shear effects are discarded which makes the model

relatively simple. The fundamental difference results from letting θy → −u′P and

θx → −v′P and some arrangements. This model consists of 15 independent and 10

off-diagonal (coupling) stiffness quantities, a total number of 25.

The equations of motion for unshearable model

δuP : a22u′′′′P = [(b5 +δnb15)üP]
′−b1üP (3.22)

δvP : a33v′′′′P = [(b4 +δnb14)v̈P]
′−b1v̈P (3.23)

The boundary conditions at root, z = 0

uP = 0; u′P = 0; vP = 0; v′P = 0 (3.24)
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The boundary conditions at tip, z = L

δuP : (a22u′′P)
′− (b5 +δnb15)üP

′ = 0 (3.25)

δu′P : a22u′′P = 0 (3.26)

δvP : (a33v′′P)
′− (b4 +δnb14)v̈P

′ = 0 (3.27)

δv′P : a33v′′P = 0 (3.28)

3.3 Solution Methodology

In this section solution methodology is explained in a detailed way and the shearable

equations of motion for lateral bending-transverse bending-shear coupling are solved.

The governing equations of motion for thin-walled composite beams obtained in

previous section is considerably complex and can not be solved analytically. Therefore,

a numerical method, Extended Galerkin Method, is employed here to obtain a solution

for the equations of motion. In this method, the trial functions are selected only

to satisfy the geometric boundary conditions [17]. They are also called admissible

functions and are chosen as polynomials orders of approximately 7-9. Extended

Galerkin Method applies a discretization to displacements as below

u0(z, t) = NT
u (z)qu(t) (3.29)

v0(z, t) = NT
v (z)qv(t) (3.30)

θx(z, t) = NT
x (z)qx(t) (3.31)

θy(z, t) = NT
y (z)qy(t) (3.32)

Here, N’s are shape functions and have dimension of Nx1 while q’s are generalized

coordinates with dimension of 1xN. Then the discretizated equations of motion can be

rearranged as

Mq̈(t)+Kq(t) = Q(t) (3.33)

To perform free vibration analysis, it is assumed that beam has simple harmonic

motion, q = Xeiωt , and external loads are eliminated, Q(t) = 0, which yields

eigenvalue problems
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Mq̈(t)+Kq(t) = 0 (3.34)

(λ I−M−1K)X = 0 (3.35)

Here λ and X represents eigenvalues and eigenvectors, respectively. The natural

frequencies can be computed by the relation of λ = ω2 while eigenvectors are

indicating mode shapes.

Mass and stiffness matrices are also calculated with the help of Extended Galerkin

Method as only functions of spanwise coordinate, z. The matrices are given as

M =

L∫
0



b1NuNT
u 0 0 0

0 b1NvNT
v 0 0

0 0 (b4 +b14)NxNT
x 0

0 0 0 (b5 +b15)NyNT
y


dz (3.36)

K =

L∫
0



a44N′uN′Tu 0 a34N′uN′Tx a44N′uNT
y

0 a55N′vN′Tv a55N′vNT
x a25N′vN′Ty

a34N′xN′Tu a55NxN′Tv a33N′xN′Tx +a55NxNT
x a34N′X NT

y +a52NxN′Ty

a44NyN′Tu a25N′yN′Tv a25N′yNT
x +a34NyN′Tx a22N′yN′Ty +a44NyNT

y


dz

(3.37)

Besides, the generalized coordinates are given as

q =
{

qu qv qx qy
}T (3.38)
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3.4 Results and Discussion

The preliminary results are presented for the dynamic analysis of the thin-walled

composite beams. Firstly, the validation of the mathematical model is performed.

For this purpose, natural frequencies are obtained for a thin-walled box beam whose

properties are given in the Table 3.1 and the results are tabulated for selected ply angles

in Table 3.2

Table 3.2 shows the results for the first four natural frequencies which corresponds to

vertical and lateral bending modes of the box beam. As seen, an excellent agreement

between the presented results and the ones provided by Ref. [1] is obtained, providing

validation of generated mathematical model.

Also in Figure 3.3, the stiffness quantities, ai j’s, of thin-walled composite box beam are

plotted for selected ply angles. Moreover, Figure 3.4 and Figure 3.5 show the variation

of first two transverse and lateral natural frequencies versus ply angle, respectively.
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Figure 3.3: Variation of stiffness quantities versus ply angles
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Table 3.1: Material Properties and Geometric Dimensions of The Box Beam

Graphite-Epoxy
E11 206.75 GPa
E22 = E33 5.17 GPa
G12 3.10 GPa
G13 = G23 2.55 GPa
ν21 = ν31 0.00625
ν32 0.25
Density, ρ 1528.15 kg/m3

Geometry
Width, 2b 0.0254 m
Depth, 2d 0.00508 m
Thickness, h 0.001016 m
Length, L 0.254 m
Number of Layers 6

Table 3.2: Comparison of First Natural Frequencies for Box Beam

Ply
Angle θ

(Degree)

ωhorizontal
(rad/s)

ωhorizontal
(rad/s)
Ref. [1]

ωvertical
(rad/s)

ωvertical
(rad/s)
Ref. [1]

0
842.89 843 241.4 241

4193.02 4193 1506.75 1507

15
857.36 857 245.06 245

4255.90 4256 1529.57 1530

30
935.46 935 263.08 263

4562.69 4563 1641.94 1642

45
1234.83 1235 314.33 314
5424.28 5424 1962.15 1962

60
2174.23 2174 439.75 440
7491.19 7491 2763.99 764

75
3907.77 3908 761.00 761

12272.81 12273 4912.88 4913

90
4579.59 4580 1499.36 1499

18056.78 18057 8503.90 8503
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Figure 3.4: First two natural frequencies of vertical bending mode of the box beam
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Figure 3.5: First two natural frequencies of lateral bending mode of the box beam
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The next analyses are conducted for the thin-walled composite beam with a diamond

shaped cross section. Keeping the material properties same, the width and depth of the

beam are taken as 0.254m, the thickness of the beam and length are chosen as 0.01m

and 2.032m, respectively. The geometry of the diamond shaped wing can be seen in

Fig 3.6. Material properties are kept as the same. The results are given in the following

figures.

Figure 3.6: The geometry of the diamond shaped thin walled beam

Figure 3.7 depicts the stiffness quantities, ai j of diamond shaped thin-walled composite

beam. It is seen from the Figure, bending stiffness quantities are dominant compared

to others.

Figure 3.8 shows the variation of first two natural frequencies of the diamond shaped

beam. Due to equal depth and width of the cross-section, the natural frequency results

of the lateral and transverse bending modes overlap with each other.
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Figure 3.7: Stiffness quantities for diamond shaped thin-walled beam
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Figure 3.8: First two natural frequencies of the diamond shaped thin-walled beam
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4. ACTIVE VIBRATION CONTROL

Active vibration control is an active application, using some control gain, that reacts to

ongoing vibrations by applying excitation on the opposite way of the forces caused by

vibration. Using this application, it is possible to enhance damping characteristics and

prevent structural instabilities such as structural resonance. Moreover, undesired noise

can also be avoided. One way to achieve vibration control appears from use of adaptive

materials. Adaptive or smart materials such as piezoelectric materials has a wide range

of use recently. They are likely to have a great importance in the design process of

aerospace structural systems, robot manipulators and helicopter rotor blades. Using

these latest concept, new generation of structural systems can be designed to operate

safely in fierce environments.

Piezoelectric materials are recently introduced materials into the structures, capable

of generating mechanical strain under applied voltage. They are found in nature

as polymers or composite ceramics and they can be implemented into structures as

sensors and actuators, in order to control the structure in a predictable manner. There

are two different piezoelectric effects, namely direct and converse. The first one refers

to electrical charge generation as a result of applied mechanical force while the latter

one referring to generation of mechanical strain/moment due to applied electrical field

or voltage. In this study, converse piezoelectric effect is used and bending moments

are induced as a result of applied voltage. Also, piezoelectric materials are used as

both sensors and actuators in order to achieve closed-loop feedback control law.

The piezoelectrically induced bending moments can occur in both directions and they

are represented with M̃x and M̃y. Their expressions are given as [8]

M̃x =

∫
ξ3(n+−n−)ē31R(s,z)

[
y(1−

A∗12
A∗11

)+
dx
ds

B∗12
A∗11

]
ds

−1
2

∫ [
dx
ds

ξ3(n2
+−n2

−)ē31R(s,z)
]

ds

(4.1)
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M̃y =

∫
ξ3(n+−n−)ē31R(s,z)

[
x(1−

A∗12
A∗11

)+
dy
ds

B∗12
A∗11

]
ds

−1
2

∫ [
dy
ds

ξ3(n2
+−n2

−)ē31R(s,z)
]

ds

(4.2)

Here n+ and n− represents the upper and lower faces of the piezoelectric layer,

respectively. Besides, A∗i j and B∗i j denote the local stiffness quantities related to

piezoactuators.

From Equation 4.1 and 4.2, it is seen that induced moments are proportional to applied

electrical field. Therefore, the moment expressions can be rewritten simply,

M̃x = ξ3CMx ; M̃y = ξ3CMy (4.3)

where expressions of CMx and CMy are obvious from previous equations. Then global

moment expressions can be arranged as

Mx = M′x− M̃x; My = M′y− M̃y (4.4)

where ′ denotes mechanical moments. Therefore, equations of motion with influence

of piezoelectrically induced moments are given as below in most general case

δu0 : a34θ
′′
x +a44(u′′0 +θ

′
y)−b1ü0 + px(x, t) = 0 (4.5)

δv0 : a25θ
′′
y +a55(v′′0 +θ

′
x)−b1v̈0 + py(z, t) = 0 (4.6)

δθx : a33θ
′′
x +a34(u′′0 +θ

′
y)−a55(v′0 +θx)−a25θ

′
y

−(b4 +δnb14)θ̈x−δPM̃′x +mx(z, t) = 0
(4.7)

δθy : a22θ
′′
y +a25(v′′0 +θ

′
x)−a44(u′0 +θy)−a34θ

′
x

−(b5 +δnb15)θ̈y−δPM̃′y +my(z, t) = 0
(4.8)

The boundary conditions at root, z = 0,

u0 = 0; v0 = 0; θx = 0; θy = 0 (4.9)
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The boundary conditions at tip, z = L,

δu0 : a34θ
′
x +a44(u′0 +θy) = 0 (4.10)

δv0 : a25θ
′
y +a55(v′0 +θx) = 0 (4.11)

δθx : a33θ
′
x +a34(u′0 +θy)−δSM̃x = 0 (4.12)

δθy : a22θ
′
y +a25(v′0 +θx)−δSM̃y = 0 (4.13)

4.1 Boundary Moment Control Law

The location of piezoelectric actuators plays a major role in the design process. The

bending moments can be induced by either piezoelectric patches or piezoelectric layers

spread all over entire span. As a result of these two different mechanisms, the influence

of piezoelectrically induced moments on the equations of motion varies. The tracers

in the equations of motion given in previous section are used to model this difference.

The use of piezopatches involves with derivatives of moments and they affect the

equations of motion directly. In order to model this concept, tracer δN is inserted

to equations. For piezopatches the tracer δN takes value of 1 while δS becomes zero.

The other method is spreading piezoactuators embedded all along the entire beam span.

As as result of that, the total induced moment can be obtained after an integration. The

total moment acts as a bending moment at the beam tip [1,6,18]. Therefore it does not

involve with the equations of motion but boundary conditions at the tip [19]. This is

called boundary moment control law. In this concept, tracer δS takes value of 1 while

δN becomes zero.

In this study, boundary moment control law is applied to the system. Therefore,

the equations of motion and the boundary conditions can be rearranged with proper

values of tracers. In addition, since this study is interested in determination of natural

frequencies and their predictable control, external force terms are also cancelled to

perform free vibration analyses. Eventually, the equations of motion and the boundary

conditions become
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δu0 : a34θ
′′
x +a44(u′′0 +θ

′
y)−b1ü0 = 0 (4.14)

δv0 : a25θ
′′
y +a55(v′′0 +θ

′
x)−b1v̈0 = 0 (4.15)

δθx : a33θ
′′
x +a34(u′′0 +θ

′
y)−a55(v′0 +θx)−a25θ

′
y− (b4 +δnb14)θ̈x = 0 (4.16)

δθy : a22θ
′′
y +a25(v′′0 +θ

′
x)−a44(u′0 +θy)−a34θ

′
x− (b5 +δnb15)θ̈y = 0 (4.17)

The boundary conditions at root, z = 0,

u0 = 0; v0 = 0; θx = 0; θy = 0 (4.18)

The boundary conditions at tip, z = L,

δu0 : a34θ
′
x +a44(u′0 +θy) = 0 (4.19)

δv0 : a25θ
′
y +a55(v′0 +θx) = 0 (4.20)

δθx : a33θ
′
x +a34(u′0 +θy) = M̃x (4.21)

δθy : a22θ
′
y +a25(v′0 +θx) = M̃y (4.22)

4.2 Closed Loop Feedback Control Laws

It is mentioned before that piezoelectric materials can be used as sensors, actuators

or as both in a system. When they are inserted to a system as both, it is possible

to form a closed loop feedback control [7, 8]. Using closed loop feedback control

law, with proper value of control gain it is likely to obtain a way better control

behaviour, advantageous to open loop control law. The induced bending moments can

be regulated to be proportional to the position, the velocity or even the acceleration of

the beam tip.

In closed loop controls, the voltage output from the sensors is amplified with the proper

gain and fed back to actuators. The electrical charge from sensors is collected from

sensors and then redistributed to the actuators again. Thus, this section explains how

closed loop control law work.
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The electric displacement expression is

D3 = ē31εzz (4.23)

The electric charge due to displacement

qs(t) =
∫

As

D3dAs =
∫

As

ē31εzzdAs (4.24)

As a result, the sensor output voltage

Vs(t) =
qs(t)
Cp

(4.25)

In above equations, Cp and As represent the sensor’s capacitance and area, respectively.

It is assumed that sensors are located symmetrically on opposite walls, then Equation

4.23 can be rewritten

V x
S (t) =CS

x θx(L, t); V y
S (t) =CS

y θy(L, t) (4.26)

The expression of CSes is not given here but can be easily obtained from Equations

4.22, 4.23 and 2.14

Two different feedback control laws are applied, namely, proportional and velocity

feedback law. They are summarized in next subsections and their related equations are

given.

4.2.1 Proportional Feedback Control Law

In proportional feedback control law, the piezoelectrically induced bending moments

are proportional to the position of the beam tip node. The information of the position is

sensed and transferred to actuator after multiplication with the control gain. Therefore,

the induced moment becomes related to position of the beam tip.

Actuating voltage, proportional to the voltage output of sensor

ξ
x
3 (t) =

kpV x
S (t)

ha
; ξ

y
3 (t) =

kpV y
S (t)

ha
(4.27)
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where ha is the thickness of the piezoelectric layer an kp is the proportional feedback

gain. Then, moment expressions become

M̃x =−
kpCMa

x

ha
[CS

x θx(L, t)] =−kpC11θx(L, t) (4.28)

M̃y =−
kpCMa

y

ha
[CS

y θy(L, t)] =−kpC22θy(L, t) (4.29)

4.2.2 Velocity Feedback Control Law

In velocity feedback control law, the piezoelectrically induced bending moments are

proportional to the velocity of the beam tip node. The information of the velocity is

sensed and transferred to actuator after multiplication with the control gain. Therefore,

the induced moment becomes related to velocity, the time derivative of position, of the

beam tip.

Actuating voltage, proportional to the voltage output of sensor

ξ
x
3 (t) =

kvdV x
S (t)/dt
ha

; ξ
y
3 (t) =

kvdV y
S (t)/dt
ha

(4.30)

where ha is the thickness of the piezoelectric layer an kv is the velocity feedback gain.

Then, moment expressions become

M̃x =−
kvCMa

x

ha
[CS

x θ̇x(L, t)] =−kvC11θ̇x(L, t) (4.31)

M̃y =−
kvCMa

y

ha
[CS

y θ̇y(L, t)] =−kvC22θ̇y(L, t) (4.32)

4.3 Solution Methodology

Solution methodology was explained in the previous chapter. Applying same method,

mass and stiffness matrices remain the same while the effects of induced moments

are taken into account here. The most general case of virtual work including

piezoelectrically induced bending moments
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δJ = M̃x(L, t)δθx(L, t)+ M̃y(L, t)δθy(L, t)+
∫ L

0
[pd

x (z, t)δu0(z, t)

+pd
y (z, t)δv0(z, t)+md

x (z, t)δθx(z, t)+ pd
y (z, t)θy(z, t)]dz

+∑
i
[pc

x(zi, t)δu0(zi, t)+ pc
y(zi, t)δv0(zi, t)

+mc
x(zi, t)δθx(zi, t)+mc

y(zi, t)δθy(zi, t)]

(4.33)

The superscripts d and c stand for distributed and concentrated loads, respectively.

Depending on the which control law is used, the discretized virtual work for the

adaptive beam is

δJ = QT
δq−δpqT KpKCδq−δvq̇T KvKCδq (4.34)

Here, KC is the newly introduced control matrix. Also two new tracers, δp and δv,

identify which control law is used. δp denotes proportional feedback control law, δv

stands for velocity feedback law. They take value of 0 or 1 depending on control law.

Therefore, discretized system for closed loop control

Mq̈(t)+δvKvKCq̇(t)+Kq(t)+δpKpKCq(t) = Q(t) (4.35)

This expression is also similar to the one presented by Ref. [20]. Here M and K must be

taken into consideration for both the host and the piezoactuators as a whole. Stiffness

quantities of piezoactuators must be determined and inserted to matrices. Also KC

matrix is given as

KC =



0 0 0 0

0 0 0 0

0 0 C11Nx(L)NT
x (L) 0

0 0 0 C22Ny(L)NT
y (L)


(4.36)

where C11 and C22 are elastic coefficients of piezoelectric material.

Afterwards, solution is obtained by casting the discretized equation into state-space

form as q1 = q̇ and q2 = q̇1 = q̈. The state space representation can be expressed as
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ẋ(t) = Ax(t)+WF(t) (4.37)

The A and WF matrices are

A =

 0 I

−M-1K̂−δvM-1KvKC

 (4.38)

WF =

 0

−M-1Q(t)

 (4.39)

where 0 and I are zero and identity matrices.

K̂ = K+δpKpKC (4.40)

To perform free vibration analyses, external forces are assumed to be zero, Q(t) = 0.

Then, Equation 4.35 reduces to

ẋ(t) = Ax(t) (4.41)

which has a solution in the form of

x(t) = Xeλ t (4.42)

and yields to an eigenvalue problem

AX = λX (4.43)

In the absence of velocity feedback gain, Kv = 0, the eigenvalues are complex

quantities. It is also obvious that one cannot observe structural damping without

velocity feedback gain. The eigenvalues and structural damping factor expressions

are given as

λr = ηr± iωdr (4.44)
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ξr =
−ηr√

η2
r +ω2

d r
(4.45)

4.4 Results and Discussion

Application of closed loop control laws was discussed in the previous section. This

section represents the dynamic results for the thin walled diamond shaped wing.

However, prior to these results, a case study has been performed and closed loop

control has been implemented on a Timoshenko beam. Results are given and compared

to the ones provided by the Ref [21].

4.4.1 Case Study-Timoshenko Beam

In this case study influence of the piezoelectric effects on the natural frequencies

of a Timoshenko beam with solid (rectangular) cross-section is investigated. Only

proportional feedback control law is implemented in this study. To perform to have a

good understanding of piezoelectric effects. The model used here is relatively simple

to thin-walled composite beam theory.

Figure 4.1 shows the laminated beam considered in this case. The piezoelectric

layers are located continuously at the top and the bottom of the beam. Two different

composite configurations, symmetric and non-symmetric, are considered and their

lamination system can be seen in Figure 4.2 and geometric and material properties

can be found in Table 4.1

Figure 4.1: Timoshenko laminated beam

45



Figure 4.2: (a) Symmetric laminate, (b) Non-symmetric laminate

The governing equations of motion are given for most general piezo-laminated beam

as follows. One should see Ref. [21–23] for more detailed formulation and discussion.

∂

∂x

(
A11

∂U0

∂x
+B11

∂φ

∂x
+ Ē11

)
=

∂

∂ t
[(I1U̇0)+(I2φ̇)] (4.46)

∂

∂x

(
A55

(
φ +

∂W
∂x

)
−P

∂W
∂x

)
=

∂

∂ t
[(I1Ẇ )]+q (4.47)

∂

∂x

(
B11

∂U0

∂x
+D11

∂φ

∂x
+F11

)
−A55

(
φ +

∂W
∂x

)
=

∂

∂ t
[(I3φ̇)+(I2U̇0)] (4.48)

where mass related terms are

(I1, I2, I3) = c
∫ h/2

−h/2
ρ(1,z,z2)dz (4.49)

ρ , q and P denote mass density of each layer, transverse distributed load and axial

compressive force, respectively. Also, the superscript (̇) stands for time derivative.

Moreover, Ē11 and F11 denote induced axial force and induced bending moment,

respectively. It is also given as, F11 = G f̄ φ ′(x, t) and G is proportional feedback gain.

Table 4.1: Material Properties and Geometric Dimensions of Timoshenko Beam

Graphite-Epoxy PZT-5H Graphite-Epoxy PZT-5H
E1 144.8 GPa 6.3 GPa h 1.27*10−4 m 2*10−4
E2 9.65 GPa 6.3 GPa L 0.254 m 0.254 m
G12 7.1 GPa 24.8 GPa c 0.0254 m 0.0254 m
G13 7.1 GPa - Q11 145.7 GPa 68.36 GPa
G23 5.92 GPa - Q22 9.708 GPa 68.36 GPa
υυυ12 0.3 0.28 Q12 2.878 GPa 16.26 GPa
ε̄ - 1.593*10−8 Q66 7.1 GPa 0
d31 - -166*10−12 ρρρ 1560 kg/m3 7600 kg/m3
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The boundary conditions,

Nx = A11
∂U0

∂x
+B11

∂φ

∂x
+ Ē11 = P; U0 = 0 (4.50)

Qxz = A55

(
φ +

∂W
∂x

)
−P

∂W
∂x

= 0; W = 0 (4.51)

Mx = B11
∂U0

∂x
+D11

∂φ

∂x
+F11 = 0; φ = 0 (4.52)

For free vibration case, all external loads vanish, q = 0 and P = 0. Also, induced axial

force Ē11 is zero due to equality in opposite direction. The general solution

U0(x, t) = u0(x)eiωt (4.53)

W (x, t) = w(x)eiωt (4.54)

φ(x, t) = φ(x)eiωt (4.55)

Then, the equations of motion become

A11u′′0 +B11φ
′′ =−ω

2I1u0−ω
2I2φ (4.56)

A55φ
′+A55w′′ =−ω

2I1w (4.57)(
B11 +

G f̄
h0

)
u′′0 +(D11 +G f̄ )φ ′′−A55(φ +w′)) =−ω

2I3φ −ω
2I2u0 (4.58)

4.4.1.1 Symmetric case

The cross-ply symmetric laminate has six layers and the configuration of

[PZT/0◦/90◦/90◦/0◦/PZT ]. Symmetric configuration simplifies the equations of

motion due to B11 = 0 and I2 = 0

A11u′′0 +ω
2I1u0 = 0 (4.59)

A55φ
′+A55w′′ =−ω

2I1w (4.60)

(D11 +G f̄ )φ ′′−A55(φ +w′) =−ω
2I3φ (4.61)
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The boundary conditions

A11u′0 = 0; u0 = 0 (4.62)

A55(φ +w′) = 0; w = 0 (4.63)

(D11 +G f̄ )φ ′ = 0; φ = 0 (4.64)

The results are obtained by both analytically and Extended-Galerkin Method for first

three modes. The natural frequencies are tabulated in Table 4.2, 4.3 and 4.4 given as

Table 4.2: Comparison of First Natural Frequencies for Timoshenko Beam

Feedback
Gain G

ω1 (rad/s)
Ref. [21]

ω1 (rad/s)
Analytic

ω1 (rad/s)
EGM

ω1 (rad/s)
DTM

0 9.78 9.83 9.83 9.83
5 10.74 10.80 10.79 10.78

15 12.33 12.50 12.50 12.50
24.3 13.76 13.90 13.90 13.90

Table 4.3: Comparison of Second Natural Frequencies for Timoshenko Beam

Feedback
Gain G

ω2 (rad/s)
Ref. [21]

ω2 (rad/s)
Analytic

ω2 (rad/s)
EGM

ω2 (rad/s)
DTM

0 61.11 61.61 61.61 61.61
5 67.16 67.65 67.65 67.65

15 77.66 78.35 78.35 78.35
24.3 86.42 87.13 87.13 87.13
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Table 4.4: Comparison of Third Natural Frequencies for Timoshenko Beam

Feedback
Gain G

ω3 (rad/s)
Ref. [21]

ω3 (rad/s)
Analytic

ω3 (rad/s)
EGM

ω3 (rad/s)
DTM

0 171.17 172.50 172.55 172.50
5 187.88 189.42 189.18 189.42
15 217.49 219.38 219.28 219.38

24.3 241.84 243.95 243.91 243.96

4.4.1.2 Non-Symmetric case

The solution for non-symmetric case does not contain any simplification due to

configuration unlike symmetric case. In order to solve the system analytically, three

equations of motion must be decoupled first. One should see Ref. [21] to obtain a

detailed explanation about analytic solution. As a result, obtained results are given in

Table 4.5, 4.6 and 4.7 below.

Table 4.5: Comparison of First Natural Frequencies for Timoshenko Beam

Feedback
Gain G

ω1 (rad/s)
Ref. [21]

ω1 (rad/s)
Analytic

ω1 (rad/s)
EGM

ω1 (rad/s)
DTM

0 9.1 9.18 9.24 9.181
5 10.22 10.114 10.26 10.116
15 12.13 11.764 12.05 11.765

21.55 13.24 12.732 13.08 12.729

Table 4.6: Comparison of Second Natural Frequencies for Timoshenko Beam

Feedback
Gain G

ω2 (rad/s)
Ref. [21]

ω2 (rad/s)
Analytic

ω2 (rad/s)
EGM

ω2 (rad/s)
DTM

0 57.08 57.52 57.93 57.517
5 64.02 63.368 64.32 63.368
15 76 73.685 75.49 73.685

21.55 82.93 79.578 81.99 79.72
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Table 4.7: Comparison of Third Natural Frequencies for Timoshenko Beam

Feedback
Gain G

ω3 (rad/s)
Ref. [21]

ω3 (rad/s)
Analytic

ω3 (rad/s)
EGM

ω3 (rad/s)
DTM

0 159.8 160.96 162.22 160.957
5 179.2 177.31 180.08 177.31

15 212.75 206.128 211.13 206.128
21.55 232.11 230.775 229.57 222.97

4.4.2 Thin-walled Composite Beam

The equations of motion are solved for free vibration case with proportional and

velocity feedback control laws separately. The effects of piezoelectric layers are

included to mass and stiffness matrices where they are neglected in most studies.

Embedded piezoelectric layers and cross section of the beam are demonstrated in Fig

4.3. Also properties of the piezoelectric material, PZT-4, is given in Table 4.8

Figure 4.3: Variation of stiffness quantities with ply angle

Table 4.8: Material Properties of Piezoelectric Layers

PZT-4
C11 = C22 139 GPa
C12 77.77 GPa
C13 74.30 GPa
C33 115 GPa
C44 25.59 GPa
ρρρ ppp 7498 kg/m3

e31 -5.202 N/Vm
e33 15.101 N/Vm
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Figure 4.4 demonstrates the variation of stiffness quantities with respect to ply angles.

Since the width and the depth of the beam are equal, the transverse and lateral stiffness

quantities correspond to bending and shear have the same value, respectively. Besides,

the bending stiffness quantities are dominant when compared to others. In the absence

of feedback gain, another figure is plotted to show the variation of the first two natural

frequencies with respect to ply angle (Figure 4.5). The natural frequencies of the first

and second transverse bending modes are obtained to have the same values as the ones

of lateral bending modes.
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Figure 4.4: Variation of stiffness quantities with ply angle

This study utilizes two different control laws to achieve active vibration control of

the structure. The first one is proportional feedback control and in this control law,

actuated moment at the wing tip is proportional to the displacement at the wing

tip, vertical or horizontal. The second one is velocity feedback control in which

piezoelectrically induced moment at wing tip is proportional to the velocity at the

wing tip, either flapwise or chordwise. As a result, the analyses with feedback gains

are carried out and results are shown in several figures below.
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Figure 4.5: Natural frequencies of aircraft wing with diamond shaped cross section

Figure 4.6 shows the first natural frequencies versus proportional feedback control

gain for different ply angles. In order to analyze the model better, some parameters

are changed. Figure 4.7 provides information about first natural frequencies versus

proportional feedback control gain for selected values of length and θ=0. In Figure

4.8, relation between first natural frequencies and proportional feedback control gain

for selected slenderness ratios and θ=0, while keeping depth constant.

Figure 4.9 shows the implementation of velocity feedback control. This figure provides

information about first natural frequencies for selected ply angles and how they vary

with velocity feedback control gain. Similar to Figure 4.7, Figure 4.10 provides

information about first natural frequencies versus velocity feedback control gain for

selected values of length and θ=0.

As mentioned before, in the absence of velocity feedback control it is obvious that

there is no damping on structural model. In Figure 4.11, damping factor is shown

versus velocity feedback control gain. All obtained results show an agreement with

results provided in Ref. [9].
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Figure 4.6: First natural frequencies versus Kp for selected ply angles, θ
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Figure 4.7: First natural frequencies versus Kp for selected values of length, L
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Figure 4.8: First natural frequencies versus Kp for selected slenderness ratios, R
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Figure 4.9: First natural frequencies versus Kv for selected ply angles, θ
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Figure 4.10: First natural frequencies versus Kv for selected values of length, L

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Velocity Feedback Gain, K
v

Fi
rs

t D
am

pi
ng

 F
ac

to
r,

 ξ

 

 
θ = 0
θ = 15
θ = 30
θ = 45
θ = 60
θ = 75
θ = 90

Figure 4.11: First damping factors versus Kv for selected ply angles, θ
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4.5 Optimal Feedback Control Law

In this section another control method is implemented and dynamic response of the

beam is investigated. This new control method is called optimal control and utilizes a

mathematical optimization in order to minimize a certain cost function. The aim is to

drive the final value of the state x(t) to a desired value in an arbitrary short time with

a control input of u(t) Ref. [24] This control is based on a linear quadratic controller

design. As a result, equations of motion under influence of control input are expressed

as

ẋ(t) = Ax(t)+Wu(t)+BQ(t) (4.65)

As stated above, u(t) is control input to be found. Besides, here

A =

 0 I

−M-1K 0

 (4.66)

W =

 0

−M-1F

 (4.67)

B =

 0

−M-1

 (4.68)

Besides, F is the piezoactuator influence vector and defined as

F = [ϕ ′i (z2)−ϕ
′
i (z1)] (4.69)

By minimizing the control effort and the response of the closed-loop system linear

quadratic regulator (LQR) control algorithm is achieved. Two different situtaions

should be mentioned here. The cost function can be defined in two separate ways. As

the first case, external excitation is included in the cost function or performance index.

As the second case, external excitation is not included in the performance index. In

this study the second case is investigated. One should refer to Ref. [8] to obtain more

knowledge on first case. Therefore, the cost function can be defined as
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J =
1
2

∫ t f

t0
(xT Zx+uT Ru)dt (4.70)

Here, Z and R are positive semidefinite the state weighting matrix and positive definite

symmetric the control weighting matrix, respectively. t0 and t f stand for initial and

final time.

The state weighting and the control weighting matrices are chosen to be balancing

the needs; minimizing the control effort and dynamic response. Their expressions are

given as below

Z =

αK 0

0 βM

 (4.71)

R = ηFT K−1F (4.72)

where η stands for scale factor. α and β are named as weighting coefficients and

restrictions on them are αβ ≥ 0 and α + β > 0. Under the circumstances Z is an

indication of the total energy of the system as kinetic and potential

1
2

∫ t f

t0
xT Zxdt =

1
2

∫ t f

t0
[q̇T

βMq̇+qT
αKq]dt (4.73)

Regarding to all the information at hand, the steady-state Riccati equation is

Z+PÂ+ ÂT P−PWR−1WT P = 0 (4.74)

P is the positive definite solution to the steady-state Riccati equation. Then, the optimal

gain matrix can be obtained as

G = R−1WT P (4.75)
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As a result, with optimal feedback control law, control input is written as

u(t) =−Gx(t) (4.76)

4.6 Dynamic Response

In this section, the dynamic response of the thin-walled composite beam under

different control laws is investigated. The comparisons are held between control laws.

Concerning solution methodology, since there are very large number of equations, the

modal analysis is utilized here to making solution rather easy and reduce computation

time. This method is highly recommended due to its uncoupling feature. The modal

analysis method depends on the vector of eigenvectors and mode amplitudes. In this

technique physical coordinates are turned into modal or generalized coordinates using

eigenvalues and eigenvectors. These new coordinates are also referred as principal

coordinates. Therefore the state vector can be rewritten as

X(t) = Φξ (t) (4.77)

Here Φ represents modal matrix while ξ is the modal coordinates vector. On the other

hand, force terms should also be generalized

f(t) = Φ
T Q(t) (4.78)

As a result equations of motion can be written in terms of generalized coordinates

Φ
T MΦξ̈s(t)+Φ

T CΦξ̇s(t)+Φ
T KΦξs(t) = Φ

T Q(t) (4.79)

Then the discretized displacements can be rearranged as Ref. [7]

u0(z, t) = NT
u (z)Φuξs(t) (4.80)

v0(z, t) = NT
v (z)Φvξs(t) (4.81)

θx(z, t) = NT
x (z)Φxξs(t) (4.82)
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θy(z, t) = NT
y (z)Φyξs(t) (4.83)

Here, Φu,Φv,Φx,Φy are Nxm eigenvector matrices while m is the number of modes

taken into account. In this study six modes are considered.

Then all the matrices in Eq. 4.37 and 4.65 can be cast into generalized form. The

problem in modal analysis technique here, in most cases, the damping matrix does

not become a diagonal matrix resulting no decoupling. Three possible solutions are

suggested for this situation and they can be listed as

• Diagonalization

• Complex Eigensystem

• Direct Time Integration, DTI

In diagonalization technique, if damping is light, damping matrix can be diagonalized

by using undamped frequencies and mode shapes. However, diagonalization cannot

properly model damping effects of some situations accurately Ref. [26]. They are

• Structures with local damper devices

• Structure-media interaction

• Active control systems

In this study, investigated problem lies in the three scenarios listed above. Therefore,

diagonalization is not an adequate solution method for the problem at hand.

The complex eigensystem method is an exact solution methodology, and requires no

approximation. The damping strength does not change anything. The only problem is

for a large number of degrees of freedom, solution may be time consuming. Also

expertise in math and engineering is required. In this study this solution type is

preferred.

Direct time integration is another method for solving such systems. Besides, It

has the feature of solving nonlinear equations of motion different from the other

methods introduced. Additionally, it does not involve with coordinate transformation

or complex arithmetic.
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The complex eigensystem is employed to solve the equations of motion. The dynamic

response of the beam is obtained under a unit impulse at beam tip. Obtained results

under different control law types are plotted below in Fig. 4.12 and 4.13.
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Figure 4.12: Comparison of different control laws under applied Dirac Delta

The figure above, Fig. 4.12, is the most significant figure obtained in this study. It

clearly expresses the distinction between the implemented control laws. As expected,

in the absence of any control method, dynamic response is obtained harmonically.

Implementation of proportional feedback control reduces the amplitude but does not

change the dynamic characteristics of oscillation, briefly, response remains harmonic.

It was stated in previous chapters, application of velocity feedback control generates

damping to the system and can be tracked with the green line. The damping of

oscillation under applied velocity feedback gain can clearly be seen in the figure.

Lastly, red line represents the optimal control law for selected α and β values. Optimal

control was defined as a control law that minimizes the cost function which was

determined to consist of the control effort and the response of closed-loop system.
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Figure 4.13: Comparison of different values of velocity feedback gains

In Fig. 4.13, the dynamic response of the beam under unit impulse, is compared for

different values of velocity feedback gain. Considering this figure, it is seen that for

the value of Kv = 0.05 the beam has the maximum damping effect and as Kv increases

the damping effect reduces. Actually, this is a predicted result from the Fig. 4.11

which has the maximum damping ratio at around the value of Kv = 0.05. About the

amplitudes, as the velocity feedback gain increases, natural frequencies which is an

indication of stiffness level of the beam gets higher, see Fig. 4.9, yielding to lower

amplitudes.

In Fig. 4.14, under different control parameters of α and β , optimal control feedback

law is investigated. It was tried to make a logical statement for the parameters of α and

β . As moving from left to right side in rows, values of α parameter increase and as

moving from top to bottom in columns, values of β parameter increase. Some constant

values which are 0, 0.1, 1, 10 and 100 are assigned to them.
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It is seen from the figure that as α increases, amplitudes decrease. Therefore, it is

realized that α is an indication of and highly related to amplitudes. On the other hand,

as β increases, the time that oscillations completely damped and number of peaks

decrease. It yields to a result that damping time is a function of parameter β . One

thing to notice is that as β is increased to 100 from 10 damping time increases. This

situation can be explained as, the system changes to overdamped phase from critically

damped phase or underdamped phase. The critically damped phase occurs at value

of around 10, and then when β increases it transforms into overdamped phase. The

illustration for that phenomena is given in the following figure.

As can be seen from Fig. 4.15, as damping ratio increases dynamic response changes

and damping time decreases. Maximum damping time occurs at undamped case and

minimum appears on critically damped case. However, when damping ratio increases

beyond critical level, overdamped case occurs and damping time increases.

Figure 4.15: Different damping characteristics
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5. CONCLUSION

In conclusion, dynamic analyses are performed for aircraft wings modelled

as thin-walled composite beams and active vibration control is achieved using

piezoelectric actuation. Depending on the implemented control law, dynamic

behaviours and natural frequencies of the beam is controlled in a predictable manner.

First, theory of thin-walled composite beams is explained and structural modelling is

stated profoundly for a cantilever beam. The governing equations of motion of the

beam are derived and a rectangular-box cross-section is used. The natural frequencies

are obtained for box-beam and results are compared to the ones provided by previous

studies.

Prior to implementation of active control mechanism, the beam is modelled as diamond

shaped thin-walled beam and dynamic analyses are conducted. Variation of natural

frequencies and stiffness quantities versus ply angles are depicted.

Secondly, active vibration control is applied to the aircraft wings. In order to acquire a

good understanding about piezoelectricity and its application on structures, initially

a rectangular laminated beam is considered. Appropriate voltages are applied to

piezoelectric layers located at top and bottom of the beam. As a result, induced

moments and forces are obtained and their influence on natural frequencies are

investigated.

Afterwards, active vibration control is used in thin-walled composite diamond shaped

beams with two different closed loop control laws. The piezoelectric layers are

embedded into the host structure and they shift mass and stiffness matrices, resulting

a change in natural frequencies, even in the absence of applied gain. Proportional

and velocity feedback control laws are applied separately and their influences are

investigated in each case. The study revealed that velocity feedback control is

more sensitive than proportional one. Also, optimal control law is implemented on

the system and dynamic response of the beam is obtained. The dynamic response
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is examined under different control laws and comparison is made for Dirac Delta

impulse.

As future work, it is planned to extend the study to be applicable to much more

complex structures, like tapered aircraft wings. Also acceleration feedback control

law is intended to be applied. Ultimately, behaviour of the structure under external

forces will be also investigated and control will be achieved.
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APPENDIX A: Reduced Mass Terms and Stiffness Quantities

Table A.1: The reduced mass terms, bi.

b1 =

∮
m0 ds b2 =

∮
m0yds

b3 =

∮
m0xds b4 =

∮
m0y2 ds

b5 =

∮
m0x2 ds b6 =

∮
m0xyds

b7 =

∮
m0Fw ds b8 =

∮
m0yFw ds

b9 =

∮
m0xFw ds b10 =

∮
m0F2

w ds

b11 =

∮
m0

dx
ds ds b12 =

∮
m0

dy
ds ds

b13 =

∮
m2

dx
ds

dy
ds ds b14 =

∮
m2
(dx

ds

)2
ds

b15 =

∮
m2

(
dy
ds

)2
ds b16 =

∮
m2
(dx

ds

)
rt ds

b17 =

∮
m2

(
dy
ds

)
rt ds b18 =

∮
m2r2

t ds
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Table A.2: Stiffness quantities, ai j = a ji. The acronyms E, CB, FB, CTS, FTS,
W and T stand for Extensional, Chordwise Bending, Flapwise Bending,
Chordwise Transverse Shear, Flapwise Transverse Shear, Warping and
Twist, respectively.

Description Coupling involved

a11 =

∮
K11 ds E

a12 =

∮ [
K11x+K14

dy
ds

]
ds E-CB

a13 =

∮ [
K11y−K14

dx
ds

]
ds E-FB

a14 =

∮
K12

dx
ds ds E-CTS

a15 =

∮
K12

dy
ds ds E-FTS

a16 =

∮
[K11Fw−K14rt ] ds E-W

a17 =

∮
K13 ds E-T

a22 =

∮ [
K11x2 +2K14xdy

ds +K44

(
dy
ds

)2
]

ds CB

a23 =

∮ [
K11xy−K14xdx

ds +K14ydy
ds −K44

dx
ds

dy
ds

]
ds CB-FB

a24 =

∮ [
K12xdx

ds +K24
dx
ds

dy
ds

]
ds CB-CTS

a25 =

∮ [
K12xdy

ds +K24

(
dy
ds

)2
]

ds CB-FTS

a26 =

∮ [
K11Fwx−K14rtx+K14Fw

dy
ds −K44rt

dy
ds

]
ds CB-W

a27 =

∮ [
K13x+K43

dy
ds

]
ds CB-T

a33 =

∮ [
K11y2−2K14ydx

ds +K44
dx
ds

]
ds FB

a34 =

∮ [
K12ydx

ds −K24
(dx

ds

)2
ds
]

FB-CTS

a35 =

∮ [
K12ydy

ds −K24
dx
ds

dy
ds

]
ds FB-FTS
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a36 =

∮ [
K11Fwy−K14rty−K14Fw

dx
ds +K44rt

dx
ds

]
ds FB-W

a37 =

∮ [
K13y−K43dx

ds

]
ds FB-T

a44 =

∮ [
K22
(dx

ds

)2
+ K̄s

(
dy
ds

)2
]

ds CTS

a45 =

∮ [
K22

dx
ds

dy
ds − K̄s

dx
ds

dy
ds

]
ds CTS-FTS

a46 =

∮ [
K12Fw

dx
ds −K24rt

dx
ds

]
ds CTS-W

a47 =

∮ [
K23

dx
ds ds

]
CTS-T

a55 =

∮ [
K̄s
(dx

ds

)2
+K22

(
dy
ds

)2
]

ds FTS

a56 =

∮ [
K12Fw

dy
ds −K24rt

dy
ds

]
ds FTS-W

a57 =

∮ [
K23

dy
ds

]
ds FTS-T

a66 =

∮ [
K11F2

w −2K14Fwrt +K44r2
t
]

ds W

a67 =

∮
[K13Fw−K43rt ] ds W-T

a77 =

∮
[2K53 +K23ψ] ds T
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The reduced elastic stiffness coefficients are defined as

Qi j =Ci j−Ci3C j3/C33 i, j = 1,2,6
Qkl =Ckl k, l = 4,5

Modified stiffness quantities given in Eqs. ().

K11 = A22−
A2

12
A11

K12 = K21 = A26− A12A16
A11

K13 = 2
(

B26− A12B16
A11

)
+ψ

(
A26− A12A16

A11

)
K14 = K41 = B22− A12B12

A11

K22 = A66−
A2

16
A11

K23 = 2
(

B66− A16B16
A11

)
+ψ

(
A66−

A2
16

A11

)
K24 = K42 = B26− A16B12

A11

K43 = 2
(

D26− B12B16
A11

)
+ψ

(
B26− A16B12

A11

)
K44 = D22−

B2
12

A11

K51 = B26− A12B16
A11

K52 = B66− A16B16
A11

K53 = 2
(

D66−
B2

16
A11

)
+ψ

(
B66− A16B16

A11

)
K54 = D26− B12B16

A11
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