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DYNAMIC ANALYSIS OF ADAPTIVE AIRCRAFT WINGS MODELLED AS
THIN-WALLED COMPOSITE BEAMS

SUMMARY

There has been a growing interest in the development of the smart material
systems technology due to their incorporation in various structures ranging from
aeronautical/aerospace, automotive, helicopter and turbo-machinery rotor blades,
robot manipulators. Using adaptive materials, the dynamical characteristics of
the structure could be controlled in a predictable manner to avoid the dynamical
instabilities such as structural resonances.

In this thesis, dynamic behaviour of aircraft wings is investigated and control of natural
frequencies is achieved using piezoelectric actuation. Two different models namely,
Timoshenko beam and thin-walled composite beam are used in this study. Natural
frequencies of both model are obtained and using active control their variations are
examined.

First, thin walled composite beam theory is introduced with detailed formulation
including the effects of primary and secondary warping. This beam model also
incorporates a number of non-classical effects such as material anisotropy, transverse
shear deformation and warping restraint. Moreover, the directionality property of
thin-walled composite beams produces a wide range of elastic couplings. In this
respect, constitutive equations and energy expressions are given. Equations of motion
are derived using Hamilton principle.

Second, in order to determine natural frequencies without piezoelectric influence,
free vibration problem is formulated for an anti-symmetric lay-up configuration, also
referred as Circumferentially Uniform Stiffness (CUS). Due to the anti-symmetry
in lay-ups this configuration generates the coupled motion of transverse-lateral
bending-shear. The equations of motion are discretized using Extended Glaerkin
Method (EGM) to determine the natural frequencies of the system. The effect of
transverse shear on the natural frequencies is also investigated by simply including
and excluding transverse shear in the free vibration analyses, which has found to be
significant for higher modes.

For validation purposes, analyses are conducted for a box beam thin walled composite
beam and results are compared with the literature. Then, the analyses are repeated for
a diamond shaped cross-section section and the results of different cross-sections are
compared and discussed.

Active vibration control is introduced to gain an ability to control dynamic
characteristics of structures. Implementation of piezoelectrically induced moments
regarding the boundary moment is explained and two different control laws, namely
proportional and velocity feedback control laws and their effects are investigated.
The equations of motion that includes the effect of piezoelectric layers are cast into
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the state-space representation to obtain the dynamic response of the beam. Before
analyzing thin-walled composite beams, a numerical example is solved to attain
a deeper understanding about the effect of piezoelectric materials on the natural
frequencies. This beam model is developed using the first order shear deformable
theory (Timoshenko beam theory) and then solved to determine the natural frequencies
with and without piezoelectric layers influence for various boundary conditions and
lay-ups.

Next, the similar analyses are also carried for thin walled composite beams
highlighting the effects of piezoelectric layers, material anisotropy and transverse shear
on the natural frequencies for varying feedback gains. Besides, several control laws
such as proportional feedback gain and velocity feedback gain are used for vibration
control and their results are compared. In addition, optimal control law is implemented
and dynamic response of the structure is investigated using different control laws.

In conclusion, for a diamond shaped thin-walled composite aircraft wing, active
vibration control is achieved using adaptive materials. Piezoelectric materials are
used as sensors and actuators to provide closed-loop feedback control system. In
future studies, response of the structure to the external forces will be investigated and
controlled by using adaptive materials.
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INCE CIDARLI KOMPOZIT KIRiS OLARAK MODELLENMIS
UYARLANABILIR UCAK KANATLARININ DINAMIK ANALIZI

OZET

Akilli veya uyarlanabilir malzeme sistemleri teknolojilerinin gelistirilmesine gittikce
biiylimekte olan bir ilgi gozlenmektedir. Bu ilginin en bilyiikk sebebi bu tarz
malzemelerin havacilik ve uzay, otomotiv, helikopter ve turbomakinelerin palleri
ve robot kollar1 gibi ¢esitli farkli yapilara kolayca uyarlanabilmesi ve kullanilabilir
durumda olmasindan kaynaklanmaktadir. Akilli veya uyarlanabilir malzemelerin
kullanimu ile, yapilarin dinamik karakteristiklerinin 6ngoriilebilir bir sekilde kontrol
edilmesi miimkiindiir. Bu kontrol sayesinde yapisal rezonans ve ¢irpinma gibi bir
takim dinamik kararsizliklarin oniine kolaylikla gegilebilir.

Yapilmis olan bu tez ¢alismasinda, ucak kanatlarinin dinamik davranislar1 incelenmis
ve piezoelektrik eyleyiciler yardimi ile dogal frekanslarin kontrolii saglanmigtir. Bu
tez boyunca iki farkli model kullanilmistir. Bunlar sirasiyla Timoshenko kiris ve ince
cidarli kompozit kiris modelidir. Her iki model i¢in de yapilarin dogal frekanslari
hesaplanmis ve daha sonrasinda akilli malzemelerin yardimiyla dogal frekanslarin
kontrolii saglanarak, degisimleri incelenmistir. Ayrica yapinin dinamik cevabi da farkli
kontrol yasalar1 altinda incelenmistir.

Ik olarak, ince cidarli kompozit kiris teorisi tanitilmistir.  Verilen formiilasyon
birincil ve ikincil carpilma etkilerini icermektedir. Ayrica bu kiris modeli bir takim
klasik olmayan etkileri de formiilasyonunda barindirmaktadir. Bu klasik olmayan
etkiler kisaca malzeme egyonsiizliigii, enlemesine kayma deformasyonu ve carpilma
kisitlamasidir. Diger taraftan, ince cidarli kompozit kiriglerin yonliiligii, genis bir
elastik baglasim meydana getirmektedir. Bu baglamda temel denklemler ve enerji
ifadeleri verilmistir. Daha sonrasinda ise Hamilton Prensibi araciligiyla genel hareket
denklemlerinin eldesi gerceklestirilmistir.

Daha sonra serbest titresim problemi agiklanmistir. Bu problemi incelerken iki
farkli kompozit konfigiirasyonundan bahsedilmis ve antisimetrik konfigiirasyon, bagka
bir deyisle Circumferentially Uniform Stifness (CUS) konfigiirasyonu kullanilarak
dikey-yatay egilme ve enlemesine kayma baglasimli hareket denklemleri elde
edilmistir. Ayrica, sirasiyla kayma etkilerini iceren ve icermeyen iki farkli teoriden
bahsedilmistir. Bu teoriler Shearable ve Unshearable Theory olarak literatiirde
bulunmaktadirlar. Serbest titresim problemi hareket denklemlerine bir ¢oziim elde
etmek icin sayisal bir yontem kullanilmistir. Denklemlerin karmagiklig1 ve baglasimh
olmasi analitik bir ¢6ziim elde edilmesini imkansiz kilmaktadir. Kullanilan sayisal
yontem Extended Galerkin Method olarak bilinmektedir ve bu kisimda ac¢iklanmustir.
Bu metod, hareket denklemlerini ayriklastirmakta ve bunu sekil fonksiyonlar1 6nererek
gerceklestirmektedir. ifadeler, sekil fonksiyonlar1 ve genellestirilmis koordinatlarin
carptmi olarak tanimlanmaktadir. Bu yoOntemin diger sayisal yontemlere gore
istiinliigli ise, onermis oldugu sekil fonksiyonunun sadece geometrik sinir sartlarini
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saglamasinin yeterliligidir. Bu yontemle hareket denklemleri ¢oziilmiis ve dogal
frekanslar elde edilmistir.

Kanat elmas kesite sahip olacak sekilde modellenmeden once olusturulan matematik
modelin dogrulugunu test etmek amaciyla referans kitaptan alinan sayisal bir 6rnek
coziilmiigtiir. Coziilen bu Ornek icin elde edilen sonuclar ve referans kitapta verilen
sonuclar karsilagtirilmistir. Karsilagtirma sonucunda Extended Galerkin Metodu ile
elde edilen sonugclar ile kitap tarafindan verilmis olan sonuclarin birbiriyle ¢ok iyi bir
uyum icerisinde oldugu goriilmiistiir. Boylece gelistirilmis olan matematik modelin
dogrulugu kanitlanmigtir. Daha sonrasinda kanat ince cidarli kompozit kiris olarak
modellenmistir. Serbest titresim boliimiiniin sonucu olarak ise ucak kanatlar i¢in
titresim kontrolii yoklugunda dogal frekanslar elde edilmistir.

Devaminda aktif titresim kontrolii konsepti, yapisal karakteristikler iizerinde bir
kontrol saglanmasi amaciyla sisteme eklenmigstir. ~ Aktif kontrol tanimi ver-
ilmis,piezoelektrik malzemeler tarafindan indiiklenen momentlerden bahsedilmis ve
sinir momenti hakkinda detayli bilgi verilmistir. Ayrica, uygulanmis olan iki farkl
kontrol yasasindan bahsedilmistir. Bunlar sirasiyla ortantisal geribesleme kontrol
yasasi ve hiza baglh geribesleme yasasi olarak adlandirilmaktadirlar. Aktif kontroliin
sisteme katilmasi ile ¢oziim yonteminde modifikasyonlar yapilacagindan durum uzay
gosterimi anlatilmig ve sonuclar elde edilmistir.

Aktif geribesleme kontrolii uyarlanabilir malzemeler aracilifiyla saglanmustir.
Piezoelektrik katmanlar ana yapinin igerisine simetrik bir sekilde gomiilmiis ve
piezoelektrik eyleyiciler tim kiris uzunlugu boyunca yayilmistir. Bunun sonucu
olarak, kirisin u¢ noktasinda bir sinir momenti indiiklenmis ve bunlar hareket
denklemlerini etkilemek yerine sinir sartlarinda tekil moment ifadeleri olarak yer
almiglardir.  Orantisal ve hiza bagl geribesleme kontrol yontemleri kullanilmig
ve elyaf acgis1 dagiliminin temel frekanslar iizerindeki etkisi incelenmistir. Dogal
frekanslar elde edilirken kiitle ve katilik matrislerine piezoelektrik katmanlarin etkisi
de eklenmistir. Bu etkinin ihmal edildigi durum i¢in de analizler yapilmis ve sonuclar
karsilastirildiginda dogal frekanslarda yaklasik olarak %5’lik bir fark ortaya ¢ikmugtir.
Literatiirdeki ¢ogu ¢aligmalarda bu etkiler ihmal edilirken, yapilan bu tez ¢alismasinda
bu etkinin 6nemine de vurgu yapilmigtir.

Son olarak, piezoelektrik etkileri iyice algilamak ve anlamak amaciyla Timoshenko
kirig teorisini iceren bir 6rnek calisma goz Oniine alinmis ve orantisal geribesleme
kontrol yasasi uygulanarak dogal frekanslar bu ornek kiris i¢in elde edilmislerdir.
Bu 0rnegin hareket denklemleri ince cidarhi kiris modelindeki denkemler kadar zor
olmadigindan analitik bir ¢6ziim elde etmek miimkiin olmustur. Analitik yontemin
yanisira, problem yari-analitik yontem olan Differential Transform Method (DTM)
ve Extended Galerkin Method (EGM) ile tekrar ¢oziilmiistiir. Elde edilen sonuclar
ilgili yerlerde tablo halinde verilmistir. Bir sonraki adimda ise, ucak kanadimiz
artik elmas kesitli ince cidarli kirig olarak ele almarak iizerine kontrol yasalari
uygulanmistir.  Degisen kontrol kazanglari ile dogal frekanslar elde edilmis ve
grafik olarak gosterilmislerdir. Daha sonra modeli daha iyi analiz etmek amaciyla
uzunluk ve narinlik oran1 gibi parametreler degistirilerek dogal frekanslarin incelendigi
caligsma yapilmustir, sonuclar grafik tizerinde gosterilmiglerdir. Optimal kontrol yasasi
tanitilmig ve yapiya uygulanmasi gerceklenmistir. Ayrica, kirig ucuna uygulanan Dirac
Delta impulsu altinda yapinin dinamik cevabi incelenmis, ¢esitli kontrol yasalari icin
karsilagtirma yapilmistir.
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Sonug olarak, elmas seklinde ara kesite sahip olan ince cidarli kompozit ugak kanadi
icin, aktif titresim kontrolii akilli malzemeler araciligiyla saglanmistir. Piezoelektrik
malzemeler kapali devre geribesleme kontrol sistemini saglamak amaciyla algilayici
ve eyleyici olarak kullamilmislardir. Gelecek calismalarda ise yapinin disaridan
gelecek olan kuvvetlere verece8i cevabin incelenmesi ve kontroliiniin saglanmasi
gerceklestirilecektir.
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1. INTRODUCTION

Thin walled composite beams are being used widely in many advanced fields ranging
from aerospace to mechanical, civil and naval constructions. The growing interest of
thin walled structures arise from their incorporation in these fields in order to bring new
designs to perfection, making them efficient, able to operate in extreme environmental

conditions [1].

Thin walled composite beam theory involves with a wide range of elastic couplings
due to its directionality property. In this respect, considering each possible case, it is
likely to analyze the dynamic behaviours of the structures and especially, instabilities
can be avoided. Moreover, this theory incorporates a number of non-classical effects
such as material anisotropy, transverse shear deformation and warping restraint which

enables modelling much more accurately.

Practice of adaptive materials into structures is one of the most attracting subjects
in past decades. Ultilization of these materials has expanded the use and capabilities
of thin walled structures. It became possible to meet the demanding requirements of
complex environments, with the contribution of adaptive materials. Static and dynamic
response, stability and control of structures have been enhanced with adaptive material

technology.

In this study, the closed-loop vibrational behaviour of aircraft wing is investigated.
The wing is modelled as a thin-walled composite beam with a diamond shaped
cross-section. In order to inspect relevant coupling case, an anti-symmetric lay-up
configuration 1.e. Circumferentially Uniform Stiffness (CUS) is employed and coupled
motion of transverse-lateral bending and transverse shear is generated. The active
feedback control is performed by using piezoelectric ceramics as adaptive materials.
The piezoelectric layers are symmetrically embedded in the host structure and the
piezoactuator is spread over the entire beam span. As a result of this, a boundary
moment is induced at the beam tip and in this case, the control is achieved via the

boundary moment feedback control yielding an adaptive change in the dynamical



characteristics of the beam. The cases of proportional and velocity feedback control
procedures are applied and the effect of ply-angle orientation on the fundamental

frequencies are investigated and discussed.

1.1 Literature Review

From a historical perspective, the assumption of thin-walled beams came into being
in late 1930s. After the World war II, strong studies were made on the theory,
and many books were published related to the issue such as Librescu and Ohseop’s
monograph named "Thin-walled composite beams: Theory and Application", [1].
Also, some studies are made on linear static and dynamic behaviour of thin-walled
composite beams of closed cross-section such as the study of "Theory of anisotropic
thin-walled closed-cross-section beams" presented by Berdichevsky, Armanios and
Badir [2]. In last two decades, many studies are made to develop the thin walled
composite beam theory and enlarging its area of integration in various structures
such as aeronautical/aerospace vehicles, automobiles, helicopter and turbo machinery
rotor blades and other mechanical, civil to naval constructions. The behaviour
of two non-classical impacts namely elastic bending-shear coupling and restrained
torsional warping in the behaviour of thin walled composite beams is researched in
Rehfield’s work, intimately [3]. Also, in purpose of isolating the impact of coupling
on the free vibration of closed section beams under extension-twist or bending-twist
coupling using the assumption that is revised by Armanios and Badir, Danicilia made
her research named “The influence of coupling on the free vibration of anisotropic

thin-walled closed-section beams” [4].

Despite the aircraft wing is modeled as a beam with solid cross-section commonly
in the literature, there are only few researches are made to investigate the dynamic
analysis of thin-walled composite beams. Uniquely, Librescu’s work "Free Vibration
of Anisotropic Composite Thin-walled Beams of Closed Cross-Section Contour” led
the approach of the dynamic behaviour of thin-walled composite beams [5]. In his
work mentioned, the impact of directionality property of advanced composite materials
and non-classical impacts are introduced. In another study, Librescu investigated the
dynamic aeroelastic response and the related robust control of aircraft swept wings,

subjugated to gust of wind and fulminating type loads.



Regarding control concept of the structures, use of piezoelectric actuators firstly
introduced by Bailey and Hubbard (1985). The actuators are located at outer surface
of the beam and their mechanical models are developed by Crawley and Luis (1987).
New theories concerning embedded piezoactuators and sensors are developed by Lee
(1990), Wang and Rogers (1991), Batra and Ghosh (1995) and Mitchell and Reddy
(1995). Tzou used piezoelectric shells and generated boundary moment to obtain
control ability on structures (1993) [6]. Active control are applied to thin walled

composite beams by Librescu and his colleagues [1,7-9] in late 1990s.

There are many studies in active vibration control of structures using adaptive
materials, especially piezoelectric in last decade. Their implementation to the thin
walled aircraft structures offers great improvements in design efficiency. Librescu has
taken the role of a pioneer in this field [10—12]. Also, advanced control systems such as
optimal control, are implemented in structures [13] and new aircraft wing geometries

are being investigated [14].

1.2 Purpose of Thesis

The dynamic behaviour of a thin walled beam with diamond cross section is
investigated. It is aimed to control the dynamic behaviour of the aircraft wing so
that any instabilities can be avoided. Active vibration control of the aircraft wing is
achieved by adaptive materials and variation of the natural frequencies versus control

gain is examined.

Firstly, the aircraft wing is modelled as a diamond shaped thin walled composite
beam. An anti-symmetric composite lay-up, also known as Circumferentially Uniform
Stiffness Configuration, is used and transverse bending-lateral bending-shear coupled
motion is generated and investigated. The governing equations of motion are derived
using Hamilton’s principle and solution is obtained numerically by Extended Galerkin
Method. Validation of the solution and mathematical model is accomplished by a

numerical example from Ref. [1].

Secondly, as mentioned, in order to prevent dynamical instabilities such as resonance
or flutter, active vibration control as a closed loop control system is implemented into

the structure. Prior to introduction of active control into thin walled composite beams,



it is tested on a Timoshenko beam and variation of natural frequencies is determined
versus proportional feedback gain. Afterwards, two different control laws are used
to control the natural frequencies of the thin walled structure and as a result in a
predictable manner it is achieved. Proportional feedback control law has no big impact
on natural frequencies while velocity feedback law shows much better control ability.
In the absence of velocity feedback law, no damping is obtained as expected. On the
other hand, when velocity feedback law is implemented, damping is acquired as an

output.

In conclusion, for thin walled composite beams, the model is validated by solving
a numerical example. Then, as main focus, the aircraft wing is modelled as a thin
walled beam and natural frequencies are obtained. Afterwards, in order to obtain a
good knowledge on how active vibration control works, a Timoshenko piezo-laminated
beam has been taken into consideration and variation of natural frequencies is
calculated. Lastly, active vibration is applied to diamond shaped thin walled aircraft
wing and natural frequencies, their variations, damping ratios and dynamic response

of the beam are obtained.

1.3 Overview

This section is devoted to provide a detailed information to reader, about what each
chapter is interested in. Readers who would like to earn a comprehensive knowledge
about thin walled structures and active vibration control, should refer to each chapter

one by one.

Chapter 2 deals with structural modelling of the thin walled composite beams.
Kinematic assumptions and variables are mentioned firstly. Then detailed expressions
and formulation of displacement and strain field are given. Also details of constitutive
equations and energy expressions are pointed out. Using energy expressions and
utilizing Hamilton’s principle, the equations of motion are derived. All derivations

and formulations on this chapter are based on linear theory.

Chapter 3 defines the free vibration problem and underlines its importance. Two
different structural composite configurations are mentioned here and the one,

Circumferentially Uniform Stiffness Configuration, which is employed in this study,



is investigated broadly. Equations of motion are rearranged for the coupling which the
structural composite configuration involves. Determination of stiffness quantities are
mentioned and a chart is provided for it. Shearable and unshearable model are given
and solution methodology is examined. Solution of the equations for free vibration
problem gives the natural frequencies and validation is acquired. Eventually in this

chapter, the results are provided for a diamond shaped beam.

In Chapter 4, one can learn the concept of active vibration control, how it is
implemented into structures using adaptive materials. Modified equations of motion
due to piezoelectric actuation are derived. Boundary moment control law is introduced
and two different closed loop feedback control laws are explained and their equations
are provided. Due to active vibration, solution methodology differs a little bit and state
space representation is used. Then a case study is taken into account, piezo-laminated
Timoshenko beam. Its equations of motion are given and solutions are obtained
analytically and numerically. Afterwards, thin walled aircraft wing is considered again
and natural frequencies are obtained as well as their variations and damping factors.
Additionally, implementation of optimal control law is achieved and dynamic response

of the beam is investigated.

Chapter 5 concludes the whole study briefly. Besides it mentions about how study will

be extended and continued.






2. STRUCTURAL MODELLING AND FORMULATION

This chapter focuses on thin walled composite beam theory, formulation and its
applications. The theory which is quite complicated and can be thought as combination
of bar and shell structures, considerably differs from other beam theories due to its
non-classical effects. These non-classical effects can be listed as material anisotropy,
transverse shear deformation and warping restraint. In order to model thin walled
structures such as aircraft wings, ship hulls, pipes, culvert and box girder bridges,
in a precise and accurate way, thin walled composite beam theory offers a great
opportunity. The implementation of that theory promises great results compatible
with experimental results. In the following subsequent subsections, formulation and

structural modelling of the theory are given in a detailed way.

2.1 Thin Walled Composite Beam Theory

Continuous development of technology has created new opportunities for humans to
improve their designs and aspects of engineering. The foremost new design idea for
structural mechanics is using high strength to density structures. This can be achieved
by either adapting new materials like composites or changing the shape of the geometry
to hollow type closed sections. Both changing the geometry and adapting composites

into the structures lead to thin walled composite beam theory.

This most challenging and modern field of structural mechanics was firstly introduced
by Librescu and Song. The formulation of modern linear theory of thin-walled
composite beams provides powerful mathematical tool to make related calculations
and is investigated in next subsections. There are some kinematic assumptions made

and the most important ones are listed below.
1. The shape of the cross-section does not deform in its own plane.

2. The rate of twist ¢’ varies along x-coordinate(spanwise). This assumptions yields a

non-uniform torsional model which is also referred as the restrained-torsion model.



3. The material properties vary in both circumferential and normal direction

(anisotropy).

4. A static statement also implies that the circumferential stress resultant Ny , which

is known as hoop stress is negligibly small.

2.1.1 Displacement Field

In this section the formulation of displacement field which consists of in plane and
out-of plane displacements, is derived. Here, a cantilever beam is considered and its
geometry before and after deformation can be seen in Figure 2.1. Beam has a length
L, characteristic length d and wall thickness 4. S point, located at mid-contour, moves

to S’ with translations of u,v,w and rotation of ¢.

P'

Figure 2.1: Beam geometry before and after deformation

The expressions of these translations and rotation is given separately in the following

subsections.

2.1.1.1 In-plane displacements

Considering the beam as two-dimensional and focusing on cross section helps us to
obtain expressions for in-plane translations. The two dimensional figure of the cross

section before and after deformation can be seen in Figure 2.2.



Figure 2.2: Beam geometry and kinematic variables

The in-plane translations of point S(x,y) at mid-contour are given as:
u(xyzt) = uo(z,t) —y9(z,1) 2.1

Here r denotes time while ug and vy denote displacements of pole point P. Also rotation
of the cross-section is represented with the symbol of ¢(z,¢). The detailed derivation

of these expressions can be found in Ref. [1,15].

2.1.1.2 Out-of plane displacements

Out-of plane displacement expression varies for open and closed cross-sections. The
difference between them originates from torsional shear strain expressions. Since our
interest lays in the aircraft wings, open cross-section beams are not investigated in this

thesis.

For a closed cross-section beams the torsional shear strain corresponds a constant shear
flow with respect to tangential axis. The direct shear strain for a single-cell closed

cross-section beam is given as Ref. [1, 8].

dx dy

Yoz = _ayxz"i'%yyz‘l’zmpl (2.3)

For closed cross-section beam, Vlasov’s assumption for the shear strain is given as

du; ow
Ysz = En + I5 (2.4)
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Considering these two shear strain expression yields

ow

dy dx
ds

ds+6y(Z,t)_—7n(s)¢/(Z,t> (2'5)

ex(zat) dS

Here, 0, and 6, represents the rotation about x and y axes respectively, defined as

0x(2,1) = %z — 0 (2.6)
0y(2,1) = Yoo — lfy 2.7)

The axial displacement expression for mid-surface (n = 0) can be obtained by

integrating Eq. 2.5

w(s,2,1) = wo(z,t) +3(8)0x(z,1) +x(5)6y(2,1) = Fo()9'(z,1) (2.8)

This expression is valid for both open and closed cross-section beams. The function
F,, in Eq. 2.8 is known as primary warping function. Secondary warping is related to
contributions of the points off the mid-surface and needs to be taken into account when
considering thick-walled beams. Eventually, Eq.2.9 defines the axial displacement

with contributions from both primary and secondary warping effects.

w(s.2) = wa(a) + [3(6) ~n P | 0a) + [x6) +0 %

ds ds 2.9)
)=o) o'
Here, expression of the primary warping function is given as
Fy— fc [rn(s) — w(s)]ds (2.10)

The other terms in Eq. 2.9 with n multipliers in front of them are related to secondary

warping and importance of them increases while dealing with thick-walled beams.

10



2.1.2 Strain Field

Strain field is expressed with the similar common small displacements assumption

equations

(2.11)

_1 @jLﬂ : _1 @Jr&_w : _1 @Jra_w (2.12)
=\ ox) 72\ oy )0 =72\ 0: " o :

Regarding the first assumption, the cross-sections do not deform in its own plane,
obtained translation equations are substituted into strain field equations, Eq. 2.11 and

2.12 yields

Ex=0;  £,=0; Yy =0; (2.13)

which means that the first assumption holds. Furthermore, the non-zero strain

components can be arranged as below using newly obtained translation expressions

(0) (1)

SZZ(S7Z7n7t) :822 (S7Zan7t)+ngzz (SvZJ) (2‘14)
where
(0) /
&z (5,2,m,1) = wy(z,t) +y(s)0i(z,1) +x(s)0i(z,1)
B s §r(s)ds (2.15)
—9"(z,t) [ fira(R) a2 — [ fra a2 |
and

ot 2,1 — 6" (2.0 (s) (2.16)

d
EZ(Zl)(S,Z,t) = _ye)/z(zat) - ds

ds

Furthermore, the shear strain components off the mid-line contour can be expressed in

terms of displacements

Too(s,2,m,8) = 10 (5,2,m,8) + 12 (5,2,m,0) +nyi (5, 2,1) 2.17)
11



Loz(s,z,n,t) = %5?) (s,z,m,1) (2.18)

where
v (s,2,m,1) = Z—ﬁ [0 (z,1) + 6y(2,1)] +% Vo(z.t) +6:(z1)]  (2.19)
#(0.2) = W) r) where (o) = DS (220
¥ (5.2.0) = 29/ (2,1) (2.21)
and

d
W (s, 2,m,0) = = [ul(2.0) + By (z,1)] —

dx /
ds v)(2,7) + 0x(2,1)] (2.22)

oL
The superscript (.)(?) denotes the strain components which has a numerical value

different from zero at mid-line contour only while (.)(") denoting the strains which

are different from zero off the mid-line contour.

2.1.3 Constitutive Equations

The i*" layer’s constitutive equations of an N layered thin-walled composite beam are

given as

Oss Egs

Oz &

Oon = [0], q &n (2.23)
Osn En

GSZ (l) ESZ (l)

Here, [Q] is known as the reduced stiffness matrix.

The membrane stress resultants Ny, N;;, Ni;; the transverse shear resultants Ng, Ny

and the stress couples Ny, Ny, Ngs are shown on a beam element in Figure 2.3.

In Figure 2.4, geometry of an N layered thin-walled composite beam is seen. Both

Cartesian (x,y,z) and curvilinear (s,n,z) coordinates are apparent on the figure.

The stress resultants symbolize forces while the stress couples stand for moments. The
stress resultants have the unit force per unit length and the stress couples have the unit

of moment per unit length. Their expressions are given below

12



(b) Stress Couples
Figure 2.3: (a) Stress resultants, (b) stress couples

o
N-1 / [neiy
h/2 :
gy
h/2 = Nz
2 | M1
1 | | Moy

Figure 2.4: N-layered composite beam

e The stress resultants

NSS O-SS
N, N rng Oz
@@
Nep =) / Oy, ¢ dn (2.24)
Nz =171 | oy
Nsn GSI’!

e The stress couples

N g
{LZZ} _ Z/“ {"ZZ} ndn (2.25)
Ly i=1/ni1y (Osz ()

The thickness and tangential shear stiffness of the layered composite beam are
assumed to be uniform along the tangential axis, s, constitutive equations for closed

cross-section beams are expressed as

13



Nys Al A A Ess B2 Bis

Ny o = |[Ann A Ay 8z(g) + < B» €z(z1)+ B Ys(zlh-%)
Ny, Ais Az Ass) |49 140 By Bgs
Ny = A44yzn (2.27)
Nsn - A45 Yon (2-28)
L B, B»n B 8(”) Dun) (1) [Dxw) ()
22 12 22 26 0 22 1 26 1
€ + &, + 2.29
{Lsz} [316 By B66} (O)ZZ (t) {D26} = {D66}%Z (2.29)
Yoz + Vsz

The constitutive equations contain some stiffness quantities known from classical

laminate theory and they are expressed in Ref. [16] as

A=Y [ 004 230
=y, [  Qjdn (2.30)
i=17"i-1)
=¥ / " 0 ndn (2.31)
Jk Jjk .
i=17"3-1)
Di=% " 0n2an (2:32)
]k_~1ﬂ(‘1) Jjk .
i= i—

Here, these stiffness quantity terms are called extensional stiffness, coupling stiffness

and bending stiffness respectively.

The transverse shear stiffness quantities are also given as

&[0 )
A=Y / 2,0 dn (2.33)
i=1713i-1)
In this expression, Reissner’s transverse shear correction factor is used. k;,, = \/5/6

Fourth kinematic assumption involves here with the constitutive equations. The
circumferential stress resultant Ny, which is known as hoop stress is negligible
compared to other stresses and becomes zero. By this assumption, tangential strain

becomes

1
Eg = A (Alzez(zo) +A16%(S) +A16Ys(§) +B16?’s(z]) +312€z(zl)> (2.34)
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Eventually, constitutive equations for single cell closed thin-walled beams are obtained

as below

(sz\ (K11 KipKizKig 0] ( 82(3) )
Ny, K> Kyy K3 Kps O ?’s(zo)
L K41 K4 K43 K44 O (1)

- 2.35
L, K51 K5y K53 Ks4 0 %Z(I/)z (2.35)
Nz 0 0 0 0 Ay gz%
(Nw) [0 0 0 0 As] | % |

2.1.4 Energy Expressions

In order to derive the equations of motion for thin-walled composite beams, Hamilton’s
principle is utilized. Hamilton’s principle requires strain energy and kinetic energy
expressions as well as work done by external forces to obtain equations of motion.
U, K and W, represent strain or potential energy, kinetic energy and work done by
external forces, respectively. The displacements denoted by A; = A;(x,y,z,t) satisfy
the boundary conditions A; = A; and the variations of the displacements also fulfill the
condition 0A; = 0 at two arbitrary times, f and ¢;. Hamilton’s principle ensures that
the following expression which is also called as variational, is constant for the motion’s

original path from time 7 to #; and given as

1
5]2/6(U—K—We)dt:O (2.36)

fo
where J and § are Hamilton function and variation operator, respectively. The strain

and kinetic energy expressions are respectively

1
U= E/O'ijgijdv (2*37)
v
1 ..
K= / pAiA:dV (2.38)
%

To handle the kinetic energy in the variational formulation,

1 no,

f6Kdl‘ = priSAidl‘

10 A ) (2.39)
:pA,‘(SA,' — tglpA,-SA,-dt

1=ty
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Here, () presents the partial derivative with respect to time . Hamilton principle
stipulates that 8A;(x,y,z,t0) = 6A;(x,y,z,t1) = 0 yielding the first term on the right
hand side of Eq. 2.44 is removed thereby updating the expression of 6J

5J:/8(U+K—We)dt:O (2.40)

fo

where 6K = —pA;SA,.

2.1.4.1 Strain energy

The strain energy per unit volume can be expressed as multiplication of stress and
strain. In order to obtain total strain energy of the beam, the strain energy per unit
volume should be integrated all over the volume. Since &y, &y, and 7, are assumed

and found as zero, the strain energy is calculated with non-zero strain components as

I
-2 / 7{ / (6222 + Gy + Gl 5 dndsdz (2.41)
0Ch

The integration through the wall thickness is carried out and using stress resultant and

stress couple expressions, the strain energy can be re-expressed as

I~

U

I
B[ —
o,

fff{czz [822 + ”ez(z )]

Ch

+0 [ys(z) Ty nys(;)} + o } dndsdz
(1) (2.42)

1 f (1) (0) | 1)
U= fo{ zzgzz +Lzzgzz + Nz (Y52 + V5]

‘|‘Lsz’ys(z) "‘an’)/igg) } dsdz
Inserting the strain expressions given by Eqgs. 2.15,2.16 and 2.19 - 2.22 into the energy

expression and integrating around the mid-line contour C yields the following strain

energy expression

L

=3 Of {Tzw6+Mz¢’—Bw¢”
+8; [M6] +M, 6, + O (u+ 6,) + O, (vy+ 6x)| (2.43)
+8ys [—MoV)y — Myulp) }dz
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Above energy expression contains tracers s and dys which shape the strain energy
for two different models, shearable and unshearable, respectively. The detailed
information regarding these two models is not included in this section. The details

concerning these models is given in the following Free Vibration chapter.

The one dimensional stress resultants and stress couples in the strain expression are

given as

T:(z,t) = PN ds (2.44)
/
Ou(z1) = 8, f (%NSZ + %Nm> ds (2.45)
C
0,(z.1) = &, ?{ (d—iz\/sZ - ‘;—’;NM> ds (2.46)
C
M, (z,t) = f(xNZZ—f— %LZZ) ds (2.47)
C
dx
My(z,t) = ?{ (yNZZ — &LZZ> ds (2.48)
C
M,(z1) = ?f [W(s)Ns +28,Ls7] ds (2.49)
C
Bo(z,1) = j{ [Fy (5)Noy — ry(s)Lo.] ds (2.50)
C

5U = [Tzaww (B, +M.) 56 — B, 5¢'
+5§ (QxOup+ anvP +M,006, +My39y)
L
+8,5 (M 6vp +MySup + M Svp + My Sulp) }
=0 (2.51)

L
[ {n’6wO+<Bcc+Mg>6¢+6S (05up+ 0 6v
0

+ (M, — Q) 6.+ (M} — Ox) 86, + &, [M Svp + M, Sup] } dz

Here, the expressions represent axial force, shear forces, bending moments, twist
moment (Saint-Venant moment) and warping torque (bimoment) respectively. The unit
of T;, Qx, Oy is force, while My, My, M, have the unit of force.length. The remaining

bimoment B,, has the unit of force.length?.
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The virtual variation of the displacements in the strain energy OU is taken as Eq.
2.51. Integration by parts is applied to above expression in order to obtain the virtual

displacements without any differentiation.

2.1.4.2 Kinetic energy

The kinetic energy expression of the beam is written in terms of density and resultant

velocity

K= % / Py (@ +v* +v?) dV (2.52)
Vv

Substituting the displacements u, v and w

K=3 fvpm{ [ip = (Y = )] + [0 + (X —xp)9]”

) (2.53)
+ o+ X6, +Y 0, —F,(s)9' +nr,(s)¢’] } dav

dx
ds-

Also it is known that X = x+n% andY =y—n Expanding the terms yields a
very complex and long expression. Integration through the wall thickness and around
mid-line contour requires a lot of formidable calculations. Therefore a parametric
programming software, Mathematica is used to handle calculations. As a result,
reduced mass terms are introduced and given in Appendix A. Also it has to be
mentioned that these mass terms are valid for only symmetrically laminated beams

with pole point P at origin.

For symmetrically laminated beams, the mass terms are given as

N
(mo,m) =Y / P (1,n2)dn (2.54)
i=17"i-1)

The variational kinetic energy is

151 151
Jorar = [ [p Gibu-+i5v-+5wsw) avar (2.55)
fo

ty V
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Arranging the above expression with introducing K; terms, the variation may be written

3]

L
t
j‘akdtz—fdtf{K15u0+K25vo+K35wo+(K4—1<§)5¢
1o to 0

+Ons [Kg5l/t() —l—KéaV()] + &g [K666x + K569y] dz

n
_fdt [K75¢—|—5N5(K55u0 —|—K65V0):|
Iy

z=0,L

The K; terms are given below with corresponding reduced mass terms

K1 = byiig— by ¢

Ky = byiig + b3

Kz =bwo — b7(ﬁ/ + Ss(bzéx + b3 9y> + 5]\15(—[72\'/'6 — b3ii6)

Ky = bsiig — biig + (by +bs +bi4+bys)d

Ks = b3y — (bg —b17) 9’ + Os[(be — b13) 0 + (bs + b15) 6]
+0ns[—(bg — b13)iiy — (bs + bys )i

Ko = byvig — (bg +b16) 9’ + 8s[(ba + b14) 0: + (bs — b13)6)]
+5NS[—([?4 + b14)\76 — (b6 — b13)ii6]

K7 = _b7WO + (bIO +b18>(ﬁ/ + 55(-([?8 +b16)éx — (bg — b17)9y)
+0ns((bs +bi6) i + (b — bi7)iig)

Kg = —bziig — baiy

(2.56)

(2.57)
(2.58)
(2.59)
(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

Again these K; functions and the variation of Kinetic energy have tracers of dys and

Os. As mentioned before, they classify the system as shearable or unshearable models

which detailed explanation of these models is given in the following chapter.

Since this study focuses on the free vibration problem, the work done by external loads

such as surface loads, end tractions and body forces are not included in this study.
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2.1.5 Equations of Motion

The equations of motion is obtained by Hamilton’s principle as well as boundary
conditions. The most general equations of motion and boundary conditions for a

thin-walled composite beam are given below with tracers of 8s and dyg again

Sug : —Ki + px+ 650, 4 Sns(—Ks +m, + M) =0 (2.65)
Svo : —K>+ py + 850, + Sns(—Kg +ml + M) =0 (2.66)
Swo —Ks+p,+T. =0 (2.67)

5¢ : —K4+ K7+ b, +m;+ B, + M, =0 (2.68)

56, : 8s(—Ke+my— Qy+M,) =0 (2.69)

50, : 8s(—Ks+my—Qx+M;) =0 (2.70)

The boundary conditions at the root and the tip section of the beam are derived through

the non-integral terms in the strain energy expression. They are defined at z = 0 and

z=0Las
Sug: ug=1iig or —nQy—8sQ0x+ ns(—Ks+M;) =0 (2.71)
SnsOug : ug =1y or My—nM;=0 (2.72)
Svo:vo=7g or —nQy— 8s0y+Oys(—Kes+M,) =0 (2.73)
SvsOVy: vy =7, or My—nM.=0 (2.74)
Swo: wo=wog or T,—nT,=0 (2.75)
8¢0: 9=¢ or K9—nM,+B,+M,=0 (2.76)
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6¢': ¢'=¢' or —nB,+B,=0 (2.77)

8s60,: 6, =6, or My,—nM,=0 (2.78)

8566, : 6,=6, or My—nM;=0 (2.79)

The equations of motion and boundary conditions will be modified in next chapters due
to structural configurations and used shearable model. Also, they will be expressed in

terms of a;; stiffness quantities which will be introduced in next chapters.
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3. FREE VIBRATION

In order the analyze the dynamic behaviour and vibration characteristics of structures,
it i1s imperative to investigate natural frequencies and mode shapes of the systems.
With the knowledge of these, dynamic stabilities like structural resonance and flutter
may be prevented from occurrence. This section of thesis focuses on free vibration

characteristics of thin walled composite beams.

First, structural composite configurations used in thin walled composite beams are
examined. Then governing system of equations are obtained regarding implemented
structural composite configuration. Then shearable and unshearable theories are
elaborated and solution methodology is profoundly explained. Finally, mass and

stiffness matrices are obtained and natural frequencies are calculated.

3.1 Structural Composite Configuration

Two structural composite configurations exist while dealing with thin walled
composite beams. These structural configurations produce different structural
couplings. These configurations firstly introduced in Ref. [3] and named as
Circumferentially Asymmetric Stiffness Configuration(CAS) and Circumferentially
Uniform Stiffness Configuration(CUS). Circumferentially Uniform Configuration
states that ply angles act as even function while in Circumferentially Asymmetric

Stiffness Configuration ply angles act as odd function.

It is important to examine elastically coupled motion of structures in order not to miss
out any critical case resulting from coupling. These cases may emerge unexpectedly

in practice unless they are carefully considered in design - analysis phase.

Using Circumferentially Uniform Stiffness Configuration gives an opportunity to
investigate two different couplings. These couplings are lateral bending-transverse

bending-shear and extension-twist, simulating coupled motion. On the other hand,
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using Circumferentially Asymmetric Stiffness Configuration, one can investigate the

extension-bending-shear and bending-shear-torsion couplings.

The elaborated derivation for CUS configuration investigated in this thesis and given

in the next subsection. Its illustration can be seen in Figure 3.1.

yl

Xy

Figure 3.1: CUS configuration

Circumferentially Uniform Stiffness Configuration also referred as antisymmetric
configuration exhibits some simplifications in the equations of motion due to its ply

angle orientation. These simplifications are simply given below.

The stiffness quantities of Cig, Cog , C36, Cs5 have the same sign with its counterpart

in opposite wall. This valid for top-bottom and left-right walls. Simply,

~(T) _ ~(B ~(T) _ ~(B ~(T) _ ~(B ~(T) _ ~(B

C§6) = C§6); C§6) = C§6); C§6) = C§6); Cz(ts) = Cz(ts) G.D
~(L) _ A(R (L) _ AR ~(L) _ A(R (L) _ A(R

CiG) - C§6); C§6) = Cée); Cge) = C§6); Cz(ts) - CA(LS) (3.2)

This relation also applies to A;;’s, extensional stiffness quantities, and D;;’s, bending

stiffness quantities. They are given as
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(T ~(B (T ~(B (T ~(B (T ~(B
~(L ~(R ~(L ~(R ~(L ~(R ~(L ~(R
A§6) = A§6); A§6) = Aéﬁ), Ag6) = Agé); A4(|-5) = AiS) 3.4)

6
~(L) AR ~(L) AR ~(L) AR ~(L) _ AR
Dgé) = D§6); Dé6) = Dg6); Dg6) = Dgé); Dz(ts) = DA(LS) 3.6)

These ply angle configuration may also be implemented into the open section
thin-walled beams. However, this subject is not an interest of this thesis and it is

not included.

3.2 Governing Equations of Motion

It is stated that the aircraft wing is modelled as a thin-walled composite beam with
Circumferentially Uniform Stiffness structural configuration. The beam is cantilever
at the root, z = 0, free at the tip, z = L. In the subsequent subsections, the equations of

motion for a defined beam above can be found investigating two different couplings.

In order to arrange the equations for structural configurations and coupling, new
stiffness quantities are resorted. These stiffness quantities are denoted as ag;;’s and
they are obtained by introducing displacement quantities into the equations of motion.
Each of a;; defines a different coupling and their expression are given in Appendix A,

specifying which coupling they are involved.

Their calculations are related to some other quantities studied in previous chapters of
this thesis. In order to clarify and prevent a confusion about calculations, a chart is

provided in Figure 3.2.

3.2.1 Extension-Twist Coupled Motion

The equations of motion for extension-twist coupling is given in here. The solution to
these equation is not included in the thesis. The equations are introduced only to give

an idea about the motion of the beam for this coupling.
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Figure 3.2: Evaluation of the stiffness quantities, a;;
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The governing equations of motion for extension-twist are

owp : anwy +a179” = by (3.7)
00 : —ag0"" +ar79" +ai7wy = [(ba+ bs) + 8,(b14+b15)]¢ — (bro + Sub13)9”
3.8)

The boundary conditions at root, z =0

wo=0;  ¢=0; ¢'=0 (3.9)

The boundary conditions at tip, z =L

owp : a11w6 —|—a17¢' =0 (3.10)
00 : —ag69" + a9’ +arzwy = —(b1o+ 6ub13) 9’ (3.11)
6¢/ . a66¢” =0 (3.12)

Here, tracer 8, denotes secondary warping effects and in this study those effects are

taken into account. Therefore tracer 8, takes value of 1.

3.2.2 Lateral Bending-Transverse Bending-Shear Coupled Motion

In this section, the equations of motion of a thin-walled composite beam is given for
lateral bending-transverse bending-shear coupling. The equations are treated with two

models, shearable and unshearable models, respectively.

The tracer of §, is mentioned in previous chapter. Its function is the same and takes
value of 1.

3.2.2.1 Shearable model

This model includes shear effects and consists of 49 stiffness quantities, 28
independent and 21 off-diagonal (coupling). As it can be interpreted from the numbers,

this model relatively difficult due to inclusion of shear effects.

The equations of motion for shearable model
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oup : a349;' +a44(u8 + Qy/) = by

oy : ars 9;/ +ass (vg + 9;) =b1vy
00, : a339 +Cl34(u +6! ) a55(v6 + Gx) — ars Gy/ = (b4 + 5nb14>9;c
59y : 61229 +(125(V + 6! ) — a44(u6+9y) —a346)2 = (b5+5nb15)éy

The boundary conditions at root, z =0

ug = 0; vo = 0; 0, =0; 6,=0

The boundary conditions at tip, z =L

Oup : a340,+ asa(uy+6y) =0
ovp : a6, +ass(vo+6x) =0
56, : a330; + aza(up+6,) =0
06, : a2 6; +ays(vo+6:) =0

3.2.2.2 Unshearable model

3.13)
3.14)
(3.15)

(3.16)

3.17)

(3.18)
(3.19)
(3.20)

3.21)

In this model, transverse and lateral shear effects are discarded which makes the model

relatively simple. The fundamental difference results from letting 6, — —u}, and

0, — —v} and some arrangements. This model consists of 15 independent and 10

off-diagonal (coupling) stiffness quantities, a total number of 25.

The equations of motion for unshearable model

Oup: azzugﬁ = (bs + 6nb15)l/i'P]/ —b1up
ovp: a 3V1$// = [(b4 + 0, b14)VP] —b1vp

The boundary conditions at root, z =0

up =0; up = 0; vp =0; vp =0
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The boundary conditions at tip, z =L

oup: (axup) — (bs+ 8,b15)uip’ =0 (3.25)
Sulp : axup =0 (3.26)
Ovp: (az3vp) — (bg+ 8,b14)vp' =0 (3.27)
SV : ayvp =0 (3.28)

3.3 Solution Methodology

In this section solution methodology is explained in a detailed way and the shearable
equations of motion for lateral bending-transverse bending-shear coupling are solved.
The governing equations of motion for thin-walled composite beams obtained in
previous section is considerably complex and can not be solved analytically. Therefore,
a numerical method, Extended Galerkin Method, is employed here to obtain a solution
for the equations of motion. In this method, the trial functions are selected only
to satisfy the geometric boundary conditions [17]. They are also called admissible
functions and are chosen as polynomials orders of approximately 7-9. Extended

Galerkin Method applies a discretization to displacements as below

uo(z,1) = Ny (2)qu?) (3.29)
vo(z,1) = Ny (2)qu (1) (3.30)
Ou(z,1) = N{ (2)gx(1) (3.31)
0y(z,1) = Ny (2)gy(1) (3.32)

Here, N’s are shape functions and have dimension of Nx1 while g’s are generalized
coordinates with dimension of 1xN. Then the discretizated equations of motion can be

rearranged as

M (1) + Kq(r) = Q(r) (3.33)

To perform free vibration analysis, it is assumed that beam has simple harmonic
motion, g = Xe'®, and external loads are eliminated, Q(¢) = 0, which yields

eigenvalue problems
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Mj(t) + Kq(r) =0

(AI-M'K)X =0

3.34)

(3.35)

Here A and X represents eigenvalues and eigenvectors, respectively. The natural

frequencies can be computed by the relation of A = ®? while eigenvectors are

indicating mode shapes.

Mass and stiffness matrices are also calculated with the help of Extended Galerkin

Method as only functions of spanwise coordinate, z. The matrices are given as

0

B 1 Ar/T
a44NMNu

0

'byN,NI' 0

bN,NT

0

0

I A7!T
a55Nva

0 0 i
0 0
dz
(b4+b14)NxNxT 0
0 (bs + b15)NyNyT_
a34N,;N)’CT a44N,;NyT
a55N‘l,N; (125N‘/,N)/,T

azaN;N, assNeNJT assNiN;T + assNoN azaNy N + asyNoNyT

T I ar!T I nyT 1T I ar!T T
_a44NyNM a25Nva a25Nny —|—a34Nny azzNyNy —l—a44NyNy ]

Besides, the generalized coordinates are given as

q= {C[,,, qv 9x CIy}T
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dz

3.37)

(3.38)



3.4 Results and Discussion

The preliminary results are presented for the dynamic analysis of the thin-walled
composite beams. Firstly, the validation of the mathematical model is performed.
For this purpose, natural frequencies are obtained for a thin-walled box beam whose
properties are given in the Table 3.1 and the results are tabulated for selected ply angles

in Table 3.2

Table 3.2 shows the results for the first four natural frequencies which corresponds to
vertical and lateral bending modes of the box beam. As seen, an excellent agreement
between the presented results and the ones provided by Ref. [1] is obtained, providing

validation of generated mathematical model.

Also in Figure 3.3, the stiffness quantities, g;;’s, of thin-walled composite box beam are
plotted for selected ply angles. Moreover, Figure 3.4 and Figure 3.5 show the variation

of first two transverse and lateral natural frequencies versus ply angle, respectively.

5

x 10

3.5 ' ' ! ! ! ! ! ! ! ! !
—*—a,

3| —o— 2 |
+

25} % -

- —A—8,

2_+a44 i

—— &

Stiffness Quantities, a..
=
ol

0 30 60 90 120 150 180
Ply Angle, 6

Figure 3.3: Variation of stiffness quantities versus ply angles
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Table 3.1: Material Properties and Geometric Dimensions of The Box Beam

Table 3.2: Comparison of First Natural Frequencies for Box Beam

Graphite-Epoxy

Eq 206.75 GPa
Ezz = E33 5.17 GPa
G12 3.10 GPa
G13 = G23 2.55 GPa
Vo1 = V31 0.00625

V32 0.25
Density, p 1528.15 kg/m?
Geometry

Width, 2b 0.0254 m
Depth, 2d 0.00508 m
Thickness, i 0.001016 m
Length, L 0.254 m
Number of Layers 6

P ly Onorizontal Onorizontal Wvertical Wvertical
Angle 0 (rad/s) (rad/s) (rad/s) (rad/s)
(Degree) Ref. [1] Ref. [1]
0 842.89 843 241.4 241
4193.02 4193 1506.75 1507
15 857.36 857 245.06 245
4255.90 4256 1529.57 1530
30 935.46 935 263.08 263
4562.69 4563 1641.94 1642
45 1234.83 1235 314.33 314
5424.28 5424 1962.15 1962
60 2174.23 2174 439.75 440
7491.19 7491 2763.99 764
75 3907.77 3908 761.00 761
12272.81 12273 4912.88 4913
90 4579.59 4580 1499.36 1499
18056.78 18057 8503.90 8503
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Figure 3.4: First two natural frequencies of vertical bending mode of the box beam
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Figure 3.5: First two natural frequencies of lateral bending mode of the box beam

33



The next analyses are conducted for the thin-walled composite beam with a diamond
shaped cross section. Keeping the material properties same, the width and depth of the
beam are taken as 0.254m, the thickness of the beam and length are chosen as 0.01m
and 2.032m, respectively. The geometry of the diamond shaped wing can be seen in
Fig 3.6. Material properties are kept as the same. The results are given in the following

figures.

4 y,v, 0,

X, u, 0,

»
Z, W, P

Figure 3.6: The geometry of the diamond shaped thin walled beam

Figure 3.7 depicts the stiffness quantities, a;; of diamond shaped thin-walled composite
beam. It is seen from the Figure, bending stiffness quantities are dominant compared

to others.

Figure 3.8 shows the variation of first two natural frequencies of the diamond shaped
beam. Due to equal depth and width of the cross-section, the natural frequency results

of the lateral and transverse bending modes overlap with each other.
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Figure 3.7: Stiffness quantities for diamond shaped thin-walled beam
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Figure 3.8: First two natural frequencies of the diamond shaped thin-walled beam
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4. ACTIVE VIBRATION CONTROL

Active vibration control is an active application, using some control gain, that reacts to
ongoing vibrations by applying excitation on the opposite way of the forces caused by
vibration. Using this application, it is possible to enhance damping characteristics and
prevent structural instabilities such as structural resonance. Moreover, undesired noise
can also be avoided. One way to achieve vibration control appears from use of adaptive
materials. Adaptive or smart materials such as piezoelectric materials has a wide range
of use recently. They are likely to have a great importance in the design process of
aerospace structural systems, robot manipulators and helicopter rotor blades. Using
these latest concept, new generation of structural systems can be designed to operate

safely in fierce environments.

Piezoelectric materials are recently introduced materials into the structures, capable
of generating mechanical strain under applied voltage. They are found in nature
as polymers or composite ceramics and they can be implemented into structures as
sensors and actuators, in order to control the structure in a predictable manner. There
are two different piezoelectric effects, namely direct and converse. The first one refers
to electrical charge generation as a result of applied mechanical force while the latter
one referring to generation of mechanical strain/moment due to applied electrical field
or voltage. In this study, converse piezoelectric effect is used and bending moments
are induced as a result of applied voltage. Also, piezoelectric materials are used as

both sensors and actuators in order to achieve closed-loop feedback control law.

The piezoelectrically induced bending moments can occur in both directions and they

are represented with M, and My. Their expressions are given as [8]

- * dx B}
_ _ = 12 12
M, = E3(ny —n_)e31R(s,z2) {y(l — _T1 )+ 7 A_]kl ] ds

-2 / [%53(,11_”2_)@31R<s,z>]ds
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A, dy B,
y—/§3 (ny —n_ e31R(sz)[ (1— Ai)#—%A—TI ds

—5/ {dyés('u )6_31R(S72)]d5

Here n; and n_ represents the upper and lower faces of the piezoelectric layer,

4.2)

respectively. Besides, A;kj and Bl’-‘j denote the local stiffness quantities related to

piezoactuators.

From Equation 4.1 and 4.2, it is seen that induced moments are proportional to applied
electrical field. Therefore, the moment expressions can be rewritten simply,

M, = &Cpy; M, = &Cy, 4.3)
where expressions of Cy, and Cy, are obvious from previous equations. Then global
moment expressions can be arranged as

M, = M, — M,; My =M, — M, 4.4)

where ' denotes mechanical moments. Therefore, equations of motion with influence

of piezoelectrically induced moments are given as below in most general case

ougp : a349)£/ + a44(u6’ + 9;) — by —l—px(x,l‘) =0 4.5)
Svp azs8; +ass(vy+ 6;) — b1vp + py(z,1) =0 (4.6)
00, : 61339 —I—a34(u +9) a55(v6+9) a259’
4.7)
— (b4 + 8,b14) 6 — SpM; + my(z,1) =
59y : a229 —|—6125(V +6 ) a44(u0—|- 3] ) 61349/
y . (4.8)
—(b5 + 5nb15)9y — SPM)/, + my(z,t)
The boundary conditions at root, z =0,
up = 0; vog = 0; 0, =0; 6,=0 4.9)
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The boundary conditions at tip, z = L,

Oup : a340, + asa(uy + 6y) =0 (4.10)
ovg : ars Oy' +ass(vy+6y) =0 4.11)
50, : a330, + aza(upy + 6y) — SsMy = 0 (4.12)
00, : a6) 4 axs(vo+ 6x) — SsM, = 0 4.13)

4.1 Boundary Moment Control Law

The location of piezoelectric actuators plays a major role in the design process. The
bending moments can be induced by either piezoelectric patches or piezoelectric layers
spread all over entire span. As a result of these two different mechanisms, the influence
of piezoelectrically induced moments on the equations of motion varies. The tracers

in the equations of motion given in previous section are used to model this difference.

The use of piezopatches involves with derivatives of moments and they affect the
equations of motion directly. In order to model this concept, tracer dy is inserted

to equations. For piezopatches the tracer Sy takes value of 1 while 85 becomes zero.

The other method is spreading piezoactuators embedded all along the entire beam span.
As as result of that, the total induced moment can be obtained after an integration. The
total moment acts as a bending moment at the beam tip [1,6, 18]. Therefore it does not
involve with the equations of motion but boundary conditions at the tip [19]. This is
called boundary moment control law. In this concept, tracer g takes value of 1 while

Oy becomes zero.

In this study, boundary moment control law is applied to the system. Therefore,
the equations of motion and the boundary conditions can be rearranged with proper
values of tracers. In addition, since this study is interested in determination of natural
frequencies and their predictable control, external force terms are also cancelled to
perform free vibration analyses. Eventually, the equations of motion and the boundary

conditions become

39



Sugp : a349)€/ + a44(u6' + 9)/,) —brug=0 4.14)

ovp : ans 9;/ + ass (Vg + 9;) —bvp=0 4.15)
00, : asz 9;/ + a34(u8 + Qy/) — ds5 (V6 + Qx) —ans Qy/ — <b4 + 5nb14>9;c =0 (4.16)
59y : azzey// + ass (vg + 9)2) — a44(u6 + Qy) — a349; — (bs+ 5nb15)9.y =0 4.17)

The boundary conditions at root, z =0,

up = 0; vo = 0; 0, =0; 6,=0 (4.18)

The boundary conditions at tip, z = L,

Oup : a340,+ asa(uy+6,) =0 4.19)
Svop : ays56) + ass(vo+6x) =0 (4.20)
50, : a330, + aza(ugy + 6y) = M, (4.21)
06, : an Gy/ + axs(vy+ 6y) = My 4.22)

4.2 Closed Loop Feedback Control Laws

It is mentioned before that piezoelectric materials can be used as sensors, actuators
or as both in a system. When they are inserted to a system as both, it is possible
to form a closed loop feedback control [7, 8]. Using closed loop feedback control
law, with proper value of control gain it is likely to obtain a way better control
behaviour, advantageous to open loop control law. The induced bending moments can
be regulated to be proportional to the position, the velocity or even the acceleration of

the beam tip.

In closed loop controls, the voltage output from the sensors is amplified with the proper
gain and fed back to actuators. The electrical charge from sensors is collected from
sensors and then redistributed to the actuators again. Thus, this section explains how

closed loop control law work.
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The electric displacement expression is

D3 =e31&, (4.23)

The electric charge due to displacement

qs(l)Z/A DSdAS:/A €31&,;dA; (4.24)

As a result, the sensor output voltage

vy(r) = 2 4.25)

In above equations, C;, and A, represent the sensor’s capacitance and area, respectively.

It is assumed that sensors are located symmetrically on opposite walls, then Equation

4.23 can be rewritten

Vi) = C36,(L,1); V2(t) =Cy6y(L,1) (4.26)

The expression of CSes is not given here but can be easily obtained from Equations

4.22,4.23 and 2.14

Two different feedback control laws are applied, namely, proportional and velocity
feedback law. They are summarized in next subsections and their related equations are

given.

4.2.1 Proportional Feedback Control Law

In proportional feedback control law, the piezoelectrically induced bending moments
are proportional to the position of the beam tip node. The information of the position is
sensed and transferred to actuator after multiplication with the control gain. Therefore,

the induced moment becomes related to position of the beam tip.

Actuating voltage, proportional to the voltage output of sensor

3() = ; 3(1) = (4.27)
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where h, is the thickness of the piezoelectric layer an k), is the proportional feedback

gain. Then, moment expressions become

» k,Chya
M= MOS0, (L,1)] = —kyCuiBulL1) (428
a
N kpCuma
My = — ph - [Cigey(Laf)] = —kpCn6y(L,1) (4.29)
a

4.2.2 Velocity Feedback Control Law

In velocity feedback control law, the piezoelectrically induced bending moments are
proportional to the velocity of the beam tip node. The information of the velocity is
sensed and transferred to actuator after multiplication with the control gain. Therefore,
the induced moment becomes related to velocity, the time derivative of position, of the

beam tip.

Actuating voltage, proportional to the voltage output of sensor

_ kdVilo/dr
_ e,

 kydVi(r)/dt

=0 - (430)

& (1)

where h, is the thickness of the piezoelectric layer an k, is the velocity feedback gain.

Then, moment expressions become

N kChpa <. .
M,=— Vh L[CS0,(L,1)] = —k,C116,(L,1) (4.31)
a
kaMya S A .
= [C36y(L,1)] = —kyCa26y(L,1) (4.32)

4.3 Solution Methodology

Solution methodology was explained in the previous chapter. Applying same method,
mass and stiffness matrices remain the same while the effects of induced moments
are taken into account here. The most general case of virtual work including

piezoelectrically induced bending moments
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8J = My(L,1)86,(L,t) + My(L,1)86,(L,t) + /OL[p;‘f(z,t)5u0(z,t)
+0%(2,1)8vo(z,1) +ml (2,1)86x(z,1) + p(2,1) 6y (2, 1)]dz

+Z[p)cg(Zi,t>5uO<Zi,t) +P§(Zi;t)5VO(Zi»t)

(4.33)

+m(zi,1)66x(zi,1) +m;(zi,t)56y(zi,t)]

The superscripts d and ¢ stand for distributed and concentrated loads, respectively.
Depending on the which control law is used, the discretized virtual work for the

adaptive beam is

8J =Q"8q—8,q"K,KcSq — 8,¢" K. Kcdq (4.34)

Here, K¢ is the newly introduced control matrix. Also two new tracers, 6p and 0,
identify which control law is used. 6, denotes proportional feedback control law, 6,

stands for velocity feedback law. They take value of O or 1 depending on control law.

Therefore, discretized system for closed loop control

Mq(t) + 6,K,Kcq(t) + Kq(t) + 6,K,Kcq(t) = Q1) (4.35)

This expression is also similar to the one presented by Ref. [20]. Here M and K must be
taken into consideration for both the host and the piezoactuators as a whole. Stiffness
quantities of piezoactuators must be determined and inserted to matrices. Also K¢

matrix is given as

00 0 0 ]
00 0 0
Kc = (4.36)
00 Cy N (L)NE(L) 0
00 0 CoaNy(L)N] (L) ]

where C1 and Cy; are elastic coefficients of piezoelectric material.

Afterwards, solution is obtained by casting the discretized equation into state-space

form as q; = q and q, = q; = . The state space representation can be expressed as
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x(1) = Ax(t) + Wg (1) 4.37)

The A and Wy matrices are

A= (4.38)

0
Wy — 4.39)
-M1Q()
where 0 and I are zero and identity matrices.
K=K+ 8,K,Kc (4.40)

To perform free vibration analyses, external forces are assumed to be zero, Q(7) = 0.

Then, Equation 4.35 reduces to

x(1) = Ax(t) (4.41)

which has a solution in the form of

x(t) = XM (4.42)

and yields to an eigenvalue problem

AX =X (4.43)

In the absence of velocity feedback gain, K, = 0, the eigenvalues are complex
quantities. It is also obvious that one cannot observe structural damping without
velocity feedback gain. The eigenvalues and structural damping factor expressions

are given as

Ar =My Eieyr (4.44)
44



| SE— - (4.45)

7+ g

4.4 Results and Discussion

Application of closed loop control laws was discussed in the previous section. This
section represents the dynamic results for the thin walled diamond shaped wing.
However, prior to these results, a case study has been performed and closed loop
control has been implemented on a Timoshenko beam. Results are given and compared

to the ones provided by the Ref [21].

4.4.1 Case Study-Timoshenko Beam

In this case study influence of the piezoelectric effects on the natural frequencies
of a Timoshenko beam with solid (rectangular) cross-section is investigated. Only
proportional feedback control law is implemented in this study. To perform to have a
good understanding of piezoelectric effects. The model used here is relatively simple

to thin-walled composite beam theory.

Figure 4.1 shows the laminated beam considered in this case. The piezoelectric
layers are located continuously at the top and the bottom of the beam. Two different
composite configurations, symmetric and non-symmetric, are considered and their
lamination system can be seen in Figure 4.2 and geometric and material properties

can be found in Table 4.1

Cc
Figure 4.1: Timoshenko laminated beam
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]
]
(a) [PZT/0/90/90/0/PZT] (b) [PZT/0/90/0/90/PZT]

Figure 4.2: (a) Symmetric laminate, (b) Non-symmetric laminate

The governing equations of motion are given for most general piezo-laminated beam

as follows. One should see Ref. [21-23] for more detailed formulation and discussion.

d /Ay 3 N 9. . .
$<A11W+3115+E11> = 2 [(10) + (129)] (4.46)
9 IWN W\ 9., .
gc(ASS <q> + E) —Px> = (W) + 4.47)

2 AUy . 39 Wy 9.
E(BHW_"DIIZ +F11> —Ass (‘P + W) = E[(IMP)—F (LUy)] (4.48)

where mass related terms are

h/2
(11712713) =cC h/zp(l,Z,ZZ)dZ (4.49)

p, g and P denote mass density of each layer, transverse distributed load and axial
compressive force, respectively. Also, the superscript () stands for time derivative.
Moreover, E1; and Fj; denote induced axial force and induced bending moment,

respectively. It is also given as, Fi; = Gf¢'(x,t) and G is proportional feedback gain.

Table 4.1: Material Properties and Geometric Dimensions of Timoshenko Beam

Graphite-Epoxy  PZT-5H Graphite-Epoxy = PZT-5H
E, 144.8 GPa 63GPa h 1.27¥10%* m 2%10 4
E, 9.65 GPa 63GPa L 0.254 m 0.254 m
Gz 7.1 GPa 248GPa ¢ 0.0254 m 0.0254 m
Gi3 7.1 GPa - Qu 145.7 GPa 68.36 GPa
Gy 5.92 GPa - Qx  9.708 GPa 68.36 GPa
Vo 0.3 0.28 Qi  2.878GPa 16.26 GPa
g - 1.593%107% Qg 7.1 GPa 0
ds; - -166¥10712  p 1560 kg/m® 7600 kg/m?
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The boundary conditions,

U 20

Ny=Ai|1— +B||—+E;  =P;
x 11 o + 118x+ 11
ow ow
e ass(o4 )P g,
QZ 55 ¢+ ax ax
U, 0
M= B2 Dy 2% 1Ry =0
ox ox

Up=0 (4.50)
W=0 4.51)
=0 (4.52)

For free vibration case, all external loads vanish, g = 0 and P = 0. Also, induced axial

force E1 is zero due to equality in opposite direction. The general solution

Uo(x,t) = up(x)e' (4.53)
W (x,1) = w(x)e'® (4.54)
O (x,1) = ¢ (x)e' (4.55)

Then, the equations of motion become
Apuf+B1¢" = —w0*Luyg — 0° Lo (4.56)
A55(])/ +A55W” = —a)211W 4.57)

Gf _

(B4 5L Y+ (D11 416"~ Ass(0 4')) = ~0PPo — 0Py (459

4.4.1.1 Symmetric case

The cross-ply symmetric laminate has six layers and the configuration of

[PZT /0° /90° /90° /0° /| PZT).

motion dueto Bj; =0and , =0

Alluf)/ + m211u0 =0

A55¢/ +Assw” = —(Dzllw

(D11 +Gf)9" —Ass(9 +w) = —0* ¢
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Symmetric configuration simplifies the equations of

(4.59)
(4.60)

(4.61)



The boundary conditions

A11u6 = 0; uy = 0 (4.62)
Ass(p+w)=0; w=0 (4.63)
(D +Gf)¢' =0; ¢=0 (4.64)

The results are obtained by both analytically and Extended-Galerkin Method for first

three modes. The natural frequencies are tabulated in Table 4.2, 4.3 and 4.4 given as

Table 4.2: Comparison of First Natural Frequencies for Timoshenko Beam

Feedback w1 (rad/s) o (rad/s) w; (rad/s) ®q (rad/s)
Gain G Ref. [21] Analytic EGM DTM
0 9.78 9.83 9.83 9.83
5 10.74 10.80 10.79 10.78
15 12.33 12.50 12.50 12.50
24.3 13.76 13.90 13.90 13.90

Table 4.3: Comparison of Second Natural Frequencies for Timoshenko Beam

Feedback w, (rad/s) W, (rad/s) w, (rad/s) o, (rad/s)
Gain G Ref. [21] Analytic EGM DTM
0 61.11 61.61 61.61 61.61
5 67.16 67.65 67.65 67.65
15 77.66 78.35 78.35 78.35
24.3 86.42 87.13 87.13 87.13
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Table 4.4: Comparison of Third Natural Frequencies for Timoshenko Beam

Feedback w3 (rad/s) w3 (rad/s) w3 (rad/s) w3 (rad/s)
Gain G Ref. [21] Analytic EGM DTM
0 171.17 172.50 172.55 172.50
5 187.88 189.42 189.18 189.42
15 217.49 219.38 219.28 219.38
24.3 241.84 243.95 24391 243.96

4.4.1.2 Non-Symmetric case

The solution for non-symmetric case does not contain any simplification due to
configuration unlike symmetric case. In order to solve the system analytically, three
equations of motion must be decoupled first. One should see Ref. [21] to obtain a
detailed explanation about analytic solution. As a result, obtained results are given in

Table 4.5, 4.6 and 4.7 below.

Table 4.5: Comparison of First Natural Frequencies for Timoshenko Beam

Feedback w; (rad/s) w; (rad/s) w; (rad/s) w; (rad/s)
Gain G Ref. [21] Analytic EGM DTM
0 9.1 9.18 9.24 9.181
5 10.22 10.114 10.26 10.116
15 12.13 11.764 12.05 11.765
21.55 13.24 12.732 13.08 12.729

Table 4.6: Comparison of Second Natural Frequencies for Timoshenko Beam

Feedback W, (rad/s) W, (rad/s) W, (rad/s) > (rad/s)
Gain G Ref. [21] Analytic EGM DTM
0 57.08 57.52 57.93 57.517
5 64.02 63.368 64.32 63.368
15 76 73.685 75.49 73.685
21.55 82.93 79.578 81.99 79.72
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Table 4.7: Comparison of Third Natural Frequencies for Timoshenko Beam

Feedback w3 (rad/s) w3 (rad/s) w3 (rad/s) w3 (rad/s)
Gain G Ref. [21] Analytic EGM DTM
0 159.8 160.96 162.22 160.957
5 179.2 177.31 180.08 177.31
15 212.75 206.128 211.13 206.128
21.55 232.11 230.775 229.57 222.97

4.4.2 Thin-walled Composite Beam

The equations of motion are solved for free vibration case with proportional and
velocity feedback control laws separately. The effects of piezoelectric layers are
included to mass and stiffness matrices where they are neglected in most studies.
Embedded piezoelectric layers and cross section of the beam are demonstrated in Fig

4.3. Also properties of the piezoelectric material, PZT-4, is given in Table 4.8

AY

piezoactuators/sensors
e

' mid-contour

depth. 2d

| width, 2b |

Figure 4.3: Variation of stiffness quantities with ply angle

Table 4.8: Material Properties of Piezoelectric Layers

PZT-4

Ci1=Cxpy 139 GPa

C12 77.77 GPa
C13 74.30 GPa
C33 115 GPa

C44 25.59 GPa
Py 7498 kg /m’
€31 -5.202 N/Vm
€33 15.101 N/Vm
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Figure 4.4 demonstrates the variation of stiffness quantities with respect to ply angles.
Since the width and the depth of the beam are equal, the transverse and lateral stiffness
quantities correspond to bending and shear have the same value, respectively. Besides,
the bending stiffness quantities are dominant when compared to others. In the absence
of feedback gain, another figure is plotted to show the variation of the first two natural
frequencies with respect to ply angle (Figure 4.5). The natural frequencies of the first
and second transverse bending modes are obtained to have the same values as the ones

of lateral bending modes.

8

x 10
3 T T T T T T T T T T T
ol +822/10 _
O3
2_ +333/10 -
- A8y,
~ 15} -
+a44
&g

0.5

Stiffness Quantities, a..

0 30 60 90 120 150 180
Ply Angle, 6

Figure 4.4: Variation of stiffness quantities with ply angle

This study utilizes two different control laws to achieve active vibration control of
the structure. The first one is proportional feedback control and in this control law,
actuated moment at the wing tip is proportional to the displacement at the wing
tip, vertical or horizontal. The second one is velocity feedback control in which
piezoelectrically induced moment at wing tip is proportional to the velocity at the
wing tip, either flapwise or chordwise. As a result, the analyses with feedback gains

are carried out and results are shown in several figures below.
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Figure 4.5: Natural frequencies of aircraft wing with diamond shaped cross section

Figure 4.6 shows the first natural frequencies versus proportional feedback control
gain for different ply angles. In order to analyze the model better, some parameters
are changed. Figure 4.7 provides information about first natural frequencies versus
proportional feedback control gain for selected values of length and 6=0. In Figure
4.8, relation between first natural frequencies and proportional feedback control gain

for selected slenderness ratios and 8=0, while keeping depth constant.

Figure 4.9 shows the implementation of velocity feedback control. This figure provides
information about first natural frequencies for selected ply angles and how they vary
with velocity feedback control gain. Similar to Figure 4.7, Figure 4.10 provides
information about first natural frequencies versus velocity feedback control gain for

selected values of length and 6=0.

As mentioned before, in the absence of velocity feedback control it is obvious that
there is no damping on structural model. In Figure 4.11, damping factor is shown
versus velocity feedback control gain. All obtained results show an agreement with

results provided in Ref. [9].
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Figure 4.6: First natural frequencies versus K), for selected ply angles, 6
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Figure 4.7: First natural frequencies versus K, for selected values of length, L
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Figure 4.8: First natural frequencies versus K, for selected slenderness ratios, R
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Figure 4.10: First natural frequencies versus K, for selected values of length, L
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4.5 Optimal Feedback Control Law

In this section another control method is implemented and dynamic response of the
beam is investigated. This new control method is called optimal control and utilizes a
mathematical optimization in order to minimize a certain cost function. The aim is to
drive the final value of the state x(¢) to a desired value in an arbitrary short time with
a control input of u(z) Ref. [24] This control is based on a linear quadratic controller
design. As a result, equations of motion under influence of control input are expressed

as

X(t) = Ax(t) + Wu(r) + BQ(r) (4.65)

As stated above, u(t) is control input to be found. Besides, here

0 I
A= (4.66)
~MKo
0
W — (4.67)
~MIF
0
B= (4.68)
M1

Besides, F is the piezoactuator influence vector and defined as

F = [¢;(z2) — ¢;(21)] (4.69)

By minimizing the control effort and the response of the closed-loop system linear
quadratic regulator (LQR) control algorithm is achieved. Two different situtaions
should be mentioned here. The cost function can be defined in two separate ways. As
the first case, external excitation is included in the cost function or performance index.
As the second case, external excitation is not included in the performance index. In
this study the second case is investigated. One should refer to Ref. [8] to obtain more

knowledge on first case. Therefore, the cost function can be defined as
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1 1

J=-
2 )i

(x" Zx +u Ru)d: 4.70)

Here, Z and R are positive semidefinite the state weighting matrix and positive definite
symmetric the control weighting matrix, respectively. 7y and 77 stand for initial and

final time.

The state weighting and the control weighting matrices are chosen to be balancing
the needs; minimizing the control effort and dynamic response. Their expressions are

given as below

aK 0
7= 4.71)
0 M
R=nF'K'F 4.72)

where 7 stands for scale factor. a and B are named as weighting coefficients and
restrictions on them are o8 > 0 and o + 8 > 0. Under the circumstances Z is an

indication of the total energy of the system as kinetic and potential

1 (i 1 [
> [Nz = / 47 BMa -+ o aKqldt 4.73)

2 Io 1o

Regarding to all the information at hand, the steady-state Riccati equation is

Z+PA+A'P_PWR WP =0 (4.74)

P is the positive definite solution to the steady-state Riccati equation. Then, the optimal

gain matrix can be obtained as

G=R 'W'p (4.75)
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As a result, with optimal feedback control law, control input is written as

u(r) = —Gx() (4.76)

4.6 Dynamic Response

In this section, the dynamic response of the thin-walled composite beam under

different control laws is investigated. The comparisons are held between control laws.

Concerning solution methodology, since there are very large number of equations, the
modal analysis is utilized here to making solution rather easy and reduce computation
time. This method is highly recommended due to its uncoupling feature. The modal
analysis method depends on the vector of eigenvectors and mode amplitudes. In this
technique physical coordinates are turned into modal or generalized coordinates using
eigenvalues and eigenvectors. These new coordinates are also referred as principal

coordinates. Therefore the state vector can be rewritten as

X(t) = DE(r) 4.77)

Here ® represents modal matrix while & is the modal coordinates vector. On the other

hand, force terms should also be generalized

f(r) = ®7Q(r) (4.78)

As aresult equations of motion can be written in terms of generalized coordinates

OTM®PE (1) + DT CPE (1) + DTKDE, (1) = DT Q(r) (4.79)

Then the discretized displacements can be rearranged as Ref. [7]

uo(z,1) = N (2)®u&s(1) (4.80)
vo(z,1) = NJ (2)@y&s(1) (4.81)
Or(z,1) = N (2)@x&s(1) (4.82)
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Oy(z,1) = NyT(Z>cI)y§s(t) (4.83)

Here, ®,,®,,®,,®, are Nxm eigenvector matrices while m is the number of modes

taken into account. In this study six modes are considered.

Then all the matrices in Eq. 4.37 and 4.65 can be cast into generalized form. The
problem in modal analysis technique here, in most cases, the damping matrix does
not become a diagonal matrix resulting no decoupling. Three possible solutions are

suggested for this situation and they can be listed as

e Diagonalization
e Complex Eigensystem

e Direct Time Integration, DTI

In diagonalization technique, if damping is light, damping matrix can be diagonalized
by using undamped frequencies and mode shapes. However, diagonalization cannot

properly model damping effects of some situations accurately Ref. [26]. They are

e Structures with local damper devices
e Structure-media interaction

e Active control systems

In this study, investigated problem lies in the three scenarios listed above. Therefore,

diagonalization is not an adequate solution method for the problem at hand.

The complex eigensystem method is an exact solution methodology, and requires no
approximation. The damping strength does not change anything. The only problem is
for a large number of degrees of freedom, solution may be time consuming. Also
expertise in math and engineering is required. In this study this solution type is

preferred.

Direct time integration is another method for solving such systems. Besides, It
has the feature of solving nonlinear equations of motion different from the other
methods introduced. Additionally, it does not involve with coordinate transformation

or complex arithmetic.
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The complex eigensystem is employed to solve the equations of motion. The dynamic
response of the beam is obtained under a unit impulse at beam tip. Obtained results

under different control law types are plotted below in Fig. 4.12 and 4.13.

x 10
5 T T T T T
No Control
4+ Kp=0.015 a
K =0.015
3r v a
Optimal Control a=1, =1

AL VA

Tip Displacement
o

[ = .
\ \
Ll ]
_al ]
al

0 005 01 015 02 025 0.3

Time

Figure 4.12: Comparison of different control laws under applied Dirac Delta

The figure above, Fig. 4.12, is the most significant figure obtained in this study. It
clearly expresses the distinction between the implemented control laws. As expected,
in the absence of any control method, dynamic response is obtained harmonically.
Implementation of proportional feedback control reduces the amplitude but does not
change the dynamic characteristics of oscillation, briefly, response remains harmonic.
It was stated in previous chapters, application of velocity feedback control generates
damping to the system and can be tracked with the green line. The damping of
oscillation under applied velocity feedback gain can clearly be seen in the figure.
Lastly, red line represents the optimal control law for selected o and 8 values. Optimal
control was defined as a control law that minimizes the cost function which was

determined to consist of the control effort and the response of closed-loop system.
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Figure 4.13: Comparison of different values of velocity feedback gains

In Fig. 4.13, the dynamic response of the beam under unit impulse, is compared for
different values of velocity feedback gain. Considering this figure, it is seen that for
the value of K, = 0.05 the beam has the maximum damping effect and as K, increases
the damping effect reduces. Actually, this is a predicted result from the Fig. 4.11
which has the maximum damping ratio at around the value of K, = 0.05. About the
amplitudes, as the velocity feedback gain increases, natural frequencies which is an
indication of stiffness level of the beam gets higher, see Fig. 4.9, yielding to lower

amplitudes.

In Fig. 4.14, under different control parameters of o and 3, optimal control feedback
law is investigated. It was tried to make a logical statement for the parameters of o and
B. As moving from left to right side in rows, values of a parameter increase and as
moving from top to bottom in columns, values of 8 parameter increase. Some constant

values which are 0, 0.1, 1, 10 and 100 are assigned to them.
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It is seen from the figure that as o increases, amplitudes decrease. Therefore, it is
realized that ¢ is an indication of and highly related to amplitudes. On the other hand,
as f increases, the time that oscillations completely damped and number of peaks
decrease. It yields to a result that damping time is a function of parameter 3. One
thing to notice is that as f3 is increased to 100 from 10 damping time increases. This
situation can be explained as, the system changes to overdamped phase from critically
damped phase or underdamped phase. The critically damped phase occurs at value
of around 10, and then when f increases it transforms into overdamped phase. The

illustration for that phenomena is given in the following figure.

As can be seen from Fig. 4.15, as damping ratio increases dynamic response changes
and damping time decreases. Maximum damping time occurs at undamped case and
minimum appears on critically damped case. However, when damping ratio increases

beyond critical level, overdamped case occurs and damping time increases.

Underdamped

Critically Damped

~ —— Overdamped

b "

-

I \ 4 . -
P .q_\_u\_\ln'_:_\l__uh_.'?L."—v— , & - e, L 1
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Figure 4.15: Different damping characteristics
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S. CONCLUSION

In conclusion, dynamic analyses are performed for aircraft wings modelled
as thin-walled composite beams and active vibration control is achieved using
piezoelectric actuation. Depending on the implemented control law, dynamic

behaviours and natural frequencies of the beam is controlled in a predictable manner.

First, theory of thin-walled composite beams is explained and structural modelling is
stated profoundly for a cantilever beam. The governing equations of motion of the
beam are derived and a rectangular-box cross-section is used. The natural frequencies
are obtained for box-beam and results are compared to the ones provided by previous

studies.

Prior to implementation of active control mechanism, the beam is modelled as diamond
shaped thin-walled beam and dynamic analyses are conducted. Variation of natural

frequencies and stiffness quantities versus ply angles are depicted.

Secondly, active vibration control is applied to the aircraft wings. In order to acquire a
good understanding about piezoelectricity and its application on structures, initially
a rectangular laminated beam is considered. Appropriate voltages are applied to
piezoelectric layers located at top and bottom of the beam. As a result, induced
moments and forces are obtained and their influence on natural frequencies are

investigated.

Afterwards, active vibration control is used in thin-walled composite diamond shaped
beams with two different closed loop control laws. The piezoelectric layers are
embedded into the host structure and they shift mass and stiffness matrices, resulting
a change in natural frequencies, even in the absence of applied gain. Proportional
and velocity feedback control laws are applied separately and their influences are
investigated in each case. The study revealed that velocity feedback control is
more sensitive than proportional one. Also, optimal control law is implemented on

the system and dynamic response of the beam is obtained. The dynamic response

65



is examined under different control laws and comparison is made for Dirac Delta

impulse.

As future work, it is planned to extend the study to be applicable to much more
complex structures, like tapered aircraft wings. Also acceleration feedback control
law is intended to be applied. Ultimately, behaviour of the structure under external

forces will be also investigated and control will be achieved.
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APPENDIX A: Reduced Mass Terms and Stiffness Quantities

Table A.1: The reduced mass terms, b;.

b= fmods

by = 56 moxds
bs = 56 mox2 ds
by = 56 mok,, ds

by = fmoxFst

by = §mog—§ ds

b1z = §ng—§% ds
b5 = §m2 (ds>2 ds
b7 = §m2 <%> ryds

&1

by = §moyds
by = §moy2 ds
be = §moxy ds

bg = §moyFw ds
bio = §mOF£ ds

d
b = §m0% ds
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Table A.2: Stiffness quantities, a;; = aj;.

The acronyms E, CB, FB, CTS, FTS,

W and T stand for Extensional, Chordwise Bending, Flapwise Bending,
Chordwise Transverse Shear, Flapwise Transverse Shear, Warping and

Twist, respectively.

Description Coupling involved
ajl = lel ds E
ap = f [K11X+K14%] ds E-CB
a3 = f [Klly—Km%] ds E-FB
aly = f‘Kug—? ds E-CTS
ale — f[Klle —K14r,] ds E'W
ay; = §K13 ds E-T
i 2
ay = fﬁ Ki1x? +2K14x% + K4 (%) } ds CB
ay3 = ff Kiixy — Kjax® + Kpay Y _K44g_§g} ds  CB-FB
=9 Kol + K s3] ds CB-CTS
a—f—K &4, (2)]d CB-FTS
25 = 12Xy + K24 | g5 s
are = f KHFWx—K14rtx+K14FW% —K44r,%} ds CB-W
ayy = f K13X+K43%] ds CB-T
a3 = f[K“yz—ZKMy%—i—KM%] ds FB
2
azs = fﬁ [Klzy% — Ko () ds} FB-CTS
azs = fﬁ [K12Y% _K24(31_);%i| ds FB-FTS
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azg = f[Kany—Kmr;y—Kme%’s‘ +K44rt%] ds FB-W

az = f [Kizy — K43%] ds FB-T
aq4 = fﬁ {Kzz (%)2%—1@ (%>2} ds CTS
ass = Knd® - R E as CTS-FTS
ase = f [K12F§E — Koury 8] ds CTS-W
asg7 = fﬁ [KB%ds} CTS-T
ass = & (&) + K (%)2] ds FTS
dsg = f :KleW% —KW%} ds FTS-W
sy — f :KB%} ds FTS-T
ae6 = 55 (K1 F} — 2K14F,ry + Kagr?] ds w

ag7 = f[K]g,Fw — Ky3r¢] ds W-T
ar = f[2K53 + K3y ds T
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The reduced elastic stiffness coefficients are defined as

Qij=Cij—C3Cj3/C33 iLj=1,
O =Cu k,l =4,

Modified stiffness quantities given in Egs. ().

Ky = Ay — A” .
K12 = K| = Ape — =510

2

A
Koy =Ky = 326 161112

Ki3 :2<D26 312316> +‘//< Afﬁn)
K44 = Dy — A“
Ksi = By — 22810

Ay

B
K52 — B66 _ 161116

Ks3 =2 (Des — 3 ) + v (Bos — 4421 )

55,
Ksq = Do — =3 1¢
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