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A NEW LUMPED PARAMETER (TANK) MODEL FOR RESERVOIRS 

CONTAINING CARBON DIOXIDE 

SUMMARY 

The use of  geothermal  energy all over the world is  increasing  every  day  because  

of  its  cleanliness, safeness, renewability and sustainability. Today Turkey’s energy 

demand is mainly compensated by imported fossil fuels. However, with the 

geothermal energy exploration and development activities, Turkey’s vast geothermal 

resources can be evaluated and the geothermal energy can be one of the domestic 

energy resources that will contribute considerably to our future energy supply.  

In order to evaluate a geothermal field and make future performance predictions, 

geothermal reservoir simulations must be conducted. Early reservoir simulations 

considered the geothermal water to be pure water. However, geothermal waters may 

contain significant amounts of non-condensable gasses such as carbon dioxide. Two 

of the common characteristics of Turkey’s geothermal fields are that they are initially 

all liquid dominated and almost all contain some amounts of carbon dioxide. Carbon 

dioxide can have a significant  effect  on the production performance of geothermal 

reservoirs. The main impact is on the flashing point of water – carbon dioxide 

mixtures. Even small amounts of carbon dioxide can significantly increase the flashing 

point considerably. Hence at relatively high values of pressure, a gas phase could form 

during production either in the well or sometimes in the reservoir. When modeling 

geothermal systems with carbon dioxide it becomes crucial to include the effects of 

carbon dioxide in the model. Therefore it is very important to be able to keep track of 

the inventory of carbon dioxide. During production/injection operations the amount of 

carbon dioxide could change. This change in carbon dioxide should be modeled 

accurately to be able to make accurate future performance predictions. It is very 

important to account for the change in carbon dioxide due to the fluid behavior in 

reservoir and wellbore. The changes in carbon dioxide significantly effect the flashing 

point depth and the wellhead pressure. Some certain minimum wellhead pressure is 

necessary for keeping power plants operational. 

In this study, a new nonisothermal lumped parameter model capable of considering 

the effects of carbon dioxide is developed. This new approach couples both energy and 

mass balance equations and moreover carbon dioxide mass fraction and hence it can 

be used to predict both temperature, pressure and corbondioxide changes in the 

reservoir. The model is based on three conservation equations; mass balances on water 

and carbon dioxide and an overall energy balance. By doing so, the behaviour of 

average reservoir pressure, average reservoir temperature and the amount of carbon 

dioxide can be modeled. Constant or variable production and reinjection rates are also 

handled.  

Furthermore, a new analytical model that is capable of determining the amount of 

carbon dioxide as a function of time for liquid dominated reservoirs is developed. The 

analytical approach presented in this study is an original contribution to the literature. 
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The developed analytical equations are very easy to use and provide useful insight 

about how the carbon dioxide changes with time and which parameters affect it most. 

The tank model is first verified with analytical model and commercial software 

PetraSim. Then various synthetic cases that demonstrate the effects of parameters such 

as, production and injection rate, recharge constant, porosity, bulk volume, 

compressibility of rock, on the performance of reservoir are presented. Moreover, the 

effect of salinity on the solubility of CO2 and the value of the Henry's law constant are 

examined. Finally, one of Turkey’s major fields, Germencik field, is studied. The best 

model that fits the Germencik field is formed and performance of this field is 

evaluated. The results indicate that the model works well. It can be utilized to better 

understand the behavior of hot water systems that contain carbon dioxide and to 

forecast future performance. 
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KARBONDİOKSİT İÇEREN REZERVUARLARIN YENİ BİR BOYUTSUZ 

PARAMETRE (TANK) MODELİ İLE MODELLENMESİ 

ÖZET 

Türkiye’nin enerji ve elektrik ihtiyacı nüfus artışı ve sanayileşme hızıyla orantılı 

olarak artmaktadır. Enerji ihtiyacının büyük bir kısmı yurtdışından ithal edilen fosil 

yakıtlardan karşılanmaktadır. Fosil enerji kaynaklarının giderek azalması ve 

yakıldığında havaya verdiği yüksek orandaki karbondioksit nedeniyle kirlilik 

yaratması gibi nedenler alternatif enerji kaynakları arayışını arttırmıştır. Jeotermal 

enerji düşük karbondioksit emisyon oranı ile hava kirliliği yaratmaması, tükenmeyen, 

yenilenebilen ve ucuz bir enerji kaynağı olması nedeniyle önemli bir alternatif enerji 

kaynağıdır. Ülkemiz jeotermal kaynak zenginliği açısından dünya çapında en ön 

sıralarda yer almaktadır. Enerjide genel olarak dışa bağlı olduğumuz için yerli enerji 

kaynaklarının kullanımı daha büyük önem arz etmektedir. Ülkemizin giderek artan 

enerji ihtiyacının bir kısmının yerli kaynağımız olan jeotermal enerji ile karşılanması 

enerji bağımlılığımızı azaltıp ülke ekonomisine önemli bir katkı sağlayacaktır. Bu 

nedenle jeotermal enerjinin en verimli ve en doğru şekilde kullanılması açısından bu 

konu ile ilgili çalışmalar hız kazanmalıdır.  

Türkiye’de özellikle son on yıl içinde jeotermal enerjinin kullanımında büyük 

gelişmeler sağlanmıştır. Jeotermal enerji sıcaklığına bağlı olarak başta elektrik üretimi 

olmak üzere konut ısıtması, sera ısıtması, termal turizm-tedavi ve endüstri gibi birçok 

alanda kullanılmaktadır. Türkiye’nin mevcut elektrik kurulu kapasitesi Haziran 2016 

itibariyle 695 MWe olarak ve doğrudan kullanım kapasitesi ise 3676 MWh olarak 

verilmektedir. 2005 yılında jeotermal elektrik kurulu kapasitesinin 17.8 MWe olduğu 

değerlendirilirse ülkemizde jeotermal enerji kullanımının ne derecede geliştiği 

görülmektedir. 2014 yılında 38 sahayı kapsayarak yapılan bir çalışma sonucunda 

elektrik potansiyelinin istatistiksel p10 değerinin 1673 MWe, p90 değerinin ise 3140 

MWe olduğu görülmüştür. Yine aynı çalışma, ısıl potansiyel için p10 değerini 5600 

MWt ve p90 değerini ise 11400 MWt olarak vermektedir. Mevcut kullanım ve 

potansiyel dikkate alındığında jeotermal enerjinin kullanımının ülkemizde 

önümüzdeki yıllarda gelişmeye açık olduğu görülmektedir. 

Jeotermal enerji kaynağının kullanımının en etkin şekilde yapılabilmesinde rezervuar 

mühendisliğinin önemi oldukça fazladır. Rezervuar mühendisliği hesaplamalarının 

gerçekleştirilebilmesi için jeotermal rezervuar modelinin geliştirilebilmesinde yapılan 

varsayımların gerçeği mümkün mertebe temsil etmesi gerekmektedir. Literatürede ilk 

jeotermal rezervuar modellerinde rezervuar akışkanı modellenirken saf su varsayımı 

yapılmıştır. Fakat tüm dünyada birçok jeotermal rezervuarda su içinde çözünmüş 

olarak CO2, N2, NH3, H2 ve H2S gibi yoğuşmayan gazlar bulunabilmektedir ve 

miktaları kütlece %10 mertebelerine varabilmektedirler. Bu gazlardan hem miktar 

hem de etki olarak en belirgin olan yoğuşmayan gaz karbondioksittir. Ülkemizde de 

hemen hemen tüm jeotermal rezervuarlarda rezervuar suyunun içinde çözünmüş 

olarak karbondioksit bulunmaktadır. Türkiye’de enerji üretimi bakımından en büyük 
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kapasiteye sahip olan Kızıldere, Germencik, Salavatlı ve Afyon Ömer-Gecek gibi 

jeotermal rezervuarları incelendiğinde çoğunun karbondioksit içerdiği 

gözlemlenmektedir. Örneğin, Kızıldere sahasında rezervuar suyu ortalama kütlece % 

1.5 oranında karbondioksit ihtiva etmektedir. Bu oran derinlere inildikçe % 3 

mertebelerine varabilmektedir. Ömer-Gecek ve Germencik sahaları da % 0.4 ve % 2.1 

oranında çözünmüş karbondioksit içermektedir. 

Rezervuar suyunda çözünmüş karbondioksit içeren bu sahaların modellemeleri 

yapılırken karbondioksit etkisinin gözardı edilmesi hatalı sonuçlara sebep olur. 

Karbondioksit varlığı rezervuarın termodinamik koşulları ve faz bileşimlerini 

etkilemektedir. Karbondioksitin su üstündeki en büyük etkisi ayrışma basıncını 

arttırmasıdır. Bu etki belirli bir sıcaklıkta sıvı fazından gaz fazına geçişin daha yüksek 

basınçlarda gerçekleşmesini sağlar. Üretimle basınç düşerken daha yüksek basınçta 

gazlaşma oluştuğundan ve iki fazlı akışkanın yüksek sıkıştırılabilirlik özelliğinden 

dolayı, rezervuar basıncı korunmuş olur. Yani, üretim sırasında karbondioksitin kısmi 

basıncı rezervuar basıncının düşümüne olumlu olarak katkıda bulunarak basınç 

düşümünü azaltır. Çok küçük karbondioksit miktarları bile rezervuar basınç 

davranışını önemli ölçüde etkilemekte ve ayrışma basıncını önemli ölçüde 

değiştirebilmektedir.  Karbondioksitin bir diğer etkisi de bir jeotermal sahada üretim 

başladığında suyun termodinamik davranışını değiştirmesidir. Karbonsioksitin akışın 

taşınım ve termodinamik karakteristiği üzerinde etkisi vardır. Rezervuarda özellikle 

basınç-sıcaklık dağılımını ve faz kompoziyonunu etkiler ve iki fazlı bölgeyi 

genişleterek gaz doymuşluğunu arttırır.  

Bu çalışmada, karbondioksit içeren jeotermal sahaların akışkan ve ısı üretimi 

davranışını incelemek ve tahmin etmek amacı ile izotermal olmayan akışı göz önünde 

bulunduran yeni bir lumped parametre modeli geliştirilmiştir. Literatürde geliştirilmiş 

izotermal olmayan lumped parametre modelleri genellikle rezervuarların sadece su 

içerdiğini varsaymaktadır. Ülkemizde bulunan jeotermal sahaların çoğu karbondioksit 

içerdiği için, bu rezervuarlar değerlendirilirken akışın taşınım ve termodinamik 

karakteristiği üzerinde etkili olan karbondioksit de modellemede yer almıştır. 

Modelleme yöntemi olarak, kullanımının basitliği ve büyük bilgisayar kapasitelerine 

gereksinim duymaması nedeni ile boyutsuz parametre modeli seçilmiştir. Bu yöntem, 

rezervuara giren ve rezervuardan çıkan kütleler gözetilerek ve akışkan/kayaç 

özellikleri kullanılarak, zamana veya rezervuardan yapılan üretime göre ortalama 

rezervuar basıncı ve sıcaklığının davranışını belirlemeyi amaçlayan bir modelleme 

şeklidir. Bu tür modeller özellikle sayısal model oluşturmaya yetecek verilerin henüz 

elde edilmediği rezervuarın erken zamanlarında sayısal modellere iyi bir alternatif 

oluşturmaktadırlar. 

Oluşturulan modelde, jeotermal sistemin her bir birleşeni kayaç ve akışkandan oluşan 

bir tank olarak tanımlanmıştır. Tanklar, bir rezervuarı, akiferi, ısı kaynağını veya doğal 

boşaltım gerçekleşebilecek bir bloğu temsil etmektedir. Rezervuar veya akiferi temsil 

etmek için modelleme çalışmasına bağlı olarak bir ya da birden fazla tank 

kullanılabilinmektedir. Burada, herhangi bir tankın başka bir tank ile keyfi sayıda 

bağlantı yaptığı düşünülmüştür. Tanklar arasındaki sıvı kütlesinin akış hızı için 

Schithuis yaklaşımı kullanılmıştır. Buna göre, beslenmenin tanklar ile beslenme 

kaynağı arasındaki basınç farkı ile orantılı olduğu varsayılmıştır. 

İzotermal olmayan ve karbondioksit içeren sistemler incelendiği için kütle korunumu 

ve enerji korunumu denklemleri buna uygun olarak geliştirilmiştir.  Bu şekilde, 

ortalama rezervuar basıncı ve sıcaklığı ile beraber karbondioksit miktarı da 
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incelenebilmektedir. Modelde kullanılan denklemler, su için kütle korunumu 

denklemi, tüm sistem için enerji korunumu denklemi ve karbondioksit için kütle 

korunumu denklemleridir. Elde edilen diferansiyel denklem takımları sayısal 

yöntemlerle çözülmüştür. Sayısal çözüm sırasında doğrusal olmayan davranışa sahip 

denklemleri çözebilmek için, Newton-Raphson tekniği kullanılmıştır. Jeotermal 

sistem tek veya çoklu tanklar olarak ele alınarak iki adet kütle ve bir adet enerji 

denklemi her bir tank için beraber çözülmüş bu sayede üretim, doğal beslenme ve re-

enjeksiyon sebebi ile rezervuarda oluşacak basınç değişimlerinin yanı sıra sıcaklık ve 

karbondioksit miktarındaki değişimler de incelenmiştir. Model denklemleri ayrıca ısı 

iletimi etkisini de içerecek şekilde formüle edilerek iletim yolu ile oluşacak ısı akışının 

rezervuar performansına etkisinin de gözlemlenmesine olanak sağlanmıştır. Bunlara 

ek olarak, su-karbondioksit sisteminin davranışını modelleyen bir termodinamik paket 

oluşturularak geliştirilen modele entegre edilmiştir. 

Yapılan modelleme ile karbondioksit miktarındaki azalış ve artış takip 

edilebilmektedir. Model literatürde bulunan diğer boyutsuz (lumped) parametre 

modellerinden farklı olarak karbondioksitin etkilerini rezervuar performansı üstünde 

yansıtabilmektedir. Bu yönü ile çalışmada geliştirilen model orijinaldir. Ayrıca model 

birden fazla tank için geçerli olmakla birlikte her türlü konfigürasyon için 

kullanılabilmektedir. Oluşturulan tank modelin sonuçları, jeotermal sahaların 

incelenmesinde yaygın olarak kullanılan sayısal rezervuar simülatörü PETRASİM 

sonuçları ile karşılaştırılarak doğrulanmıştır. Ayrıca, literatürde verilen bazı önemli 

jeotermal sahalara ait basınç ve sıcaklık verileri ile kıyaslamalar yapılmıştır. Farklı 

sentetik senaryolar üzerinde çalışılarak sonuçlar değerlendirilmiş ve geliştirilen model 

kullanılarak duyarlılık analizleri yapılmıştır. Son olarak geliştirilen model, 

Türkiye’nin önemli bir jeotermal sahası olan Germencik sahasına uygulanarak bu saha 

için ileriye yönelik performans tahminleri yapılmıştır.  

Buna göre bu çalışmadan aşağıdaki sonuçlar elde edilmiştir: 

 Enjeksiyon sebebi ile rezervuarda oluşan basınç ve sıcaklık değişimleri ile 

karbondioksit miktarındaki değişim gözlemlenmiştir.  

 Duyarlılık analizleri yapılarak, çözünmüş karbondioksit oranının, üretim 

hızının, reenjeksiyon miktarının jeotermal rezervuarın basınç, sıcaklık ve gaz 

doymuşluğu üzerindeki etkileri incelenmiştir. 

 Bu modelleme çalışması ile, karbondioksit içeren jeotermal sistemlerin 

davranışı kapsamlı olarak incelenebilir ve jeotermal sistemin gelecekteki 

performansı sürdürülebilirlik açısından değerlendirilerek en uygun işletme 

stratejileri belirlenebilir. 

Jeotermal rezervuarlarda basıncın düşmesi ile birlikte ayrışma basıncına ulaşıldığında 

gaz fazı oluşmaktadır. Üretimin sabit kütlesel debide devam etmesi durumunda basınç 

davranışı gaz fazının açığa çıkması ile birlikte değişmektedir. Buna göre gaz fazı açığa 

çıktığında basıncın üretim ile birlikte azalım davranışı değişmektedir. Gaz fazı açığa 

çıkmadan önce suyun genleşmesinden ve doğal beslenmeden sağlanan üretim gaz 

fazının açığa çıkması ile birlikte bu üretim mekanizmalarına gazın genleşmesi de 

eklenmektedir. Gaz fazının açığa çıkmasından sonra basıncın azalımı azalmaktadır. 

Bunun nedeni ise gazın sıkıştırılabilirlik değerinin suyun ya da kayacın 

sıkıştırılabilirlik değerlerine göre çok daha yüksek olmasındandır. Böylece gaz daha 

fazla genleşmekte ve daha fazla basınç desteği sağlamaktadır.  
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Jeotermal sahalarda su içinde çözünmüş karbondioksit miktarı üretim ile birlikte 

düşmektedir. Bu düşüşün birkaç nedeni bulunmaktadır. Bunlardan ilki üretim ile 

birlikte gerçekleştirilen enjeksiyon işlemidir. Enjeksiyon suyunda karbondioksit 

bulunmaması durumunda rezervuar içindeki karbondioksiti seyrelterek azalmasına 

neden olacaktır. Diğer bir azalım nedeni ise beslenme kaynağından 

kaynaklanabilmektedir. Eğer beslenme kaynağından gelen su içinde karbondioksit 

bulunmuyorsa o zaman aynı şekilde bu rezervuar içinde bulunan karbondioksiti 

seyreltecektir. Son olarak rezervuar içinde gaz fazının açığa çıkması durumunda su 

içindeki karbondioksitin gaz fazına geçmesi ile birlikte su içindeki karbondioksit 

oranlarında azalmalar meydana gelmektedir.  

Rezervuar içinde gaz fazı oluşması durumunda gaz kompozisyonunun iki bileşeni 

mevcuttur; karbondioksit ve su buharı. Gaz ilk oluştuğunda gaz kompozisyonu 

ağırlıklı olarak karbondioksitten oluşmaktadır. Başlangıç karbondioksit oranı ne kadar 

fazla ise gaz fazı içindeki karbondioksit oranı artmaktadır. Üretim ile birlikte basıncın 

da düşmesiyle gaz doymuşluğu arttıkça gaz kompozisyonunda su buharı miktarı 

artmaya başlar. Bu üretimin devam etmesi durumunda gaz içindeki karbondioksit 

oranının çok küçük mertebelere kadar düşmesine neden olabilir.  

Jeotermal suyun geri basılması jeotermal sahalar için büyük önem taşımaktadır. Geri 

basma oranlarına bağlı olarak basınç ayrışma basıncının altına düşebilir veya 

düşmeyebilir. 

Geliştirilen boyutsuz parametre modelinden ayrı olarak, sıvı etken jeotermal sahaların 

karbondioksit içeriğini tanımlayan yeni bir analitik yaklaşım türetilmiştir. Sadece 

karbondioksitin kütle denklemine odaklanan ve tanklar arası akışkan geçişi, beslenme, 

üretim ve reenjeksiyonda karbondioksitin kütlesel oranındaki değişiminni inceleyen 

bu yaklaşım sabit karbondioksit reenjeksiyonu ve kütlesel oran olarak değişken 

karbondioksit reenjeksiyonu durumları için geliştirilmiştir. Değişken re-enjeksiyon 

durumunda, karbondioksit reenjeksiyonunun rezervuardaki karbondioksit miktarı ile 

doğrusal olarak değiştiği düşünülmüştür. Değişken miktarlı karbondioksit 

reenjeksiyonunun tanımlanması, üretilen karbondioksitin olduğu gibi rezervuara geri 

basılması veya belirli bir oranda azaltılarak geri basılması durumlarının 

modellenmesine olanak vermektedir. 

Türetilen analitik denklemlerin kullanımı kolaydır ve karbondioksit miktarının 

zamanla nasıl değiştiği ve hangi parametrelerin en çok etkilediği gibi konularda fikir 

sahibi olunmasını sağlar. Reenjekte edilen suda karbondioksit oranı arttıkça 

rezervuardaki karbondioksit seviyesinin korunması sağlanır. Reenjeksiyon debisi 

düşük ise, akiferden beslenmenin rezervuardaki karbondioksit miktarı üzerindeki 

etkisi daha fazladır.  
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1.  INTRODUCTION 

Geothermal energy has been used to produce electricity for over a century, beginning 

in Lardarello, Italy in 1904. The largest geothermal district heating system in the world 

started in Iceland in 1930. At first, the development of geothermal energy was slow 

but the oil crisis in the 1970s and demand for ecofriendly energy resources spurred the 

rapid development of geothermal energy.  

Geothermal energy is a clean, renewable resource that can be tapped by many countries 

around the world located in geologically favorable places. Figure 1.1. is the world map 

that shows the major tectonic plates and location of the world’s geothermal provinces 

which are circled in red. TGeothermal power stations are best  

 

Figure 1.1 : World map of the major tectonic plates and location of the world’s 

geothermal provinces (Smith, 2007). 

Geothermal fields are located where the temperature gradient is as high as possible 

like the places where the earth’s crust is thinner, active volcanoes are close by, magma 

chamber close to the surface and radioactive minerals that give out heat energy present. 
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Most of the geothermal fields are located at the plate boundaries, because in these 

places volcanoes are concentrated and hot magma is close to the surface. Geothermal 

power stations are installed in geotermal fields. Figure 1.2 shows the installed 

geothermal capacity for various countries all over the world. Turkey became the 7th 

country that has highest installed geothermal power generation capacity in June 2016. 

This represents a dramatic growth for geothermal power generation capacity. 

 

Figure 1.2 : Installed Geothermal Capacity as per countries (Url-1). 

Turkey has rich geothermal sources. Tectonic forces, faults and local volcanisms are 

the main reason for the high heat flow and suitable conditions for hydrodynamics and 

convective systems in Turkey. The geothermal sites of Turkey are shown in Figure 

1.3. According to this, geothermal systems are mainly located in the major grabens of 

the Menderes Metamorphic Massif, while those that are related with local volcanism 

are generally in the central and eastern parts of Turkey (Serpen et al., 2010). Figure 

1.3 also presents the locations of major geothermal fields, district heating and 

greenhouse installations and also young volcanoes.  
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Figure 1.3 : Geothermal sites in Turkey (Serpen et al., 2010, updated from Serpen et 

al, 2009). 

The geothermal research and exploration in Turkey was initiated by MTA (General 

Directorate of Mineral Research and Exploration) in 1960s. First geothermal 

exploration well was drilled in İzmir  Balcova in 1963 and water at 124 oC temperature 

was produced. Subsequently, Kızıldere Field in Denizli was discovered. The first, well 

was drilled in 1968 and a reservoir with a temperature of 198oC was reached. In 1984, 

the first power plant with a 17.4 MWe capacity was installed. With time, fields such 

as Seferihisar, Simav, Salavatlı, Tuzla, Dikili, Caferbeyli were discovered and 

developed for various purposes. Today, the total number of wells drilled is about 1,200 

for direct use and power generation. About 300 wells have been drilled in recent years 

for geothermal power projects (Url-2). 

In 2013, the installed geothermal power generation capacity in Turkey was about 162.2 

MWe. Currently, installed capacity of  Turkey has reached to 695 MWe in June 2016. 

There are 24 geothermal power plants operating and with an additional 96 MWe in 

construction and planned projects of 430 MW as reported by Enerji Atlasi and Think 

GeoEnergy (Url-1 and Url-2, 2016). Today, power plants generate a total of 3.676 

GWh electricity per year. Table 1.1 lists the installed power plants in Turkey. 
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Table 1.1 : The installed power plants in Turkey (Url-2). 

Geothermal Power Plant City In Operation Capacity, MWe 

Pamukören  Aydın 22.5 

Kerem  Aydın 24 

Efeler  Aydın 114.9 

Ken Kipaş  Aydın 24 

Deniz (Maren 2)  Aydın 24 

Çelikler Pamukören Aydın 67.5 

Gümüşköy  Aydın 13.2 

Karkey Umurlu  Aydın 12 

Dora-3 JES Aydın 34 

Maren Aydın 44 

Dora-2 JES Aydın 9.5 

Galiphoca JES Aydın 47.4 

Dora-1 Aydın 7.95 

Babadere Çanakkale 8 

Tuzla Çanakkale 7.5 

Tosunlar-1  Denizli 3.8 

Kızıldere-2 Zorlu Denizli 80 

Kızıldere Zorlu Denizli 15 

Kızıldere Bereket Enegy Denizli 6.85 

Türkerler Alaşehir  Manisa 24 

Alaşehir  Manisa 45 

Enerjeo Kemaliye  Manisa 25 

Pamukören 3 JES Aydın 23 

Greeneco JES Denizli 13 

 Total 695.1 

The energy demand in Turkey is also growing dramatically. The electricity 

consumption of about 1485 kWh/ capita in 2002 has reached 3429 kWh in 2015 and it 

is expected to further increase to 6000 kWh in 2023 and 7000 kWh by 2050. High 

potential of geothermal energy in Turkey can promote to future energy demand. Based 

on recent projects it is clear that geothermal energy will contribute significantly to 

Turkey’s future energy supply particularly for electricity generation and for space 

heating. The estimated projections of geothermal applications for the year 2018 

reported by Turkish Geothermal Association are given in Table 1.2. 
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Table 1.2 : The estimated projections of geothermal applications for the year 2018 

(TGA, 2013). 

Use Projection 

Electricity Production 750 MWe 

Heating (residences, hotels, thermal facilities 

etc.) 
4000 MWt 

Greenhouse heating 2040 MWt 

Drying 500 MWt 

Balneology 1100 MWt 

Cooling 300 MWt 

Aquaculture + others 400 MWt 

Total direct use 8340 MWt 

In order to evaluate a geothermal field and make future performance predictions, 

geothermal reservoir simulation studies should take place. Early reservoir simulations 

considered the geothermal water to be pure water. However, geothermal waters may 

contain significant amounts of non-condensable gases such as carbon dioxide. Many 

geothermal reservoirs in Turkey contain some amount of CO2. For liquid dominated 

geothermal reservoirs, mass fractions of CO2 dissolved in liquid water can be as much 

as 5%. The Kizildere field in Turkey, for example, contains around 1.5% CO2 

dissolved in the liquid water and this value increases up to 3% in the deep zones 

(Satman et al., 2005). 

The Afyon Ömer-Gecek field and Germencik field on the other hand contain 0.4 % 

and 2.1 % dissolved CO2 (Satman et al., 2007), respectively. When modelling such 

geothermal reservoirs (either using numerical models or lumped parameter models) it 

is crucial to account for the effects of CO2 in the model in order to utilize geothermal 

sources in an efficient way. When production starts in a geothermal field, CO2 

dominates the thermodynamic properties of flow. Particularly the flashing point of the 

water CO2 mixture changes significantly with changing mass fraction of CO2 in the 

mixture. Geothermal systems with CO2 content have a higher flashing point mixture 

than systems with pure water. Increasing amounts of CO2 increase the flashing point 

pressure. This affect has an important role in reservoir performance. 

1.1 Literature Review 

The primary objective for geothermal reservoir modeling is to obtain information on 

the physical conditions in a geothermal system as well as on its nature and properties. 
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This leads to proper understanding of its characteristics and successful management of 

the resource. Second objective is to predict the response of a reservoir to future 

production and estimate the production potential of a system. 

Geothermal systems are dynamic systems where continuous transport of fluid, heat 

and chemical species occur (Donaldson et al., 1983). At first, much of geothermal 

reservoir development was based on techniques adapted from groundwater and 

petroleum industries but in time specific models have been evaluated for geothermal 

systems. The need for reservoir modeling often arises early in the development of a 

geothermal field. Initially, the volumetric method can be used to predict the potential 

of the reservoir with the help of data such as area, depth, porosity of the reservoir and 

fluid properties but calculation of reserves is not meaningful unless the performance 

of the reservoir can be forecasted. The behavior of geothermal reservoirs can be 

modeled by three methods. These are decline curve analysis, lumped parameter 

methods and distributed parameter (numerical) methods.  

The decline curve method is the simplest method that involves fitting an equation to 

observed flow rate decline data from wells but it is not based on any conceptual model 

of the reservoir. In order to use this approach sufficient production data must be 

obtained. Another drawback of decline curves is that they cannot take into account 

changes in field operation (Bodvarsson et al., 1986). The use of logarithmic, harmonic, 

and exponential functions to curve fit data have been suggested in the literature. Arps 

(1945) and Chierici (1964) had major effect on development of this method. 

Successful results have been obtained in Larderello and Geysers Fields (Budd, 1972; 

Stockton et al., 1984).  

In numerical methods, geothermal reservoirs are split into gridblocks and conservation 

equations are applied on each gridblock. The complex nonlinear partial differential 

equations are solved numerically with the advancement of the computer. It is the most 

general technique of modeling because it considers spatial variations in 

thermodynamic conditions and reservoir properties as well as for different well 

spacing and locations. Numerical modeling is extremely powerful when based on 

comprehensive and detailed data. The disadvantages of the numerical models are; they 

need comprehensive and detailed data that are not available especially at the early time 

of the field and also the model can be time consuming when it contains very large 

number of gridblocks. In addition, the long run-times associated with these models 
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create another disadvantage for history matching where the model needs to be run 

many times. Lumped parameter (tank) models provide a good alternative to numerical 

model due to the much fewer parameters requirement and the relatively shorter run 

times. 

Lumped-parameter modeling can be simply described as a highly simplified form of 

numerical modeling. In numerical models, a geothermal system is represented by 

many gridblocks while in lumped-parameter models; a single or a few homogeneous 

tanks form the geothermal system. In lumped parameter models, each component of a 

geothermal system is represented using a tank that is composed of fluid and rock 

(Sarak et al, 2005). Volumetric average properties are assigned to these tanks and 

changes of pressure, temperature and production are monitored. The tanks represent 

the reservoir, the aquifer, the heating source or the atmospheric block to which natural 

discharge occurs. Lumped parameter modelling is possible when a minimum 

knowledge on the system variables is available. The results are comparable with the 

numerical simulators and they are useful for sensitivity studies to help focus on the 

more important parameters to be studied by more complex distributed parameter 

simulators (Castainer et al., 1980). 

There are several approaches for the modelling of geothermal systems. However, from 

the literature survey, it can be observed that numerical and lumped parameter models 

are generally used to model geothermal system. 

1.1.1 Numerical Models 

The numerical solution of complex non-linear partial differential equations became 

possible in the late 1960s with the advent of digital computers. However, the 

application of these techniques to model the behavior of geothermal reservoirs began 

to appear in the early 1970s because coupling mass and energy transport in a 

geothermal reservoir adds considerable complexity to the modeling. In this approach, 

the governing partial differential equations are replaced by an equivalent set of 

algebraic equations and the problem is solved numerically.  

Mercer (1973) made the first application of a numerical model to a geothermal field 

problem. He developed a single phase (liquid water) heat transport model and applied 

to Wairakei geothermal field and simulated until the reservoir became two-phase. 

Mercer and Faust (1975) formulated the equations of two-phase (steam-water), heat 
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transport in terms of enthalpy and pressures. Formulation of the basic mass, 

momentum and energy balances in terms of fluid pressure and enthalpy yields two 

nonlinear, partial differential equations that are valid for both liquid and vapor 

dominated hydrothermal reservoirs, as well as for reservoirs that may include both 

single and two-phase regions. They presented a simulation of a hypothetical hot water 

reservoir with initial conditions similar to those in the Wairekei reservoir. Faust and 

Mercer (1976) developed another simulator by using finite difference technique and 

compared it with the previous one.  

Toronyi and Farouq Ali (1975) developed a two-phase, two dimensional reservoir 

model using finite difference technique which was coupled with a wellbore model. 

Their model used pressure and water saturation as dependent variables that were 

simultaneously solved at each block. Their simulator produced stable results under 

large time step sizes. According to the production results they classified the two phase 

geothermal reservoir behavior into three depending on the initial liquid saturation. 

These are vapor dominated system, liquid dominated system and two phase dominated 

system. Furthermore a two phase two dimensional cross-sectional reservoir model 

where multiphase equations were formulated in terms of density and internal energy 

were presented by Lasseter et. al. (1975). 

Coats et.al (1974) developed a geothermal model based on methods developed for 

steamflood analyses in petroleum reservoirs. Coats et al. (1974) formulated the energy 

balance in terms of internal energies and they overcame the phase transition difficulties 

by ensuring continuity of thermodynamic formulae across the saturation curve. Coats 

(1977) approximated density and specific internal energy in superheated region as 

perturbations from the saturation curves. He also investigated the stability limits for 

an implicit model formulation and evaluated the model that was stable for time steps 

corresponding to large saturation changes. 

Thomas and Pierson (1978) developed a three-dimensional, finite-difference model 

for the simulation of geothermal reservoirs that contain water in various regions of a 

reservoir in any of its vapor or liquid states. The solution technique employed 

simultaneously solves the mass and energy balances.  

Some further modeling studies were published but the effective starting point for the 

acceptance by the geothermal industry of the usefulness of computer simulation was 
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the 1980 Code Comparison Study (Stanford Geothermal Program, 1980). Since then, 

the experiences of developing site-specific models and carrying out generic reservoir 

modeling studies has led to a steady improvement in the capabilities of the geothermal 

reservoir simulation codes.  

In 1979, the geothermal reservoir modelling group at the University of Auckland and 

the Earth Sciences Division of Lawrence Berkeley Laboratory collaborated and 

developed a geothermal simulator called SHAFT78 (Pruess et al., 1979). This 

simulator is based on mass and energy balance equations for two phase flow in a 

porous medium. It used an integrated finite difference method to solve finite difference 

equations that are obtained by formally integrating the basic partial differential 

equations for mass and energy flow over arbitrary volume elements. In the following 

years they created MULKOM family of codes for investigations of fundamental 

reservoir physics and for modelling reservoirs (Pruess; 1983, 1988). 

Bodvarsson et al (1982) modelled the fault-charged reservoirs with the consideration 

of conductive heat transfer. A two-dimensional model of fault-charged hydrothermal 

systems has been developed that considers the transient development of such systems 

including the effects of heat losses to the confining layers. The model has been applied 

to the hydrothermal system at Susanville, California. Additionally, they emphasized 

that no universal modeling strategy is applicable to all of the geothermal systems since 

geothermal systems are complex, exhibiting such features as fracture-dominated flow, 

phase change, chemical reactions and thermal effects. Therefore, in the selection of a 

proper method, one must consider the amount and quality of the field data available 

and the objective of the study. (Bodvarsson et al., 1986) 

Pruess and Wu (1989) reviewed the methodological aspects of geothermal reservoir 

modeling with special emphasis on flow in fractured media and pointed out the 

tangible impacts of reservoir simulation technology on geothermal energy 

development (Pruess, 1991). Then they released numerical simulator called TOUGH2 

which belongs to the MULKOM family of codes for simulating nonisothermal flows 

of multiphase, multicomponent fluids in permeable (porous or fractured) media. One 

of the modules included in TOUGH2 models the behaviour of fluids in gas-rich 

geothermal reservoirs which often contain CO2 mass fractions according to O’Sullivan 

et al. (1985) approaches. It accounts for non-ideal behaviour of gaseous CO2 and 

dissolution of CO2 in the aqueous phase according to Henry’s law with heat of solution 
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effect. The thermophysical property correlations are based on the model of Sutton and 

McNabb (1977) and the viscosity of vapor-CO2 mixtures is calculated with a 

formulation given by Pritchett et al. (1981). 

1.1.2 Lumped Parameter Models 

The first reservoir model for geothermal systems was developed by Whiting and 

Ramey (1969) with lumped parameter modeling. They proposed a model considering 

the reservoir as a tank characterized by parameters such as volume, porosity, pressure 

and temperature. They coupled heat and mass balances and permitted recharge fluid 

to enter from variety of aquifer geometries. Their study also included a match of the 

pressure/production performance of the Wairekei geothermal reservoir in New 

Zealand from 1956 to 1966.  

Sanyal et al (1976) presented an analytical modelling of fluid flow and heat transfer in 

geothermal reservoirs. The model was assumed to be a vertical stack of horizontal 

layers, permeable and impermeable layers alternating. The heat transfer problem was 

solved according to the approach proposed by Gringarten and Sauty (1975). In their 

model, the breakthrough time of injected water in each layer, pressure distribution in 

space and time and the temperature of the produced water over time can be monitored. 

The results of this study were compatible with the data coming from Heber geothermal 

reservoir in the Imperial Valley of California.  

Brigham and Morrow (1977) described a block model with both a vapor and liquid 

zone. They proposed lumped parameter model, taking into account the fact that the 

distribution of two phases in the reservoir can be homogeneous or separate. However 

they considered only the case of production of dry steam. These models gave good 

results in demonstrating the influence of porosity on reservoir behavior.  

Castainer (1979) gave a mathematical model for the description of two phase flow. 

The results of the numerical model describing the total evaluation of the reservoir were 

verified using laboratory data. An excellent agreement between numerical and 

experimental results was found. Castanier et al. (1980) included heat transfer in the 

recharge region to simulate the behavior of the East Mesa reservoir. They developed 

an analytical model that is suitable for liquid dominated, steam dominated or two phase 

geothermal system. In this model the reservoir is divided into three different zones. 

From the center to the periphery, the first zone is the innermost zone which the 
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reservoir is assumed to be producing from. It is treated as a tank from the viewpoint 

of mass and energy production, using a lumped-parameter model, but one in which the 

pressure distribution is calculated by an analytical formulation of pressure behavior of 

off-centered wells enclosed in a constant pressure boundary circle. The surrounding 

intermediate zone from which fluids migrate into the production zone is subjected to 

fluid flow and heat transfer but no production or injection occurs. The outermost, 

radially infinite (or finite) aquifer zone is subjected to mass transfer. The injection or 

natural water influx occurs in this zone. Castainer and Brigham (1983) presented the 

examples of utilization of this lumped parameter model. They made a comparison on 

the East Mesa reservoir between lumped parameter results and the results obtained by 

Morris and Campbell (1979) using a complex, fully implicit, three-dimensional finite 

difference simulator. A reasonable agreement with the Morris and Campbell results 

was obtained by the lumped parameter technique. This concluded that the small 

amount of computer time required by the lumped parameter model allows the engineer 

to perform extensive sensitivity studies on the reservoir parameters and a more 

complex distributed parameter simulator can then be used efficiently to obtain better 

accuracy and refine the results. This type of approach would be particularly 

appropriate and cost effective during field development planning. 

Olsen (1984) adopted the methods developed for petroleum reservoirs involving a 

material balance on the reservoir in geothermal reservoir engineering. He derived 

depletion models for liquid-dominated geothermal reservoirs. Depletion models with 

no recharge (or influx), and depletion models including recharge, were used to match 

field data from the Svartsengi high temperature geothermal field in Iceland.  He 

concluded that lumped parameter models although computationally simple match 

drawdown-production data. Moreover, the match to production data from Svartsengi 

was improved when influx obtained using an infinite linear aquifer model with the 

Hurst simplified method was included. 

Axelsson (1985) exhibited a method that could simulate long term production data by 

simple lumped capacitor/conductor network based on only production/drawdown data 

and showed that the responses of analytical as well as real systems can be easily 

simulated by such simple systems. The parameters of simulation also provide 

information on global hydrological characteristics of hydrothermal systems. 
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Axelsson (1989) represented an effective method of lumped parameter modeling, 

which has been used successfully for pressure response data from several Icelandic 

geothermal reservoirs. In his method, lumped parameter models consisted of series of 

tanks and resistors that simulate the storage capacity of various parts of a geothermal 

system. The storage coefficients of the tanks and the conductance coefficients of 

resistors of the model were estimated by a program. This method tackled the 

simulation problem as an inverse problem and automatically fits analytical response 

functions of lumped models to the observed data by using a nonlinear iterative least-

squares technique for estimating the model parameters. His work was valid for low 

temperature liquid reservoirs only and assumed that variations in temperature within 

the system were neglected. Axelsson and Gunnlaugsson (2000) discussed the 

usefulness of lumped parameter models in interpreting monitored production data for 

low temperature geothermal fields. Axelsson et al. (2005) reported that reservoir 

modeling by using this method is highly cost effective and has been shown to yield 

quite acceptably accurate results because it tackles the modeling as an inverse problem, 

which requires much less time and operator intervention than direct or forward 

modeling. Rezvani-Khalilabad and Axelsson (2008) concluded that lumped parameter 

modelling was based on the production history of a geothermal system and used to 

simulate the available pressure decline history, preferably from a centrally located 

observation well.  

Sarak et. al (2005) described a method of lumped parameter modeling for low 

temperature geothermal reservoirs with the assumption of isothermal behavior. The 

model considers the effects of fluid production, reinjection and natural recharge, on 

the pressure (or water level) of low temperature, liquid dominated geothermal systems. 

The model was similar in concept to the one presented by Axelsson with new variants 

and revised method of matching and simulating data. In their study, they developed 

analytical solutions to various combinations of tanks and estimated the characteristics 

of the reservoir by history matching of observed data. 

Onur et al. (2008) proposed a nonisothermal lumped-parameter model which enables 

one to predict both pressure and temperature behavior of liquid dominated geothermal 

reservoirs. They showed that the reservoir parameters such as bulk volume and 

porosity that are not accessible from history matching of pressure alone can be 

determined by the combination of temperature and pressure data in history matching. 
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Their model explained the variable rate nonisothermal flow, based on the solution of 

both mass and energy balance equations considering only convection. Tureyen et al. 

(2009) developed a generalized lumped parameter model that enables simulation of 

pressure and temperature of multiple tank and model effect of components such as 

aquifer and multiple reservoirs that are in hydraulic interaction. Tureyen and Akyapi 

(2011) extended the Onur et al. (2008) and Tureyen et al. (2009) studies to include the 

effects of conduction. Also Tureyen et al. (2014a) have studied the the uncertainty in 

future pressure and/or temperature data simulated by using history-matched lumped-

parameter models for single-phase liquid water geothermal systems. With this 

approach, reservoir management decisions that account for an incomplete knowledge 

of the actual geothermal system can be made. 

1.1.3 Models for Geothermal Reservoirs Containing CO2 

In early geothermal reservoir simulations the reservoir fluids were idealized as pure 

water but many geothermal reservoirs contain significant amounts of noncondensible 

gases including  H2S, N2, NH3, H2, CH4 and CO2 with the concentration of gas ranges 

from 0.1 to 10 percent by mass. Subsequent more realistic representations of 

geothermal fluids must include carbon dioxide, which usually is the most prominent 

noncondensible gas. CO2 has large effects on conditions within a reservoir; therefore, 

it should be examined in detail. H2O-CO2 system has not been investigated until 1959. 

Pollitzer and Strebel (1924) only studied the relations between saturated water vapor 

and various gases and suggested that the compression of liquid water by CO2 gas and 

solution of CO2 in water causes the partial pressure of water in the vapor phase to 

increase. Malinin (1959) presented a binary diagram that extended to 600 bars in 

pressure and to temperatures of 330oC. Ellis and Golding (1963) studied the solubility 

of CO2 in water and presented the effects of CO2. They reported detailed data on 

solubility of CO2 in water in the temperature range of 120oC-350oC and at pressures 

up to 160 atm. They concluded that the higher the sum of partial pressures of gases 

present, the lower the boiling temperature will be. Takenouchi and Kennedy (1964) 

studied the water-carbon dioxide system to pressures of 1600 bars and over a 

temperature range of 110oC to 350oC.  They informed that complete miscibility in the 

H2O-CO2 system will not be found at temperatures under 265oC naturally. At higher 

temperatures a completely mixed supercritical fluid may exist but at lower 

temperatures this fluid will segregate into two fluid phases. They found that at low 
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pressures the CO2 rich phase is the light phase but at higher pressures an inversion in 

density occurs and the CO2 rich phase becomes the denser phase. 

The effects of CO2 in modeling geothermal systems have been considered by many 

authors in the literature. Sutton (1976) showed how to calculate the pressure-

temperature curve for a CO2-H2O system. He has calculated the boiling curves for a 

mixture of water and CO2 under various conditions typical of Broadlands geothermal 

fields. Sutton and McNabb (1977) investigated the Broadlands fields and showed that 

pressure-temperature data could be fitted closely by a boiling curve of a CO2-H2O 

mixture of 4.4 percent CO2 by mass. Grant (1977a) proved this by incorporating CO2 

in a lumped parameter model of Ohaki-Broadlands reservoir and obtaining a 

reasonable match with field data. Broadlands geothermal field is a hot-water system 

containing a few per cent of carbon dioxide which makes the field response markedly 

different from a conventional hot-water system. His block model of Broadlands was 

the first model to be developed for a two component CO2-H2O gas dominated field. 

He showed that almost all pressure drops during early time was caused by change in 

partial pressure of CO2. Thus, a substantial pressure drop may occur without 

significant boiling since the vapor pressure of water is not greatly affected. Moreover, 

if the system does not contain CO2 much larger saturation changes are required to 

produce similar pressure drop. Atkinson et al. (1980) presented a production history 

match for the two-component CO2-H2O Bagnore geothermal field. They studied the 

behavior of the vapor dominated geothermal system with a mathematical model that 

was based on the conversation of mass, energy and CO2. The relationship between 

total gas and partial pressure of CO2 is  stated with Gibbs-Dalton laws. The 

thermodynamics of the model is similar to the one presented by Grant (1977b) and the 

two-zone block model approach of Brigham and Morrow (1977). The parameters 

varied for history matching were the sizes of the liquid and vapor regions, porosity and 

liquid recharge. Reasonable agreement was achieved between the modeled and 

observed pressure drawdown but there was poor agreement with the observed 

producing noncondensable gas content. 

Zyvolosky and O’Sullivan (1978) presented some of the initial results of a simulation 

of the behaviour of a multi-dimensional carbon dioxide dominated reservoir. 

Zyvolosky and O’Sullivan (1980) numerically modeled the transport of CO2 in a two-

phase geothermal system. They gave a very detailed description of the conservation 
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equations to be used in numerical simulation of geothermal reservoirs. The authors 

used three conservation equations; a mass balance equation for water, an overall 

energy balance equation and a mass balance equation for CO2. In this study the primary 

variables are taken to be pressure, enthalpy and temperature. Their model showed that 

CO2 has significant effect on pressure transients; therefore, monitoring of the gas 

content is required for correct interpretation of pressure transients in a gassy 

geothermal field. According to these two studies, they found that, the qualitative 

behavior of the pressure transients is affected by the saturation and the presence of 

carbon dioxide. At high liquid saturations, they suggested that discharge is mainly 

from the liquid phase in which CO2 content is low. Therefore, the primary effect of the 

presence of CO2 on the system is in reducing compressibility of the fluid which leads 

to faster propagation of pressure transients. They used pressure and temperature curves 

of Sutton (1976) for a two phase system of water and CO2 as input. Their study is 

limited because the thermodynamic package used could only handle two-phase 

conditions. 

Atkinson et. al. (1980) presented a lumped parameter model for vapor dominated 

reservoirs to be used in modeling the Bagnore geothermal reservoir which contains 

considerable amounts of CO2. Since  the initial conditions of the Bagnore field was 

reported to be two phase, the authors have adopted a model that is composed of two 

tanks; one for modeling the liquid region and the other for modeling the vapor region 

and mass transfer is allowed between the two tanks. 

Pritchett et al (1981) used CO2 in the analysis of the natural state of Baca reservoir and 

they formed an equation of state package for water-carbon dioxide mixtures. They 

concluded that reservoir could be either single phase liquid or two-phase depending 

on the amount of gas in the reservoir. They studied CO2 transients in a homogeneous 

porous medium during a constant rate test. They showed that the CO2 content could 

not be properly inferred from pressure-temperature measurements made on flowing 

wells and the measured CO2 content may be either higher or lower than that in situ. 

Moreover, they found that initial fluid enthalpy increases with CO2 content.  

O’Sullivan et. al (1985) used multicomponent two phase reservoir simulator 

MULKOM  (Pruess, 1983, 1988) to describe the effects of CO2 in geothermal 

reservoirs in a more complete and detailed way. The H2O-CO2 thermodynamic 

package used in their study was an improved version of the one used by Zyvolosky 
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and O’Sullivan (1978). They gave a detailed description of how primary variables 

should be adjusted and updated during the numerical simulation of a geothermal 

reservoir based on if the fluid is under a compressed liquid state, two phase state or 

single phase gas state.  The results of this investigation showed that in the natural state 

CO2 increases the size of the boiling zone considerably and during exploitation the gas 

escapes rapidly leading to a large early pressure drop. The pressure response is faster 

at early times because of degassing and slower at later times because of a reduced 

flowing enthalpy. They also showed that the stable flowing CO2 content primarily 

depends on the relative permeability functions, the initial vapor saturation, and the 

initial partial pressure of CO2 while smaller effects are due to the flow rate and 

porosity. The approach presented by the authors are still in use today. 

Alkan and Satman (1990) have improved on the lumped parameter model of Whiting 

and Ramey (1969), originally developed for pure water systems, by introducing a 

thermodynamic package that describes the behavior of water-CO2 systems. This 

thermodynamic package simply replaces the thermodynamic package describing pure 

water systems. Their model was simple and very general and could be used for a 

pressurized water-CO2 system and for a liquid-dominated system. The model of  Alkan 

and Satman (1990) was tested against field data coming from Cerro Prieto, Ohaaki, 

Bagnore and Kizildere fields. 

Moya and Iglesias (1995) also included the effects of CO2 into reservoir simulators. 

They developed a new equation of state (EOS) for water-carbon dioxide mixtures.  

This model considered the non-ideal behavior of both components in the gaseous 

mixture and included the effect of the compressibility of the liquid phase. They 

coupled this EOS to the TOUGH numerical simulator to get information about the 

mass and energy productivities of the geothermal wells. Batistelli et. al (1997) 

described the correlations employed to calculate the thermophysical properties of 

multiphase mixtures of water, sodium chloride and carbon dioxide and related 

EWASG module which is one of the module that belongs to TOUGH2 simulator. Their 

thermophysical formulation is applicable in temperatures from 100o to 350°C, total 

pressure up to 80 MPa, partial pressure of CO2 up to l0 MPa, and salt mass fraction up 

to halite saturation.  

There are some correlations for Henry’s constant linking the mass fraction with the 

partial pressure which can be found in the literature. Cramer (1982) defined Henry’s 
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constant for the dissolution of carbon dioxide in pure water by using polynomial 

regression of experimental data from 0oC to 300oC. Upton and Santoya (2002) 

developed a new correlation to estimate the solubility of carbon dioxide in water. This 

equation was derived from a statistical analysis applied to an updated 

thermodynamical database containing experimental solubility data reported in the 

literature. 

Satman and Uğur (2002) have modeled the two phase compressibility at the flashing 

point pressure of water–carbon dioxide systems. Using this definition of 

compressibility together with a simple mass balance, information could be obtained 

regarding the overall size of the geothermal reservoir. The developed model is used 

for modeling the Cerro Prieto, Ohaaki, and Kizildere fields. 

Kaya et al. (2005) have used the simulator TOUGH 2 for analyzing the behavior of 

geothermal reservoirs with carbon dioxide for various different partial pressures of 

carbon dioxide. The analysis is performed for both single phase and two phase 

systems. The relationship between the mass fractions of CO2 in the produced fluid and 

the mass fraction in the reservoir were studied using various critical gas saturation and 

irreducible water saturation values. 

The study performed by Hosgor et al. (2013) forms the basis of this thesis. But in that 

study simple models were investigated. Later, Hosgor et al. (2015) have presented a 

lumped parameter model capable of modeling water-carbon dioxide geothermal 

systems. They have adopted the approach of O'Sullivan et al. (1985) on a tank in 

lumped parameter modeling. They have analyzed various effects of parameters such 

as the initial amount of carbon dioxide, production rate, and reinjection rate on the 

performance of pressure, temperature, saturation and carbon dioxide amount both in 

the liquid and gas phases. 

1.2 Purpose of Thesis 

The purpose of this thesis is to develop a new nonisothermal lumped parameter model 

(tank model) to examine and predict the behavior of mass and heat production of 

geothermal fluids with the consideration of the effects of carbon dioxide. The change 

of pressure and temperature that occurs from production, reinjection and natural 

recharge, the change of CO2 saturation with the production and also variation of gas 
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saturation in the geothermal reservoir can be examined with this model. In addition to 

this, each component of a geothermal system is represented using a tank that is 

composed of fluid and rock so the pressure and temperature behavior of any 

component (reservoir or aquifer) that forms the geothermal reservoir can be modelled. 

This thesis is organized as follows. In Chapter 2, the thermodynamic package used in 

the model is given. The thermodynamic properties of H2O, CO2 and H2O-CO2 sytem 

are described in detailed. In Chapter 3, the methodology of the modelling study is 

given. The general aspects of lumped parameter modelling are discussed, new lumped 

parameter model developed for geothermal system that contains CO2 is explained and 

detailed formulation is given. The verification study of the tank model with 

PETRASIM TOUGH2 are given. Moreover, some syntetic application studies are 

performed. The various synthetic cases that demonstrate especially the effects of 

various parameters on the change of carbon dioxide in the reservoir are examined. In 

Chapter 4, a new analytical model that give the amount of carbon dioxide as a function 

of time and amounts of production, reinjection and recharge for liquid dominated 

reservoirs is presented. The verification study of the tank model with analytical model 

is given and some syntetic applications with analytical model are represented. In 

Chapter 5, field application (Germencik geothermal field) is performed and results are 

discussed in detailed. Finally, the major conclusions obtained from this study and 

recommandations for future works are presented in Chapter 6.  
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2.  THERMODYNAMIC PACKAGE 

PVT behavior of geothermal fluid systems plays a very important role in reservoir 

performance and energy production studies. Thermophysical properties needed to 

model the flow of fluid in geothermal reservoir include density, viscosity and specific 

enthalpy (or internal energy) of the fluid phases as functions of temperature, pressure, 

and composition. The following subsections focus on the thermophysical properties 

and related equations used for pure water and CO2, H2O-CO2 systems and additionally 

H2O-CO2-NaCl systems. Basically, the behavior of H2O-CO2 systems and the most 

profound effect of CO2 on H2O-CO2 mixtures are defined. The review of the equations 

that represent the thermodynamic package of H2O-CO2 systems used in this study is 

given. The main purpose of the thermodynamic package is to provide simple, but 

accurate representations and models for predicting the overall thermophysical 

behavior of the H2O-CO2 in a geothermal system. 

2.1 Thermophysical properties of H2O 

The density, enthalpy and internal energy of water in liquid and gas phase are 

calculated according to the IAPWS (The International Association for the Properties 

of Water and Steam) (2007). IAPWS has divided pressure-temperature diagram of 

water into five regions as given in Figure 2.1 and equations are derived for each 

regions. Critical and triple points data for H2O are presented in Table 2.1.  

Table 2.1 : The critical and triple point parameters for H2O (Wagner and Pruess, 

2002). 

 

Temperature 

(K) 

Pressure 

(MPa) 

Vapor 

Density 

(kg/m3) 

Liquid 

Density 

(kg/m3) 

Critical Point 647.096  22.0640 322 322 

    Triple Point 273.150   0.00618 0.00485 999.8 
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Figure 2.1 : Pressure–temperature regions of IAPWS-IFT97 for water (adapted from 

IAPWS, 2007). 

Viscosity of saturated water is calculated according to Meyer et al. (1977) formula 

given in equation 2.1;  

4)15.133/(8.247 10102414.0   T

w  (2.1) 

Here, T is in oC, and w  is in Pa.s. The saturated water viscosity can be modified for 

compressed water as following equation 2.2: 

  4
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1102414.0  


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






 T
Tpp ST

w  (2.2) 

where p and pS(T) in Pa is the pressure and saturation pressure, respectively. But above 

modification can be neglected because of its minor effect. Water viscosity slightly 

changes with pressure at constant temperature but significantly changes with 

temperature at constant pressure. Thus, the viscosity of compressed water is 

approximated by the saturated water relation as given in equation 2.1. Then it can be 

treated that viscosity of water is independent of pressure as given in Figure 2.2.  
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Figure 2.2 : Viscosity behavior of water. 

2.2 Thermophysical properties of CO2  

Many geothermal reservoir fluid contain significant amounts of dissolved gases with 

the concentration of gas ranging from 0.1 to 10 percent by mass. The most prominent 

noncondensible gas in geothermal fluids is carbon dioxide. CO2 is typically close to 

90% by volume of the total noncondensable geothermal gases. For this reason CO2 is 

generally chosen to describe the overall effects of noncondensible gases in geothermal 

reservoir simulation. The presence of CO2 considerably influences the behavior of a 

geothermal reservoir and utilization process.  

The origin of geseous CO2 in reservoirs is usually organic or magmatic. The four most 

common mechanisms for the formation of CO2 gas in the reservoir are described by 

Michels (1979). The first is a phase change of CO2 due to change in pressure conditions 

when the fluid emerges at the surface, the second one is the dissociation of bicarbonate, 

the third is the result of calcite precipitation and the fourth one is associated with proton 

consumption. The relative effect of these processes to geothermal fields is different 

due to the different characteristics of the reservoirs.  

Table 2.2 provides the critical and triple points of CO2. At atmospheric pressure CO2 

changes directly from a solid phase to a gaseous phase through sublimation, or from 
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gaseous to solid through deposition. Liquid CO2 forms only at pressures above 0.516 

MPa. At lower (subcritical) temperatures and/or pressures, CO2 can exist in two 

different states, a liquid and gaseous, as well as two-phase mixture of these states. 

Table 2.2 : The critical and triple point parameters for CO2 (Span and Wagner, 

1996). 

 Temperature 

(K) 

Pressure 

(MPa) 

Vapor Density 

(kg/m3) 

Liquid Density 

(kg/m3) 

Critical Points 304.13 7.3773 467.6 467.6 

Triple Points 216.59 0.516 13.8 1179.25 

In geothermal applications, the amount of CO2 in liquid phase is small. For simplicity 

and dominant effect of water in all liquid phase, the liquid phase density and the liquid 

phase viscosity of a CO2 are neglected and density and viscosity of liquid mixture are 

taken equal to that of the density and viscosity of pure liquid water. For the gas phase, 

the density of  gaseous CO2  (kg/m3)  is determined from correlation in equation 2.3 

given by Sutton (1976) as follows; 

100031.8

44




T

pC

C  (2.3) 

where, 
Cp  is the partial pressure of CO2 in Pa and T is in K. Density of gaseous CO2 

versus pressure for various temperature is plotted in Figure 2.3. Based on this figure, 

CO2 density linearly increases with pressure but decreases with tempeature. 

The specific enthalpy of the gaseous CO2 (J/kg)  is calculated based on equation 2.4 

given by Sutton (1976); 

5 2 5 32.18 10 732 0.252 2.63 10Ch T T T        (2.4) 

Change of enthaply for gaseous CO2 with respect to temperature is given in Figure 2.4. 

Enthalpy changes slowly with temperature, because of its relatively low specific heat 

capacity in gas state. Pressure has minor effect on enthalpy of CO2. 

For the gaseous viscosity of pure CO2 calculation, curve fitting approach to the data 

tabulated by Vargaftik et al. (1996) is used. Based on this approach, viscosity of CO2 

is calculated with equation 2.5. 
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Figure 2.3 : Pressure-temperature-density graph of gaseous CO2. 

 

Figure 2.4 : Temperature-enthalpy graph of gaseous CO2. 

8 2 3 4

1 2 3 4 510 ( ( ) ( ) ( ) ( ) ( )C z p z p T z p T z p T z p T       (2.5) 
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where T is in oC and C is the viscosity of gaseous CO2 (Pa.s).The pressure dependent 

coefficients are found from linear interpolation between the following values tabulated 

in Table 2.3.  

Table 2.3 : Coefficients for viscosity of CO2 calculation tabulated by Vargaftik et 

al. (1996).  

P (bar) z1 z2 z3 z4 z5 

0 1357.8 4.9227 -0.0029661 2.852x10-6 -2.18x10-9 

100 3918.9 -35.984 0.25825 -7.11x10-4 6.957x10-7 

150 9660.7 -135.479 0.90087 -0.0024727 2.415x10-6 

200 13156.6 -179.352 1.12474 -0.0029886 2.859x10-6 

300 14769.8 160.731 0.850257 -0.0019907 1.734x10-6 

400 15758.3 -144.887 0.673731 -0.0014199 1.135x10-6 

500 16171.6 -125.341 0.50075 -7.11x10-4 6.190x10-7 

600 16839.4 -115.7 0.40892 -6.35x10-4 3.539x10-7 

The viscosity behaviour of pure carbon dioxide based on the data given in Table 2.3 

for pressure range from 0 bar to 100 bar is shown in Figure 2.5. As it can be seen 

from figure, pressure has minor effect on gaseous CO2 viscosity. 

 

Figure 2.5 : Pressure-temperature-viscosity behavior of gaseous CO2. 
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2.3 H2O-CO2 System 

The thermodynamic package described in this section is actually a collection of 

correlations and relationships that have been given in the literature previously. 

Depending upon the input values for the temperature, pressure and mass fraction of 

CO2, the thermodynamic package output state may be liquid solution of CO2 in water, 

a mixture of liquid solution and vapor and a vapor solution of CO2 in steam.  

For simplicity the liquid phase density and the liquid phase viscosity of a water-CO2 

mixture are taken equal to that of the density and viscosity of liquid water. For the 

enthalpy of a liquid phase of a water-CO2 system the relationship given by O’Sullivan 

et. al. (1985) shown in equation 2.6 is used. 

    CLsolCCLwL fhhfhh  1  (2.6) 

Here hL is the enthalpy of the liquid phase (J/kg), hw is the enthalpy of liquid water 

(J/kg), f
CL

 is the mass fraction of CO2 in liquid water,
Ch  is the enthalpy of the gaseous 

CO2 (J/kg) and hsol is the enthalpy of solution. 
Ch is calculated based on equation 2.4 

given in previous subsection. Liquid enthalpy changes for various mass fraction of 

dissolved CO2 in liquid with temprature are given in the Figure 2.6. 

 

Figure 2.6 : Liquid enthalpy versus temperature. 
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The solution enthalpy can be determined using equation 2.7 given by Ellis and Golding 

(1963). Based on their equation, for temperature less than 80oC, negative enthalpy 

values are calculated. The change of enthalpy of solution with temperature is plotted 

in Figure 2.7.  
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Figure 2.7 : Enthalpy of solution versus temperature. 

The pressure of the gas phase can be computed by simply adding up the partial pressure 

of steam and the partial pressure of CO2 as given in equation 2.8. 

s Cp p p   (2.8) 

Here p is the pressure of the gas (Pa), ps is the partial pressure of steam (Pa) and p
C
 is 

the partial pressure of CO2 (Pa). ps, in this study is determined from IAPWS (2007). 

The gas phase density in the system can be computed using equation 2.9. 

CsG    (2.9) 
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where G  is the gas phase density (kg/m3), s  is the steam density (kg/m3) and C  

(kg/m3) is the density of gaseous CO2 which can be calculated from equation 2.3 as 

stated previous subsection. The gas phase viscosity can be computed using equation 

2.10. 

  CGCCGsG ff   1  (2.10) 

Where G  is the viscosity of the gas phase (Pa.s), s  is the viscosity of steam (Pa.s),  

f
CG

 is the mass fraction of CO2 in the gas phase, C  is the viscosity of gaseous CO2 

that is calculated from equation 2.5. Viscosity of gas phase changes with temperature 

is given in Figure 2.8. 

 

Figure 2.8 : Viscosity of gas phase versus temperature. 

The enthalpy of the gas phase can be determined using equation 2.11. 

  CGCCGsG fhfhh  1  (2.11) 

where Gh  is the enthalpy of the gas phase (J/kg), Sh is the enthalpy of steam (J/kg) and  

Ch  is the enthalpy of gaseous CO2. The behaviour of enthalpy of gas phase is shown 

in Figure 2.9. 



28 

 

Figure 2.9 : Enthalpy of gas phase versus temperature. 

Finally at a given pressure and temperature, the mass fraction of CO2 in the gas phase 

can be determined using equation 2.12. 

G

C
CGf




  (2.12) 

equations  2.8-2.12 have been taken from O’Sullivan et al. (1985). According to 

Henry's law, the partial pressure of a noncondensible gas in the gas phase is 

proportional to the mol fraction of dissolved NCG in the aqueous phase. The partial 

pressure of CO2 is linked with the mass fraction of CO2 in the liquid water through 

Henry’s law given in equation  2.13. 

HCCL Kpf   (2.13) 

Here Cp  is the partial pressure of CO2 (Pa),  f
CL

 is the mass fraction of CO2 in liquid 

water, KH is Henrys constant (Pa-1).  Henry’s constant is a function of temperature. 

And an explicit relation for Henry’s constant is given by Sutton (1976).  
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 (2.14) 
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According to equation 2.14, Henry’s constant versus temperature can be plotted as in 

Figure 2.10. 

 

Figure 2.10 : Henry’s constant of CO2 versus temperature. 

The dissolution of carbon dioxide in pure water is decribed with Henry’s constant. 

According to Figure 2.10, At low temperatures Henry’s constant decreases with 

temperature but after a specific turning point temperature Henry’s constant increases 

with temperature. Figure 2.11 illustrates the partial pressure of carbon dioxide as a 

functions of temperature and mass fraction of dissolved carbon dioxide in water. As 

the mass fraction of CO2 increases, the partial pressure of CO2 also increases. 

Furthermore, because Henry’s constant and partial pressure of CO2 are inversly 

proportional, at low temperatures partial pressure of CO2 increases with temperature 

and after a turning point temperature is reached, partial pressure of CO2 decreases with 

temperature.  

In this study, Henry’s constant for the dissolution of carbon dioxide in pure water is 

calculated using polynomial regression of data from 0 oC to 300oC published by 

Cramer (1982) with equation 2.15. 


5

i
H

i=0

K = B(i)T  (2.15) 
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Figure 2.11 : Partial pressure of CO2 versus temperature. 

 The values of coefficients B(i) are tabulated in Table 2.4. 

Table 2.4 : Coefficients for equation 2.15. 

B(0) 7.83666x107 

B(1) 1.96025x106 

B(2) 8.20574x104 

B(3) -7.40674x102 

B(4) 2.18380 

B(5) -2.20999x10-3 

Another correlation which is provided by Upton and Santoyo (2002) is given as an 

option for providing the link between the carbon dioxide content and the partial 

pressure of carbon dioxide. The correlation is given in equation 2.16. y’s are the 

regression constant and temperature T is given in K. The constants y(1), y(2),y(3)and 

y(4) of this eqautions are listed in Table 2.5. 

     32
15.273)4(15.273)3(15.273)2()1(ln  TyTyTyyKH  (2.16) 
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Table 2.5 : Regression coefficients for equation 2.16. 

y(1) 4.517428673 

y(2) 2.555453510-2 

y(3) -1.0221310-4 

y(4) 9.3068910-8 

Then the relation between the KH constant and the partial pressure of CO2  can be 

specified as in equation 2.17. 

CLHC fKp
44

18
  (2.17) 

where KH is the Henry’s constant and f
CL

 is the mass fraction of CO2 in water. The 

effect of dissolved CO2 on the phase behavior of water can be illustrated through a 

pressure temperature diagram for various mass fractions of dissolved CO2. The 

flashing point pressures of the water-CO2 mixture is obtained using equation 2.8 for 

various temperatures. The partial pressure of steam is obtained using IAPWS (2007). 

The partial pressure of CO2 is obtained from Henry’s law using equation 2.17. Figure 

2.12 illustrates the results according to Henry’s constant found from Sutton 

correlation. 

The most profound effect of CO2 on the behavior of water – CO2 mixtures is the shift 

it causes on the flashing point pressures. For example, at around 200°C pure water 

starts to boil at around 1.5106 Pa. If dissolved CO2 exists in the water phase with a 

mass fraction of 0.5% then the mixture would boil at around 3.1106 Pa. At a 2.5% 

mass fraction, the mixture boils at around 8.9106 Pa. Small amounts of CO2 dissolved 

in water considerably changes the flashing point pressure of water. If not accounted 

for, during production, flashing point depths within wells could be associated with 

high errors where shallower flashing point depths would be anticipated when actual 

flashing point depths would be located much deeper. During depletion, if the flashing 

point is to move into the reservoir, then a gas phase will start to form. This would have 

the effect such that, the decline rate in pressures due to production would be decreased 

significantly. This is because below the flashing point pressure a gas phase starts to 

evolve. Since gas has much higher compressibility when compared with liquids, they 

can compensate for production simply by expanding more than liquids hence causing 

a decrease in the pressure decline rate. 
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Figure 2.12 : Pressure – temperature behavior of water–CO2 mixtures for various 

mass fractions of CO2 based on Sutton (1976). 

p-T diagrams can be changed according to the correlations that is used for Henry’s 

constant that links the mass fraction with the partial pressure of CO2. If Upton and 

Santoyo’s (2002) statistical analysis method is used for Henry’s constant, Figure 2.13 

is achieved. 

In this study, Cramer’s method is found to be the best approach for Henry’s constant 

calculations after some verification tests. Henry's law constant for the dissolution of 

carbon dioxide in pure water are calculated using polynomial regressions of data from 

0 to 300°C published by Cramer (1982) and plotted in Figure 2.14.  According to 

Battistelli et al. (1997), the maximum error for Henry's constant of pure water is 2.8% 

based on experimental data by Cramer (1982). The comparison of these three Henry’s 

constant calculation approach are illustrated in Figure 2.15. As it can be seen, as the 

mass fraction of CO2 is increased, the variation of methods is increased. Especially 

Sutton’s correlation at fCL=0.025 shows higher variation. In addition, there is a 

differentiation at lower temperature values. 
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Figure 2.13 : Pressure – temperature behavior of water–CO2 mixtures for various 

mass fractions of CO2 based on Upton and Santoya (2002). 

 

Figure 2.14 : Pressure – temperature behavior of water–CO2 mixtures for various 

mass fractions of CO2 based on Cramer (1982). 
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Figure 2.15 : Comparison of approachs for Henry’s constant calculations. 

Figure 2.16 shows the pressure-temperature-enthalpy behavior of the water–CO2 

mixtures having 0.015 mass fraction of CO2 dissolved in the liquid phase. The shift 

caused by the existence of carbon dioxide on the flashing point pressure of the mixture 

is also visible in the pressure – enthalpy diagram. As the pressure is decreased, once 

the flashing point pressure is reached then gas starts to form and pressure starts to 

follow the iso-thermal lines in the two phase region. It is important to note that the gas 

is initially composed of carbon dioxide. During this time where carbon dioxide 

dominates the gas phase, the pressure declines rapidly. As pressure is further decreased 

due to production, steam content starts dominating the gas phase and pressure starts 

becoming constant (Alkan and Satman 1990). After this point the behavior of the fluids 

are more or less like that of pure water. For pure water, a fixed temperature enthalpy 

is not changing much with pressure decrease in single phase liquid region. In two phase 

region enthalpy changes but pressure stays same and in gas phase region enthalpy 

changes little bit with pressure. 

Large pressure drops occur due to flashing of CO2 as the enthalpy of the two phase 

system increases slightly. After most of the CO2 is in the gas phase, steam quality 
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becomes the dominant factor determining the enthalpy and pressure becomes nearly 

constant until the dew point curve is reached. 

 

Figure 2.16 : Pressure–temperature–enthalpy behavior of  water–CO2 mixtures for 

fCL=0.015 (Adapted from Alkan and Satman, 1990). 

2.4 H2O - CO2 - NaCl System 

The importance of salt content has received less attention in modelling because there 

are only a few high salinity reservoirs appeared in the world and effects of salt is 

significant at high salinity. The total dissolved solids (TDS) content in geothermal 

reservoir fluids ranges from a few thousand ppm (wt.) up to 280000 ppm (Battistelli 

et.al, 1997). For strongly salty waters (>100000 ppm) pure water assumption can cause 

errors as high as 10 % but the average value of the world's geothermal fluids is around 

10000 ppm and salt effect can be relatively ignored. In Turkey’s geothermal reservoirs, 

TDS values are even smaller. Two of the important fields, Kizildere and Germencik 

have approximately 4000 and 5000 ppm dissolved solid, respectively. Sodium chloride 

(NaCl) is the predominant solid so the thermodynamic properties of NaCl solutions 
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are generally used in the simulation of geothermal reservoirs to represent the effect of 

total dissolved solids. 

Adding salt (NaCl) to pure water alters the critical point and two phase region. The 

main effects of solids dissolved in the liquid phase are the decrease of vapor pressure 

and enthalpy, and the increase of density and viscosity in the liquid phase. Moreover, 

CO2 solubility in liquid phase of brine decreases.  

The solubility of CO2 in the water phase is dependent on temperature and pressure as 

well as on salt concentration. The presence of salt reduces the CO2 solubility in the 

water phase, which is called salting-out. The mass fraction of CO2 in the water phase 

is calculated using Henry's law, however, because the salt reduces the solubility of 

CO2, the value of the Henry's law constant depends on the salt content of the brine 

(Battistelli et al., 1997). The Henry's constant can be calculated with equation 2.18; 

( )
10 brm sk

Hbr HK K  (2.18) 

where skbr is the salting-out coefficient, KH is the Henry’s law constant for pure water,  

KHbr is the Henry’s law constant for brine in Pa and m is the salt molality in mol/kg. 

Here, molality is calculated with equation 2.19; 
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Where MW is the molecular mass of the CO2 in g/mol and 
NaCl

brX is the mass fraction 

of NaCl in brine. The salting-out coefficient are calculated using polynomial 

regressions of data from 0oC to 300oC published by Cramer (1982). The equation for 

the salting-out coefficient is given by equation 2.20; 
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The coefficients D(i) have values listed in Table 2.6. 

Table 2.6 : Regression coefficients for equation 2.20. 

D(0) 1.19784x10-1 

D(1) -7.17823x10-4 

D(2) 4.93854x10-6 

D(3) -1.03826 x10-8 

D(4)  1.08233 x10-11 
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Salt reduces the CO2 solubility in the water phase. Henry’s law constant for the 

dissolution of CO2 in pure water and salt mass fractions of 0.01 and 0.05 are given 

Figure 2.17 (Cramer 1982, Batistelli et al.1997). 

 

Figure 2.17 : Henry's law constant for CO2 in NaCl solutions from 0 to 0.05 mass 

fraction based on Cramer’s approach. 

The vapor saturated brine pressure versus temperature at different NaCl mass fractions 

for f
CL

 = 0.01 are given in Figure 2.18. It can be seen that dissolved solids generally 

reduce the vapor pressure. 

Another approach for the calculation of Henry’s law constant for brine is given in the 

literature (Satman, 2006). Based on this approach, the Henry's constant can be 

calculated with equation 2.21; 

(0.790613 0.003 )101.4Hbr HK K m T m      (2.21) 

Henry’s law constant for the dissolution of CO2 in pure water and salt mass fractions 

of 0.01 and 0.05 are given Figure in 2.19 and the vapor saturated brine pressure versus 

temperature at different NaCl mass fractions for f
CL

 = 0.01 are given in Figure 2.20. It 

can be seen that two approaches are compatible with each other. 
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Figure 2.18 : Pressure of pure water and brine with various NaCl concentration 

based on Cramer’s approach. 

 

Figure 2.19 : Henry's law constant for CO2 in NaCl solutions from 0 to 0.05 mass 

fraction based on Satman (2006). 

It is important to emphasize again the average value of the world's geothermal fluids 

is around 10000 ppm so effect of salt can be relatively ignored. For example, 
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Germencik field reservoir liquid contains approximately 5000 ppm (0.5 % ) dissolved 

solid. The comparison of Henry’s constant and pressure of a reservoir fluid containing 

Xbr=0 and Xbr=0.05 are illustrated in Figures 2.21 and 2.22. 

 

Figure 2.20 : Pressure of pure water and brine with various NaCl concentration 

based on Satman (2006). 
 

Figure 2.21 : Henry's law constant for CO2 in NaCl solutions of 0 to 5000 ppm. 
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Figure 2.22 : Pressure of pure water and water containing 0-5000 ppm NaCl and 1 

% CO2. 

Henry's law constant for CO2 in NaCl solutions of 0 to 5000 ppm are nearly same. And 

pressure difference between pure water and brine is caused by the mass fraction of 

CO2 in liquid phase. 
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3.  METHODOLOGY 

In geotermal system modelling, dominant physical relationships of the geotermal 

system is formulated in terms of mathematical model. This formulation results in a set 

of nonlinear partial differential equations which are too complex to be solved by 

analytical methods. For this reason, numerical model which enables a numerical 

solution of the equations is developed and computer program is coded for the 

calculation of these numerical models. The model is capable of representing the wide 

range of geothermal system types, compressed water, two phase and super heated 

steam and also changes between these states. The governing equations represent the 

mass, momentum and energy balanace for the geotermal system. This set of equations 

is completed by adding appropriate physical and thermodynamic relations. 

3.1 Utilization of Lumped Parameter Models 

Badvorsson (1966) and Axelsson (1985) have introduced the lumped element models 

consisting of networks of liquid capacitors and conductors for geothermal reservoir 

simulation. Every tank has a storage capacity κ, which determines how the reservoir 

responds to a load of liquid mass with a pressure increase depending on the size of the 

system and the storage mechanism. The corresponding flow resistor σ controls the 

property relationship between liquid mass and pressure, and is controlled by the 

permeability of the reservoir. According to Axelsson (1989) geothermal system 

consists mainly of three parts: (1) the central part of the reservoir; (2) outer parts of 

the reservoir, and (3) the recharge source (Figure 3.1). The central and outer parts of 

the reservoir can be considered as series of homogeneous tanks with average 

properties. The recharge source is the outermost part of the geothermal system. It can 

be connected to the outer parts of the reservoir or the central part of the reservoir where 

production and injection activities take place. If there is no connection to the recharge 

source, the model is defined as closed system. If there is a connection between recharge 

source and reservoir, the system is defined as open system. 
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Figure 3.1 : Parts of a geothermal system (Sarak et al., 2005). 

In lumped parameter modelling, each component of a geothermal system is 

represented by a tank that is composed of fluid and rock. Average properties are 

assigned to these tanks and changes of pressure, temperature and production are 

monitored. The tanks represent the reservoir, the aquifer, the heating source or the 

atmospheric block to which natural discharge occurs. The pressure and temperature 

changes in the reservoir are modelled by using mass and energy balances so the field 

potential can be predicted under various production and injection scenarios. Analytical 

equations for various tank configurations have been developed by Sarak et al. (2005). 

Configuration and the number of the tanks can be changed due to the structure of the 

geothermal system. Geothermal system is named based on the connections that it 

makes. Different combinations for specific cases are illustrated in Figure 3.2. There is 

a single tank model in Figure 3.2.a. If the geothermal system is open, which means 

that is connected to at least one recharge source, pressure and temperature behavior of 

the geothermal reservoir can be easily simulated with this tank model. 

Two tank open model is illustrated in Figure 3.2.b. As it is mention before, if one of 

the tank is connected to the recharge source the system becomes open system. One of 

the tank represents the reservoir and the other one represents aquifer. While aquifer is 

represented with a separate tank, the trasient flow regime can be captured in detail.  
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a.One reservoir with recharge source 

 

b.One reservoir – one aquifer with recharge source 

 

c.One reservoir – two aquifers with recharge source 

 

d. Two reservoirs – one aquifer with recharge source 

Figure 3.2 : Various types of tank models. 
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Aquifer is connected to a recharge source so it can be represented with a huge volume 

of tank which its pressure and temperature is kept constant during production. 

Production/injection activities occur only in reservoir tank. Two or more tanks can be 

used to represent aquifer to catch transient flow period as shown in Figure 3.2.c. These 

aquifer can have same or different recharge constant. In some cases, reservoir can be 

represented with more than one tank according to the properties and location of the 

reservoir. For example, shallow and deep reservoirs can be found together in 

geothermal system. Hydraulic conductivity may or may not be formed between these 

tanks. They can be connected to same or different aquifers. This case is illustrated in 

Figure 3.2.d. Production/injection can take place in both tanks.  

3.2 Description of the Model 

The basic equations represent the mass, momentum and energy balance for the 

geothermal system containing some amount of CO2. This set of equations is completed 

by including an appropriate thermodynamic package decribed in Section 2. The major 

assumptions used in the derivations are that the momentum balance is decribed by 

Darcy’s law and that the geothermal system is in thermal equilibrium which means at 

each point, the temperature of the rock and matrix and the fluid mixture are the same 

(Nayfeh et. al, 1975). 

The model is based on three conservation equations; mass balance on water, mass 

balance on carbon dioxide and an overall energy balance. In the model presented here, 

each component of a geothermal system is represented using a tank that is composed 

of fluid and rock. Figure 3.3 illustrates any tank i and the connections to neighboring 

tanks. 

The tanks represent either the reservoir, the aquifer, the heating source or the 

atmospheric block to which natural discharge occurs. In some cases more than one 

tank can be used to represent the reservoir or the aquifer. Here we will consider that 

any tank can make an arbitrary number of connections with any other tank. This 

generalized approach had previously been taken by Tureyen and Akyapi (2011) and 

Hosgor et al. (2013).  

The overall model will be assumed to be composed of a total of Nt number of tanks. 

Tank i in the system is assumed to make an Nni number of connections to other tanks. 
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Note that Nni can vary from tank to tank because each tank in the model can make a 

different number of connections. Liquid water may be injected into the tank at a 

specified temperature Tinj. Production is specified at a total production rate which is 

the sum of gas and liquid rates. The individual amounts are determined based on their 

mobility. The fluid is produced at the tank temperature Ti. 

 

 

Figure 3.3 : Properties of a representative tank in the model. 

The liquid mass flow rate between any tank jl and tank i is determined using the steady-

state Schilthuis (1936) water-influx approach which is used to describe the recharge 

rate between the tanks, and from the recharge source to the connecting tank. This 

method assumes that the recharge is proportional to the pressure difference between 

the reservoir tank and the recharge source, and is given by equation 3.1;                  

 ijjiji ppW
lll
 ,, 

 (3.1) 

Here 
ljiW ,  is the mass flow rate of the fluid phase transferred between tank i and tank  
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jl (kg/s), 
lj

p  is the pressure of tank jl (Pa), ip  is the pressure of tank i (Pa) and 
ljiL ,,  

is the recharge index (kg/(bar.s)) which represents the mass flow rate for a given unit 

pressure drop between the tanks. At this point it is important to note that the recharge 

index is composed of two parts; a rock part (which assumed to independent of pressure 

and temperature) and a fluid part (which is assumed to be a strong function of pressure 

and temperature. Hence the recharge index can be written as follows (equation 3.2): 

lll jjiji  ,, 
 (3.2) 

Where 
lji,  is the rock part of the recharge index (m3) and 

l  is the fluid part of the 

recharge index (kg/(Pa.s.m3)). The fluid part is given by equation 3.3. 

ll ji

rl

ji

k
,, 


















  (3.3) 

where r lk  is the relative permeability of the fluid in m2. The rock part of the recharge 

index  is given by equation 3.4. 

l

l

ji

ji
d

kA

,

, 







   (3.4) 

Here k represents the permeability of the medium of the tanks assumed to be composed 

of (m2), A is the cross-sectional area that the fluid passes through when being 

transferred between the tanks (m2) and d is some characteristic length which is a 

measure of the distance the fluid takes when it is being transferred from one tank to 

the other (m). It is important to note that the individual values of k, A and d need not 

be known. They are all lumped in 
lji,  which is treated as an input parameter or can 

be treated as a parameter to be adjusted during history matching. The fluid part of the 

recharge index on the other hand is computed for a given pressure, temperature and 

saturation. It is important to define recharge index correctly for each phases. If the 

recharge index is written for liquid phase subscript of L will be used and if it is written 

for gas phase subscript of G will be used. 

In the model, saturation weighted flow rate is assumed and X type relative permeability 

curves is used. That means relative permeability of gas is directly proportional to 

saturation of gas.  
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The model also considers the heat conduction. Based on the law of heat conduction, 

also known as Fourier's law the energy flux due to conduction between any tank jl and 

tank i is given by equation 3.5. 

 ijjiji TTQ
lll
 ,,   (3.5) 

where Q is the energy rate (J/s) and 
lji,  is the conduction index (J/(K.s)). As it is seen 

from this equaiton, energy flux between tanks are directly proportional to temperature 

difference and the proportion gives the conduction index which is the property of a 

material to conduct heat. Conduction index can also be written due to some 

petrophysical properties; 

l

l

ji

ji
d

kA

,

, 







  

(3.6) 

Equation 3.6 represents the thermal conductivity of porous media that is formed from 

rock and fluid. Thermal conductivity can be also given as an input parameter or can be 

treated as a parameter to be adjusted during history matching. 

The geothermal system is considered to be composed of a total of Nt number of tanks. 

Tank i in the system is assumed to make Nni number of connections to other tanks. All 

the mass and energy balance equations are solved for each tanks simultaneously. 

Figure 3.4 illustrates an example of tank configuration. This sytem contains 6 tanks, 

this means Nt equals to 6. But Nni values are changing from tank to tank because each 

tank has different number of connections. For example, tank 1 only connects to tank 

2, thus Nn1 equals to 1 and j1=2. On the other hand, tank 2 has connections with tanks 

1, 3 and 5 so Nn2 equals to 3. In this case, j1=1, j2=3 and j3=5 for tank 2. Table 3.1 lists 

the number of the tanks and their connections with the other tanks. 

 

Figure 3.4 : Example for configuration of tanks. 
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Table 3.1 : Sample tank connections. 

Tank Number  

(i) 

Number of Connections  

(Nni) 

Connecting Tanks  

(ji) 

1 1 j1= 2 

2 3 j1= 1, j2= 3, j3= 5  

3 2 j1= 2, j2= 4 

4 1 j1= 3 

5 2 j1= 2, j2= 6 

6 1 j1= 5 

The model is based on three conservation equations that have to be solved for each 

tank. These equations can be listed as below and details for them are given in the 

following subsection. 

•  Mass Balance for Water 

•  Energy Balance on Fluids and Rock 

•  Mass Balance on Carbon dioxide 

3.3 Mass Balance for Water 

The mass balance equation for water for any tank is given in equation 3.7; 

   

   

      0

Accumulation rate of water Contributionof liquid water from other tanks

Contributionof vapor fromother tanks Liquid production

Liquid injection Vapor production Vapor injection



 

   

 (3.7) 

For the accumulation term, the accumulation of both liquid and vapor is considered 

and bulk volume of tank i is assumed to be constant. 

 ,b i L L G G i

d
Accumulation rate of water V S S

dt
      (3.8) 

In equation 3.8, Vi is the volume of the tank (m3),  is porosity (fraction), L and G  

are densities of liquid water and gas (kg/m3) and SL and SG are saturations (fraction) of 

liquid and gas, respectively.  
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It is important to note that, porosity is a function of pressure and temperature so it 

should be modelled by using the following equation 3.9 (Onur et.al, 2008) ; 

 0 0 0( , ) 1 ( ( ) ) ( ( ) )rp T c p t p T t T        (3.9) 

i  is the initial porosity of the reservoir (fraction), cr (bar-1) is the rock compressibility, 

p0 and T0 are the initial pressure nad temperature respectively. ε is the thermal 

expansion coefficient of porosity (1/oC). 

The liquid mass flow rate between any tank jl and tank i (contribution from other tanks) 

is determined using an approach similar to that of Schilthuis (1936) and is given 

equation 3.10; 

 , , , ,l l lL i j L i j j iContribution of liquid fromother tanks W p p    (3.10) 

Here 
ljiLW ,,  is the mass flow rate of the liquid phase transferred between tank i and 

tank jl (kg/s), 
lj

p  is the pressure of tank jl (Pa), ip  is the pressure of tank i (Pa) and 

, , lL i j  is the recharge index (kg/(bar.s)) of liquid which represents the mass flow rate 

for a given unit pressure drop between the tanks.  

The gas mass flow rate is determined in the same fashion using equation 3.11, except 

with the subscript L replaced with G. 

 , , , ,

1

ci

l l l

N

G i j G i j j i

l

Contribution of vapor from other tanks W p p


    (3.11) 

For the liquid and gas production we simply use; , ,p L iW and , ,p G iW . To examine the 

cases with injection of water, an injection term can be added to the mass balance 

equation, , ,inj L iW .  

Then the mass balance of water for tank i can be written as shown in equation 3.12. 

     , , , , ,

1 1

, , , , , , 0

ci ci

l l l l

N N

b i L L G G L i j j i G i j j ii
l l

p L i p G i inj L i

d
V S S p p p p

dt

W W W

     
 

    

   

 

 

(3.12) 
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The first term on the accumulation of mass in the tank, the second term represents the 

liquid mass contribution from other tanks and the third term represents the gas mass 

contribution from other tanks. The derivative of time appears in the accumulation term. 

Numerical approach is applied to take the derivative of time. The most commanly used 

approach is to apply finite difference technique expressing the partial derivatives in 

the equations in terms of algebraic approximations obtained by Taylor expansions near 

the point of interests and solving  the resulting set of simplified equations. The details 

of this techique and solution method is given in section 3.8. When finite difference 

method is applied to the mass balance, equation 3.13 is obtained; 

   
 

 

1

, , ,

1

, , , , , , , ,

1

0

ci

l l

ci

l l

n n N
L L G G L L G G

b i L i j j i
i l

N

G i j j i p L i p G i inj L i

l

S S S S
V p p

t

p p W W W

       










  
 



     




 

(3.13) 

Where the superscript n refers to the present time and n+1 refers to the time at which 

the solutions will be determined. t represents the time from n to n+1. The subscript i 

represents the reservoir block index. As it is seen from the equation, this aproach 

requires time step selection. Production and injection terms are handled in updated, 

n+1, timestep. The explicit approach is easier to solve but stability problems arises. 

To overcome the instability problem, implicit approach is preffered. Using the implicit 

finite difference method on equation 3.14, the following equation is obtained: 

     

 

1

1

, , , , , ,

1

1 1

, , ,

1

1 1 1 1 1

, ,

1

0

ci
n

l l

ci
n

G i j j i p L i inj L il l

n n N
L L G G L L G G n n

b i L i j j i
i l

N
n n n n n

p G i

l

S S S S
V p p

t

p p W W W

       










 



    



  
 



     




 

(3.14) 

3.4 Energy Balance on Fluids and Rock 

Temperature of the geothermal reservoir will change due to production, cold water 

recharge or cold water reinjection. Even for the closed system, as the mass is being 

removed with the production, pressure will decrease causing reduction in the internal 
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energy. Thus, temperature of the reservoir will also decrease with the decreased 

internal energy.  

In modelling the non isothermal behavior of a geothermal reservoir, conservation of 

energy also needs to be solved. Energy balance equation for any tank is given by 

equation 3.15; 

 

 

 

 

Accumulation rate of energy

Contributionof energy fromother tank by movement of liquid

Contributionof energy fromother tank by movement of vapor

Contributionof energy dueto liquid production

Contributionof energy dueto liqui







 

 

 

  0

d injection

Contributionof energy duetovapor production

Contributionof energy duetovapor injection

Overall energy contribution from heat transfer by conduction





 
 

(3.15) 

Here, the accumulation term is defined as given by equation 3.16; 

   1b m m b L L L G G G

Accumulation rate of energy

d
V C T V u S u S

dt
         

 
(3.16) 

The liquid and gas energy flow  between any tank jl and tank i can be given as equation 

3.17 and 3.18; 

 , , ,

1

ci

l l

N

L i j j i L

l

Contributionof energy fromother tank by movement of liquid

p p h 


 
 

(3.17) 
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 , , ,

1

ci

l l

N

G i j j i G

l

Contributionof energy fromother tank by movement of gas

p p h 


 
 

(3.18) 

Energy contributions from liquid production, liquid injection and gas production are 

given as follows; 
, , , , , , , , , ,, ,p L i L i p G i G i inj L i L inj iW h W h W h . 

We assume that local thermal equilibrium exists in tank i between the gas phase, the 

liquid phase and the rock. Under this assumption the energy balance can be given as 

equation 3.19; 

   

 

   

, , ,

, , , , , , , , , ,

1

, , , ,

1 1

1

0

ci

l l

ci ci

l l l l

m m L L L G G G p L i L i

N

p G i G i inj L i L inj i L i j j i L

l

N N

G i j j i G i j j i

l l

d
V C T V u S u S W h

dt

W h W h p p h

p p h T T





    



 



 

     

   

    



 

 (3.19) 

where m  represents the rock matrix density (kg/m3), mC  represents the specific heat 

capacity of the rock (J/(kg.K)), u represents the internal energy (J/kg) and h represents 

the enthalpy (J/kg).  

When considering the energy contribution from other tanks, we perform an upwinding 

scheme on the enthalpy as given by equation 3.20. In other words, the flow direction 

is checked to figure out which block pressure and temperature should be used to 

determine the internal energy. 












ll

l

jij

jii

pph

pph
h

  if  

  if  


 
(3.20) 

For the terms with time derivatives forward finite difference discretization and for the 

variables implicit approach is applied and equation 3.21 is formed. 
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



         
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  



    



    


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 
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,
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0
ci

l j il

N
n n n n

i j

l

T T   



  
 

(3.21) 

3.5 Mass Balance on the Carbon Dioxide Component 

Finally, the mass balance equation of CO2 for any tank is given by equation 3.22. 

 

 

2

2

2

2 2 2 0

Accumulation rate of CO

Contribution of dissolved in water CO fromother tanks

Contributionof CO in gas phase fromother tanks

Liquid CO production GasCO production CO injection

   

   

         

 (3.22) 

Accumulation of carbon dioxide in the tank i is given by equation 3.23; 

 2 ,b i L L CL G G CG i

d
Accumulation rate of CO V S f S f

dt
      (3.23) 

The liquid and gas CO2 mass flow rate between any tank jl and tank i are given  by 

equation 3.24 and equation 3.25, respectively. 

 2 , , ,

1

ci

l l

N

L i j j i CL

l

Contributionof liquid CO fromother tanks p p f 


 
 

(3.24) 

 2 , , ,

1

ci

l l

N

G i j j i CG

l

Contributionof gasCO fromother tanks p p f 


 
 

(3.25) 

Finally, if the liquid and gas CO2 production and CO2 injections (if any) terms are 

added, the mass balance on the CO2 component is given by equation 3.26; 
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   

 

, , , ,
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, , , , , , , , , , , ,

1
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ci

l l

ci

l l

N

b i L L CL G G CG L i j j i CLi
l

N

G i j j i CG p L i CL i p G i CG i inj L i CL i
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d
V S f S f p p f

dt

p p f W f W f W f





    







  

     





 (3.26) 

Here f represents the mass fraction of CO2 either in the liquid or the gas phase and Wp 

represents the production and Winj represents the injection rates in kg/s.  

In many cases, the produced CO2 can be reinjected to the reservoir and re-injected CO2 

mass fraction can be a function of the CO2 mass fraction that is produced. In that case, 

mass fraction of CO2 can be modelled with reinjection ratio, β,  given in equation 3.27; 

( )injf f t  (3.27) 

In variable CO2 mass fraction cases equation 3.27 becomes;  

   
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, , , ,
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, , , , , , , , , , , ,

1
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ci
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l l

N
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l

N

G i j j i CG p L i CL i p G i CG i inj L i CL i i
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d
V S f S f p p f

dt

p p f W f W f W f





    

 





  

     





 (3.28) 

In equation 3.28, β is a number that varies between 0 and 1. If β is zero, there is no 

CO2 injection and if is β equals to 1, then the injected CO2 mass fraction becomes 

equal to the CO2 mass ftaction in the tank at any particular time. 

The upwinding approach is applied  similar to that enthalpy case. The approach is 

given in equation 3.29; 












ll

l

jij

jii

ppf

ppf
f

  if  

  if  


 
(3.29) 

For the terms with time derivatives forward finite difference discretization and for the 

variables implicit approach is applied, the generalized mass balance equation for CO2, 

equation 3.30,  is formed. 
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 





      

 
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  



   

   

   (3.30) 

3.6 Selection of the Primary Variables 

Primary variables are the parameters needed to describe the properties of a system. 

The thermodynamic conditions at any point in a reservoir are described in terms of a 

small set of primary variables. The thermodynamic formulation is used to calculate all 

other fluid properties from these primary variables.  The non-isothermal two-phase 

two-component model consists of three equations with three unknowns or primary 

variables. For pure water, these can be pressure p, temperature T and saturation S. 

However, with the consideration of carbon dioxide, the selection of primary variables 

can be more complex. One of the important points in this model is the changing of 

primary variables during phase transition. The same approach with O’Sullivan et al. 

(1985) is used in this study however; selected primary variables are different in two 

phase region. For the selection of primary variables O’Sullivan et al. (1985) proposed 

an approach that can be summarized as follows; if the tank contains a single phase 

fluid, then the primary variables are chosen as pressure, temperature and partial 

pressure of CO2, whereas if the tank contains gas and liquid phases at the same time, 

the gas saturation is used as a primary variable instead of temperature.  

In this model after some verification studies, it is decided to use pressure, temperature 

and partial pressure of CO2 as primary variables in the single phase region and 

saturation of gas, temperature and partial pressures of CO2 as primary variables in the 

two phase region. By choosing these primary variables, the fluctuations during phase 

transition are overcome in our tank model. Table 3.2 lists the proposed primary 

variables for each approach. 
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Table 3.2 : Proposed primary variables. 

 
  Liquid Phase    Two Phase    Gas Phase 

O’Sullivan et al. (1985)    p, T, Cp      p, SG, Cp      p, T, Cp  

Hosgor et al. (2015)     p, T, Cp      SG, T, Cp      p, T, Cp  

3.7 Change of Phases During Simulation   

Compressed water may boil to establish a two-phase region or two phase geothermal 

reservoir may form a superheated steam region with production. Finite difference 

solution algoritm must be able to handle these transitions. In the single phase liquid 

region, primary variables are selected as p, and T. First partial pressure of steam, Ps, is 

calculated from IAPWS then a test for phase transitions is made by checking the 

inequality p < ps + in every iteration. If pressure is smaller than sum of the partial 

pressure of steam and carbon dioxide, a change to the two phase region is made. During 

phase transition, primary variable becomes the saturation of gas, Sg, and Sg is initialized 

as a very small value such as 10-6. In two phase region, gas saturation value is checked 

in every iteration this time. If Sg < 0 or Sg > 1, the transition to single phase liquid or 

gas, respectively, is occurred. When the gas saturation equals to 1, a change to single 

phase gas region is made. In this region, P, and T are the primary variables again. A 

test for phase transitions is made by checking the inequality p < ps +   in every iteration. 

If the calculated pressure is equal or greater than the sum of the partial pressure of 

steam and carbon dioxide, then a transition to two-phase conditions is occured. 

Length of the time steps is also crucial in phase transition period because fluctuations 

occur during phase transition as it is mentioned before. With the relatively small time 

steps, fluctuation problem can be overcome. Particular attention is paid to this 

behaviour in general.  

As the primary variables change during the iteration process, the thermodynamic 

package must be capable of recognizing the appreance and disappreance of phases and 

providing all needed thermophysical parameters appropriate for the latest iterated 

values of the primary variables (O’Sullivan et al. 1985).  
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3.8 Linearization of Equations 

Equations 3.14, 3.22 and 3.30 are non-linear equations. This set of non linear partial  

differential equations with the associated thermodynamic relations is too complex to 

be solved by analytical methods. Therefore these equations are solved by numerical 

approach. Derivative of time appears in the all accumulation terms. To take the 

derivative of time, numerical approach can be utilized.  

Overall mass balance, energy balance and carbon dioxide mass balance equations are 

discretizated by using finite difference method as shown by equation 3.31, equation 

3.32 and equation 3.33. These three equations have to be solved simulatenously by 

using an iterative approach given in the literature. The details of solution approach is 

given in the next subsection. 
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Here R is the residual vector and can be written as;  
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 (3.35) 

3.9 Solution of Finite Difference Equations 

Equations 3.32, 3.33 and 3.34 are solved in a fully implicit manner using the Newton-

Raphson technique. Newton raphson method is one of the powerful techniques for 

solving equations numerically. Like so much of the differential calculus, it is based on 

the simple idea of linear approximation. There are 3Nt equations with 3Nt unknows. 

These unknowns are pressure, temperature and partial pressure of CO2 vectors for 

single phase regions and saturation of gas, temperature and partial pressure of CO2 

vectors for two phase region. The solution vector, v, and the vector notation forms of 

these variables are given in equations 3.36, 3.37, 3.38, 3.39 and 3.40. 

 
T

G , , Corv p S T p  (3.36) 
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Pressure is switched to gas saturation vector for two phase region. 
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Newton Raphson method can be summarized  with below equation 3.41; 

1, 1, 1, 1 1,( ) ( )n k n k n k n k     J v v R v  (3.41) 
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The above set of equations has to be written in matrix form and it is solved for each 

time step until the desired end time. Vector R is the right hand side vector (residual 

vector) and it has the form given in equation 3.35; 

1, 1n k v is the solution vector that represents the primary variables (unknown variable 

vector) which have to be calculated during simulation. It has the form given in equation 

3.41.  
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(3.42) 

Here, primary variables depends on the phase regions (single phase liquid or gas region 

or two phase region) pressure or gas saturation, partial pressure of carbon dioxide and 

temperature.  

J is the Jacobian matrix and it has the form given by equation 3.42. J represents the 

3Nt x 3Nt  jacobian matrix and k represents the number of the iteration. In this equation, 

subscripts w, e and c represents the conservation equations for water mass, overall 

energy and carbon dioxide mass, respectively. In the model, these three conservation 

equations are solved in a fully implicit manner using the Newton-Raphson technique 

which is based on the simple idea of linear approximation. After equation 3.42 is 

solved, 
1, 1n k 

v , the solution vector for the new step (n+1) can be calculated.  
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The formual for the solution vector calculation is given in equation 3.43:  

1, 1 1, 1 1,n k n k n k     v v v  (3.43) 

1, 1n k  
v is the difference in the solution vector that is obtained by Newton-Raphson 

method and iteratively adjust primary variables. This process is started with the initial 

estimates and terminated when convergence to a sufficient level of accuracy is 

obtained. In this model, the convergence criteria is 
1, 1 810n k   v . For the matrix 

calculation, Gauss-Jordan elemination method given in the Numerical Recipes (Press 

et al. 2007) is used. 

If a geothermal system that contains 5 tanks as  shown in Figure 3.5 is considered, 

there will be 15 primary variables and the Jacobian matrix will be 15x15. The structure 

of Jacobian matrix in single phase region where primary variables are p, T, 
2cop is 

given in the Figure 3.6. Here, p, T  and 
2cop denote the non zero entries. If two phase 
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region appears the primary variables will be converted to Sg, T and 
2cop . The direct 

method like Gauss Jordan elemination can be used to solve the Jacobian matrix which 

is non-symetric and sparse. 

 

Figure 3.5 : Example for configuration of geothermal system. 
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Figure 3.6 : Structure of generated Jacobian matrix. 
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The flow chart of the model is illustrated in Figure 3.7. According to model, first input 

parameters such as initial pressure, temperature, bulk volume, porosity, rock 

compressibility, rock density, specific heat capacity of the rock matrix, gas saturation, 

mass fraction of carbon dioxide, rock part of the recharge index (ψ), production 

rate/injection rate, duration etc. are read from the parameter file. Time step is generated 

and calculation steps are solved in the loop until the end time is reached. In the loop, 

residuals are generated and Jacobian matrix is formed and solved. When the difference 

in the solution vector is smaller than or equal to specified convergence criteria which 

is decided as 10-8 in this calculation, the solution vector  at n+1 is calculated. The loop 

is terminated when the end time is reached. 

 

Figure 3.7 : Flow chart of the developed model. 

3.10 Verification Studies with Petrasim 

The verification of the tank model is carried out with the commercial simulator 

Petrasim which uses the codes of TOUGH family generated mainly by Pruess et al. 

(1998). This software can develop numerical models for non-isothermal flow of 

multicomponent and multiphase fluids in porous media. One tank closed, two tank 

closed and one tank open cases are given for comparison. 
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3.10.1 One tank closed system 

Two cases are examined for one tank closed system. First case includes only 

production and the second case includes both production and reinjection. 

3.10.1.1 Production case 

The illustration of one tank open case that considers only production is given in Figure 

3.8 and illustration of same case in PETRASIM is given in Figure 3.9. In this case, a 

reservoir with a volume of 109 m3 and porosity of 20 % is considered. The reservoir’s 

initial pressure and temperature are assumed as 5 MPa and 450 K. It produces with 20 

kg/s and there is no recharge or reinjection activity. The initial mass fraction of CO2 is 

assumed as 0.01. 

 

 

 

 

 

Figure 3.8 : Illustration of one tank closed sytem production case. 

The  data used in tank model is summarized in Tables 3.3. 

Table 3.3 : Data used in the one tank closed model. 

Bulk volume, m3   1109 

Porosity, fraction    0.2 

Initial pressure, MPa    5 

Initial temperature, K   450 

Rock compressibility, Pa-1   510-10 

Rock thermal expansion coefficient, K-1   0 

Density of rock, kg/m3   2600 

Heat capacity of rock, J/(kg.K)   1000 

Flow rate, kg/s   20 

Initial  mass of CO2,  MPa   0.01 

Wp = 20 kg/s 

Reservoir 
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Figure 3.9 : Modelling of one tank closed sytem production case in PETRASIM. 

The data used in the Petrasim software are summarized in Table 3.4. Here all the 

important parameters used in both cases are same except, tank model uses initial mass 

fraction of CO2, whereas Petrasim requests partial pressure of CO2. 

Table 3.4 : Data used in Petrasim for one tank closed model. 

Bulk volume, m3   1109 

Porosity, fraction    0.2 

Initial pressure, MPa    5 

Initial temperature, K   450 

Rock compressibility, Pa-1   510-10 

Rock thermal expansion coefficient, K-1   0 

Density of rock, kg/m3   2600 

Heat capacity of rock, J/(kg.K)   1000 

Permeability, m2   110-13 

Flow rate, kg/s   20 

Partial pressure of CO2, MPa   2.67 

Figures 3.10-3.14 illustrate the changes in pressure, temperature, gas saturation,  mass 

fraction of CO2 in liquid and gas phase. As can be seen from the figures the results of 

the tank model are compatible with the simulator Petrasim. There is a small variation 

in the temperature behavior of the system. The same temperature trend is seen in the 

single phase region but the temperature of the tank model tends to decrease with higher 

a rate. The tempearature drops to 449.83 K in Petrasim, on the other hand temperature 

Wp = 20 kg/s 
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reduces to 449.78 K in tank model at the end of 10000 days. The difference is too small 

and it can be  considered as acceptable. 

 

Figure 3.10 : Comparison of pressure behavior of one tank closed sytem production 

case. 

 

Figure 3.11 : Comparison of temperature behavior of one tank closed sytem 

production case. 
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Figure 3.12 : Comparison of gas saturation behavior of one tank closed sytem 

production case. 

 

Figure 3.13 : Comparison of mass fraction of CO2 in liquid phase of one tank closed 

sytem production case. 
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Figure 3.14 : Comparison of mass fraction of CO2 in gas phase phase of one tank 

closed sytem production case. 

3.10.1.2 Reinjection case 

The illustration of the case is given in Figure 3.15 and properties of reservoir, 

production and reinjection rates, temperature and enthalpy are summarized in Table 

3.5 and 3.6. 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 : llustration of one tank closed reinjection case. 

In production with reinjection case, it is assumed that reinjection begins with 

production and reinjection rate equals to 80 % of production rate. Here, initial reservoir 

temperature is 450 K but colder fluid is reinjected to the reservoir of temperature 

333.15 K. 

Wp = 20 kg/s Winj = 16 kg/s 

Reservoir 
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Table 3.5 : Data used in the one tank closed reinjection model. 

Bulk volume, m3   1109 

Porosity, fraction    0.2 

Initial pressure, MPa    5 

Initial temperature, K   450 

Rock compressibility, Pa-1   510-10 

Rock thermal expansion coefficient, K-1   0 

Density of rock, kg/m3   2600 

Heat capacity of rock, J/(kg.K)   1000 

Flow rate, kg/s   20 

Initial mass fraction of  CO2, fraction   0.01 

Reinjection rate, kg/s   16 

Reinjection temperature, K   333.15 

β   0 

Table 3.6 : Data used in Petrasim for one tank closed reinjection model. 

Bulk volume, m3   1109 

Porosity, fraction    0.2 

Initial pressure, MPa    5 

Initial temperature, K   450 

Rock compressibility, Pa-1   510-10 

Rock thermal expansion coefficient, K-1   0 

Density of rock, kg/m3   2600 

Heat capacity of rock, J/(kg.K)   1000 

Permeability, m2   110-13 

Flow rate, kg/s   20 

Partial pressure of CO2, MPa   2.67 

Reinjection rate, kg/s   16 

Reinjection enthalpy, J/kg   2.475105 

 

Figures 3.16-3.20 illustrate the results of pressure, temperature, gas saturation, mass 

fraction of CO2 in liquid and mass fraction of CO2 in gas phase. As can be seen from 

the figures the results of the tank model are nearly same with the results from simulator 

Petrasim. 
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Figure 3.16 : Comparison of pressure behavior of one tank closed reinjection case. 

 

Figure 3.17 : Comparison of temperature behavior of one tank closed reinjection 

case. 



71 

 

Figure 3.18 : Comparison of gas saturation behavior of one tank closed reinjection 

case. 

 

Figure 3.19 : Comparison of mass fraction of CO2 in liquid phase in one tank closed 

reinjection case. 
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Figure 3.20 : Comparison of mass fraction of CO2 in gas phase in one tank closed 

reinjection case. 

3.10.2 Two tank closed system 

3.10.2.1 Production case 

In this scenario, the closed reservoir system is modelled wih two tanks. Mass rate 

between tanks is defined by recharge index that is calculated in each time step. The 

production rate of 50 kg/s takes place in Tank 2. The illustration of the case is given 

in Figure 3.21 and the data used in the tank model are given in Table 3.7. 

 

 

 

Figure 3.21 : Illustration of two tanks production case. 

Wp = 50 kg/s 
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Table 3.7 : Data used in the two tanks production model. 

Bulk volume of Tank 1, m3  1109 

Bulk volume of Tank 2, m3  1109 

Porosity, fraction   0.2 

Initial pressure, MPa   5 

Initial temperature, K   450 

Rock compressibility, Pa-1   510-10 

Rock thermal expansion coefficient, K-1   0 

Density of rock, kg/m3   2600 

Heat capacity of rock, J/(kg.K)   1000 

Initial mass fraction of CO2, fraction   0.01 

Production from Tank 2, kg/s   50 

Rock part of the recharge index, m3 110-10 

 

The modelling approach in PETRASIM simulator is given in Figure 3.22. There are 

two adjacent tanks that have permeability of 1x10-13 m2 in x direction. The production 

is occured in Tank 2 as it is in the tank model. The data used in Petrasim are 

summarized in Table 3.8. 

 

Figure 3.22 : Modellling of two tanks production case with PETRASIM. 

 

 

 

 

 

Wp = 50 kg/s 
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Table 3.8 : Data used in Petrasim for two tanks production model. 

Bulk volume of Tank 1, m3  1109 

Bulk volume of Tank 2, m3  1109 

Porosity, fraction   0.2 

Initial pressure, MPa   5 

Initial temperature, K   450 

Rock compressibility, Pa-1   510-10 

Rock thermal expansion coefficient, K-1   0 

Density of rock, kg/m3   2600 

Heat capacity of rock, J/(kg.K)   1000 

Permeability, m2   110-13 

Production from Tank 2, kg/s   50 

Partial pressure of CO2, MPa   2.67 

Figures 3.23-3.27 illustrate the results of pressure, temperature, gas saturation, mass 

fraction of  dissolved CO2 in water and mass fraction of CO2 in gas phase. As can be 

seen from the figures the results of the tank model are compatible with the result of 

Petrasim software.       

 

Figure 3.23 : Comparison of pressure behavior for two tanks production case. 
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Figure 3.24 : Comparison of temperature behavior for two tanks production case. 

 

Figure 3.25 : Comparison of gas saturation behavior for two tanks production case. 
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Figure 3.26 : Comparison of mass fraction of CO2 in liquid phase for two tanks 

production case. 

 

Figure 3.27: Comparison of mass fraction of CO2 in gas phase for two tanks 

production case. 
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3.10.2.2 Reinjection case 

In this case, reservoir is modelled with two tanks but it is a closed system and there is 

no recharge source. Production and injection activites take place in Tank 1. The 

illustration of the case is given in Figure 3.28 and data used in the tank model and 

Petrasim are given in Tables 3.9 and 3.10. 

 

Figure 3.28 : Illustration of two tanks production/injection case. 

Table 3.9 : Data used in two tanks production/injection model. 

Bulk volume of Tank 1, m3  1109 

Bulk volume of Tank 2, m3  1109 

Porosity, fraction    0.2 

Initial pressure, MPa    5 

Initial temperature, K   450 

Rock compressibility, Pa-1   110-9 

Rock thermal expansion coefficient, K-1   0 

Density of rock, kg/m3   2600 

Heat capacity of rock, J/(kg.K)   1000 

Initial mass fraction of CO2, fraction   0.01 

Production from Tank 1, kg/s   50 

Reinjection into Tank 1, kg/s   45 

Reinjection temperature, K   373.15 

Rock part of the recharge index, m3   110-10 

β    0 

Wp = 50 kg/s Winj = 45 kg/s 

Tank 1   Tank 2 
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Figures 3.29-3.33 illustrate the results of pressure, temperature, gas saturation and 

mass fraction of CO2 in gas phase. As can be seen from the figures the results of the 

two tank model are compatible with the results determined from simulator Petrasim. 

Table 3.10 : Data used in Petrasim for two tanks production/injection model. 

Bulk volume of Tank 1, m3  1109 

Bulk volume of Tank 2, m3  1109 

Porosity, fraction    0.2 

Initial pressure, MPa    5 

Initial temperature, K   450 

Rock compressibility, Pa-1   110-9 

Rock thermal expansion coefficient, K-1   0 

Density of rock, kg/m3   2600 

Heat capacity of rock, J/(kg.K)   1000 

Permeability, m2   110-13 

Production from Tank 1, kg/s   50 

Partial pressure of CO2, MPa   2.67 

Reinjection into Tank 1, kg/s   45 

Reinjection enthalpy, J/kg   4.227105 

 

Figure 3.29: Comparison of pressure behavior for two tanks production/injection 

case. 
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Figure 3.30 : Comparison of temperature behavior for two tanks 

production/injection case. 

 

Figure 3.31 : Comparison of gas saturation behavior for two tanks 

production/injection case. 
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Figure 3.32 : Comparison of mass fraction of CO2 in liquid phase for two tanks 

production/injection case. 

 

Figure 3.33 : Comparison of mass fraction of CO2 in gas phase for two tanks 

production/injection case. 
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3.10.3 One tank open system 

This case, one tank open system as illustrated in Figure 3.34 is chosen for the 

verification. Reservoir produces with 300 kg/s and there is feeding from recharge 

source. 

 

Figure 3.34 : Illustration of recharge model. 

The data used in Petrasim and the tank model are given in Tables 3.11 and 3.12, 

respectively.  

Table 3.11 : Data used in the one tank recharge model. 

Bulk volume, m3   1109 

Porosity, fraction    0.2 

Initial pressure, MPa    5 

Initial temperature, K   450 

Rock compressibility, Pa-1   510-10 

Rock thermal expansion coefficient, K-1   0 

Density of rock, kg/m3   2600 

Heat capacity of rock, J/(kg.K)   1000 

Production, kg/s   300 

Initial mass fraction of CO2,  fraction   0.01 

Rock part of the recharge index, m3   110-11 

 

 

 

Wp = 300 kg/s 
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Table 3.12 : Data used in Petrasim for one tank recharge model. 

Bulk volume, m3   1109 

Porosity, fraction    0.2 

Initial pressure, MPa    5 

Initial temperature, K   450 

Rock compressibility, Pa-1   510-10 

Rock thermal expansion coefficient, K-1   0 

Density of rock, kg/m3   2600 

Heat capacity of rock, J/(kg.K)   1000 

Permeability, m2   110-14 

Production, kg/s   300 

Partial pressure of CO2, MPa   2.67051 

Figures 3.35-3.39 illustrate the results of pressure, temperature, gas saturation, mass 

fraction of CO2 in water and mass fraction of CO2 in gas phase. As can be seen from 

the figures the results of the one tank open model are compatible with the results 

determined from simulator Petrasim. 

 

Figure 3.35 : Comparison of pressure behavior for recharge model. 
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Figure 3.36 : Comparison of temperature behavior for recharge model. 

 

Figure 3.37 : Comparison of saturation behavior for recharge model. 
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Figure 3.38 : Comparison of mass fraction of CO2 in water for recharge model. 

 

Figure 3.39 : Comparison of mass fraction of CO2 in gas phase for recharge model. 
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3.11 Sythetic Applications with Tank Model 

3.11.1 One Tank Closed Model 

In this section, three different cases including the effects of mass fraction of CO2 in 

reservoir water, production rate and reinjection are provided to illustrate the effects of 

CO2 on the performance of geothermal reservoirs and the effect of physical parameters 

such as porosity, bulk volume, rock compressiblity and density of rock are examined. 

For simplicity a single tank model is chosen. The main properties of the reservoir that 

are used in the models are given in Table 3.13, other circumstances are explained for 

each case.  

Table 3.13 : Reservoir properties for one tank closed model. 

Bulk volume, m3 1109 

Porosity, fraction 0.2 

Initial pressure, Pa 50105 

Initial Temperature, K 450 

Rock compressibility, Pa-1 510-10 

Rock thermal expansion coefficient, K-1 0 

Density of rock, kg/m3 2600 

Heat capacity of rock, J/(kg.K) 1000 

Rock part of the recharge index, m3 110-10 

3.11.1.1 The effect of mass fraction of CO2 in reservoir water 

In this case, the effect of mass fractions of CO2 on the behavior of the reservoir is 

examined for four different mass fractions of CO2 (0%, 0.5%, 1% and 1.5%). Constant 

production at 2 kg/s is assumed for a duration of 10000 days.  

The pressure behavior of such a system is given in Figure 3.40 If no CO2 were present 

in the water, then production is maintained in a compressed liquid state until 5000 

days. After 5000 days, steam and water co-exist in the reservoir. However, it is 

important to note that once the reservoir fluid becomes two-phase, the decline rate of 

pressure is decreased. This is due to the much higher compressibility (when compared 

with liquid compressibility) of the gas phase that co-exists with the liquid (Satman and 

Ugur, 2002). When 0.5% CO2 is dissolved in water, then two-phase conditions are 

reached earlier (at around 2500 days). The pressure for the remaining 7500 days 
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remains fairly constant maintained by gas compressibility. As expected, even further 

increasing the CO2 content results in pressure maintenance at even earlier times. 

 Figure 3.41 illustrates how the gas saturation changes with time for the same amounts 

of dissolved CO2. As expected, the gas saturation starts increasing as soon as the 

flashing point pressure is reached in the reservoir. The increases associated with the 

saturations are linear. At this point it is important to note that, the computed pressures 

and saturations of the model reflect the average pressure and saturations of the 

reservoir. During production, gas saturations would be varying with position and 

would be at a maximum around the well in a case where the bottomhole pressures of 

wells have dropped below the flashing point pressure.  

 

Figure 3.40 : Pressure behavior for various amounts of CO2 dissolved in water. 

Figure 3.42 gives the evolution of the mass fraction of the CO2 dissolved in the water. 

For each initial mass fraction, the mass fractions of dissolved CO2 tend to decrease. 

However as expected this decrease is very small. This decrease is associated with the 

transfer of carbon dioxide into the gas phase.  
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Figure 3.41 : Saturation behavior for various amounts of CO2 dissolved in water. 

 

Figure 3.42 : Evolution of the mass fraction of CO2 in water. 

Finally, Figure 3.43 gives the evolution of the mass fraction of CO2 in the gas phase. 

At first the mass fractions are zero since no gas phase is present. Then when the 
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flashing point pressure is reached and gas phase starts to form, we observe that the gas 

phase is made up of mostly CO2. For a mass fraction of 1.5% CO2 dissolved in water, 

the gas phase is composed of 90% CO2 whereas for a mass fraction of 0.5% CO2 

dissolved in water, the gas phase is composed of 78% of CO2. 

 

Figure 3.43 : Evolution of the mass fraction of CO2 in the gas phase. 

3.11.1.2 The effect of production rate 

In this case, the effect of production rate on the behavior of the reservoir is examined 

for four different flow rates (2 kg/s, 5 kg/s, 10 kg/s and 20 kg/s) for a duration of 10000 

days. Initial mass fraction of CO2 is taken as 1%. The production rate is the most 

important parameter. It depends on the physical properties of the reservoir and external 

parameter such as power plant that is planned to be installed. 

The pressure behavior of the system is given in Figure 3.44. As it is seen from the 

figure, as the flow rate increases pressure decreases rapidly in the liquid phase region 

and two-phase forms. After the fluid becomes two phase, the pressure decline rate 

decreases. In Figure 3.45, the gas saturation behavior of the system is given. When the 

flow rate increases the gas phase is formed earlier. The gas saturation starts increasing 

as soon as the flashing point pressures are reached in the reservoir. The higher gas 

saturation is reached with the higher production.  
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Figure 3.44 : Pressure behavior for various flow rates. 

 

Figure 3.45 : Gas saturation behavior for various flow rates. 

Figure 3.46 gives the evolution of the mass fraction of the CO2 dissolved in the water 

for various flow rates. In the compressed liquid region there is no change in the mass 
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fraction of CO2 as it is still dissolved in the water, after the flashing point is reached 

the mass fraction starts to decrease and  as expected the mass fractions of dissolved 

CO2 tend to decrease more as the flow rate is increased. Figure 3.47 gives the evolution 

of the mass fraction of CO2 in the gas phase for various flow rates. At the beginning 

the mass fractions are zero since no gas phase is present. With the increase in the flow 

rate the flashing point pressure is reached earlier and gas phase that is made up of 

mostly CO2 starts to form. Transition of liquid CO2 to gaseous CO2 occurs very quickly 

and tends to stabilize. At late times, the decrease of mass fraction of CO2 in gas phase 

with the production is observed clearly at higher flow rates. 

 

Figure 3.46 : Evolution of the mass fraction of CO2 in water. 

3.11.1.3 The effect of reinjection 

In this case, the effect of reinjection on the performance of the geothermal system is 

examined. No reinjection, 50% reinjection, 80% reinjection and 100% reinjection 

scenarios are studied. Constant production at 10 kg/s is assumed for a duration of 

10000 days and the initial mass fraction of CO2 is taken as 1%. In Figure 3.48, the 

pressure behavior of the system is given. If there is no reinjection a rapid pressure drop 

occurs and after around 250 days gas phase forms. After the reservoir fluid becomes 
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two-phase, the decline rate of pressure is decreased. With the reinjection the pressure 

decline is diminished and thus the formation of gas is begun at later times.  

 

Figure 3.47 : Evolution of the mass fraction of CO2 in the gas phase. 

 

Figure 3.48 : Pressure behavior for various percentage of  reinjection. 
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For example, for 50 % reinjection scenario flashing point pressure is reached around 

500 days which is twice as that of the case without reinjection. In 80 % reinjection 

scenerio the transition time is much more longer. Here, 95 % and 99 %  reinjection 

scenerios are given to emphasize the importance of reinjection rate. In 99 % reinjection 

still two phase region is formed but when the reinjection rate is increased one percent 

more to 100 % reinjection no gas is formed and production is maintained in a 

compressed liquid state for 10000 days. Thus, no rapid pressure reduction occurs and 

pressure decreases linearly with time. Because reinjection temperature is important 

parameter in the reinjection cases temperature behaviour graph is also provided. Figure 

3.49 illustrates the temperature behavior of the system with initial temperature of 450 

K with and without reinjection case. If no reinjection is applied, a faster decrease in 

temperature occurs in compressed liquid region and after the flashing point is reached 

a less temperature decrease occurs. The temperature of the system decreases more with 

the increase in the amount of reinjection of water with a temperature of 333.15 K. 

 

Figure 3.49 : Temperature behavior for various percentage of reinjection. 

In Figure 3.50, gas saturation behavior of the system is given. After the flashing point 

pressure is reached the gas phase begins to form. The time of the occurrence of the 

first flashing is extended with the increase in the amount of reinjection.  If there is no 
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reinjection, gas saturation increases with the decrease in the total pressure of the 

system. When the pressure decline is decreased with reinjection, gas saturation 

decreases. For the 100 % reinjection scenario because the system is maintained in 

compressed liquid phase, no gas saturation is observed. 

 

Figure 3.50 : Gas saturation behavior for various percentage of reinjection. 

Figure 3.51 illustrates the change of mass fraction of CO2 dissolved in liquid. The 

flashing point pressure is reached first in case where no reinjection is applied because 

pressure decreases faster and there is no reinjected fluid for the pressure support. 

Without reinjection, mass fraction of CO2 in water is decreased from 0.01 to 0.0082 

whereas mass fraction of dissolved CO2 is decreased to 0.0096. This difference will 

be much higher for the higher production rates. In 100 % reinjection case the mass 

fraction of CO2 continues to decrease because of  the reinjected water does not contain 

dissolved CO2. Figure 3.52 gives the evolution of the mass fraction of CO2 in the gas 

phase for various injection percentage. With the pressure decline with production, the 

flashing point pressure is reached and gas phase that is made up of mostly CO2 starts 

to form. With the reinjection this occurrence is reached subsequently. The gas phase 

forms first in no reinjection case as expected. Dissolved CO2 in liquid transform to gas 

phase and 0.87 of gas phase is formed from gaseous CO2. This value decreases with 
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time and the maximum decreases is performed in no reinjection case. In 100 % 

reinjection case, the system stay in liquid phase so no gaseous CO2 is formed.  

 

Figure 3.51 : Evolution of the mass fraction of CO2 in water for various percentage 

of reinjection. 

 

Figure 3.52 : Evolution of the mass fraction of CO2 in the gas phase for various 

percentage of reinjection. 
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3.11.1.4 The effect of physical parameters to tank model 

The storage capacity of the reservoir is important and detailed information is given in 

next chapter. The equation of storage capacity of reservoir can be rewritten by defining 

total compressibility as the sum of the fluid and rock compressibilites in equation 3.44. 

( )b f rV c c    (3.44) 

The effects of these physical parameters of the reservoir including porosity, bulk 

volume and compressibility of rock on reservoir performance are examined in details 

in this subsection. Reservoir that has properties given in table 3.13 is examined in each 

case. 

Porosity 

Porosity is one of the crucial parameter for the reservoir modelling. It has an extremely 

important  role when assessing the reservoir potential of a given rock type. The effect 

of porosity is examined by keeping  bulk volume same. Four different initial porosity 

values (0.05, 0.1, 0.15, 0.2) are selected and effect of them on pressure, temperature, 

gas saturation, mass fraction of CO2 in liquid and gas phases are examined. In the 

developed tank model, porosity is taken as not a constant value, yet it is changing with 

pressure and temperature as it was given in equation 3.9. The above mentioned 

porosities are evaluated at the initial pressure and temperature. From Figure 3.53, it 

can be seen that pressure is inversely proportional to porosity. Reservoir pressure 

decreases more in reservoir having smallest porosity because there is less amount of 

fluid in the reservoir. With the production, there is a sharp pressure decline and 

saturation pressure is reached quickly. When gas phase is formed the pressure decline 

slows down but it is higher in reservoir having lower porosity.  

On the other hand, temperature is directly proportional to porosity. Temperature 

decreases more in reservoir having higher porosity because two phase region is 

reached much later and most of the temperature reduction occurs in single phase 

region. In the two phase region, similar trend in temperature reduction for each 

porosity value can be seen as shown in Figure 3.54. Temperature decreases less like 

pressure in two phase region. 
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Figure 3.53 : Pressure behavior for various porosity. 

 

Figure 3.54 : Temperature behavior for various porosity. 

Gas saturation behavior of the system is given in Figure 3.55. After the flashing point 

pressure is reached the gas phase begins to form. The time of the occurrence of the 

first flashing is extended with the increase in porosity and reservoir having higher 



97 

porosity contains less amount of gas. For example, gas saturation in the reservoir 

having 5 %  porosity is 0.038 whereas it is 0.008 in the reservoir having 20 % porosity 

at the end of 10000 days. 

 

Figure 3.55 : Gas saturation behavior for various porosity. 

Figure 3.56 gives the evolution of the mass fraction of the CO2 dissolved in the water 

for various porosity. In the compressed liquid region there is no change in the mass 

fraction of CO2 as it is still dissolved in the water, after the flashing point is reached 

the mass fraction starts to decrease. Thus, dissolved CO2 tends to decrease more as the 

porosity is decreased. Here, reservoir having porosity of 0.05 has reached to two phase 

region earlier, the final mass fraction after 10000 days is smaller when it is compared 

with reservoir having higher porosity. 

In Figure 3.57, initially the mass fractions are zero since no gas phase is present. With 

the production, reservoir having smaller porosity reaches the flashing point pressure 

earlier and gas phase that is made up of mostly CO2 starts to form. Transition of liquid 

CO2 to gaseous CO2 occurs very quickly and tends to stabilize. After stabilization, 

mass fraction of CO2 in gas phase begins to decrease with the production as it is 

expected and this reduction is higher in the reservoir having smaller porosity. 
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Figure 3.56 : Evolution of the mass fraction of CO2 in water for various porosity. 

 

Figure 3.57 : Evolution of the mass fraction of CO2 in gas phase for various 

porosity. 
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Bulk volume 

In this case, four different reservoir bulk volume values that varies from 10x108 m3 to 

10x1011 m3 having same porosity value of 0.1 are used in the simulation. The pressure 

behavior of each cases are given in Figure 3.58. In the smallest reservoir volume the 

pressure decreases quickly and two phase region is reached so pressure decline is 

higher. It decreases from initial pressure of 5 MPa to 2.5 MPa. But the reservoir having 

highest bulk volume has lowest pressure drop. The flashing points are not reached so 

there is no phase change occurred in reservoirs having volumes of 1011 m3 and 1010 

m3. There is not much pressure drop in those ones either. For example, only 0.1 MPa 

and 0.7 MPa pressure reduction occurred for those reservoirs in 10000 days. Bulk 

volume is a very important parameter like porosity so it should be calculated or 

assumed precisely. It can be stated that temperature, saturation, f
CL

 and f
CG

 behaviors 

dependent on the pressure. 

 

Figure 3.58 : Pressure behavior for various bulk volumes. 

Similar trend is valid for temperature drop. There is not much temperature drop 

occured relatively in high bulk volumes as given in Figure 3.59. Because pressure 

reduction is very low in reservoirs having high bulk volume, temperature reduction 

shows coherent trend with pressure. For the gas saturation behaviour, the smallest 

reservoir has reached the highest gas saturation value. There is no gas phase occured 
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in two reservoirs having highest bulk volume because their pressure does not reach to 

flashing point pressure as can be seen from Figure 3.60. 

 

Figure 3.59 : Temperature behavior for various bulk volumes. 

 

Figure 3.60 : Gas saturation behavior for various bulk volumes. 



101 

Depending upon pressure behaviour described above, the amount of dissolved CO2 in 

water decreases most in the reservoir having smallest bulk volume as shown in Figure 

3.61. The reduction in mass fraction of CO2  dissolved in water is quite small in single 

phase liquid region whereas it is high in two phase region because dissolved CO2 is 

transformed to the gas phase rapidly. In reservoir having bulk volume of 10x108 m3, 

the gas phase is formed early and pressure decrease is high so reduction in mass 

fraction of CO2 in water is higher. In that case, f
CL

 decreases from 0.01 to 0.0063 in 

10000 days period. 

Figure 3.62 represents the behaviour of mass fraction of CO2 in gas phase. In the 

reservoirs having bulk volumes of 1011 m3and 1010 m3, no gas phase has occured. 

When the other two reservoirs are compared, the reservoir having smallest bulk 

volume has reached the flashing point pressure in 154 days and gas phase is occured. 

The mass fraction of CO2 in the gas, f
CG

, directly becomes 0.87. Then, f
CG

 decreases 

to 0.8 at the end of 10000 days. On the other hand, gas phase is formed after 1652  

days in the reservoir having bulk volumes of 109 m3 and there is not much reduction 

occured in f
CG

 because of the smaller pressure drop. 

 

Figure 3.61 : Behaviour of mass fraction of dissolved CO2 in water for various bulk 

volumes. 
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Figure 3.62 : Behaviour of mass fraction of CO2 in gas phase for various bulk 

volumes. 

Compressibility of rock 

The rock compressibility is the fractional change in volume of the rock with a unit 

change in pressure. Even though the formation is a solid material, it is compressible. 

In this case, four different rock compressibilities, 5x10-10, 1x10-9, 1.5x10-9 and 2x10-9 

Pa-1, are used to evaluate the effect of rock compressibility on pressure, temperature, 

gas saturation, mass fraction of CO2 in liquid water and mass fraction of CO2  in gas 

phase, by keeping other parameters same. In the model, compressibility of rock is 

taken as constant but it also directly effect the change in porosity as given in equation 

3.9 in the previous chapter. 

Trends of pressure and compressibility are directly proportional. If the rock 

compressibility is high, pressure drop will be less becauce rock compressility supports 

pressure. In this instance, rate of pressure drop in the reservoir having highest 

compressibility is lower and this reservoir reaches two phase region much more later. 

After flashing point pressure is reached, all reservoir display similar pressure drop 

trend in two phase region as given in Figure 3.63. Because flashing point pressure is 

reached later in the reservoir having highest compressibility, temperature also drops 

slowly as can be seen from Figure 3.64. Moreover, because reservoir having smallest 
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compressibility reaches the two phase region first, more pressure and temperature 

drops occured. 

 

Figure 3.63 : Pressure behavior for various rock compressibility. 

 

Figure 3.64 : Temperature behavior for various rock compressibility. 
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The gas saturation behaviour is given in Figure 3.65. The reservoir having smallest 

rock compressibility of 5x10-10 Pa-1 has reached the highest gas saturation value of 

0.0084 at the end of 10000 days as it is expected because gas phase has formed earlier 

and the pressure decline in this reservoir is higher. Whereas, the gas saturation is 

0.0055 in the reservoir having compressibility of 2x10-9 Pa-1. 

The reduction of mass fraction of dissolved CO2 in water is very small in liquid phase 

region. When gas phase evolves, CO2 dissolved in water rapidly migrates to the gas 

phase. Again the one having higher rock compressibility reaches the flashing point 

pressure later  so dissolved CO2 mass fraction is kept relatively high as it is given in 

Figure 3.66. 

After two phase region is reached, the mass fraction of CO2 in gas phase directly 

increases to 0.86. In Figure 3.67, the dissolved CO2 sarts to change to gas phase after 

1722 days in the reservoir having lower rock compressibility because of the rapid 

pressure drop. But phase transition appears after 3934 days in the reservoir having 

higher rock compressibility. Then in both cases the mass fraction of CO2 in gas phase 

decreases slowly in two phase region. 

 

Figure 3.65 : Gas saturation behavior for various rock compressibility. 
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Figure 3.66 : Behaviour of mass fraction of dissolved CO2 in water for various rock 

compressibility. 

 

Figure 3.67 : Behaviour of mass fraction of CO2 in gas phase for various rock 

compressibility. 
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3.11.2 One Tank Open Model 

In this section, three different cases to illustrate the effects of CO2 on the performance 

of geothermal reservoirs are provided. Cases consider one reservoir tank and one 

recharge source as it is illustrated in Figure 3.68. The effect of initial mass fraction of 

CO2  in the reservoir,  initial mass fraction of CO2 in the aquifer water and the recharge 

constant are examined. 

 

Figure 3.68 : Illustration of one tank open model. 

The main properties of the reservoir and the aquifer that are used in the models are 

given in Table 3.14, other circumstances are explained for each case.  

Table 3.14 : Reservoir properties for one tank open model. 

Reservoir bulk volume, m3 1109 

Porosity, fraction 0.1 

Initial pressure, Pa 50105 

Initial Temperature, K 450 

Rock compressibility, Pa-1 110-9 

Rock thermal expansion coefficient, K-1 0 

Density of rock, kg/m3 2600 

Heat capacity of rock, J/(kg.K) 1000 

Rock part of the recharge index, m3 110-11 

3.11.2.1 The effect of mass fraction of CO2  

In this case, the effect of mass fractions of CO2 on the behavior of the reservoir is 

examined for five different mass fractions of CO2 (0%, 0.1%, 0.5%, 1% and 1.5). 

Constant production at 300 kg/s is assumed for duration of 10000 days. When fCL=0 

there is no dissolved CO2 in the liquid phase so the reservoir stays in compressed liquid 
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state longer so pressure decline is relatively higher. When the CO2 content is increased 

the system reaches the flashing point pressure earlier and once the reservoir fluid 

becomes two-phase, the decline rate of pressure is decreased. This is due to the much 

higher compressibility of the gas phase that co-exists with the liquid. As a result, 

increasing the CO2 content results in pressure maintenance at even earlier times as 

given in Figure 3.69. For temperature, this is quite the opposite. Because the 

temperature drop based on phase transition is higher. Increasing the CO2 content 

results in more temperature reduction because the system loses heat while dissolved 

CO2 in the liquid phase transform to gas phase. For this reason, the final temperature 

in the reservoir that does not contain CO2 is 445.5 K, while the temperature in the 

reservoir with f
CL

 = 0.015 is 439.5 K after 10000 days as it is shown in the Figure 3.70. 

 

Figure 3.69 : Pressure behavior for various amounts of CO2 dissolved in water for 

one tank open model. 

Figure 3.71 illustrates the change of gas saturation with time for the various amounts 

of dissolved CO2. As expected, the gas saturation starts increasing as soon as the 

flashing point pressures are reached in the reservoir. The increases associated with the 

saturations are linear. Gas saturation increases with the increase in CO2 mass fraction. 

From Figure 3.71, it can be inferred that around 2500-3000 days the CO2 effect is 

dominant, after 3000 days steam dominated region is started which means the gas is 
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made up of mostly CO2 up to 3000 days. Once the gas phase becomes steam dominated 

after 3000 days than a linear trend is observed in the saturation curves. 

 

Figure 3.70 : Temperature behavior for various amounts of CO2 dissolved in water 

for one tank open model. 

 

Figure 3.71 : Gas saturation behavior for various amounts of CO2 dissolved in water 

for one tank open model. 
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Figure 3.72 gives the behavior of the mass fraction of the CO2 dissolved in the water. 

For each initial mass fraction, the mass fractions of dissolved CO2 tend to decrease. 

This decrease is very small in liquid dominated region but it is higher in the two phase 

region. This decrease is associated with the transfer of carbon dioxide into the gas 

phase in two phase region. In this example, because the production rate is relatively 

high, CO2 tends to be depleted. 

Figure 3.73 gives the evolution of the mass fraction of CO2 in the gas phase. At first 

the mass fractions are zero since no gas phase is present. Then when the flashing point 

pressure is reached and gas phase starts to form, it is observed that the gas phase is 

made up of mostly CO2. For a mass fraction of 1.5% CO2 dissolved in water, the gas 

phase is composed 90% of CO2 whereas for a mass fraction of 0.1% CO2 dissolved in 

water, the gas phase is composed 36% of CO2. The mass fraction of CO2 in the gas 

phase decreases with production as it is expected. But as it is stated before, after around 

3000 days, the steam becomes dominant which means the gas phase predominantly 

forms of water vapour so the reduction rate of CO2 in water slows down at late times 

accordingly. 

 

Figure 3.72 : Evolution of the mass fraction of CO2 in water for various amounts of 

CO2 dissolved in water for one tank open model. 
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Figure 3.73 : Evolution of the mass fraction of CO2 in gas phase for various amounts 

of CO2 dissolved in water for one tank open model. 

3.11.2.2 The effect of recharge constant  

In this case, to emphasize the importance of recharge constant a one tank open 

reservoir model is formed and different recharge constants of rock part (ψ =10-10 m3, 

10-11 m3 and 10-12  m3) are used for the evaluation. Here, it is important to note that 

initial mass fraction of CO2 in liquid is 0.01 and  recharge fluid also contains 1 % 

dissolved CO2 in the liquid water. The results of this case are given in Figures 3.74 to 

3.76. 

Pressure behaviour is shown in Figure 3.74. According to this figure, pressure decline 

increases with reduction in recharge. Because recharge supports pressure. Also 

recharge source contains CO2 so decrease in mass fraction of CO2 is slower as can be 

seen from Figure 3.74. This affects the pressure drop in two phase region and reduction 

in pressure is even smaller.  

Figure 3.75 illustrates the temperature trend. Because pressure drop is higher in the 

reservoir that has lower recharge constant, more gas phase is formed as given in Figure 

3.76 and temperature reduction is also higher. The gas saturation is 0.25 in the 

reservoir that has ψ of 10-12 m3, whereas it is 0.44 in the reservoir that has ψ of 10-10 

m3. Gas saturation profiles increases with less recharge. 
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Figure 3.74 : Pressure behavior for different ψ. 

 

Figure 3.75 : Temperature behavior for different ψ. 

Evolution of mass fraction of CO2 in water is given in Figure 3.77. The recharge liquid 

contains dissolved CO2 so it also feeds the amount of dissolved CO2 in reservoir water. 
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Thus if the recharge constant is high and contains CO2 in the liquid phase it shows 

similar trend with pressure, the  reduction in f
CL

 is smaller and slower.  

 

Figure 3.76 : Gas saturation behavior for different ψ. 

 

Figure 3.77 : Evolution of the mass fraction of CO2 in water for different ψ. 
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When the flashing point pressure is reached and gas phase starts to form, it is observed 

that the gas phase which is composed of 87 % CO2 is formed as can be seen in Figure 

3.78. Then CO2 in the gas phase decreases with time. This reduction is small if the 

recharge is high and pressure drop is less accordingly. 

 

Figure 3.78 : Evolution of the mass fraction of CO2 in gas phase different ψ. 

3.11.2.3 The effect of initial mass fraction of CO2 in recharge source 

In this application, the effect of recharge source and initial mass fraction of CO2 in the 

recharge source are examined. In the first case recharge source does not contain 

dissolved CO2 but in the second case recharge source water contains 0.015 %  CO2 by 

mass. The results are given in Figures 3.79 – 3.83. In this scenario, reservoir quuickly 

reaches the flashing point pressure due to relatively high flow rate. If the recharge 

source contains CO2 decrease in mass fraction of CO2 is slower. This causes reduction 

in the pressure drop in two phase region as can be seen from Figure 3.79. At late times, 

around 8000 days, the amount of CO2 in the liquid phase is nearly finished so the 

pressure trend becomes similar in both cases. After 3500 days the amount of CO2 is 

finished in the case where recharge source does not contain dissolved CO2. But  phase 

changes of CO2 continues in the second case so temperature decreases little bit more 
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in second case as shown in Figure 3.80. According to the Figure 3.81, gas saturation 

is again little bit more in the case where recharge source contains 1.5 % dissolved CO2. 

 

Figure 3.79 : Pressure behavior as per initial mass fraction of CO2 in recharge 

source. 

 

Figure 3.80 : Temperature behavior as per initial mass fraction of CO2 in recharge 

source. 
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Figure 3.81 : Gas saturation behavior as per initial mass fraction of CO2 in recharge 

source. 

Two effects can be deduced from Figure 3.82. First one is, after two phase region is 

reached gas phase begins to forms. Thus, the mass fraction of CO2 in liquid phase 

decreases. Secondly, when there is no CO2 in the recharge source, f
CL

 dramatically 

decreases and becomes zero after 3500 days. This especially influences pressure 

behavior. After two phase region is reached and gas phase starts to form, it is observed 

that the gas phase which is composed 91 % of CO2 is formed as shown in Figure 3.83. 

Then CO2 in the gas phase decreases much more quickly in the case where there is no 

CO2 in the recharge source. Furthermore, if behavior of mass fraction of CO2 in gas 

phase is examined in detailed, it can be seen that f
CG

 also becomes zero after around 

4400 days in the case where recharge/ aquifer f
CL

 is zero. Because there is no gaseous 

CO2 left in the reservoir, the system becomes fully steam dominated. In the second 

case, the recharge source contains dissolved CO2 and continues to support the amount 

of CO2 in the liquid phase and so the gaseous CO2. But around 3500 days the the steam 

becomes dominant this can be forecast from the shape of the f
CG

 versus time line. As 

a resul, the initial mass fraction of CO2 in recharge source does not have significant 

effect except for the mass fractions. 
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Figure 3.82 : Behavior of mass fraction of CO2 in water as per initial mass fraction 

of CO2 in recharge source. 

 

Figure 3.83 : Behavior of mass fraction of CO2 in gas phase as per initial mass 

fraction of CO2 in recharge source. 
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4.  ANALYTICAL MODEL 

4.1 Description of the Model 

In this thesis, a new analytical model that give the amount of carbon dioxide as a 

function of time and amounts of production, reinjection and recharge for liquid 

dominated reservoirs is developed. The details of the analytical equations derived in 

this study are explained in this section. The analytical equations model the change of 

carbon dioxide with time for a given specific production/reinjection scheme and it is 

valid for liquid dominated reservoirs (Hosgor et al., 2016). The basis of the model is 

application of mass balance on carbon dioxide over any tank volume. Such a tank 

system is illustrated in Figure 4.1. It is assumed that the tank has a bulk volume Vb, a 

porosity   and an initial mass fraction of carbon dioxide in the reservoir f0. It is also 

assumed that the tank contains water with a density of ρ. The mass fraction of carbon 

dioxide is denoted by f. Three sources of carbon dioxide are considered: 

 Carbon dioxide extraction due to production. 

 Carbon dioxide contribution due to reinjection. 

 Carbon dioxide to/from the recharge. 

 

Figure 4.1 : Mass balance on carbon dioxide over any tank volume. 
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The mass balance on this tank can be stated as shown in equation 4.1. 
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(4.1) 

4.1.1 Constant Carbon Dioxide Mass Fraction 

The equation representing the relationship given by equation 4.1 for constant 

production and reinjection rates is given by equation 4.2; 

   2CO

inj inj re re p

dM
W f W t f W f t

dt
    (4.2) 

Here m represents the mass (kg), t represents time (s), f represents mass fraction and 

W represents the mass flow rate (kg/s), the substripts of inj, re an p refers to injection, 

recharge and production respectively. At this point, it is important to note that the 

recharge rate is a function of time. Furthermore, the reinjection and recharge carbon 

dioxide mass fractions are assumed to be constant. In other words, it is assumed that 

the amount of carbon dioxide in the recharge water and the injected water is constant. 

The mass fraction of carbon dioxide on the other hand will also be function of time. 

Hence, the amount of carbon dioxide extracted by way of production will also change 

with time. 

Equation 4.2 can also be written in terms of the volume, porosity and density as shown 

by equation 4.3; 

 
   

b

inj inj re re p

d V f t
W f W t f W f t

dt

       (4.3) 

Assuming constant bulk volume, porosity and density leads to equation 4.4: 

 
     b inj inj re re p

df t
V W f W t f W f t

dt
     (4.4) 

Equation 4.4 can also be written in terms of a storage capacity term as given equation 

4.5. 
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 
   inj inj re re p

t

df t
W f W t f W f t

c dt


    (4.5) 

Here κ is the storage capacity (kg/bar) and ct is the total compressibility (which is the 

sum of the rock compressibility and the water compressibility) of the tank. The storage 

capacity is given by equation 4.6: 

b tV c   (4.6) 

The Schilthuis (1936) approach is used for modeling the water recharge as a function 

of time as follows (equation 4.7); 

  0re p tW p   (4.7) 

Because P0 is constant, wre can be written as equation 4.8; 

 ΔreW p t  (4.8) 

If equation 4.8 is inserted into equation 4.5, equation 4.9 is formed: 

 
   Δinj inj re p

t

df t
W f p t f W f t

c dt


    (4.9) 

Here α is the recharge constant (kg/bar/s) and represents the amount of water mass rate 

per unit pressure drop per unit time, Δp is the pressure drop in the tank (bar). When 

closed system is modelled  is set to 0.  

The rate of water accumulation can be illustrated as in Figure 4.2. The equation for 

accumulation term is  given by eqaution 4.10. 

b t re p inj

dp
V c W W W

dt
     (4.10) 

The production and injection terms can be defined as ‘net production term’ as given 

by equation 4.11: 

n pet injW W W   (4.11) 
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Figure 4.2 : Terms for the rate of water accumulation. 

Mass balance of water for a reservoir with recharge source becomes equation 4.12: 

re nW
dt

W
dp

   (4.12) 

And with the Schilthuis approach, dp term can be written as in equation 4.13  

Δ 1
t

nW
p e







 
  

 
 (4.13) 

This equation gives the pressure behaviour of a geothermal system as a function of 

production time under the conditions of a constant production rate and constant aquifer 

pressure. 

Using equation 4.14 in equation 4.9 and further manipulation results in equation 4.14; 

( )
( ) ( ) 0

t

p inj inj n re n re

t

df t
W f t W f W f W f e

c dt




 

 
       (4.14) 

The initial condition for this equation is given in equation 4.15; 

  00f t f   (4.15) 

The solution of the ordinary differential equation 4.14 is given in equation 4.16. 
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(4.16) 

The solution of this equation represents the solution for the case where the injected 

carbon dioxide mass fraction is kept at a constant value.  

4.1.2 Variable Carbon Dioxide Mass Fraction 

In many cases, the reinjected carbon dioxide mass fraction could be a function of the 

carbon dioxide mass fraction that is produced. In such a case the injected amount is 

modeled as shown by equation 4.17: 

 injf f t  (4.17) 

Here β is a number that varies between 0 and 1. If β=0, then the injected carbon dioxide 

mass fraction becomes zero. If β=1, then the injected carbon dioxide mass fraction 

becomes equal to the carbon dioxide mass fraction in the tank at any particular time. 

Using equation 4.17 in equation 4.9 forms equation 4.18: 

 
 ( ) 0

t

p inj n re n re

t

df t
W W f t W f W f e

c dt






 
 
       (4.18) 

At initial time, the mass fraction of dissolved CO2 in water can be given as f0. With the 

application of initial condition f (t=0)= f0 and further manupulation, the solution of 

equation 4.18 can be written as in equation 4.19: 
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(4.19) 

4.2 Reduced forms of the equations 

In this subsection the equations specific to various conditions are provided. The first 

condition considered is the case when the reinjection rate is taken equal to the 

production rate and all the produced carbon dioxide is reinjected back into the 

reservoir. This corresponds to β=1 for equation 4.19 and finj=f0 for equation 4.16. 

Equations 4.16 and 4.19 reduce to equation 4.20. As expected the mass fraction of 

carbon dioxide does not change with time and is kept constant at the initial mass 

fraction of carbon dioxide. This is an expected result since the recharge carbon dioxide 

will not play any role since the reinjection rate is equal to the production rate. This 

keeps from any recharge water to move into the reservoir. 

  0f t f  (4.20) 

The second case considered is the case where again the reinjection rate is taken to be 

equal to the production rate, but this time no carbon dioxide is re-injected back into 

the reservoir, β=0 for equation 4.19 and finj=0 for equation 4.16. Then these equations 

reduce to equation 4.21. 

  0

p tW c
t

f t f e 


  (4.21) 

In the third case the recharge constant is considered to be zero (α=0,  fre=0) for 

equations  4.16 and 4.19. These equations reduce to equations  4.22 and 4.23, 

respectively. 
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 
( )

0

t ipc W W
t

f t f e








  (4.23) 

4.3 Comparison of Analytical Model with Lumped Parameter Model 

In this section the verification of the developed analytical model is given. The 

verification is provided on a synthetic example by way of comparing the analytical 

solutions presented in this study with that of the model provided in this thesis.  

At this point it is important to note that the recharge constant used in the developed 

model is not the same as the one used in the tank model. The relationship between the 

two recharge indices is given by equation 4.24: 


 


  (4.24) 

The tank model handles the density and viscosity fully implicitly. In other words the 

change of fluid density and viscosity are treated as a function of pressure and 

temperature. However when using equation 4.24 to determine α given  , the fluid 

properties at the initial pressure and temperature have been used. The scenario 

illustrated in Figure 4.3 is studied as an example. 

  

Figure 4.3 : Illustration of the sample scenario. 
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Two cases are considered. In the first case the mass fraction of carbon dioxide from 

the recharge source is considered to be zero. In the second case, the mass fraction of 

carbon dioxide from the recharge source is considered to be equal to the initial mass 

fraction of carbon dioxide in the reservoir. The behavior of the mass fraction of carbon 

dioxide from both models are compared. The comparison is given in Figure 4.5. The 

analytical model parameters and parameters used in the tank model used for this 

example are given in Tables 4.1 and 4.2, respectively. 

Table 4.1 : Parameters used in the analytical model for the verification example. 

Bulk volume, m3   31.5x109 

Porosity, fraction    0.05 

Recharge index, kg/(bar/s)    40 

Initial mass fraction of carbon dioxide, fraction    0.021 

Reinjection mass fraction of carbon dioxide, fraction    0 

Total compressibility, bar-1    1x10-4 

Production rate, kg/s    2000 

Reinjection rate, kg/s    1900 

 

Table 4.2 : Model parameters used in the tank model for the verification. 

Rock compressibility, bar-1 9.425x10-5 

Density of rock, kg/m3 2600 

Recharge constant, m3 6.11x10-11 

Bulk volume, m3 31.5x109 

Porosity, fraction 0.05 

Initial mass fraction of carbon dioxide, fraction 0.021 

Reinjection mass fraction of carbon dioxide, fraction 0 

Production rate, kg/s 2000 

Reinjection rate, kg/s 1900 

Initial Pressure, bar 150 

Initial Temperature, K 473.15 

Reinjection temperature, K 333.15 

As it is clear from Figure 4.4 the mass fraction of carbon dioxide in the reservoir 

decreases for both cases. This is expected since the reinjected water contains no carbon 

dioxide. Hence the mass fraction of carbon dioxide decreases. The effect of the carbon 

dioxide from the recharge water for this case seems to be small. This is because 95% 

of the produced water is reinjected into the reservoir. Hence the contribution of 

recharge then becomes relatively small. The results of the analytical model developed 
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in this study fit well to the behavior of those provided from the tank model as given in 

Figure 4.5. 

 

Figure 4.4 : Comparison of mass fraction of CO2 in gas phase from analytical model 

and tank model. 

4.4 Applications with Analytical Model 

In this section an analysis of the model and the effects of various parameters on the 

change of the mass fraction of carbon dioxide in the reservoir are investigated. First 

reduced forms of the equations are provided. 

4.4.1 Effects of various parameters on the behavior of carbon dioxide content 

In this section the effects of the following items are analyzed: 

 The ratio of reinjected to produced carbon dioxide mass fraction. 

 The recharge and reinjection mass rates. 

These effects are demonstrated on a synthetic example. The  parameters given in Table 

4.3 are used in the example, unless otherwise is stated.  
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Table 4.3 : Model parameters used in the analytical model. 

Bulk volume, m3   31.5x109 

Porosity, fraction    0.05 

Recharge index, kg/(bar/s)    40 

Initial mass fraction of carbon dioxide, fraction    0.021 

Reinjection mass fraction of carbon dioxide, fraction    0 

Total compressibility, bar-1    1x10-4 

Production rate, kg/s    2000 

Reinjection rate, kg/s    1900 

4.4.1.1 The ratio of reinjected to produced carbon dioxide mass fraction 

First the effect of the reinjection to production ratio (β) of carbon dioxide is considered. 

Hence when β=1 this means that all of the produced carbon dioxide is reinjected back 

into the reservoir. If β=0, then no carbon dioxide is reinjected back. Results are given 

in Figure 4.5 and Figure 4.6 

 

Figure 4.5 : Analytical model results for various β values. 
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Figure 4.6 : Comparison of mass fraction of CO2 in liquid phase. 

As it is clear from Figures 4.5 and 4.6, if all produced carbon dioxide is reinjected back 

into the reservoir, the carbon dioxide content does not change with time. Once β is 

decreased, the carbon dioxide content also starts to decrease for any given time. This 

is an expected result since not all the produced carbon dioxide is reinjected back. The 

carbon dioxide mass fraction increases with increase in β as it is expected. 

In addition to this, the results of the analytical model and tank model for variable 

reinjection case are compared in Figure 4.7. Here, comparison results for β= 0.5 is 

given. As it can be seen from this figure analytical model developed in this study also 

fit well to the behavior of the one provided from the tank model. 

4.4.1.2 The recharge and reinjection mass rates 

Two cases are considered to demonstrate the effect of recharge carbon dioxide.  In the 

first case a 95% reinjection (Winj =1900 kg/s) is performed. In the second case a 60% 

reinjection (Winj =1200 kg/s) is considered. For both cases the reinjection mass fraction 

of carbon dioxide is assumed to be zero.  

The results are given in Figure 4.9. The circles and the crosses represent the 95% 

reinjection and the 65% reinjection cases, respectively. The lines on the other hand 



128 

represent the differences in the mass fraction of carbon dioxide in the recharge water. 

The solid line represents a mass fraction of 0, and the dashed line represents a mass 

fraction of 0.021. For the 95% reinjection case, not much difference is observed in the 

behavior of the carbon dioxide content in the reservoir. This is because the recharge 

rate is low due to the high reinjection rates. If steady state (for pressure) conditions 

have been reached (steady state conditions could be reached relatively quickly 

compared to the overall project life) if we have a 95% reinjection rate, the contribution 

will be 5 % of the production rate. 

 

Figure 4.7: Comparison of tank model and analytical model with CO2 reinjection. 

For this specific example, once steady state is reached the contribution of recharge is 

100 kg/s. Once the reinjection rate is decreased, the recharge rate increases. Hence the 

carbon dioxide content of the recharge water starts having a considerable impact. This 

is clearly observed in Figure 4.8. When we compare the 60% reinjection case, we see 

a clear difference between the recharge water having no carbon dioxide and having a 

fraction of 0.021. In conclusion, it can be stated that the impact of recharge can become 

profound only when reinjection rates become smaller. For high reinjection rates the 

contribution of recharge decreases. 
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Figure 4.8 : Comparison of mass fraction of CO2 in liquid phase with various CO2 

reinjection. 

Finally the β=1 curve given in Figure 4.6 is considered again. This curve alone is given 

in Figure 4.9.   

  

Figure 4.9 : Behaviour of mass fraction of CO2 in liquid phase at early times. 
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As it is clear, although the magnitudes are small, an initial decrease in the carbon 

dioxide mass fraction is observed. Then it starts increasing again. This is because of 

the transient behavior of pressure in the tank. Initially once production is started, the 

recharge water mass rate is negligible. Hence due to production the carbon dioxide 

mass fraction decreases. As the recharge mass rate increases (it becomes equal to the 

production rate once steady state pressure is reached) the carbon dioxide mass fraction 

also starts increasing due to the carbon dioxide mass fraction in the recharge water. 
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5.  APPLICATION TO GERMENCIK FIELD  

5.1 Germencik Field 

In this section, the application of the developed model to the Germencik geothermal 

field is given. In the western part of the Büyük Menderes Graben about 40 km from 

Aegean Sea and within Ömerbeyli residential area in the Aydın province in western 

Turkey, the Germencik geothermal field is situated and considered to be one of the 

most important geothermal fields of Turkey (Tureyen et al, 2014b). The location map 

of Aydın-Germencik geothermal field is given in Figure 5.1. 

 

Figure 5.1 : The location map of Aydın-Germencik gothermal field (Karaduman, 

2016). 
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5.2 Field Development 

In Aydın-Germencik area the preliminary studies were carried out in 1967. The 

Germencik field was discovered by MTA (General Directorate of Mineral Research 

and Exploration) in 1968. Nine exploration wells (OB-1 to OB-9) given in Table 5.1 

were drilled by MTA between 1982 and 1986 and a water dominated hydrothermal 

system was discovered. After initial exploration studies, MTA carried over the field 

license to two different operators; GÜRİŞ Construction and Engineering Co. Inc. and 

Maren Energy. After GÜRİŞ Construction and Engineering Co. Inc. has become one 

of the operator of the field, more wells were drilled between 2007 and 2008 as 

tabulated in Table 5.2. 

Table 5.1 : Wells drilled in Germencik geothermal field by MTA (Filiz et al, 2000) 

(A: Artesian) 

Well  

No 

Drilling    

Date 

Depth, 

m 

Temp,  
oC 

Discharge 

(l/s) 

Production Type 

(Wellhead Pressure) 

OB-1 1982 1002  203 Geyser Geyser 

OB-2 1982 975    231 25 A (4-7 bar) 

OB-3 1983 1197  230 65 A (13-15 bar) 

OB-4 1984 285  213 180-100 A (15 bar) 

OB-5 1984 1270  221 65 A (6 bar) 

OB-6 1984 1048  221 140 A (15 bar) 

OB-7 1985 2398  203 65 A (2.7 bar) 

OB-8 1986 1970  220 120 A (5.4 bar) 

OB-9 1986 1460  224 145 A (6.8 bar) 

Table 5.2 : Wells drilled in Germencik Omerbeyli geothermal field by GÜRİŞ 

(Tekin and Akın, 2011) 

Well  

No 

Drilling 

Date 

Depth,  

m 

Temp, 

 oC 

OB-10 2007 1524  224 

OB-11 2007 965    210 

OB-14 2007 1205  228 

OB-17 2008 1706  228 

OB-19 2008 1651  227 

AG-22 2008 2260  205 

AG-24 2008 1252  199 

AG-25 2008 1838  191 

AG-26 2008 2432  195 
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Later on, detailed geological mapping, hydrogeological, geophysical and geochemical 

studies and drilling tests were implemented and more than 70 wells were drilled up to 

date. The locations of the wells in the field are shown in Figure 5.2 (Tureyen et al, 

2016). 

 

Figure 5.2 : The locations of the wells drilled in the field (Tureyen et al, 2016). 

Germencik field is a liquid dominated reservoir that contains noncondensable gas 

which is mainly CO2, about 2.5% by weight. Temperatures up to 240oC have been 

recorded in the field. The basement of the Germencik field is comprised by the 

Paleozoic metamorphic rocks of the Menderes Massif . The metamorphic rocks consist 

of gneisses and schists, as well as marbles, quartzites and calcschists. Figure 5.3 

(Şimşek, 1984) represents the geological map of the Germencik geothermal field.  
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Figure 5.3 : The Geological map of the Germencik Ömerbeyli geothermal field 

(Şimşek. 1984). 

The Germencik geothermal system is a convective hydrothermal sytem. It is 

considered to be consisted of two different types of rock. The shallow one is comprised 

of Neogene conglomerates and sandstones while the deep one is comprised of 

fractured karstic marble, schist, quartzite and gneiss. (Şimşek, 1984; Correia et al., 

1990; Tekin and Akin, 2011). The heat source is considered to be near surface magma 

intrusion and deep circulation of meteoric waters. Aquifer water is heated at depth and 

move along faults and fracture zones to recharge the reservoir. 

The reservoir is considered to be the primary target for power generation and has a 

potential of up to 200 MWe approximately (Satman et al., 2013). One of the operator 

of the field, GÜRİŞ initially constructed a 47.4 MWe double flash power plant and has 

bee producing electricity since 2009.  

5.3 Modelling Study 

A production/reservoir performance study (Tureyen et al, 2014b) was conducted at the 

Germencik geothermal field. The objective of that study was to assess the energy 

production potential of Germencik field. The storage capacity and recharge constant 
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of the field was determined by applying one tank lumped parameter isothermal model 

developed by Sarak et al (2005). Their modeling approach is based on history matching 

of the pressure data in the observation well, OB-7, between February 2009 and 

November 2011. In this period, only the power plant operated by GÜRİŞ was in 

operation so the reservoir response is only affected by the production and reinjection 

in the GÜRİŞ field. In the modelling total rate is used which is the difference between 

the production and the reinjection rate. The obtained match from the modelling study 

is given in Figure 5.4. Modelling study indicated that there is a fairly strong natural 

recharge into the system. Once the best model that simulates pressure data from a 

geothermal system is found, it can be used to predict future pressure and temperature 

changes, which can consequently be used to estimate the production capacity of the 

given system.  

 

Figure 5.4 : Matching of pressure drop response at Well OB-7 (Tureyen et al., 

2014b). 

The model and parameters of  Tureyen et al. (2014b) are the basis of this study. In our 

study, new production data are incorporated into the developed tank model and  the 

pressure response of OB-7 covering the period from 15 February 2009 to May 2015 

as shown in Figure 5.5 are used in history matching. Especially, the variation in 

amount of CO2 with time is determined.  
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Rock part of the recharge index,  , is computed from to recharge index that is given 

in Tureyen et. al (2014b). By using recharge index and the fluid density and viscosity 

at the initial reservoir pressure and temperature,   is calculated. Reservoir bulk 

volume, porosity and rock compressibility is calculated according to storage constant 

given in Tureyen et al. (2014b) and related maps and well data provided by GÜRİŞ 

Construction and Engineering Co. Inc. The results for temperature and mass fraction 

of dissolved CO2 are presented and discussed here. 

 

Figure 5.5 : Measured pressure behavior response at Well OB-7 (Tureyen et al., 

2016). 

5.3.1 Case study: one tank open system 

In the first scenario, one tank open system as illustrated in Figure 5.6 is used to model 

the Germencik field. The parameters that are used in the tank model are listed in Table 

5.3. The history matching process is carried out manually with trial and error effort 

without using any tool or simulator. The match for the first 1000 days (Figure 5.4) are  

from the study of Tureyen et al. (2014b). In this match the GÜRİŞ company was the 

only producer. Thus, the recharge index and storage constant obtained from the match 
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represent the whole geothermal field. After 1000 days, pressure drop is increased due 

to the production from the other operator.  

 

Figure 5.6 : Illustration of one tank open system for Germencik Field. 

Table 5.3 : Data used in one tank open model. 

Bulk volume, m3   31.5109 

Porosity, fraction    0.05 

Initial pressure, Pa (bar)    130x105 (130) 

Initial temperature, K   478.15 

Rock compressibility, Pa-1   9.42710-10 

Rock thermal expansion coefficient, K-1   0 

Density of rock, kg/m3   2600 

Heat capacity of rock, J/(kg.K)   1000 

Rock part of the recharge index, m2   3.7210-11 

Injection temperature, K   300 

Injection rate, %   90 

Initial CO2 fraction, fraction   0.021 

History matching process is used as a tool to obtain a model that provides best match 

to the pressure data. After the appropriate history match is obtained, the model is used 

to simulate future reservoir behavior. After this point, different scenarios can be 

considered. In our case, it is assumed that reservoir produces with a constant 

production and injection rates of 3787 kg/s and 3408 kg/s for 10 years and pressure, 
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temperature and CO2 mass fraction projections are performed. Temperature and CO2 

mass fraction projections are given as follows. 

The projection for the temperature is given in Figure 5.7. According to this figure, 

temperature decreases from 478 K to 470 K  in 10 years. The main reason for the 

temperature drop is the reinjection temperature. The temperature of reinjection water 

is assumed as 300 K that is fairly colder than reservoir temperature. So it cools the 

reservoir.  

 

Figure 5.7 : Temperature drop projection for Germencik field. 

At the final pressure and temperature, the reservoir water still remains in liquid phase. 

As a result no gas phase will be formed in the reservoir after 10 years. The projection 

for the mass fraction of CO2 that is dissolved in reservoir water is given in Figure 5.8. 

Two scenarios are considered for this case. In first scenario, it is assumed that recharge 

water is  pure water so it does not contain any dissolved CO2. In the second one, it is 

assumed that recharge water contains 2.1 % CO2 by mass (fcla=0.021). This value 

equals to the initial CO2 mass percentage of the reservoir. The reinjection water is 

considered as pure water in both cases. According to Figure 5.8, for fcla=0.021, the 

dissolved CO2 mass fraction (f
CL

) in reservoir water decreases to 0.008  and for fcla=0 

it decreases to 0.0064. There is a slight difference in two values. For this model based 
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on the assumption of reinjection rate at 90 % of production, recharge water dissolved 

CO2 fraction has minor effect on reservoir performance projection. The effect of 

carbon dioxide content of the aquifer on the reservoir CO2 content behavior is not 

apprecible when reinjection mass flow rates are high.  The important point is, there 

will be a significant reduction in CO2 amount of reservoir fluid in both cases.  

 

Figure 5.8 : The projection for the mass fraction of CO2 in Germencik field. 

For the case discussed above, the reinjection water is assumed as pure water without 

any CO2 content. For another scenario, it is assumed that 90 % of produced water 

containing CO2 is directly reinjected into the reservoir. In that case, mass fraction of 

injected CO2 varies with time and it is equal to mass fraction of CO2 in reservoir water  

produced (f
CL

=fcl_inj). This time, mass fraction of CO2 decreases to 0.019. Carbon 

dioxide level in the reservoir can be maintained better when the amount of injected 

carbon dioxide is increased. The comparison of this case and pure water injection case 

without CO2 content is given in Figure 5.9. Constant CO2 reinjection scenario is also 

considered. If the amount of CO2 in reinjection water is kept constant at a value of 1.5 

%, it is expected that the mass fraction of CO2 decreases to 0.018. The projection of 

mass fraction of CO2 in liquid water where constant amount of CO2 is reinjected into 

the reservoir is given in Figure 5.10.  
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Figure 5.9 : Projection of mass fraction of CO2 in water with and without CO2 

reinjection. 

 

Figure 5.10 : Projection of mass fraction of CO2 in water with constant amount of 

CO2 reinjection. 
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6.  CONCLUSIONS AND RECOMMENDATIONS 

The conclusions obtained from this thesis study and recommandations for future 

works are given here. 

6.1 Conclusions 

In this thesis, a lumped parameter model capable of modelling the pressure and 

temperature behaviour of the geothermal systems that contain carbon dioxide is 

developed. The model is similar to the lumped paramater model found in the literature 

but it can reflect the effect of carbon dioxide on reservoir performance. The model is 

compared with the pure water model and the effect of carbon dioxide on 

thermodynamic and transport properties of geothermal fluids are examined.  

The behavior of liquid dominated geothermal reservoirs are influenced by the presence 

of carbon dioxide significantly. Even small amounts of carbon dioxide can have 

significant effect on the flashing point and other physical propertied of water. Hence 

it becomes very important to know the amount of carbon dioxide present in the 

reservoir at any given time. The amount of carbon dioxide as well as average reservoir 

pressure and temperature can be monitored with the addition of  mass balance on 

carbon dioxide in the tank model.  

The effect of carbon dioxide are most profound on the flashing point pressure. A small 

amout of CO2 dissolved in the liquid water phase can significantly increase the flashing 

point pressure for any given temperature. Due to the increase in flashing point 

pressure, two phases can form in the reservoir at relatively higher pressures. With the 

formation of the gas phase in the reservoir, the pressure decline rate is slowed down. 

This is because of the much higher compressibility of the gas phase compared to water 

and rock compressibilities. Gas expands more and supports reservoir pressure.  

The amount of CO2 dissolved in reservoir water decreases with production. If a gas 

phase is formed, dissolved CO2 in the water will begin to migrate to the gas phase with 
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production. Reinjection can also cause reduction of CO2 if water reinjected to the 

reservoir contains less CO2 than the produced water. The recharge source can also be 

a factor if the recharge water contains less CO2 than the reservoir water initially existed 

in the reservoir. 

When gas phase is formed in the reservoir, two components exist in the gas phase; 

carbon dioxide and steam. Initially, gas composition mainly consist of CO2. With 

production, as the gas saturation increases, the fraction of CO2 in the gas phase 

decreases and steam in gas phase increases.  

Our lumped parameter developed in this study can handle a wide variety of geothermal 

systems.  Reservoir can be modelled with one tank or multiple tank for constant or 

variable production rate with the consideration of  recharge and injection. The model 

is able to work for pure water or H2O-CO2 injection with the constant or variable CO2 

amounts and rates.  

The lumped parameter model is verified and validated  using a newly developed 

analyical model and the commercial simulator PETRASIM. The results are consistent 

and highly satisfactory. Then various synthetic cases that demonstrate the effects of 

parameters such as production and injection rate, recharge constant, porosity, rock 

density, bulk volume, compressibility of rock, on the change of carbon dioxide in the 

reservoir are presented.  

New analytical expressions that give the amount of carbon dioxide as a function of 

time and amounts of production, reinjection and recharge for liquid dominated 

reservoirs are developed. This new analytical approach  is an original contribution to 

the literature. The expressions for the CO2 content in liquid dominated reservoirs are 

developed for two different carbon dioxide reinjection scenarios;  

a-) reinjection of carbon dioxide at a fixed mass fraction, 

b-) reinjection of carbon dioxide at a variable mass fraction.  

Finally, the model is applied to the Germencik field that initially contains 

approximately 2.1 % carbon dioxide by mass. The early production rate-reservoir 

pressure history are used and an almost perfect match is obtained. The best model that 

fits the Germencik field is formed and production performance of this field is 
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evaluated. The modelling study based on production/reinjection scenerios yielded 

significant results and observations. There is a substantial recharge to the geothermal 

system. The amount of carbon dioxide in the reservoir is expected to decrease in time.  

The parameters that effect reduction of carbon dioxide are amount of CO2 that enters 

the reservoir with the natural recharge and reinjection. Low reservoir pressure drop is 

aimed for the sustainibility of the reservoir. The pressure decline rate is slowed down 

with the formation of the gas phase in the reservoir and well head pressure is directly 

proportional to the amount of CO2. Thus, the CO2 reinjection is essential for the 

sustainable management of the field. Temperature drop of 8 K is expected. 

The sustainability issues concerning the liquid dominated geothermal reservoirs 

containing dissolved carbon dioxide are better described when the model presented in 

this stuy is considered for pressure behavior. Keeping the track of CO2 in the reservoir 

is crucial since CO2 plays an extremely important role in the pressure behaviour either 

in the reservoir (if two phase forms) and in the well. It is important to note that a change 

in CO2 significantly affects well head pressures. 

6.2 Recommendations for Future Works 

Based on this thesis study, the following recommendations can be given for further 

improvements and for future works that can be performed related to the subject of 

this study. 

6.2.1 Effects of brine salinity 

The effects of salt content on the thermodynamic properties of geothermal fluids can  

be added to thermodynamic package. With the implementation of equations for the 

dissolved salt content to the thermodynamic package salty water reservoirs can be 

modelled. The dependency of density, viscosity, enthalpy, vapor pressure of brine on 

salt concentration and effects of salinity on CO2 and vapour solubility can be examined 

in detailed. H2O, H2O-CO2 and H2O-CO2-NaCl systems can be compared. 
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6.2.2 Gravity effect 

Gravity effect is ignored in this study. Gravitational forces can be a major factor in 

production especially in the case of layered reservoirs and deep reservoir/recharge 

source. Velocity terms can be modified to include the gravity. 

6.2.3 Time stepping 

Fluctuations occurs especially during phase transition periods, therefore, length of 

time steps is crucial in these periods. With the relatively small time steps, fluctuation 

problem can be overcome. Current model can be improved by modification of time 

step selection during phase transition zones. 
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