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Abstract 

The understanding of the morphology of an urbanized channel is currently limited to a 

‘black box’ understanding in that the main driving force of morphological change is 

hydrologic. This study aimed to expand our understanding of urbanized channels by 

conducting a socio-geomorphological investigation; that is, the natural and policy-driven 

events and processes leading to the current channel form. A fluvial audit including 

historical analysis and fieldwork was conducted in Wilket Creek, a southern Ontario 

urbanized channel, along with a review of provincial and municipal policy and reports. 

Overall, it was concluded that the current morphology of Wilket Creek is the result of a 

complex combination of urbanization, conservation policy, and channel reconstruction and 

design. This in-depth analysis provides the sequence of events and processes which took 

place in the catchment which has led to the current urban morphology. 

Keywords 

Urbanization, fluvial audit, Wilket Creek, fluvial geomorphology, sociogeomorphology, 

natural channel design 
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Chapter One 

1 Introduction 

The central concern of the field of geomorphology is natural processes and landforms 

(Charlton, 2008). In most cases, the scope of geomorphology does not address the role of 

socio-political processes in landform analysis (Ashmore, 2015). While textbooks and 

research have long addressed the role of human impacts on landscapes and the recognition 

of human-constructed landforms (e.g., Gregory, 2006), this anthropo-geomorphic position 

sees humans as impacting a separate nature, and perturbing and damaging natural systems 

from the outside. This limits explanation of the role of humans in these systems (Ashmore, 

2015).  

To provide the socio-cultural and political stance that is missing from anthropo-

geomorphic analysis, Ashmore (2015) uses the term socio-geomorphology; a distinct mode 

of enquiry that explicitly approaches rivers as socio-natures, a combined bio-physical and 

socio-political system. This fits with a research approach was recently labelled as critical 

physical geography (Lave et al., 2014). To conduct an analysis of this type in the context 

of fluvial geomorphology, historical background and a socio-political narrative is 

appropriate, as well as more conventional information on the channel morphology itself. 

This approach is particularly useful in the context of urbanized watersheds in which human 

agency has had direct effects on river morphology. This socio-geomorphic approach 

contrasts with previous urban river analyses, which treat urbanization as an external human 

impact on the natural system in which land-use change is a simple causal variable rather 

than as part of a socio-natural system (e.g., Rutherfurd & Ducatel, 1994; Leopold et al., 

2005; Chin, 2006; Vietz et al., 2015). The socio-natural approach also makes it possible to 

incorporate explanations of river morphology related to direct human intervention, such as 

channel restoration. Analysis of designed and restored channels is largely absent from 

literature on effects of urbanization on river morphology 

To provide a full explanation of the current state of an urban channel, knowledge of the 

direct human influences/interventions and fixes, along with the reasons and motivations 

for these direct human influences is required. Not all urban rivers undergo the same 
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morphological changes due to differences between local socio-political processes and in 

this local contingency and history are important considerations. Together with the physical 

attributes of the channel, this information can provide a detailed understanding of how 

urban river morphology is the outcome mutual interactions of ‘natural’ and socio-political 

circumstances.  

To allow for an in-depth, socio-geomorphological investigation into the effect of 

urbanization on fluvial systems, this thesis is a case study. Located in Toronto, Ontario, 

Wilket Creek is a small, second order tributary of the West Don River, with a completely 

urbanized catchment. This study is related to a larger project “Assessing and restoring the 

resilience of urban stream networks”, which is focused on the effects of stormwater 

management on bedload transport in three creeks in the Toronto area. Wilket Creek is one 

of the previously-selected watersheds (representing older development with no storm water 

management). Wilket Creek is also typical of similar watercourses in the area, and in this 

way the case has broader relevance. 

1.1 Objectives of this thesis 

The in-depth, socio-geomorphological investigation into the effect of urbanization on 

Wilket Creek, Toronto completed in this thesis was fulfilled by two main objectives: 

1. Characterize the current geomorphic characteristics of Wilket Creek by identifying: 

a. Glacial geological setting  

b. Channel morphology 

c. Grain size and grain size distribution 

2. Identify the sequence of events and processes which took place in the catchment 

starting with 19th century: land clearing through urbanization, conservation policy, re-

engineering and restoration practices and other interventions to understand 

morphological changes in a socio-geomorphic context  
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Chapter Two 

2 Channel morphology: urbanization effects and human 

influence  

2.1 Controls on channel morphology 

River channel morphology is dependent on the type and intensity of fluvial processes, such 

as erosion, transport and deposition of material, incision/aggradation, and lateral migration, 

in the river (Knighton, 1998). These processes are governed by the hydrologic and 

sediment supply from upstream, as well as by the valley gradient, and bed and bank 

material (Knighton, 1998; Ashmore & Church, 2001). Secondary controls on channel 

morphology include riparian vegetation (Figure 2.1) (Knighton, 1998). Overall, these 

variables are responses to the catchment conditions including topography, geology, soils, 

vegetation, climate, and land use. Change in any one, or a combination of these controls 

may cause adjustment of the channel morphology to a new quasi-stable state (Wolman, 

1967; Schumm, 1971; Knighton, 1998; Ashmore & Church, 2001; Emmett & Wolman, 

2001). Rivers are subject to occasional disturbances, typically by flood events, where 

thresholds of the channel state are reached and exceeded (Knighton, 1998). River 

morphology is mostly controlled by these threshold exceedances; higher flows and 

occasionally single, large flow events may cause long-term changes to which the channel 

re-adjusts. This can change the morphology through lateral migration and incision, and is 

related to a particular range of channel forming discharge (flows) (Charlton, 2008). 

The effects of channel forming discharge vary by the type of channel. Geomorphologists 

identify two fundamental classes of river: alluvial and bedrock (Charlton, 2008). Each of 

these types of channel adjusts differently; much of the literature to date concentrates on 

river process-form adjustment in alluvial channels, leaving analysis of other channel types 

less developed. There are two clear distinctions between the two classifications of rivers; 

morphological change in bedrock channels is uni-directional (rock cannot be replaced after 

erosion) and significant in-channel deposition converts the channel to an alluvial state, and 

that rates of change and adjustment in bedrock channels are slow (Turowski et al., 2008). 

It has been recognized that bedrock channels may be considered “semi-alluvial”, when 
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significant erosion has not occurred and the bedrock is locally or partially covered by 

alluvial deposits (Turowski, 2012). Some refer to these rivers as mixed alluvial-bedrock, 

leaving some confusion over the exact definition of a semi-alluvial river (Figure 2.2) 

(Howard, 1998). 

 

Figure 2.1: Illustration of the Lane balance between stream power (stream slope x 

discharge) and sediment supply (sediment load x sediment supply) (Charlton, 2008). 

In their paper, Ashmore & Church (2001), proposed a definition of the term semi-alluvial 

as channels which are “not strictly alluvial but neither are they constrained in their 

adjustment to the same extent as bedrock channels. (They) flow through erodible material 

and show many of the characteristics of alluvial rivers but rapidity and completeness of 

adjustment may be limited….” They relate this particularly to areas of Canada that are 

covered by glacial sediments into which rivers are eroded, rather than bedrock. Channels 

in these areas have also been  termed glacially conditioned (Phillips & Desloges, 2013). 

The variation in type, composition, and thickness of glacial sediments have a substantial 

influence on the morphology, dynamics, and adjustment for the rivers, which erode into 

these materials (Phillips & Desloges, 2013). Specifically in southern Ontario, rivers run 

over low gradient till and glaciolacustrine plains, with post-glacial downcutting. The 

channel boundaries and valley sides of rivers in these areas typically have glacial (non-



5 

 

alluvial) sediment exposed, while alluvial deposition and floodplain development occurs, 

and banks feature alluvial caps above non-alluvial materials. As well, the channel itself 

features alluvial cover (sand, gravel, cobble) in variable thicknesses and extent (Hrytsak, 

2012; Thayer & Ashmore, 2016). The channel may behave like a bedrock channel, as 

channel incision, valley widening, and channel adjustment erode glacial sediments. 

However, there are characteristics causing these channels to differ from bedrock rivers, 

hence Ashmore & Church's (2001) usage of “semi-alluvial”. Glacial sediments (e.g., till) 

may be more erodible than the overlying gravel, and are much more erodible than most 

types of bedrock. The glacial sediments may provide a direct supply of readily 

transportable sediments, such as gravel and sand, forming much of the bed material cover. 

During erosion, cohesive clasts of glacial sediments may also be incorporated into the bed 

material, making the bedload composition different from that of alluvial systems. The 

morphology and mechanics of semi-alluvial channels are not well known, so prediction 

and understanding of their response to changes such as urbanization is in its preliminary 

phase. To further this understanding, the goal of this thesis is to describe this glacially-

conditioned, semi-alluvial channel type in an urbanized setting.  

 

Figure 2.2: The variation of channel types (Hrytsak (2012) based on Meshkova et al., 

(2012)). 
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2.2 Effects of urbanization on channel morphology 

Rapid urban expansion, especially in the second half of the 20th century has had 

documented effects on watercourses in North America. The beginnings of these effects can 

be traced partly to initial stages of forest clearance, and direct modifications, such as water 

mills and dams, in the 19th century (Schenk & Hupp, 2009; Csiki & Rhoads, 2010; Walter 

& Merritts, 2015).  

The dams built at this time, and generally those built in small catchments, are often run-of-

river dams. Unlike impoundment dams, run-of-river dams have no mechanism to inhibit 

the discharge of water over the dam; any water held by the dam has a minimal residence 

time, which creates local backwater conditions for mills (Csiki & Rhoads, 2010; Walter & 

Merritts, 2015). While research on this specific type of dam is limited, with few studies 

investigating the effects of these dams on fluvial functioning, the effect of mills and their 

dams, whatever type they might be, has been investigated (Csiki & Rhoads, 2010). Walter 

& Merritts (2015) used historical photographs to locate mill dams throughout the eastern 

United States. They typically found a small wedge of fine grained sediment upstream of 

the dam, and an altered flood plain stratigraphy. Through coring and bank sampling, it was 

possible to identify these areas, showing the legacy which mills and other agricultural 

activities leave in the morphology (Walter & Merritts, 2015). Depending on the size of the 

dam and catchment, effects such as these on hydrology and sedimentary processes can be 

seen for several kilometers downstream. Urbanization may have further altered the channel 

form making this more important to morphological change (Csiki & Rhoads, 2010).  

Analysis of the effects of urbanization on river morphology can be traced back to 

pioneering work by Wolman (1967), who suggested that  rivers may go through three 

stages of changing sediment yield during urbanization: 1) the equilibrium condition when 

the landscape is dominated by agriculture or forest; 2) the construction period during which  

bare land is exposed to erosion; and 3) post-urbanization phase when the landscape is 

dominated by impervious surfaces, and sediment yield is limited. Subsequent 

geomorphologic analysis has tended to focus on the hydrological impacts of urbanized 

surfaces and their effects on stream flow and consequently on channel processes and 

morphology. These effects include increased peak flows, magnitude, and frequency. 
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Urbanization of all or part of a catchment has significant effects on the hydrologic and 

sediment regimes, including increased runoff, accelerated rate of delivery, increased size 

of flood peaks, and increases in the frequency of lower magnitude flood returns due to 

impervious surfaces (Burns et al., 2005; Niezgoda & Johnson, 2005; Chin, 2006). In urban 

areas, stormwater refers to rainwater and melted snow that flows over roads, parking lots, 

and other site. These sites are often referred to as impervious surfaces. Impervious surfaces 

are cover with materials which have no or little infiltration capacity or permeability for 

water (Brabec, Schulte, & Richards, 2002; Toronto and Region Conservation Authority, 

2016b). During rainstorms, water runs rapidly into storm drains, municipal sewers, and 

drainage ditches, and flows directly into watercourses (Toronto and Region Conservation 

Authority, 2016b). 

Urbanization can also transform the fluvial landscape, altering natural controls (Section 

2.1) on channel geomorphology, and influencing ecological processes and their interaction 

(Gurnell, Lee, & Souch, 2007). Channel morphology adjusts either vertically or laterally, 

or both, in response to hydrologic and sediment regime changes in an attempt to reach a 

new state of equilibrium once more (Niezgoda & Johnson, 2005; Wolman, 1967). This 

leads to channel enlargement, alterations in channel planform, and further changes in 

sediment production (Wolman, 1967). While streamflow changes resulting from 

urbanization have been studied extensively, there has been relatively little analysis of the 

morphological response of river channels to specific changes in streamflow hydrology 

rather than more generally to the extent of urbanization. Changes in river morphology 

following urbanization have typically been done by comparing rivers with differing extent 

of urbanization and only occasionally using historical documents such a topographic maps, 

surveys, and air photos, or long-term monitoring. Therefore longitudinal (in time) studies 

of river response to urbanization are rare (e.g., Graf, 2000; Leopold et al., 2005; 

MacDonald, 2011) 

Chin (2006) compiled research results from more than 100 studies, which were conducted 

across a range of areas to provide an in-depth analysis of the effects of urbanization on 

river landscapes. Of the studies which were selected, 58 specifically addressed 

morphological change. The conclusions from Chin (2006) were three fold: 
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1. Urban development has transformed watercourses across Earth’s surface through 

changes in hydrology and sedimentology regimes, causing a range of morphological 

adjustments; 

2. Although the impacts of urbanization are more easily summarized in terms of averages, 

considerable variability occurs among and within locales; 

3. The persistence of urban-induced impacts can be conceptualized as time periods of 

adjustments for the various stages, characterized by the lag time, reaction time, and 

relaxation time.  

Channel enlargement following urbanization was reported in approximately 75% of the 

studies recording channel morphological change, and channel cross-sectional areas 

generally increasing 2–3 times, with extremes as high as 15 times depending on the hydro-

geomorphological conditions and extent of urban development within a watershed. Other 

changes in morphology have also been documented, including decreases in sinuosity and 

increases in bed material size, along with other chemical, biological, and ecological effects. 

Spatial variation in morphological responses results from differences in lithology, 

vegetation, slope, and urban structures, including road crossings and channelization. 

Between areas, regional trends are emerging for various environments. To date, most 

research on urbanization impacts on watercourses has emphasized temperate 

environments; data is now available for tropical settings which indicate a stronger 

sedimentological response in the tropics due to the intensity of precipitation and highly 

weathered soils. The lag time from the start of urban development to a sedimentological 

response could be as short as several months, however several years to decades seem 

necessary to clear construction-related sediments in some cases. The time required for 

rivers to complete the enlargement phase is variable, ranging from several years to systems 

that were still unstable 40–50 years following adjustment (Chin, 2006).  

While the compilation by Chin (2006) was comprehensive, the cases that were selected can 

be thought of as primarily ‘black box’; in the sense that they correlate channel changes 

with land-use change, usually using extent of percentage impervious watershed area as a 

surrogate for all flow and sediment delivery changes and without tracking causes and 

processes of adjustment. Along with the studies reviewed by Chin (2006) additional studies 
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(i.e. Hawley et al., 2013) were also reviewed. These studies can be divided into before-

and-after channel studies, and paired channel studies. Before-and-after channel studies 

require long-term monitoring based on future urban planning as knowledge of the state of 

the morphology of the channel prior to urbanization is necessary. These studies are often 

limited to only comparing two time periods, often with decades between times, and do not 

monitor during the stages of adjustment. Alternatively, paired channel studies can be 

conducted in a short period of time as they draw comparisons between the current 

morphologies of multiple catchments with varying urban statuses. These studies have 

shorter timelines, where some only require one field season for data collection. While these 

are notable differences between the two study types, both types generally use similar data 

collection methodology, most commonly cross-section measurements. Due to the nature of 

the study type, as well as increasing awareness of the effects of urbanization on channel 

morphology, paired channel studies currently considerably outnumber before-and-after 

single channel studies. These examples provide an overall idea of the effects of 

urbanization on fluvial morphology, however they lack the in-depth, event-process analysis 

which is required to fully understand the evolution and morphological changes occurring 

in a channel (Chin, 2006). Further investigation into other urban effects assessment is 

necessary; this gap in the literature will be filled by this study. 

Overall, the urban geomorphology papers to date have established three main things: 

urbanization causes change in rivers: most studies do not do longitudinal research through 

time on these rivers; and very few studies look directly at human intervention in the 

channel, focusing solely on the ‘natural’ responses. Only five of the selected studies 

mention direct human interventions on the channel morphology. In this case, direct human 

interventions are defined as any channel restoration or reengineering which may have taken 

place. Each of these three studies accounts for these interventions differently. 

Chronologically, Arnold et al. (1982) is the first paper to mention these interventions, 

noting portions of rip rap on the banks, as well as surveying a channelized portion of the 

river; this was used to demonstrate the longitudinal differences between the natural riffle-

pool sequences and the channelized sections of the river, however the mention of these 

differences ended here. Next, Booth (1990) mentions that of the cross sections surveyed, 

at least one was confined in some way. These sections were placed in the stable category 
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along with ‘natural’ stable cross sections, instead of what could have been an urbanized 

category. Finally, Finkenbine et al. (2000) took a completely new approach, using the 

channelization or rip rap placement in the selected channel as a record of past erosion in 

that location. In Grable & Harden (2006), the term CRUD or ‘coarse riparian urban debris’ 

was used to describe any anthropogenically sourced material in or around the stream. The 

presence of CRUD was deemed reach specific, and considered to be part of the study creek; 

it was not noted that the presence of CRUD dictated anything about the history of the creek. 

Next, Booth & Fischenich (2015) investigated the classic channel evolution model (CEM) 

to determine the applicability to urban watersheds. Due to the variation in disturbances, the 

CEM typically used in literature inadequately describe the transitions an urban channel 

goes through. While these five papers begin to touch on the idea that humans have a direct 

intervention on the channel through restoration or reengineering, they do not appear to take 

these interventions under meaningful consideration. What is currently missing in these 

papers is the discussion as to why these direct interventions were put into place to begin 

with (i.e., infrastructure protection, public safety), and how one could go about categorizing 

these interventions as something other than stable or simply as past erosion. To expand our 

current knowledge of the effects of urbanization on channel morphology, further 

investigation and discussion of the direct interventions which humans have on the channel 

is required (Section 3.4 and Chapter 4) 

While the studies to date have opened the field of urban geomorphology, they have so far 

only provided evidence of the consequences of urbanization on channel morphology 

without examining the history and processes of channel change. At the same time, they 

treat urbanization as a human impact external to the system and very few studies attempt 

to incorporate the effects, and processes, of policy and engineering intervention after 

urbanization. To understand these processes, detailed studies comparing pre-urbanization 

and post-urbanization channel morphology along with the influences of humans directly 

on the channel, over time, are needed.  

To fill this research and knowledge gap, in-depth study on the specific events that change 

river morphology as a result of urbanization is required. This thesis is an example of how 

this approach can be implemented. This study tracks the history of the catchment from pre-



11 

 

urbanization, including channel restoration and management, and describes the current 

state of the channel resulting from this history (Ashmore, 2015; Downs & Gregory, 2014). 

This will help answer the how, when, why, and who of the morphological change which is 

overlooked by the many previous studies of urban rivers. 

2.3 Human intervention in urban channel morphology  

Geomorphology primarily focuses on ‘natural’ process and landscapes. However the 

effects of humans on landscapes has not been completely ignored. Many textbooks and 

research articles often describe human impacts on landforms and landscape processes; in 

this instance ‘anthropogenic geomorphology’ is developing through a range of 

documentation, and categorization. Humans are seen as interfering with the natural order, 

where human-constructed landforms are artificial, and humans are disturbing equilibrium, 

changing boundary conditions, and creating harmful effects (Section 2.2) (Ashmore, 2015). 

In this instance, direct human intervention refers to any addition or change to the 

morphology of the channel, which is not caused naturally and could include gabions 

baskets, armour stone, hardlining, rip-rap, and channel realignment. Many urban channels 

have been modified in this way in order to protect surrounding infrastructure from 

morphological changes in the channel. This results in highly modified channels that are 

engineered for hydrological efficiency, with minimal geomorphological or ecological 

considerations. This creates many channels with long hardened sections, which may 

include concrete banks, or complete concrete channels. These channels are not dynamically 

stable morphologically, do not feature areas for aquatic habitat, and have little vegetation 

(Ministry of Natural Resources, 1994; Grable & Harden, 2006). 

In order for a complete understanding of urban river morphology, an analysis beyond the 

norms of geomorphic research, which includes the social influences on the channel is 

required. Doyle et al. (2015) suggest that specific interventions and policies have effects 

on the reconstructed and restored morphology of urbanized channels. This may be 

considered another step in the evolution of urbanized channels not considered by Wolman, 

(1967) Using a term coined by Ashmore (2015), the socio-geomorphology of a channel 

extends beyond the ‘physical only’ account of urban channels, which views channels as a 

merely a product of the hydrological change due to urbanization in the catchment. This 
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type of analysis extends to include reports from provincial and local municipalities, 

conservation authorities, and consultant companies. The result will be a more complete 

understanding of geomorphology and of the role and consequences of geomorphologists’ 

understanding of, and interventions in, these systems (Ashmore, 2015). Beyond the studies 

in Chin (2006), adequate documentation of the true nature of urban channels is rare. There 

are currently no papers using audits or descriptions to document urban channels. This study 

brings the urban geomorphology community one step closer to fully understanding and 

documenting what urban channels look like and why they look as they do. 

This study aims to fill this research gap. An in-depth analysis of one case study will identify 

the current geomorphic characteristics of the channel as well as identify the sequence of 

events and processes such as urbanization, and reconstruction of the channel. This will aid 

in explaining how the channel became its current form, which could then be applied to 

other catchments in the area.  
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Chapter Three 

3 The case study of Wilket Creek 

This study used a single case to provide a detailed and in-depth environmental history of 

an urbanizing catchment. This historical analysis of the morphology of Wilket Creek, 

located in Toronto, Ontario, provides background information for a larger project. The 

larger project, NSERC Strategic Project Grant “Assessing and restoring the resilience of 

urban stream networks”, is studying bedload transport in three creeks in the Toronto area. 

Wilket Creek is the most urbanized creek in the study; it has older development and no 

stormwater management in place. For comparison, there are two other creeks in this study; 

one features newer developments while the other is completely undeveloped. 

In order to fulfill the holistic nature of the socio-geomorphic approach, this case study 

required the use of both primary and secondary data. Secondary data included reports, 

journal articles, aerial photographs, and Water Survey Canada data. Primary data used 

included analysis of aerial photographs, channel mapping, and various methods to obtain 

the grain size distribution of the channel (Table 3.1). 

Wilket Creek is one of 11 river systems in 24 watersheds located within the Greater 

Toronto Area (GTA), Ontario, Canada (Trudeau & Richardson, 2016). These river systems 

flow into Lake Ontario. The climate in these areas is moderate humid continental (Koppen 

climate classification Dfa) with average precipitation of 831 mm/year, with daily average 

air temperatures from 3.7°C in January to 22.3°C in July (Trudeau & Richardson, 2015, 

2016). Rainfall occurs in all months and snow from November to April; the frost free period 

typically occurs between April 13 and November 3. This region experienced heavy 

urbanization between 1969 and 2010; the population in the GTA has grown from 1,919,000 

in 1961 to 3,893,000 in 1991 to 5,583,064 in 2011. The population density per square 

kilometer in 2011 was 945.4 (Trudeau & Richardson, 2016).  
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Table 3.1: The types of data used by this thesis to conduct a fluvial audit on Wilket 

Creek, Toronto. 

Section Data Type Data Source 

Geology Secondary 
Reports (e.g., TRCA, 2009a) 

Journal articles (e.g. Sharpe & Russell, 2016) 

Land use 
Secondary 

Journal articles (e.g., Javed, 2009) 

Books (e.g., White, 2003)  

Aerial photographs and satellite imagery (e.g., City 

of Toronto, 1937) 

Primary Analysis of aerial photographs (e.g., Figure 3.10) 

Streamflow 

Secondary 

Journal articles (e.g., MacDonald, 2011; Trudeau & 

Richardson, 2016) 

Water Survey Canada (WSC) 

Primary 

Analysis of WSC data and Wilket Creek gauge data 

(e.g., Figure 3.18: The discharge per unit drainage 

area (m3s-1km-2) of the West Don River and 

Highland Creek 

Morphological 

change 

Secondary 
Reports (e.g., Parish Aquatic Services, 2013)  

Ground photographs (e.g., City of Toronto, 1937) 

Primary 
Measurements of channel width change (Figure 

3.30) 

Current 

morphology 

Secondary Reports (Parish Aquatic Services, 2013) 

Primary Channel mapping (Figure 3.33 & Figure 3.40) 

Grain size distribution analysis (Wolman Walks, 

Baseline, line-by-number)  

Bank stratigraphy and grain size distribution 

(Wolman Walk variation) 
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The City of Toronto became an industrializing city more than one hundred years ago, with 

increased rates of urbanization after World War II (City of Toronto, 2015). Development 

eventually extended the former boundaries of the City of Toronto (the Don River) further 

east in the early 1900s. Urban lands within the Toronto region, more specifically in the 

Don Valley watershed (Figure 3.1), include an historic urban core undergoing 

intensification, as well as multi-centered satellite communities comprising a variety of 

residential, commercial, industrial and institutional forms of land development (Trudeau 

& Richardson, 2016). These watersheds were predominantly serviced by conventional, 

separated sewer systems between 1969 and 2010, although the historic urban core of the 

City of Toronto had a combined sewer system. Runoff quantity control was only introduced 

in Ontario in the 1980s (Section 4.1), and in some recent satellite community subdivision, 

low-impact development (LID) after 2000 (Trudeau & Richardson, 2016). Trudeau & 

Richardson (2016) show that there has been a substantial change in hydrology in the 

Greater Toronto Area. These changes in hydrology also affect the channel morphology of 

the catchment into which they flow (Section 2.2). Because of the rapid rate and its recent 

history of urbanization, the Don River watershed (catchment) is a good example of the 

effects that rapid urbanization can have on a catchment and its channels (Don Mills 

Residents Incorporated, n.d.; Manwell, McGowan, & Rogers, 2009; Bonnell, 2014).  

Wilket Creek is a small, second order tributary of the West Don River with a catchment 

area of 15.5km2 (Figure 3.2) (Parish Aquatic, 2015; TRCA, 2015). The channel of Wilket 

Creek has been, and continues to be, heavily influenced by human activity through 

engineering intervention in several reaches (Parish Aquatic Services, 2013). Urbanization 

began in the 1950s, and the catchment was fully developed by the mid-1970s. The majority 

of construction within the catchment took place in the early 1960s when stormwater 

management was not a priority; as a result there are no stormwater management practices 

in the catchment (Figure 3.3) (Toronto and Region Conservation Authority, 2015).  

Wilket Creek has a completely urbanized catchment, with no major tributaries. An 

additional input into the channel is from storm sewer outfalls along the valley. Within the 

catchment, approximately 93% of the land use is for community infrastructure, including 

residential housing, shopping centers and schools, and industrial land use. The remaining 
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7% land use in the catchment is treed, primarily along the riparian zone of the Wilket Creek 

channel (Parish Aquatic Services, 2013). The creek is bordered by the Bridle Path and Don 

Mill’s developments, which also include three park areas along the valley (Figure 3.1): 

Wilket Creek Park, located at the confluence of Wilket Creek and the West Don River; 

Edwards Gardens located south of Lawrence Ave E.; and Windfields Park stretching from 

Post Rd to just south of Highway 401 (Figure 3.2). Windfields Park features sections of 

both open channel and buried channel. The buried section of the channel receives flow 

from local drainage and storm sewers along its course (Parish Aquatic Services, 2013). The 

headwaters were buried in 1972 in a 4m-wide stormwater conduit. The creek exits the 

conduit south of York Mills Road and east of Bayview Ave. Upstream of this point there 

are no surface channels (Figure 3.2). This study is concerned only with the open channel 

downstream of York Mills Road.  

After extreme flood events and extensive channel erosion affected the catchment in 2005, 

2008, and 2013, reconstruction of the channel took place as part of a Geomorphic Master 

Plan by the Toronto and Region Conservation Authority (TRCA) and the City of Toronto 

to protect the surrounding infrastructure (see below in Section 3.3 and Chapter 4 for more 

information) (Toronto and Region Conservation Authority, 2008; Toronto and Region 

Conservation Authority & City of Toronto, 2013). Many of the catchments in the Toronto 

area are similarly urbanized and have experienced urbanization and channel modifications 

similar to those discussed above. This makes Wilket Creek a good representative of a 

‘typical’ small catchment in the Toronto area.   
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Figure 3.1: The land use variability throughout the Don River catchment. Wilket 

Creek (outlined in red), is largely low-medium density residential with some forest 

and meadow coverage (Toronto and Region Conservation Authority, 2009b). 
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Figure 3.2: The location of Wilket Creek topographical catchment in Toronto, 

Ontario. The channel north of York Mills Rd (the yellow square) was buried in 1972 

in a trunk storm sewer. The open channel (highlighted in blue), flows from south of 

York Mills Rd to the confluence at the West Don River north of Eglinton Ave E. 
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Figure 3.3: The stormwater control measures in the Don River catchment. Wilket 

Creek (outlined in red), has no stormwater management controls in effect (Toronto 

and Region Conservation Authority, 2009b).  
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3.1 The geological setting of Wilket Creek 

Based on Ashmore & Church (2001), the Toronto and Region Conservation Authority & 

City of Toronto (2013) refer to Wilket Creek as a semi-alluvial channel. By their definition, 

Wilket Creek is partially alluvial channel, which is incised into cohesive glacial sediments 

in the bed and banks, which erode easily, causing the channel to adjust as an alluvial 

channel. To confirm into which glacial deposits Wilket Creek has been incised, 

documentation and surveys of the catchment, conducted by TRCA and the Ontario 

Geologic Survey were used. 

The surficial geology of the Don River catchment is relatively uniform north of the Lake 

Iroquois Shoreline (Figure 3.4) (Sharpe, 2016). Between 12,500 and 12,000 years B.P., 

lake levels stabilized while the rest of the Ontario basin drained southeastward. This 

stabilization built sandy, pebbly spits or islands, which are similar to present day Toronto 

Islands, but at a higher elevation. A well-marked shoreline formed at the Lake Iroquois 

level, characterized by bluffs up to 15m in height which run east-west through the center 

of the City of Toronto. The Lake Iroquois shoreline crosses Wilket Creek close to its 

confluence with the West Don River. Due to post-glacial isostatic adjustment, the 

elevations for this shoreline range from 53m in the east to 61m (NAD83 / UTM Zone 17N) 

in the northwest of present day Lake Ontario. Other deposits attributed to Lake Iroquois 

include a general covering of sand, and a silty bottom cover in the former lake plain 

(Sharpe, 1980). 

North (upstream) of the Iroquois Shoreline, the surficial geology of the Don River 

catchment is mainly glacial till (Newmarket till and/or Halton Till). The river valleys are 

incised through this surface layer into underlying Quaternary sediments that filled a pre-

glacial fluvial valley system incised into a bedrock. This bedrock, currently at or below 

Lake Ontario level in this area, consists of shale of the Upper Ordovician Georgian Bay 

Formation (Figure 3.4 andFigure 3.5) (Toronto and Region Conservation Authority, 

2009a). Above the bedrock is a sequence of glacial and interglacial (lacustrine/fluvial) 

units, which record the deposition over the last 135,000 years with more recent sediments 

at the surface (Figure 3.6) (Toronto and Region Conservation Authority, 2009a; Sharpe & 

Russell, 2016).  
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Figure 3.4: The surficial geology map of the Don River catchment. Wilket Creek, 

outlined in dark red, is located south of the Oak Ridges Moraine (ORM) and north 

of the Iroquois Shoreline. The surficial geology of Wilket Creek is entirely till 

(adapted from Toronto and Region Conservation Authority, 2009).  

  



22 

 

 

Figure 3.5: Bedrock elevation in the Don River catchment. Wilket Creek, outlined in 

dark red, is located south of the Oak Ridges Moraine (ORM) and north of the 

Iroquois Shoreline. Here, the bedrock elevation is close to present day lake level which 

is 75m. This elevation change is due to sediment overlay from glaciation. This figure 

is based on the report from Toronto and Region Conservation Authority (2009).   
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The surficial geology of Wilket Creek was mapped in 2010 by the Ontario Geological 

Survey (OGS) (Toronto and Region Conservation Authority, 2009a). This mapping 

indicated that there are modern alluvial deposits along the creek with stone-poor, sandy silt 

to silty sand-textured till. In the downstream end of the creek undifferentiated older tills 

and coarse-textured foreshore and basinal glaciolacustrine deposits of sand, gravel minor 

silt, and clay are all present. Mapping conducted by OGS (Toronto and Region 

Conservation Authority, 2009a) of the Quarternary geology, (Parish Aquatic Services, 

2013) concluded that Wilket Creek surficial sedimentology coincides with OGS’ 

description of Halton Till. This till is predominantly silt to silty clay matrix, and clast poor, 

and includes glaciomarine deposits of sand, gravelly sand, and gravel.  By contrast, at 

channel elevation, the creek appears to be within the Newmarket Till. This is based on 

Sharpe & Russell (2016), as well as based on two cross sections (Figure 3.6 and Figure 

3.7) modified from Toronto and Region Conservation Authority (2009). Newmarket Till 

is approximately 50m thick and overlies the Thorncliffe Formation and underlies the Oak 

Ridge Moraine (ORM) and Halton Till (Sharpe & Russell, 2016). Newmarket Till consists 

regionally of dense, stony, sandy silt diamicton. It extends from Peterborough north of the 

ORM, to west of Lake Simcoe, to the south side of the ORM, and to the area of 

Bowmanville bluffs on Lake Ontario (Sharpe & Russell, 2016). Using four points along 

the creek south of York Mills Rd, the elevations range from approximately 111m to 142m 

above sea level. These elevations place the channel of Wilket Creek in the Newmarket Till. 

This agrees with previous literature on the subject (Sharpe, 1980; Toronto and Region 

Conservation Authority, 2009a; Sharpe & Russell, 2016). Data on the composition of the 

sedimentology in the study reaches were limited. As a result, when referring to the glacial 

deposits into which Wilket Creek has incised, this study will identify it as diamict.  
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Figure 3.6: A west-east cross section of the geology in Toronto.  Based on the approximate location of Wilket Creek, it 

features recent sediments, and Halton Till. Wilket Creek flows into the West Don River, so it may also features some 

Thorncliffe Till and Sunnybrook Till(modified from Toronto and Region Conservation Authority, 2009). 
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Figure 3.7: A north-south cross section of the geology located west of Wilket Creek. The West Don River, into which 

Wilket Creek flows, features some recent sediments, Halton Till, and possibly some Thorncliffe Till. Wilket Creek likely 

follows a similar pattern, at least at its confluence (modified from Toronto and Region Conservation Authority, 2009). 
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3.2 Land use change in Wilket Creek 

Land use change in the catchment can be documented using a sequence of aerial 

photographs from 1947 to 2016. The landuse of the Wilket Creek catchment changed from 

largely agricultural to nearly completely urbanized in this time period (Figure 3.8). While 

the urbanization history of the catchment began in the 1900s, events affecting the 

catchment began as early as the 1800s (Guthrie, 1986). The arrival of European settlers to 

the Don River Valley area in the 1800s initiated land clearance for agriculture and mill 

construction. This meant that the rivers in the area transitioned from being completely 

natural, to being used as irrigation and power sources. This land clearance and construction 

may have caused an initial sediment influx into the channel, and flow patterns may have 

changed (e.g., Crawford, Smith, Desloges, & Davies, 1998). Agriculture and the mills 

remained in the catchment until the 1920s when the building of the first residential area 

began in the lower catchment, and the upper catchment became a horse farm (White, 2003). 

The only evidence of a mill left in the catchment was the rockery in Edwards Garden, 

located just south of Lawrence Ave. By 1950, there were still more than 20 farms in the 

catchment. However, after Hurricane Hazel in 1954, the City of Toronto bought large tracts 

of land along the valley bottom, along with other valley lands and ravines in the city, to be 

used as parkland, and reduce flood hazards across the city. The horse farm, named 

Windfields Farm, was located on Bayview Ave, and owned by E.P. Taylor. While it 

downsized over the years, Windfields Farm remained as a functioning farm until 2009. 

Sections of the farm were preserved as parkland while the rest was sold for development. 

Residential land use in the catchment accelerated beginning in 1957 with the construction 

of  two suburban communities, Bridle Path and Don Mills (Whiteson, 1982). 

The Bridle Path and Don Mills developments both began at approximately the same time 

in the 1950s. However the infrastructure that was built differs greatly between the two. The 

Bridle Path development is located on the west side of the valley, while the Don Mills 

development borders the east side of Wilket Creek’s channel. Construction of homes in the 

Bridle Path community began in 1929 with the construction of one home. The rest of the 

development was not built until after 1945, and was developed to be large, single family 

homes on acreages, leading to a low density housing development. By contrast, the Don 
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Mills development was the first development of its kind in Canada (Javed, 2009). The plan 

for the development was announced in 1953 by E.P. Taylor during the housing shortage 

following World War II. Centered on a town center and industry, housing radiated 

outwards. Housing types included lower-cost apartments, and both small and large houses 

(Javed, 2009). Green space was allowed for in both developments, but by 1975 nearly the 

entire southern half of the catchment was urbanized, likely with a large proportion of 

impervious surfaces from the Bridle Path and Don Mills developments (Figure 3.13). There 

has been little further development in the catchment since the 1970s, as the detailed aerial 

photos show (Figure 3.9 - Figure 3.17). The development that occurred in the catchment 

after this time is mainly commercial intensification. The catchment of present-day Wilket 

Creek is now completely urbanized, with only three parks in the catchment. 

While the catchment was considered fully urbanized by the 1970s (Figure 3.13), the 

percentage of impervious surfaces may have changed since then. The development in the 

catchment has evolved over time, moving from residential to business centres in the upper 

catchment, and from farmland to residential in the lower catchment. The transition from 

farmland to residential areas has led to an increase in impervious surfaces. While it may 

seem contrary, the overall tree coverage in the catchment appears to also have increased in 

the catchment. This may be due to development adding trees as part of the beautification 

process, and natural woodland growth in the protected valley lands.  

These trends can be seen in aerial photos taken from 1942 to 2016. These aerial 

photographs were acquired from the Toronto Archives (Figure 3.9 - Figure 3.15) and from 

satellite imagery (Figure 3.16 and Figure 3.17). Both satellite images came from Landsat 

5 Copernicus. The earliest available aerial photos for the area are in 1942, with limited 

spatial coverage. The southern half of the catchment (Figure 3.9) shows the riparian area 

surrounding the creek as well as the farmland surrounding the creek in the catchment. It 

should also be noted that there is a left bank tributary, just upstream from the West Don 

River confluence at this time. With limited spatial coverage and image quality, it is not 

possible to see the creek channel in these photos, preventing a comparison of the channel 

morphology from 1942 to 2016. 
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Photo coverage is greater in 1947 (Figure 3.10) when the upper catchment shows the 

beginnings of residential land use. This area was known for some settlement prior to the 

1940s. However, it seems likely that housing in this area increased post-WWII, with 

changes in government development policy and privatization of development. In the upper 

catchment, there is limited evidence of the channel. There is no riparian zone in the upper 

catchment, and the channel appears to be reduced to a drainage ditch. By contrast, the creek 

is open channel in both the middle and lower sections of the catchment. The land use in 

these sections of the catchment are still agricultural. The fields are mainly owned and 

operated by the Windfields horse farm, with the remainder farmed for cash crops in small 

holdings (White, 2003). Unfortunately due to the riparian forest in the valley, the creek 

channel itself is not visible in these photos. 

The channel becomes more visible in the aerial photo from 1954 (Figure 3.11). It is likely 

that the photos were taken during the summer prior to Hurricane Hazel, which was in 

October of 1954. Hurricane Hazel is well known in Toronto for the extensive flooding it 

caused in the area; this flooding is expected to have occurred in Wilket Creek (see below 

in Section 3.3), and could have changed the morphology of the channel but the river is not 

clearly visible on the aerial photographs because of forest cover and low image quality. 

Residential land use in the upper sections of the catchment became denser, with new 

building in the area as well as extending further southeast in the catchment. Highway 401 

was built from west to east, between the upper and middle sections of the catchment and 

can be seen in the 1954 photographs. North of Highway 401 the drainage ditch still existed, 

with some remnants of the ditch still extending northwest up to the cemetery on the west 

side of Yonge Street. By contrast, the creek is still an open channel downstream of 

Highway 401 to the confluence at the West Don River with the valley and riparian zone 

easily seen. 

The residential land use in the catchment increased between 1954 and 1964 (Figure 3.12) 

with the construction of the previously mentioned Bridle Path and Don Mills subdivisions 

in the lower section of the catchment. The residential land use continues northwest, 

extending across the entire catchment north of Highway 401. Also during this time, the 

land use in the upper section of the catchment changed from residential to commercial and 
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possibly some industrial land use. The further development, as well as the evolution of the 

current land use, would have increased the percentage of impervious surface in the 

catchment. It is at this time that Wilket Creek is considered fully urbanized (Aquafor Beech 

Limited, Schollen & Company Inc., & Beak International Limited, 1999). With the 

evolution of land use, it appears that the catchment also begins to be more treed, and the 

valley and riparian zone southeast of Highway 401 to the confluence is still apparent. 

The open channel of Wilket Creek from Highway 401 southeast to York Mills Road was 

buried in a trunk storm sewer in 1971 (Cook, n.d.). As seen in Figure 3.13, the riparian 

areas located north and south of York Mills Road (the first major road south of Highway 

401) became disconnected by this time. As a result, there is no evidence of the creek valley 

or riparian zone directly north of York Mills Road. Further north towards Highway 401, 

there is still evidence of the valley and some vegetation, which was preserved as a park. 

After the burying of the channel, the lower catchment, south of York Mills Road, remained 

the only open channel section of Wilket Creek. At this time, a footpath connecting Eglinton 

Ave East to Lawrence Ave East was built through the valley on the east side of the channel. 

Finally, urbanization continued throughout the catchment, with residential areas and a golf 

course, extending southward over the newly buried creek. 

In the aerial photos from 1985 (Figure 3.14), land use of the catchment is becoming more 

complex. In the upper catchment, residential land use has evolved to more commercial 

usages. Yonge Street is now lined by high rises, and the percent impervious surfaces seems 

to have increased. However, it is hard to know the exact changes in percent impervious 

surfaces as it is too difficult to accurately measure based on the available aerial 

photographs. The drainage ditch which extended northwest of Highway 401 no longer 

appears to exist in 1985 (Figure 3.14), and no longer extends upstream (west) of Yonge 

Street. The middle section of the catchment remains much the same as in 1975. The 

residential land use in the lower section of the catchment is more obvious, and the entire 

catchment is undoubtedly urbanized, except for the valley south of York Mills Rd.  

The evolution of development in the catchment continues through 1992 (Figure 3.15), and 

the catchment as a whole remains fully urbanized through 2002 (Figure 3.16) and 2016 

(Figure 3.17). In the upper catchment, Yonge Street has more numerous high rises. The 
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middle catchment still has the remnants of the valley and riparian zone over the buried 

channel, while the lower catchment still has an open channel, valley and riparian zone. 

The historical air photos (Figure 3.9 - Figure 3.17), show extensive changes in land use 

and creek from 1942-2016. The catchment changed from agricultural with a small 

percentage of residential land use to being fully urbanized with residential, commercial, 

and industrial land use. The channel also changed from open channel to buried storm sewer 

downstream of York Mills Rd in the middle reach, leaving the only open channel in the 

lower catchment. Because of the intense urbanization in the catchment and the resulting 

hydrology change, the channel itself also changed in geomorphology. In order to protect 

the surrounding infrastructure, stream corridor policies, land acquisition, and 

reconstruction and reengineering of the channel began as early as the 1960s and the 

preservation of this corridor is apparent in the historical aerial photographs. This will be 

discussed further in Chapter 4. 
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Figure 3.8: The date of construction for urban development in the Wilket Creek 

catchment and surrounding areas. The majority of construction occurred between 

1946 and 1975. The land use changed in some areas after initial development, 

especially intensification of commercial land use in the upper catchment along the 

Yonge St corridor. Figure 3.9 - Figure 3.17 show changes from residential land use to 

commercial from 1942 to 2016.   
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Figure 3.9: The aerial photos available for 1942 show the valley lands of the lower 

Wilket Creek catchment. The coverage of the riparian zone prevents any visibility of 

the channel itself. 
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Figure 3.10: These aerial photos from 1947 cover the entire catchment area. It can be 

seen that there is only a drainage ditch in the upper catchment, while the middle and 

lower areas of the catchment are still open channel. Forest growth in the riparian 

zone prevents a clear view of the channel throughout the catchment.  
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Figure 3.11: The aerial photos from 1954 show the open channel south of the newly 

built Highway 401. North of this, the drainage ditch still exists, extending up to the 

cemetery west of Yonge St. The channel appears to be very clear in this photo, 

however it appears likely that the channel was actually marked onto the photos to 

highlight its position.  
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Figure 3.12: The aerial photos from 1964 show the accelerated land use change from 

agriculture to residential. The two main developments are the Bridle Path and the 

Don Mills developments in the middle to lower catchments. While the channel is still 

open south of Highway 401, the visibility of the channel is still reduced by vegetation 

in the riparian zone.  
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Figure 3.13: The aerial photos from 1975 showing the change in the land use between 

Highway 401 and York Mills Rd. The creek was buried north of York Mills Rd in 

1971. The footpath connecting Eglinton Ave E and Lawrence Ave E is easily seen in 

these photos, while the visibility of the channel is reduced by the riparian vegetation.  
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Figure 3.14: The land use in the catchment is more complex by 1985, especially in the 

upper catchment. The drainage ditch north of Highway 401 has been covered, so only 

a few meters is visible close to Highway 401 by this time. The only open channel is 

south of York Mills Rd to the confluence with the West Don River just north of 

Eglinton Ave.  
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Figure 3.15: This aerial photo from 1992 shows that the catchment is fully urbanized, 

even though the land use continues to change. The channel is not visible in these 

photos due to the riparian coverage. North of York Mills Rd to Highway 401, the 

historic valley of Wilket Creek is seen where the channel is buried.  
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Figure 3.16: These satellite photos from 2002 show that the land use in the catchment 

continues to evolve. It is hard to see the channel in these photos due to the riparian 

coverage, while the footpath running between Eglinton Ave E and north to Lawrence 

Ave E is easily visible.  
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Figure 3.17: These aerial photos from 2016 show the fully urbanized catchment, in 

which the land use is still evolving. Some areas of the channel are visible.   
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3.3 Streamflow changes and extreme events 

As mentioned previously in Chapter 2, the hydrology of the system is the major control on 

channel form (Hollis, 1975). When urbanization occurs in a catchment, the streamflow 

regime changes, typically becoming more flashy, with higher peak and average flows 

(Hammer, 1972; Hollis, 1975; Trimble, 1997; Chin, 2006; Colosimo & Wilcock, 2007; 

Trudeau & Richardson, 2015). Since no streamflow monitoring has been done by Water 

Survey Canada (WSC) or TRCA on Wilket Creek, it is not possible to directly analyze 

historical changes in streamflow during and after urbanization. Recently, with the start of 

the larger research project, gauging started in the creek in 2014. While rating curve data 

are still being collected, the only streamflow data currently available for Wilket Creek is 

April-November water level data for this project. In order to approximate the hydrologic 

history expected in an urbanizing catchment such as Wilket Creek, streamflow records 

from neighbouring catchments were examined for peak flow events and changes following 

urbanization. These catchments have similar urbanization histories, and therefore similar 

hydrologic histories. The two catchments selected for long-term comparison to Wilket 

Creek were the West Don River at York Mills (Station: 02HC005; drainage area of 88km2) 

and Highland Creek near West Hill (Station: 02HC013; drainage area of 89km2). The 

gauging stations are located just south of York Mills/Ellesmere Road, directly west and 

east respectively of where Wilket Creek exits its underground conduit. The gauge on the 

West Don River at York Mills (02HC005) started in 1945 and continues to present day 

making it one of the longer records in GTA. The Highland Creek near West Hill gauge 

(02HC013) began in 1956 through present day, but the record is missing between 1995 and 

2005. The combination of the two gauges provides a long-term estimate of flood event 

occurrence in the areas surrounding Wilket Creek since 1945. There are two gaps in the 

data set. The first gap in data is only in the West Don River from 1957 to 1975 while the 

second gap is in both gauges from 1998 to 2001. Even with these gaps in the data, the 

length of the data provided with these two gauges is substantial enough to provide a general 

context for possible changes in streamflow regime in Wilket Creek. 

Urban catchments in the Greater Toronto Area show peak flows from two up to ten times 

the mean daily discharge (MacDonald, 2011). Based on these flow records (Figure 3.18), 
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there have been multiple flood events greater than 0.1 discharge per unit drainage area, in 

the Don River and Highland Creek respectively. For this study, discharge per unit drainage 

area (m3s-1km-2) is calculated as discharge (Q, m3s-1) divided by drainage area (DA, km2) 

(Watt, 1989; Wohl et al., 2012). The discharge per unit drainage area of 1.0m3s-1km-2 was 

chosen as it divides baseflow and small flood events from major flood events. Because this 

data is a daily average, it is not possible to quantitatively determine the value separating 

baseflow and major stormflow. These major flows would be considered channel forming 

(see below). There are two large gaps in data, so it is not possible to extract exact numbers 

of changes in peak values and changes in frequency due to urbanization. It is however 

possible to make strong inferences. For the West Don River, the peak discharges do not 

seem to have increased over time, however the frequency of larger flows has increased 

over time. Highland Creek also follows this same trend (MacDonald, 2011). The discharge 

of Highland Creek is at least double, if not more, than the discharge of the West Don, 

despite having very similar drainage area. This may be due to a variation in the rates of 

urbanization of the two catchments; however both Highland Creek and the West Don River 

began urbanizing in the early 1950s. Development of the lower Don (i.e. Don River at 

Todmorden) began earlier with industry in the 1850s (Guthrie, 1986). Trudeau & 

Richardson (2016) also noted that there is correlation between the percentage of 

urbanization in a catchment and changes in the total runoff and streamflow for several 

catchments in GTA. The number of peak flow events, or major flood events, noted above 

is also important to compare to Wilket Creek. Since the West Don River and Highland 

Creek border Wilket Creek, it can be assumed that some, or even all of the events that 

occurred in these two catchments would have also occurred in Wilket Creek. As well, these 

major flood events had the potential to alter channel morphology, based on estimates of 

‘control’ discharge for mobilizing the D50 along the present day channel (Section 3.5.3). 

Recent major flood events stimulated emergency works and reconstruction of the channel 

(Section 4.2.2) 
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Figure 3.18: The discharge per unit drainage area (m3s-1km-2) of the West Don River 

and Highland Creek catchments upstream of York Mills/Ellesmere Roads. These 

gauges are located approximately due east and west of where Wilket Creek appears 

on the surface (south of York Mills Rd), and can be used to approximate the timing 

of large flood events in Wilket Creek. Prominent flood years include 1954, 1980, and 

1984; these floods will be more closely examined in Figure 3.21.As part of the NSERC 

Strategic Project Grant, gauging on Wilket Creek began in 2013 through to current day, 

with several gauges in both restored and unrestored sections of the channel. There are two 

gauges located upstream of Lawrence Ave E, while three more are located downstream of 

Lawrence Ave E. The longest record is from the gauge that was installed on September 13, 

2013, and is used here. Figure 3.19 shows the comparison between flood events which 

were identified in the West Don River and Highland Creek and those that occurred in 

Wilket Creek based on flow level (stage).  

Figure 3.19 provides data for a two-year period from January 2014 to December 2015. 

Within this period, there are several flood events that coincide among the three catchments. 

Based on the three events selected for comparison (Figure 3.19), the events between Wilket 

Creek and the West Don River seem to be more similar in magnitude than between Wilket 

Creek and Highland Creek. The events in Wilket Creek are relatively larger than those seen 

in the other two catchments, this may be due to a greater percentage of urbanization in this 
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catchment. The drainage area of Wilket Creek is considerably smaller and more elongated 

than the drainage areas of the West Don River and Highland Creek. Overall, the 

comparison in Figure 3.19 shows that using catchments neighbouring the study catchments 

is potentially valid for looking at historical flood events of an ungauged catchment.  

Based on the assumption that the West Don River and Highland Creek are suitable 

surrogates for historical major flow events, this was extended to another neighbouring 

catchment in order to investigate how the critical discharges for erosion found by Parish 

Aquatic Services (2013) relate to Wilket Creek flows. Figure 3.20 shows the three 

catchments, which are all similarly urbanized: Black Creek near Weston (Station: 

02HC027; drainage area of 58km2), as well as Highland Creek near Westhill and the Don 

River at York Mills used above. The peak flow events (Figure 3.21) were converted to flow 

per unit drainage area, and the years with the highest flows as well as those years mentioned 

as having substantial peak flows were selected. The range of flow level is quite large 

between the three catchments. Based on Figure 3.19, Wilket Creek’s flow level per unit 

drainage area, calculated (mkm-2) should be slightly higher than those of the West Don 

River at York Mills. That said, the flow level per unit drainage area selected in Figure 3.21 

also show that the flow level per unit drainage area of Highland Creek should be lower 

than both Wilket Creek and the West Don River. As a result, the addition of three 

catchments in Figure 3.21 increases the range of possible flow levels which Wilket Creek 

would have experienced at any given time. Figure 3.21 also shows the years in the 

surrounding catchments that had the highest peak flows. In particular, major flood events 

took place in 1954 (Hurricane Hazel), 1980, 1984, 1986, 2000, 2005, and 2013. It is 

expected that Wilket Creek would have also experienced these flows, especially as 

documentation of the resulting damage to Wilket Creek in 2000, 2005, and 2013 is noted 

in many documents by the City of Toronto and the TRCA. These events, and the resulting 

policies and changes made to the morphology of the creek are discussed below in Chapter 

4. 
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Figure 3.19: A comparison of flow level per unit drainage area (mkm-2) between a) Wilket Creek, b) Highland Creek 

near Westhill, and c) the Don River at York Mills. The flow level in Wilket Creek is far greater than those seen in the 
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other two catchments. The selected events in Wilket Creek are more similarly mirrored by the West Don than by 

Highland Creek  

Figure 3.20: Catchments in Toronto and the Greater Toronto Area. The streamflow data from the Don River (brown) 

into which Wilket Creek flows, along with the Humber River, into which Black Creek flows (purple), and Highland Creek 

(pink), were all used as surrogate streamflow data for Wilket Creek. The peak streamflow years are noted in Figure 3.21. 
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Figure 3.21: The peak flow events in three neighbouring catchments to Wilket Creek. 

There is a large range of discharges between the three catchments; based on the above 

information, Wilket Creek would have also experienced these events, most likely 

within this range of discharges. These are the most extreme events in each of the 

catchments; it is expected that for each of these years (1954, 1980, 1984, 1986, 2000, 

2005, and 2013) there would be an extreme event in Wilket Creek as well. 

While Figure 3.19 and Figure 3.21 show the peak events which may have occurred in 

Wilket Creek due to the proximity of the catchments, catchment size, and physiographic 

conditions, the overall trends in discharge should be examined. Gauging of the Don River 

at York Mills began in 1945, with a few gaps in data 1999 and 2006. While this gauge 

shows the flooding caused by Hurricane Hazel in 1954 (Figure 3.22), there are also several 

large flood events at other times in the late 1940s and early 1950s. Neither of the gauges 

on the other neighbouring catchments date back to this time period so there is limited 

information on whether these events also occurred in Wilket Creek. Highland Creek near 

Westhill began in 1956, although continuous gauging did not begin until 1958, and there 

is a large gap in the data between 1999 and 2006. Finally, the gauge on Black Creek at 

Weston began in 1966, and has no gaps in the data. 
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The discharge per unit drainage area was calculated over time for the neighbouring 

catchments. The daily discharge per unit drainage area of the Don River at York Mills 

(Figure 3.22) shows a decrease in spring snowmelt flows, and the traditional seasonal flow 

cycle is interrupted by summer rainfall flows. This becomes more obvious after about 1975, 

at approximately the same time as urbanization began to move northwards throughout the 

catchment. Over time, there is an increase in the frequency and magnitude of flashy 

summer flows. Highland Creek near Westhill follows a similar time trend in which 

snowmelt flows have depleted over time (Figure 3.23) while flashy summer flows start 

after urbanization began in 1974, increasing in frequency and magnitude over time. This 

pattern presumably increases with the increase of urbanization in the catchment. Finally, 

Black Creek at Weston (Figure 3.24) shows depleting winter snowmelt flows over time 

with little to no late fall flows. Flashy summer discharges are already occurring throughout 

the year at the time that gauging began (1966). This is most likely due to the early 

urbanization that occurred in this catchment. Given that this time trend is, in general, 

similar in surrounding catchments it is reasonable to infer a similar shift in annual flow 

regime in Wilket Creek over the same time period. 
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Figure 3.22: The discharge per unit drainage area (m3s-1/km2) of the Don River at York Mills from 1966 - 2015. a) Shows 

the entire year while b) shows the summer months between April 1 and October 31.The winter snowmelt flows have 

depleted from 1966 to 2015. Flashy summer flows begin in approximately 1975 at the same time as urbanization; these 

increase in frequency and magnitude over time as well. There is overall more spikes annually. 
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Figure 3.23: The daily discharge per unit drainage area (m3s-1/km2) of Highland Creek near Westhill starting in 1966. a) 

Shows the entire year while b) shows the summer months between April 1 and October 31. The winter snowmelt flows 

have depleted from 1966 to 2015. Flashy summer flows begin in approximately 1974 with urbanization, and increase in 

frequency and magnitude from this time. There is a gap in the data from 1999 to 2006. 
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Figure 3.24: The daily discharge per unit drainage area (m3s-1/km2) of Black Creek at Weston starting in 1966. a) shows 

the entire year while b) shows the summer months between April 1 and October 31. The winter snowmelt flows have 

depleted from 1966 to 2015. Flashy summer flows have already begun at the start of gauging in this catchment however, 

over time there is an increase in the frequency and magnitude of the flashy flows, presumably with the increase of 

urbanization. 



52 

 

The total annual discharge for each of the three neighbouring catchments (Figure 3.25) 

shows an increase in annual discharge over time. This is most likely linked to the increase 

in urbanization in each of the catchments. Finally, the flow frequency curves were 

calculated for each of the catchments. Since the gauge on Black Creek began in 1966, 

major flood events in the early 1950s in the West Don River (Figure 3.18) are not accounted 

for in the comparisons among catchments. The flow duration curves for the West Don 

between 1946 and 1966 (Figure 3.26) show the peak flows are higher in some of the early 

years. However, the overall curve has shifted upwards from the 1940s to the 1960s for 

higher duration flows. The large flows in the 1950s are mostly affecting the top 10-20% of 

all flows. It is assumed that due to proximity to Wilket Creek, a similar thing must have 

occurred in this catchment as well.  

For the sake of comparison across the three neighbouring catchments, and to get an idea of 

what the flow shift may have been, Figure 3.27 shows the flow curves from 1966 to 2015. 

Figure 3.27a shows the rest of the flow curves for the West Don River. These curves follow 

the same pattern as those seen in Figure 3.26. The peak flows between 1966 and 2015 are 

not as high as those between 1946 and 1966, while the overall annual flow, including peak 

flows, has increased over time on average. The peak flows in Highland Creek (Figure 

3.27b) have increased, while the overall annual flow over time has increased on average 

slightly. Finally, the flows in Black Creek may have increased since the 1966, however 

since the 1970s the overall average annual flow has not increased noticeably (Figure 3.27c). 

As these catchments share similar urbanization histories, physiographic characteristics, and 

catchments sizes, it can be assumed that Wilket Creek would have also experienced this 

same trend. 
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Figure 3.25: The total annual discharge of the three neighbouring catchments; Don 

River at York Mills, Highland Creek near Westhill, and Black Creek at Weston. 

While there are gaps in records for both Don River at York Mills and Highland Creek 

near Westhill, the overall trend is an increase in annual discharge over time. This can 

be linked to the increase in urbanization in each of the catchments. As these 

catchments share similar urbanization histories, physiographic characteristics, and 

catchments sizes, it can be assumed that Wilket Creek would have also experienced 

this trend. 

 

Figure 3.26: The flow duration curve for the West Don River between 1946 and 

1966.  
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Figure 3.27: Flow duration curves for a) the Don River at York Mills, b) Highland 

Creek at Westhill, and c) Black Creek near Weston. 
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Figure 3.28 shows a peak flow event in Wilket Creek from July 27-28, 2016. This event is 

typical of peak flows for Wilket Creek; a very flashy event, lasting only a few hours. It is 

likely that the peak flows in this creek are flashier than those in the West Don River or 

Highland Creek, due to the small size, and the higher percentage of urbanization in the 

Wilket Creek catchment. Wilket Creek appears to follow the same pattern of flashiness that 

is seen in Black Creek throughout the year (Figure 3.24). The rising limb is rapid; there is 

less than 2 hours between the base flow level of the channel and the peak flow. This event 

also shows the initial influx of runoff from the surrounding as well as the second wave of 

flow from upstream. The standardized peak flow is 1.5 times higher than the base flow 

level. Overall, the event is only 12 hours long; short lived events such as the one in Figure 

3.28 are frequent in the catchment (Figure 3.19). 

In the above figures, the general trend of increased magnitude and frequency expected in 

an urbanizing catchment is seen in the West Don River, Highland Creek, and Black Creek. 

When Wilket Creek is compared to these two neighbouring catchments, several peak flow 

events line up; while it was not possible to have historic flow rates for Wilket Creek, the 

catchments neighbouring this creek provide a good surrogate for the historical hydrologic 

change due to urbanization and a range of magnitude of historic peak flow events, as well 

as the frequency with which critical discharge for bed material transport is exceeded. 
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Figure 3.28: The rise and fall of a peak flow event in Wilket Creek above base flow during a 48 hour flood period. The 

letters, A and B, correspond to the photographs showing the base flow and peak flow of this event. These photographs 

were taken slightly downstream of the gauge noted in the previous figures.The morphological history of 

Wilket Creek 
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The sequence of events and activities which took place within the Wilket Creek catchment 

were documented using historical photos, books, and documents from the Toronto 

Archives as well as university and public libraries, and  secondary sources from TRCA and 

consultant reports. These provide a basis for  a historical description of changes to channel 

geomorphology especially following urbanization.  

Parish Aquatic Services (2013) investigated the historical planform over the last 150 years. 

While it is unclear where these data came from, it does provide a general idea of the 

morphological change that has occurred in the catchment. Figure 3.29 shows the most 

recent planform data. Figure 3.29 a) shows a portion of the creek from Lawrence Ave E 

and York Mills Rd, and includes the section investigated in this study. Based on this figure, 

there appear not to have been major changes in the planform morphology between 1965 

and 2009. This may be because channel evolution due to urbanization had occurred before 

1965, when the catchment was already considered fully urbanized. By contrast, Figure 3.29 

b) shows the planform change from 1965 to 2009 in the creek from the confluence north 

to Lawrence Ave E. The planform morphology of this stretch of creek appears to have 

changed greatly during this time, including lateral migration of meander bends. This 

change may be due to two different influences; urbanization may have already changed the 

channel, but there is still a possibility that it continues to change the channel. Second, the 

morphological changes appear to have occurred mostly between 2003 and 2009. As noted 

above in Section 3.3, a severe rainstorm in August 2005 drastically altered the morphology 

of Wilket Creek. These alterations endangered the infrastructure within the channel valley, 

leading to reegineering/reconstruction of the channel. The greatest planform changes are 

most likely due to these direct human interventions on the channel following erosion from 

the 2005 flood. These influences decreased the sinuousity of the channel, and increased the 

size of the bend (Figure 3.29b), Chapter 4). 

A comparison of channel widths between 1947 and 2016 using aerial photos was 

undertaken for this study. These two years were selected due to the lack of visibility of the 

channel in aerial photos in the intervening time periods seen in Section 3.2. Bevan (2014) 

did a similar analysis with similar results, partly based on ground survey of channel cross-

sections. Figure 3.30 shows width measurements of the visible channel from aerial 
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photographs. The aerial photograph from 1947 covers a limited length of the channel, 

however overall the channel has widened between these two time periods. In 1947, the 

channel width averaged between 3m and 8m, while in 2016 the channel width averaged 

between 4m and 16m. This finding is consistent with many previous papers on the effects 

of urbanization on river morphology  (i.e. Arnold et al., 1982; Chin & Gregory, 2001; 

Wolman, 1967). With that in mind, it must also be noted that there have been processes or 

events occuring within the catchment other than urbanization that could affect the 

morphology of the channel. Some of these processes or events include the rainstorm events 

noted in Section 3.3, and the reengineering/reconstruction, which will be discussed in 

Chapter 4. 

Ground photographs of the channel itself show the morphological changes between the 

1960s and 2016. Figure 3.31 shows ground photos from the early 1960s and indicates that 

the channel is shallow in depth and not very wide. Unfortunately, there is no way to 

accurately measure these as there is no given or known scale. The grain size, which will be 

discussed below in Section 3.5.2 and 3.5.3, seems to range from sand to cobbles. As seen 

in several figures below, including Figure 3.37 and Figure 3.43, the depth of the channel 

has increased since the ground photos in Figure 3.31 were taken. In Figure 3.31 the depth 

seems to be less than 0.5m, while based on bank profiles in Section 3.5.3, the depth is now 

over 1.5m in many locations, showing the degree of incision in the channel, a common 

channel response to increased disharge from urbanization (Leopold, 1968; Brown, 2001; 

Chin & Gregory, 2001; Walsh et al., 2001).  
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Figure 3.29: The planform alignment of a) the upstream reach and b) the downstream reach of Wilket Creek. The 

planform in b) begins before the beginning of urbanization while the planform in a) begins during urbanization. The 

greatest change in planform morphology is between 2009 and 2013. This may be due to further reconstruction after a 

flood event in 2005 (modified from Parish Aquatic Services, 2013).
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Figure 3.30: The widening of Wilket Creek between 1947 and 2016. The widths from 

1947 are less than half of those in 2016.The distribution also shows the widths of the 

restored sections channel which fall within the distribution of widths from 2016. It is 

likely that widening is the result of increased discharge but direct confirmation is 

difficult. 

There is some evidence of changes to the morphology of Wilket Creek during after 

urbanization but information and data are limited. Overall, the planform of Wilket may 

have changed over the last 70 years, but it is not possible to see the entirety of the channel  

in the aerial photos from the 1940s and planform mapping that has been done is may not 

be completely accurate. For the same reason, the historical width of the channel can only 

be estimated but some widening between 1947 and present is apparent. Changes in 

morphology in the past 15-20 years are better documented in reports and plans for 

restoration and these are described in detail in Chapter 4. There have been many processes 

and events in the catchment which have influenced the channel; the evidence points to 

hydrologic and morphologic change, however with limited  data to show these changes, it 

is not possible to pinpoint one process or event that is the main cause, or the exact 

timeframe over which these events took place. Documentation of the current channel 

followed by an examination of the policies, programs and and channel restoration work 

that may have influenced the catchment and modified the channel, may allow for a better 
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estimation of the transformations Wilket Creek went through in order to reach its current 

morphology. The current channel morphology is documented in the following section of 

this Chapter, and the policy and restoration context and activities are described in Chapter 

4. 

 

Figure 3.31: Historical ground photos of Wilket Creek from the early 1960s. While 

the locations of each of these ground photos is not known, each photo demonstrates 

what the mid-urbanization channel may have looked like. Each of these photos show 

a) a section of channel less than half a meter in depth and a width of approximately 

1-2 meters; b) a section of channel varying in depth and with a varying channel width; 

c) s larger section of channel with a small boy for scale: this section is less than 0.5m 

in depth with a width of less than 2m; d) a section of channel exhibiting the beginning 

of erosion (Toronto Archives, 1965). Below, Figure 3.39, shows photographs of the 

current channel for comparison. 
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3.5 The current morphology of Wilket Creek 

The current morphology and bed material characteristics of the river were documented 

for two reaches in order to describe the major features of the more ‘natural’ sections of 

the channel with limited human interference and engineering. This follows principles 

established by Sear er al. (1995) 

Sear et al. (1995) developed the term “fluvial audit” with the aim to answer fundamental 

questions such as: Is intervention necessary? If necessary, will the commitment be long- or 

short-term? Where and how should the regime be applied? What are the likely impacts of 

a particular regime? To conduct the analysis required, data are derived from historical 

sources, such as cross-sectional survey, aerial and ground photographs, and any existing 

field observations or public records (Table 3.2). These allow for an historical analysis of 

the channel, and help answer the questions posed by Sear et al. (1995), as well as providing 

the events and processes which created the current channel (Downs & Gregory, 2014). This 

study follows similar methodology to that proposed by Sear et al. (1995). This chapter will 

investigate the geology, land use change, hydrology, morphological change, and the current 

morphology of the current channel of Wilket Creek. The combination of these will provide 

the quantifiable aspects of how the current channel of Wilket Creek came be (the ‘black 

box’ portion of the study), while Chapter 4 will attempt to qualify the reasoning behind its 

current morphology. 
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Table 3.2: Potential components of a historical analysis of fluvial systems. Many of 

these components are used for fluvial audits (Downs & Gregory, 2014). Of these, 

aerial and ground photography, narrative accounts, and floodplain stratigraphy were 

examined in this study. 

Data source Purpose 

Flow records Used to reconstruct a flood history of significant events, 

flood-frequency and flow-duration relationship for year-on-

year flow indications ad climate trends 

Repeat editions of 

large-scale 

topographical maps 

Commonly used to reveal quantitative changes in channel 

width and rates of bank erosion, and to document change in 

channel patter and he approximate age of channel engineering 

work, bridges and other near-channel infrastructure 

Aerial photographs Used for the same purpose as large-scale maps, but 

additionally allowing interpretative analysis of the ‘textual’ 

quality of the image related to land use change, riparian and 

in-channel vegetation, and channel sediments. Channel depth 

analysis may be possible. 

Remote-sensing 

images 

For similar purposes as aerial photographs but especially 

suited for discerning amounts of erosion and sedimentation in 

large rivers 

Ground photographs Used for interpretative analysis of channel bank, cross-section 

and planform condition in time if the photographs can be 

referenced to a common point. Quantitative analyses through 

photogrammetry may be possible. 

Repeat surveys of 

channel cross-sections 

Allows quantitative and qualitative interpretations of channel 

changes, especially of channel depth, which may be difficult 

to achieve with maps and photographs 

Narrative accounts Can provide indications of past channel environments, 

including vegetation communities, but must be seen within 

the prevailing cultural attitude towards the environment 

Floodplain 

stratigraphy 

Uses floodplain and in-channel sedimentary evidence, 

probably in conjunction with techniques for dating organic or 

inorganic material, to reconstruct past geomorphological 

environments. For instance, absolute dates of floodplain 

stratigraphy may be indicated by carbon 14 dating of organic 

material while stratigraphy analysis of pollen records or heavy 

metal traces may be used if they can be correlated to a master 

sequence of ambient environmental conditions. 

Vegetation 

composition and age 

The expected progression in the composition of terrestrial 

vegetation on emergent bar and floodplain surfaces can be 

used to indicate the relative age of floodplain surfaces. 

Dendrochronology can be used to provide absolute dates of 

floodplain surfaces and rates of floodplain deposition. 
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3.5.1 Survey and data collection 

For this study, field visits began in June 2015. The first field visit on June 26 was to identify 

the reaches which would be used for the study. Data collection place between July 7-10, 

2015, and August 11-14, 2015. Due to safety concerns, no fieldwork took place during the 

winter months, and the channel was re-inspected visually on March 21, 2016 for any 

noticeable morphology changes over the winter months. The final field visit took place on 

June 14, 2016, when the banks were surveyed.  Wilket Creek was divided into reaches by 

the TRCA as part of the Master Plan for channel restoration (Figure 3.32). Surveying the 

entire creek was too demanding given the field time available, so only two reaches were 

selected for this study to characterize the variation in morphology along the existing 

channel outside of any recently engineered and restored reaches. Due to construction at the 

confluence with the West Don River during the 2015 field season, and limited access due 

to private property in upper reaches, this study used sections of TRCA Reaches 2 (858m 

in length) and 7 (832m in length). These reaches are referred to as the downstream and 

upstream reaches respectively. The selection of these reaches allows this study to establish 

the ‘natural’ post-urban morphology distinct from the known reengineered areas. This 

selection also made for consistency between any TRCA studies and this study. These 

reaches were then divided further into subsections to allow for better organization and 

identification during field data collection. These reaches contrast each other providing a 

more full representation of the range of channel characteristics; the upstream reach is a 

sandy, highly sinuous, low slope reach while the downstream reach is gravelly, with a 

higher slope. Most recent engineering and channel restoration work has occurred along the 

channel in which the downstream reach is located.  
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Figure 3.32: The TRCA defined reaches in Wilket Creek, Toronto. This study 

examined sections within WC-R2, and WC-R7 (highlighted in green). (Toronto and 

Region Conservation Authority & City of Toronto, 2013). 

To begin constructing a map of the channel, the location and form of the current channel 

was documented in the summer of 2015. The current channel form and location were 

documented with photographs, sketches and notes together with planform mapping using 

a Trimble GPS unit. Next, bed material grain size was collected by a combination of 15 

Wolman Walks, one line by number, 6 Basegrain photograph sites, and 4 site locations for 

sediment sample collection followed by sieving (M. Gordan Wolman, 1954; Detert & 

Weitbrecht, 2013). BASEGRAIN is a MATLAB-based automatic object detection 

software tool for granulometric analysis of top-view photographs of fluvial non-cohesive 

gravel beds (Detert & Weitbrecht, 2013). Wolman Walks and line by number sampling 

were used for grain sizes gravel to boulders, while the sediment collection was used for 

sand, and mixed sand-gravel sediments. The locations of each of these samples were 
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documented by both the Trimble GPS unit and in the sketches of the channel bed itself. 

Finally, these sand and sand-gravel samples were sieved in the laboratory to obtain grain 

size distributions for the two reaches.  

Several bank profiles were measured in the downstream reach to estimate the grain size 

and grain size distribution for any location which showed evidence of the pre-urbanization 

channel in the banks and to document bank stratigraphy. Within the bank stratigraphy, 

grain size distributions were measured using a variation on the Wolman Walk (Wolman, 

1967) to characterize the inferred pre-urbanization alluvial deposits. Finally, the overall 

extent of the semi-alluvial character of the current channel was interpreted from the grain 

size and grain size distribution data that was collected. With this collection of data, it was 

possible to build a final map of the major channel features within the two selected reaches. 

3.5.2 Upstream reach  

The bed of the upstream reach is mostly sand or mixed sand-gravel, with minor occurrence 

of gravel, scattered cobbles and boulders, and occasional exposure of glacial diamict 

(Figure 3.33). Gravel and mixed sand-gravel patches are generally small shallow bars in 

the middle of the channel. With successive fieldwork trips, the areas of exposed diamict 

changed as these sand and sand-gravel areas shifted following high flow events (Figure 

3.34). This migration ranges; the extent of migration depends on the frequency and 

magnitude of high flow events. Other than these areas, the channel bed is dominated by 

sand, which is associated with woody debris and vegetation. 
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Figure 3.33: The upstream study reach channel bed, showing the planform of the 

channel, and grain size and type. This reach is highly sinuous, and shows active 

meanders creating a meander neck cutoff. The diamict exposure in this area is easily 

seen as it appears at shallow depth. The alluvium is almost completely sand or sand-

fine gavel. Map created July 8-10, 2015, with no flood events during this time (Figure 

3.34). 

  



68 

 

 

Figure 3.34: The flow level (above base flow) of Wilket Creek, with the field visit 

highlighted by red arrows. Three of the five dates were single days (the first and the 

last two), while the middle two visits were four days in length. Between each of the 

five different field visits there is at least one peak flow. The stream flow data (from 

Section 3.3) is from a gauge located in TRCA defined Reach 3 as part of the larger 

research project.The glacial sediment which is exposed in this reach is relatively smooth, 

containing small gravel clasts within it. This material is highly erodible and mainly exposed 

in deep pools in this reach. Downstream of these areas, clasts of the material are present, 

both in the channel and on bars (Figure 3.35). These clasts are presumably eroded during 

high flow events.  

The areas of exposed glacial sediments shifted noticeably between field visits. The higher 

the flows or a longer time between visit,s the more apparent were these shifts in sand-gravel 

cover layer over the glacial sediments. After winter months intervening between field 

visits, rearrangement of channel sediment and woody debris created many areas with bed 

material characteristics unrecognizable from previous visits despite being within clearly 

defined sections, indicating an active channel. Several trees which had been undercut 

during the summer 2015 field season, fell into the channel. These trees trapped sediment 

and smaller woody debris, creating a damming effect upstream. This leads to further 

alterations in the bed morphology through deposition, creating the extensive sand bars seen 



69 

 

in this reach. These sand bars grow up to 15m in length, 10m wide, and at least 1m thick 

(Figure 3.36). These sand bars are located through the reach, and do not migrate noticeably. 

 

Figure 3.35: Glacial diamict clasts located in the upstream reach of Wilket Creek. On 

the left, a) a close up photo of a till clast, and on the right b) depositional area of till 

clasts from upstream erosion. The till in this reach is smooth with few small clasts in 

it. 

The woody debris in the channel frequently extends from the banks of the channel as fallen 

trees (Figure 3.36). These trees span the channel width, and line the channel banks along 

with roots and vegetation. Generally, the root exposure is due to channel widening, 

undercutting trees, or erosion of the channel sides indicating active meandering. This 

destabilization leads to bank failure, which increases the sediment input to the channel. 

This could lead to the deposition of the aforementioned sand point bars, or it could lead to 

erosion of the downstream banks.  

In Figure 3.33, the channel meanders back on itself in two locations; the overall sinuosity 

of this reach is 1.56. With the erosion occurring laterally, the meander bends become 

increasingly unstable. In one case, between two field visits, the channel cut through a 

meander neck, creating an oxbow bend and completely new morphology. There have been 

minimal protection measures taken to prevent further migration of the channel in parts of 

the channel that are adjacent to infrastructure (Figure 3.37). Where there is less vegetative 

cover, the exposed bank structure is mainly homogenous sand. In some areas, the glacial 

sediments extend upwards into the banks but this is not rare due to the amount of sand in 

this reach.  
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Figure 3.36: The upstream reach channel bed showing sand and gravel areas, gravel 

dominated areas, and sand dominated areas. In a) a sand and gravel point bar, b) a 

gravel and sand bar, c) a sand and fine gravel bar, d) a sand bar on the inside of a 

meander bend, e) a sand bar on the outside of a meander bend, f) a sand bar created 

by woody debris downstream. The sand point bars are extensive, both laterally and 

vertically. Other areas of alluvial cover are gravel and sand and gravels areas lying 

in thin layers overlying Halton till. 
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Figure 3.37: Pictures of the upstream reach left and right banks. In a) a low bank 

with some vegetation cover, b) an eroded bank with roots of varying sizes helping 

with bank stability, c) an eroded bank with larger root mass helping with the stability 

of the bank, d) a bank with bar sediment at the base and roots and vegetation at the 

top, e) a group of trees which fell due to erosion undercutting the bank, and f) a bank 

eroding and undercutting a large tree. The tree in f) fell into the channel over the 

following winter months.  

  



72 

 

The grain size distribution of the upstream reach was divided by the subsections (e.g. S16), 

and then an overall average distribution was calculated. As seen in Figure 3.38, the 

distribution for three of the four subsections are quite similar for both the Wolman Walk 

samples and the sieved samples. For the Wolman Walk samples, sections 21, 24, and 28 

have a slightly coarser grain size than seen in Section 25/26, with a D50 of 11-12mm and a 

D50 of 10.3mm respectively. For the samples that were sieved, the distribution is narrow 

with a coarse tail in each of the sections sampled. The D50 ranges from 0.6 to 1.5mm. The 

distribution is evenly split with half between 0.1mm and 1mm, ranging from fine to coarse 

sand and fine gravel. This means that it is mixed sand and gravel with approximately 20-

35% > 2mm and 5-15% > 8mm and a maximum size about 30mm. 

 

Figure 3.38: The grain size distribution of the upstream reach obtained through four 

Wolman Walks (gravel fraction), sediment collection and sieving (sand and fine 

gravel).   
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3.5.3 Downstream reach 

The downstream study reach is very different from the upstream reach. The planform is 

much less sinuous (1.14), however the lower sinuosity may be due to channel straightening 

during reconstruction/reengineering. The slope of the downstream reach is 0.0082m 

(Parish Aquatic Services, 2013). As seen in Figure 3.40, the grain size of the channel is 

larger, dominated by gravel (2 – 60mm in diameter) and cobbles (60mm – 256mm in 

diameter) with areas of sand and diamict exposure (Figure 3.40) (Wentworth, 1922). 

Cobbles in this reach appear to dominate or appear in all subsections of this reach. The 

areas that are dominated by sand also have large woody debris, which may contribute to 

trapping the finer sediment.  

There is a larger range of grain sizes in this reach compared to the upstream reach. As seen 

in Figure 3.39, the sediment in the reach ranges from natural boulders to sand, with some 

areas containing natural and/or imported (for bank protection) cobbles and boulders. The 

distribution of the different grain types and sizes varies within the reach. Some areas are 

dominated by large boulders with little plant matter, while others are dominated by sand 

with large amounts of woody debris. The spread of the grain size distribution is discussed 

below. 

The downstream reach also has areas of exposed glacial sediment in the bed, which extends 

noticeably up into the banks. The composition of the glacial sediment is similar to that seen 

in the upstream reach; smooth (fine matrix) while containing a larger number of clasts. The 

areas of exposed glacial sediment are more frequent and larger than those seen in the 

upstream reach. The glacial sediment occurs in situ, as glacial sediment with sparse cover, 

and as glacial sediment fragments. The exposed glacial sediment is blocky in nature, with 

the clasts occurring downstream of these areas (Figure 3.41b)). Downstream of the largest 

area of exposed diamict, fragments cover an entire point bar (Figure 3.40). Cover sediment 

is mainly gravel or mixed sand and gravel. Between field visits, the areas of till exposure 

in this reach remained consistent, unlike the upstream reach. This is most likely due to the 

overall larger grain size in this reach; higher flows are required to mobilize the larger grain 

size.  
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Figure 3.39: Examples of grain size of the channel bed in the downstream reach. 

There is a larger range of grain size in this reach; a) natural cobbles and boulders, b) 

natural gravel, cobbles, and boulders ; c)natural gravel and sand; d) natural gravel; 

e) natural and/or historical reconstructed cobbles and boulders; f) natural sand to 

boulders along with woody debris. 
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Figure 3.40: The downstream study reach channel bed, showing the planform of the 

channel, as well as grain size and type. This reach has a different array of cover types 

than the upstream reach; the two additional cover types, diamict (till) fragments and 

diamict (till) with sparse cover, may be due to several reasons including more areas 

of diamict (till), river engineering (e.g. rip rap) in the reach, and a greater discharge 

passing through the reach. 

Based on the definition of semi-alluvial from Ashmore & Church (2001), Wilket Creek 

was classified by Parish Aquatic Services (2013) and Toronto and Region Conservation 

Authority & City of Toronto (2013) as semi-alluvial. The extent of the alluvial cover was 

not fully documented in those reports but mapping shown in Fig 3.41 indicates frequent 

exposure, especially at channel margins and in bends. Figure 3.39 and Figure 3.41 show 
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examples of sediment cover on the channel bed, highlighting the exposed diamicton. One 

area from the downstream reach was selected to be investigated for the extent and depth of 

the alluvial cover in the channel. Figure 3.41 shows the selected cross section. Moving 

from the right bank to the left bank, it is possible to see the diamict layer extending upwards 

into each bank. This cross section is in an area with very little alluvial cover; as seen in 

Figure 3.41 c and d, there is a small bar in this cross section. To provide insight into the 

depth of alluvial cover in the reach, two holes were augured into bars in the area seen in 

Figure 3.41. Due to backfill of water in each of the holes, it was hard to auger down to the 

diamict layer beneath the bars so no reliable data could be obtained.  

A grain size analysis was conducted for the downstream reach (Figure 3.42). The 

downstream reach grain size distribution was captured through Wolman Walks based on 

the initial visual inspection. . The distributions are highly variable and multimodal in some 

cases. This implies that there may be an outside influence of sediment on the system such 

as glacial sediment or input through channel reengineering and bank protection. The D50 is 

extremely wide ranging; the D50 ranges from 10mm to 60mm. The maximum grain size in 

this reach ranges from 300-400mm in some areas. 

Figure 3.43 shows two left bank profiles from the upstream end and the middle of the 

downstream reach. The depth of these bank profiles also shows the degree to which the 

channel has incised, especially when looked at compared to Figure 3.31. The profiles are 

similar; b) and g) are lag layers that appear to be from the bed of a previous channel. Based 

on the position of this layer in the stratigraphy, this layer is most likely from Wilket Creek’s 

channel pre-urbanization. This layer was investigated for its grain size distribution, which 

was then compared to the grain size distribution of the adjacent channel bed. Above this 

layer, a) and f), appears to be overbank fines or post-settlement alluvium. This layer may 

be sediment that was washed down the channel in the 1950s and 1960s, from the erosion 

during the development and construction boom in the catchment. It is also possible that 

this layer is even earlier from previous land clearance for agriculture (e.g. Crawford et al., 

1998). The two bank profiles differ below the lag layers; beneath lag layer in the profile on 

the left of Figure 3.44 is a well sorted fine to medium sand layer with clear flow structures, 

while under the lag layer in the profile on the right of Figure 3.44 there is layered diamict.  



77 

 

 

Figure 3.41: A full view of a cross section in the downstream reach. Starting from a) the right bank featuring vegetation 

and roots on top of diamict (till) in the bank which extends downwards into the channel bed; b) blocky till in the channel 

bed abutting the right bank with minimal to no alluvial cover; c) till channel bed abutting the left bank featuring a 

silty/clay bar; d) the eroded right bank with roots and vegetation. The point bar featured in c) was used for the depth of 

alluvial cover in Figure 26.
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Figure 3.42: The grain size distribution of the downstream reach obtained through 

Wolman Walks (Wolman, 1967). 
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Figure 3.43: Two left bank profiles in the downstream reach. Sampling each section 

revealed several layers with similar layers labelled in coordinating colours; a) a 

massive fine sand layer with organics and iron irregular layers intermixed, b) alluvial 

gravel layer with slight grading to smaller pieces; c) well sorted fine to medium sand 

with clear flow structures; d) post settlement layer; e) paleo soil; f) coarse sand fining 

upwards to medium to fine sand; g) gravel lag layer; h) layered diamict. 
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Figure 3.44: The grain size distribution of the bank and its adjacent channel bed in 

the downstream reach. There is a clear difference between the two distributions; the 

channel bed Wolman Walks show a much coarser distribution. This addition of 

coarse sediment may be due to the reconstruction occurring in the channel (Chapter 

4). 

When the bank alluvium in three different locations through the downstream reach is 

compared to the adjacent channel bed, each has a distinctly different distribution (Figure 

3.44). For the channel bed alluvium, the D50 ranges from 35mm to 50mm, making it 

medium to coarse gravel. The average D50 is 42.5mm. In contrast, the bank alluvium has a 

very narrow distribution with a D50 of 10mm. This means that the bank alluvium is medium 

gravel with a slightly coarse tail. As well, the channel bed distribution is slightly irregular, 

implying that it is not a unimodal distribution. This does not follow a ‘classic’ alluvial 

gravel size distribution. It would have been expected that the channel alluvial would 

generally have a similar distribution to that seen in the banks. This could mean that the 

channel bed is experiencing a new sediment input of coarser material that the pre-

urbanization channel did not.  

This sediment input may be from a natural sources or from historical reconstruction. If the 

sediment is from natural sources, the source may be from the banks or further upstream. 

Since the upstream reaches are finer in grain size (Section 3.5.2) it is unlikely that it came 
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from this source but from the banks or channel bed. As discussed above, the increased 

stream flow from urbanization leads to channel incision and widening. With high 

variability in geology, there may be pockets of large grain sizes released through these 

processes which may not have been accessed pre-urbanization. Alternatively, the sediment 

source may be from historical reconstruction. The history of reconstruction/reengineering 

of Wilket Creek prior to the 1990s, which will be discussed in Chapter 4, is not well known, 

although remnants of gabions and rip-rap are apparent in several places along the channel 

in both reaches. These may be a source of coarser material in the channels but there is no 

documentation to confirm this.  

Parish Aquatic Services (2013), focused on TRCA defined reaches WC-R1, WC-R2 and 

WC-R3 for a threshold analysis for particle entrainment. WC-R2 coincides with the 

downstream reach of this study. Parish Aquatic Services (2013) used Fischenich (2001) 

model based on critical shear stress to describe the sediment entrainment (>D50) of these 

reaches (Table 2). The reach selected for this study, R2, was combined with R3. Based on 

their calculated D50 of 48mm, the resulting critical discharge would be 4.71m3/s. Parish 

Aquatic Services (2013) also investigated the erodibility of the Halton Till which is 

believed to be the underlying diamict substrate in the channel. As discussed above in 

Section 3.1, the complexity of the glacial history in this area allows for only an estimation 

of the glacial material type underlying the catchment. However, Parish Aquatic Services 

(2013) chose to use values from the Halton Till, as they believed it was most likely this till 

underlying the catchment. Using a value obtained by Khan & Kostaschuk (2011) for Halton 

Till of 5.4Pa, and Fischenich (2001)’ equation, critical discharges in selected cross sections 

range from 0.05m3/s to 0.19m3/s, with an average of 0.13m3/s. These values represent 

increases from those determined using relationship for noncohesive sediment, they are 

relatively low and not realistic of the actual conditions found in the channel. It was 

estimated that the flow was 1m3/s during a field visit, and no apparent erosion was taking 

place; this is due to till being more erodible than gravel and the overlying gravel protects 

the till. This discrepancy underlies the need for further research on entrainment and erosion 

of cohesive sediments.  

Overall, the current channel of Wilket Creek is complex. The parameters in each of the two 

reaches investigated vary greatly in their results (Table 3.3). The sediment in the upstream 
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reach is sandy to sandy-gravel and the channel is actively meandering. By contrast, the 

downstream reach is cobble-gravel-till dominated, with a low sinuousity. Both reaches 

however are semi-alluvial and contain ‘natural’ reaches which may also contain new 

material from channel construction efforts. Chapter 4 investigates the direct human 

interventions on the channel. 

Table 3.3: Summary of the parameters used to evaluate the two reaches in this study 

(select values from Parish Aquatic Services, 2013).

Parameters Upstream Reach Downstream Reach 

Sinuosity 1.56 1.14 

Elevation Range 141m - 136m 116m – 111m 

Alluvium Depth >0.6m >1.5m 

Channel Alluvium D50 0.011m 0.035m 

Bank Alluvium D50 n/a 0.01m 

Channel Length 858m 832m 

Average Channel Width 9.34m 7.85m 

3.6 Summary of the current state of Wilket Creek 

At the outset of this investigation, it was hoped that it would be possible to more fully 

document changes to Wilket Creek morphology during and after the urbanization phase. 

Wilket Creek has undergone complete urbanization since the 1950s. As noted in Section 

3.3, there is currently limited long-term hydrologic data for Wilket Creek. This required 

hydrologic data from neighbouring catchments to be used as surrogates for the hydrological 

history. The three neighbouring catchments suggested that flow events and peaks increased 

along with urbanization. Wilket Creek’s channel has widened since 1947 (pre-

urbanization) to present day (post-urbanization). The planform change over time is difficult 

to map due to riparian cover. It appears to be less sinuous, however this may be due to 

reconstruction/reengineering in the channel. Topographic data with which the current 

valley and channel morphology could have been documented was also limited by the 

availability of DEM data at only 10m resolution. Archival sources also yielded very little 

information or historical photographs. 
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This semi-alluvial channel is sandy in the upstream reach, gravel-cobble in the downstream 

reach. This may also be effected by incision. The grain size distributions for the 

downstream reach may be due to artificial inputs from the aforementioned 

reconstruction/reengineering. Since many of the attributes of Wilket Creek documented in 

this chapter will be affected by reconstruction/reengineering in the future. Because of this, 

an investigation into what has been done in terms of reconstruction/reengineering, and how 

this is driven by the policy environment and practices is necessary.  
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Chapter Four 

4 Policy, regulatory, and design influences on the 

morphological design of Wilket Creek 

In order to fully understand how the hydro-morphology of Wilket Creek became what it is 

today, it is important to understand the societal impacts creating change in the catchment 

(Doyle et al., 2015). As discussed in Section 3.3, the stream flow change associated with 

urbanization causes morphological change in the channel (Trimble, 1997). These changes 

threaten the surrounding infrastructure, leading to reconstruction of the channel (Parish 

Aquatic Services, 2013). The social processes influencing the reconstruction of Wilket 

Creek can be roughly grouped into scientific practice, and policy creation and execution. 

Scientists and engineers are required to design watercourses that meet political and 

regulatory demands, which in turn have to meet agency goals. To evaluate if the agency 

goals have been achieved, the system must be designed so that non-scientist stakeholders 

are capable of assessing it. As a result of the demands and policies imposed on channel 

reconstruction and design, the systems that are created may not be the most ecologically or 

economically desirable; more importantly, these designs have a particular morphological 

effect on the watercourse and it is not known if these designs are the most suitable for the 

given system. The constructed morphologies tend to be substantially different from the 

unrestored reaches and what these unrestored reaches would adjust to given time. 

To understand the current physical landscape of Wilket Creek, the demands and policies 

that shape that landscape need to be discussed and understood. A timeline of the policies 

and programs which were implemented in Ontario was made to draw comparisons between 

these initiatives and the direct effects on Wilket Creek. Due to the nature of this analysis, 

the data used is secondary; documents from the Toronto Regional Conservation Authority 

and consultancy agencies associated with the projects, were used to develop a timeline of 

restoration/channel re-engineering. The timeline of these policies and projects could then 

be compared to the restoration/channel reengineering which took place in Wilket Creek to 

look at the direct impact these policies had on Wilket Creek specifically. 
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4.1 The evolution of environmental policy in Ontario from 

1946 to 1980 

The most important early environmental policy in Ontario affecting rivers and watersheds 

is the Conservation Authorities Act in 1946. This Act was legislated in a response to the 

concern expressed by agricultural, naturalist and sportsmen’s groups that much of the 

renewable natural resources of the province were in an ‘unhealthy state’ due to poor land, 

water and forestry practices during the 1930s and 1940s (Shrubsole, 1990; McLean, 2004; 

Sandberg, 2013). This Act also provided jobs for servicemen returning from World War II 

(Shrubsole, 1990). Prior to the Conservation Authorities Act, and throughout the 

Depression and World War II, organizations such as the Ontario Conservation and 

Reforestation Association, the Federation of Ontario Naturalists and individuals writing 

for The Farmer's Advocate, pressed the case for conservation and wise resource 

management. The Conservation Authorities Act allowed the province and municipalities 

to form a Conservation Authority within a specified area (a catchment) which would 

undertake programs for natural resource management (Conservation Ontario, 2013). This 

gave specific mandates and powers to the Ministry of Natural Resources and Conservation 

Authorities, and therefore municipalities, which had not been in place before. In the 

Toronto area, four conservation authorities were created: Etobicoke-Mimico Creek 

Conservation Authority, the Humber River Conservation Authority, the Don River 

Conservation Authority, and the Rouge-Duffins-Highland-Petticoat Conservation 

Authority. These conservation authorities were eventually amalgamated into the Toronto 

and Region Conservation Authority studied in this project. 

Shortly after the formation of these Conservation Authorities, Hurricane Hazel hit Toronto 

in October of 1954 (Desfor & Keil, 2000). Between October 15th and 16th 1954, 210 

millimetres of rain fell within 12 hours (McLean, 2004; Manwell et al., 2009; Bonnell, 

2011). Previous rainfall saturated the soil in the area, funneling an estimated 90% of the 

rainfall directly into the watercourses featuring steep slopes with little or no natural water 

storage capacity. Hurricane Hazel was the most severe flood in the Toronto area in recorded 

history; the hurricane was particularly damaging along the Humber River, and west end of 

Toronto where 81 lives were lost and thousands were left homeless. Following the storm, 
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steps were taken towards flood control planning in Toronto and the Greater Toronto Area 

(GTA) (Toronto and Region Conservation Authority, 2000).  

In 1957, Etobicoke-Mimico Creek Conservation Authority, the Humber River 

Conservation Authority, the Don River Conservation Authority, and the Rouge-Duffins-

Highland-Petticoat Conservation Authority were amalgamated into the Metropolitan 

Toronto and Region Conservation Authority (MTRCA) (Desfor & Keil, 2000). In 1959, 

The Plan for Flood Control and Water Conservation was finalized; 15 large control dams 

were proposed, 4 major flood control channels, the initiation of an erosion control program, 

and acquisition of valley lands (Metropolitan Toronto and Region Conservation Authority, 

1959). The ownership of the valley lands allowed for uniform implementation of policies 

in the future. At the same time, the provincial government initiated an eleven year process 

to develop and implement a floodplain planning policy. This prevented any further 

development in flood hazard areas (Toronto and Region Conservation Authority, 2000).  

Over the next 30 years, two other major programs were implemented to enhance the flood 

control plan in Toronto: flood forecasting and warning program and the stormwater 

management program. The flood forecasting and warning program was designed to 

monitor watershed conditions including snow, precipitation, and flows. It also issues flood 

messages to municipalities when the situation warrants it. As part of the Watersheds Plan 

in 1980, the stormwater management program was initiated to help mitigate the effects of 

urbanization on runoff and erosion (Toronto and Region Conservation Authority, 2000). 

From here, the program has evolved to include water quality and temperature impacts, 

source control, and retrofitting of facilities (Toronto and Region Conservation Authority, 

2000, 2013). All of these policies have had a direct impact on Wilket Creek, and other 

watercourses under the control of the TRCA. 

4.1.1 The early years of reconstruction of Wilket Creek 

The Plan for Flood Control and Water Conservation allowed the MTRCA to purchase the 

valley lands of Toronto watercourses including Wilket Creek in 1959 (Metropolitan 

Toronto and Region Conservation Authority, 1959; Desfor & Keil, 2000). At the same 

time, (Section 3.4), the morphological change had already beginning in the channel by the 
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early 1960s. It was shortly before this (1958) that a footpath was built through the 

downstream reaches, extending from Eglinton Ave E north to Lawrence Ave E, and 

connecting Wilket Creek from Edwards Gardens to its confluence at Wilket Creek Park. 

This pathway increased the pedestrian activity and other activities in the valley. With the 

longevity of the parks and footpath, citizens in the surrounding neighbourhood came 

accustomed to a particular look and feel of Wilket Creek channel; this influenced the 

reconstruction which later took place in the channel (Section 4.2.1)  

Through the Toronto Archives, ground photographs from activities in the valley were 

collected, showing the early reconstruction in Wilket Creek (Barr, 2015). The ground 

photos (Figure 4.1) show the early construction and reconstruction in Wilket Creek in the 

early 1960s. Three of the photographs are in black and white, making it more difficult to 

see some of the construction and reconstruction. Figure 4.1 a) shows the beginning of 

construction in Edwards Gardens. The lower portion of the photograph shows the tread 

marks from construction vehicles. Figure 4.1 b) shows the retaining wall in Edwards 

Garden which was under construction in Figure 4.1a). Figure 4.1 c) shows reconstruction 

(bank hardening) left bank while looking upstream; Figure 4.1 d) shows further bank 

hardening of the left bank while looking downstream. Based on this limited data, it seems 

that the first attempts of reconstruction in Wilket Creek channel was bank hardening.  

The headwaters of Wilket Creek were buried in 1972 (Section 3.2) (Cook, n.d.). There is 

no documentation that reveals the reasoning behind the burial of Wilket Creek through the 

construction of the storm sewer. It may have been as part of stormwater management from 

Highway 401, or from housing developments within the catchment; this may have also 

been a measure for erosion control or to create a place for Saint Andrews Park. The source 

of the water exiting the storm sewer is not known for this study; overall it is believed that 

the headwaters source is the upper catchment, and some runoff from Highway 401.  
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Figure 4.1: Evidence of early bank armouring and reconstructing. a) construction in 

Edwards Gardens; b) retaining wall in Edwards Garden July, 1961; c) hardening of 

the left bank looking upstream; d) hardening of the left bank looking downstream. 

Each were taken in the early 1960s however the exact dates are not known (Toronto 

Archives, 1961). 
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Figure 4.2: Timeline of the policies, initiatives, and programs from 1945 to 1980 which directly affecting the management 

of fluvial systems in Ontario, Toronto and Wilket Creek.
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4.2 Provincial and municipal environmental policies from 

1990 to present 

The provincial and municipal environmental policies continue from the Watershed Plan 

(1980) to present day. In the early 1990s, the type of reconstruction of the channel dictated 

by these policies changed from hard lining urbanized channels with concrete towards a 

new type of reconstruction known as Natural Channel Design (NCD) (Metropolitan 

Toronto and Region Conservation Authority, 1994b; Ministry of Natural Resources, 1994; 

Toronto and Region Conservation Authority, 2008; Vietz et al., 2015). This influence of 

Rosgen-type, grass-roots, and local design new to the experts at the Ministry of Natural 

Resources (MNR) (Rosgen, 1996). In Toronto specifically, this change may have been in 

part initiated by the Task Force to Bring Back the Don in 1991 (Helfield & Diamond, 

1997). This was mainly due to the degraded condition that the Don River was in at this 

time. Since the formation of the Task Force to Bring Back the Don, and the introduction 

of NCD, the policies affecting channels in Ontario has evolved, producing particular design 

features and morphologies. 

There were four different policies and programs which began in 1994: The Task Force to 

Bring Back the Don, the Royal Commission on the Future of the Toronto Waterfront, the 

Valley and Stream Corridor Management Program, and the first Natural Channel Design 

conference and manual. The Task Force to Bring Back the Don was established in 1989, 

with a broad mandate ‘to undertake initiatives that will contribute to the ultimate restoration 

of the entire watershed by focusing on rehabilitation efforts within the jurisdiction of the 

City of Toronto’ (Luste, 1994; Desfor & Keil, 2000). This is a shift away from engineering 

and flood/erosion control towards a conservation and ecology. Consequently, this shifted 

how the valleys and rivers were viewed, used, and restored. The Task Force managed to 

create its own niche within both the city administration and civil society (Desfor & Keil, 

2000). Together with the Royal Commission on the Future of the Toronto Waterfront 

(1992), the Task Force to Bring Back the Don (1991) brought in grassroots-community 

influence and engagement into the decision-making process; then, they proposed more 

comprehensive and preventative measures to help restore the marshland at the Don River’s 

confluence at Lake Ontario (e.g. upstream riparian plantings, a shift towards recreation 
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values of the greenways, and other Best Management Practices to reduce effects of 

urbanization, pesticides, etc.) (Helfield & Diamond, 1997). From here, the Task Force to 

Bring Back the Don put forth recommendations to achieve these goals with a forty step 

proposal (Metropolitan Toronto and Region Conservation Authority, 1994a). The Forty 

Steps to Bring Back the Don were divided into four different categories: Caring for Water, 

Caring for Nature, Caring for Community, and Getting It Done (Metropolitan Toronto and 

Region Conservation Authority, 1994a). The success of these steps were reviewed in 2009 

as part of the Don River Watershed Plan: Beyond 40 Steps discussed below (Metropolitan 

Toronto and Region Conservation Authority, 2009). 

In the same year, the Metropolitan Toronto and Region Conservation Authority (MTRCA) 

initiated the Valley and Stream Corridor Management Program. This program had four 

main purposes:  

1. To integrate MTRCA’s public safety responsibilities with its commitment to ecosystem 

planning and management; 

2. To define and identify the valley and stream corridors within the MTRCA’s jurisdiction 

to which its policy and regulations will apply; 

3. To update and establish new MTRCA policies and procedures for valley and stream 

corridor protection and rehabilitation 

4. To foster recognition and commitment by provincial and municipal agencies and the 

private sector for integrated valley and stream corridor management at the watershed, 

subwatershed, and local level (Metropolitan Toronto and Region Conservation 

Authority, 1994b).  

The vision of this program was to treat MTRCA’s greenspace system as ‘green and blue’ 

infrastructure by retaining watercourses and valley and stream corridors as open natural 

landforms from the headwaters to the river mouth marshes throughout their jurisdiction. 

This was a key point for the way watercourses are treated in Toronto. This set the stage for 

Natural Channel Design in the Valley and Stream Corridor Management Program and Wet 

Weather Flow Master Plan that follows (Metropolitan Toronto and Region Conservation 

Authority, 1994b; Toronto and Region Conservation Authority, 2013).  
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At approximately the same time, the first Natural Channel Design conference was held in 

June 1994 (Ministry of Natural Resources, 1994). Of the policies and programs which 

began in the early 1990s, this conference and the following report may be the most 

influential through to present day, as it has been used in most design policies since this 

time. Along with the Watersheds Plan (1980), the Natural Channel Design contributed to 

an evolution of the type of channel restoration; hardlining channels with concrete, gabions, 

or amour stone to convey water more efficiently became an out-of-date protocol. 

Environmental concerns, as well as shifts in other policies, made it necessary for channel 

design to evolve into multi-functional systems again; making these channels more ‘natural’ 

through bioengineering. This report dictated that a natural system should exhibit two key 

characteristics:  

1. Physically (geomorphologically) the channel should be dynamically stable, exhibiting 

self-regulatory mechanisms which accommodate change in flows and sediment loads, 

and 

2. Biologically the channel should exhibit healthy ecological functions, manifested by 

productive vegetative communities and the valley and healthy aquatic and terrestrial 

communities.  

This was the first time in policy, report, and design history that geomorphology was 

included in the reconstruction of urban channels. With this in mind, the report provides 

information and a process which consultants, conservation authorities, and local 

government can use to incorporate geomorphological and ecological considerations into 

stream and valley management and design. Now, almost 25 years later, this report has left 

many notable effects on channel design including the riffle-pool construction, and 

reconnection of channels to their floodplain; while it is widely used, the riffle-pool 

restoration method is currently ahead of science and it is not known if the construction is 

proper for a long-term viability (Ministry of Natural Resources, 1994; Chapuis, Bevan, & 

Macvicar, 2015) 

In 1998, the Metropolitan Toronto and Region Conservation Authority (MTRCA) became 

the Toronto and Region Conservation Authority (TRCA) following the amalgamation of 

the City of Toronto (Toronto and Region Conservation Authority, 2013). The following 
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year, the TRCA initiated The Living City Strategic Plan. This plan aimed to engage 

agencies, industries, and communities in collaborating for the sustainability of all life 

within the TRCA’s nine watersheds as well as Lake Ontario. While the Don River has its 

own Task Force, this plan brought other communities and agencies to a similar level of 

engagement (Toronto and Region Conservation Authority, 2013).  

The TRCA initiated a long-term geomorphology study as part of the Ministry of Natural 

Resources Valley and Stream Corridor Management Program in 2002. The TRCA was 

finally prompted to start monitoring geomorphology following promotion from NCD and 

Rosgen; it was seen as something that should be considered in addition to engineering, and 

hydrological and ecological monitoring (Ministry of Natural Resources, 1994; Rosgen, 

1996). As part of a wider geomorphological monitoring program, the TRCA outsourced 

this monitoring to Parish Geomorphic Limited who installed one erosion pin, and 

completed a few cross-sectional analyses mainly in Edwards Gardens. This study was not 

extensive or intensive in nature, leaving many questions about the overall morphology of 

this channel unanswered.  

In 2003, the City of Toronto initiated the development of the Wet Weather Flow Master 

Plan (WWFMP) to address the impacts of wet weather flow (WWF), including issues 

related to controlling and reducing the impacts of combined sewer overflows (CSOs), 

stormwater discharges, and inflow/infiltration on the watercourses in Toronto. The overall 

goal of the WWFMP as a long term (100-year) plan is to reduce and eventually eliminate 

the adverse impacts of wet weather flow on the built and natural environment leading to 

measurable improvement in the ecosystem health of the watershed. This goes back to the 

‘protect and mitigate’ mandate from the Conservation Authority Act (1946).  

The WWFMP also includes provisions for water quality, and natural areas and wildlife. 

Targets for improvements to the existing conditions were established for twenty locations 

in the Don River catchment. This includes assistance in the development of the Wilket 

Creek Geomorphic Systems Master Plan (Section 4.2.1) (City of Toronto & Livegreen 

Toronto, 2003; Parish Aquatic Services, 2013). The WWFMP states that the proposed 

source control, conveyance control, and end-of-pipe facilities will assist in restoring part 

of the balance in the flow and sediment regimes that were altered due to urbanization. 
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Typically, the proposed works may include construction of pool/riffle sequences (from 

NCD), protection of stream banks, realignment of the low flow channel, and protection of 

steep slopes. These measures still place erosion control at the centre of the issues with the 

urban watercourses in Toronto.  

It is acknowledged in City of Toronto and TRCA documents that for a considerable number 

of stream reaches, restoration will be required if the objectives relating to protection of 

property, restoration of healthy aquatic communities and protection of infrastructure are to 

be met. In many instances, the TRCA identifies its projects as restoration with the idea that 

their work is to return watercourses to a state which they were in prior to the damaging 

event (Toronto and Region Conservation Authority, 2016a). These damaging events are 

large flows highlighted in Section 3.3, including 2000, 2005, and 2013. Unfortunately, the 

damaging event is usually hydrologic in nature, stemming from urbanization as discussed 

below, in order to repair the channel the new hydrologic regime must be taken into account. 

This means that the channel is rarely returned to its original state (which may also be 

unknown), and is instead repaired to a new state (Doyle et al., 2015). Based on this, these 

repairs should be called reconstruction or re-engineering rather than restoration. 

Within the Don River watershed, there are a number of sections where  restoration of 

degraded sections of the streams use natural channel design techniques, removal/ 

modification of a number of fish barriers, protection/ reconstruction of municipal 

infrastructure located within the valley lands; and restoration of riparian vegetation. 

Although throughout the Don River watershed approximately 18km of stream are to be 

restored, Wilket Creek was not specifically identified to be reconstructed using natural 

channel design (Metropolitan Toronto and Region Conservation Authority, 2009). 

In 2009, the Don River Watershed Plan reviewed and built on the Forty Steps to a New 

Don (Metropolitan Toronto and Region Conservation Authority, 2009). The Watershed 

Plan is intended to inform and guide municipalities, provincial and federal governments, 

the TRCA, non-government organizations and private landowners as they update their 

policies and best management practices for environmental stewardship. The Plan was also 

created to allow for the community to respond to a number of recent policy and planning 

initiatives, including the City of Toronto’s Wet Weather Flow Management Master Plan, 
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stormwater retrofit studies of other municipalities, and TRCA’s vision for The Living City. 

Shortly after this plan, Toronto updated The Living City Strategic Plan. The aim of this 

plan was to guide the implementation of TRCA’s legislated and delegated roles and 

responsibilities in the planning and development approvals process over the next 10 years 

(Toronto and Region Conservation Authority, 2013).  

Finally, in early 2015, the City of Toronto, and Parks, Forestry and Recreation began 

developing a Toronto Ravine Strategy. While Toronto’s ravines were once seen as 

disposable and unsafe, the city aims to change this, making them desirable and easily 

accessible nature sites throughout the city. Now, along with the TRCA and a wide range 

of stakeholders, the Toronto Ravine Strategy will consider improvements such as better 

gateways into the ravine, navigation throughout the ravines, and publicize historic places. 

This strategy will help balance the fine line between protection and use. This strategy is 

currently in draft form and is expected to be completed by the end of April 2017. 

4.2.1 Emergency works in Wilket Creek from 2000 to present 

The provincial and municipal policies in Ontario and Toronto continue after the Watershed 

Plan in 1980; information specific to the effects that these policies may have had on Wilket 

Creek is not known between 1980 and 1999. The Wilket-Milne Creek Regeneration 

Concept Plan was completed in 1999. The following year, a major rainstorm hit Toronto 

and the Wilket Creek Geomorphic and Habitat Systems Master Plan was created. Both of 

these plans were created due to the flood damage, erosion and water quality degradation 

occurring in the catchment during all magnitudes of rainstorms (Aquafor Beech Limited et 

al., 1999; Toronto and Region Conservation Authority & City of Toronto, 2013). However, 

before these works began, a particularly severe rainstorm in 2005, initiated emergency 

works to protect surrounding infrastructure from compromise (Section 3.3).  

In August 1999, the Wilket-Milne Creek Regeneration Concept Plan was created as part of 

the ‘Forty Steps to a New Don’ with the Don Watershed Task Force. This Wilket Creek-

specific plan consists of two major components: development of stormwater management 

alternatives and development of possible channel restoration approaches. As well, the plan 

asks for public input into the project, while suggesting two demonstration projects, with 
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continued monitoring and additional studies to implement any further recommendations 

(Parish Aquatic Services, 2013).  

Due to the age of development in Wilket Creek catchment (Section 3.3), Wilket Creek has 

no stormwater management systems in place. To help prevent further instream erosion due 

to hydrologic issues in the catchment (Section 3.3) a combination of centralized and source 

control measures were recommended by the Concept Plan as the best solution for Wilket 

Creek. These measures include centralized control measures such as flow control devices 

in storm sewers with surcharge to off-line ponds, and source control measures such as rain 

barrels. While these measures were recommended, at the time of the report there were no 

existing targets for retrofitting a catchment such as Wilket Creek with stormwater 

management measures (Aquafor Beech Limited et al., 1999). Today, Wilket Creek still has 

no known stormwater management control (Figure 3.3). 

Channel restoration, the second component of the Wilket-Milne Creek Regeneration 

Concept Plan, was considered due to the channel entrenchment in Wilket Creek leading to 

a disconnection between the channel and the floodplain. It was decided that the best option 

was to elevate the bed above the sanitary sewer to re-connect the active channel to its 

floodplain through: 1) construction of a rock ramp at existing riffle segments and self-

adjustment of the channel, 2) the use of NCD concepts, and 3) the use of traditional river 

engineering hard lining approach. These techniques were to be applied through Wilket 

Creek and Windfields Parks (Aquafor Beech Limited et al., 1999).  

The community response to this Plan was low; however, the respondents reflected the 

general idea that the contrived landscape of Edward’s Garden should be similarly applied 

to Wilket Creek and Windfields Parks. While this could not be achieved with the type of 

channel restoration proposed for the channel, with public input it was agreed that the 

recommended Concept Plan would integrate the riparian corridor into the vision of Wilket 

Creek to maintain the sense of place which makes Edward’s Gardens special to the 

community. It is at this time that the idea of morphology as a combination of science, 

social, and political becomes apparent (Lave et al., 2014; Doyle et al., 2015). 

Following the Concept Plan, a large storm event in May 2000 lead the City of Toronto to 

commission a geomorphological study by Parish Geomorphic Ltd. This study concentrated 
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on the portion of Wilket Creek which flows from Lawrence Ave E to the confluence. 

Several areas of concern were reported where channel protection methods such as gabion 

baskets have met minimal success. Through Rapid Geomorphic Assessment, the channel 

was deemed “unstable”, which was attributed to the altered (urbanized) flow in the channel 

and requiring mitigation (Ontario Ministry of the Environment, 2003) . It was concluded 

that the large storm event of May 2000 exacerbated existing issues of erosion in the 

channel. This study was re-visited in 2003, along with the 2002 TRCA geomorphic 

monitoring site. The monitoring site, an erosion pin, showed change in the channel and as 

a result, further geomorphic monitoring and hydraulic analyses were recommended (Parish 

Aquatic Services, 2013). 

Since the significant storm events in May 2000, several other significant storm events to 

June 2008, took place in the Wilket Creek catchment (Toronto and Region Conservation 

Authority, 2008). The most notable storm event was the rainstorm on August 19, 2005 

(Section 3.3). After this event, the City of Toronto and TRCA took an inventory of the 

damage; this damage was concentrated in Edwards Gardens and Wilket Creek Park 

(Toronto and Region Conservation Authority, 2008). There were 26 areas of concern due 

to damaged and ‘at risk’ infrastructure (e.g. bridges, pathways, manholes, sanitary sewer) 

(Toronto and Region Conservation Authority, 2008). Ten repair projects were completed 

and implemented as part of Emergency work (defined by TRCA) in 2007. Overall, these 

sites required repair due to erosion issues, however specifically at three sites repairs were 

required because of exposure of the underlying sewer (Toronto and Region Conservation 

Authority, 2008). Unfortunately, on June 23, 2008, 3 of these repaired sites were re-

damaged in another rainstorm (Toronto and Region Conservation Authority, 2015). 

At the same time in 2007, the City of Toronto began to seek support and funding from City 

Council to conduct a larger, long-term study of the creek (Toronto and Region 

Conservation Authority, 2008). Finally, in 2009, Toronto Parks, Forestry and Recreation 

(PFR) and Toronto Water identified multi-year funding to commence in 2010. This funding 

provided for the "Wilket Creek Channel within Wilket Creek Park Rehabilitation Study 

and Geomorphic Systems and Habitat Study,” with TRCA to manage the project (Parish 

Aquatic Services, 2013). The Master Plan is a large-scale project which can maintain the 
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long-term management required for the issues of erosion and degradation seen in Wilket 

Creek. It falls under the planning and approvals of the Ontario Environmental Assessment 

Act, which ensures all possible effects of the project are considered during the planning 

stages (Toronto and Region Conservation Authority, 2008).
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Figure 4.3: Timeline of the policies, initiatives, and programs from 1980 to 2015 which directly effecting the management 

of fluvial systems in Ontario, Toronto and Wilket Creek. 



100 

 

Three areas within Wilket Creek Park were identified as requiring immediate attention due 

to the risk to municipal infrastructure and/or public safety by Parish Aquatic Services, A 

Division of Matrix Solutions Inc. (PARISH; formerly Parish Geomorphic Limited; PGL). 

These sites are collectively referred to as Site 3, Site 6 and Site 7 (Figure 4.4) by TRCA 

and the City of Toronto (Toronto and Region Conservation Authority, 2008, 2013) 

(Toronto and Region Conservation Authority & City of Toronto, 2013). The project 

milestones are outlined below: 

 Notice of Study Commencement and Public Information Center #1 – Present the 

objectives of the study and the proposed designs for the Emergency Works at the first 

two priority sites in Wilket Creek (June 2011) 

 Phase I Emergency Works: Protection of exposed sanitary trunk sewer crossing and 

bank stabilization at Sites 6 and 7; emergency works in Site 3 (April to May 2011). 

 Phase II Emergency Works: Realignment of the existing trail away from the channel, 

re-align and widening of the channel, and installation of two new bridge crossings to 

protect the sanitary sewer at Sites 6 and 7 (repaired in Phase I) (July 2011 to May 2012).  

 Phase III Emergency Works: At Site 3.1, move channel away from eroding valley wall, 

install a new 30m long free span bridge, install protection for the sanitary sewer that 

crosses the river immediately downstream of the bridge (November 2012 to May 2013) 

 Public Information Center #2: Presentation of alternatives (December 2013) 

 Consultation meeting #1 with Friends of Wilket Creek (FOWC) community group 

(February 2014) 

 Consultation meeting #2 with Friends of Wilket Creek community group (April 2014) 

 Public Information Center #3: Presentation of preferred alternatives (June 2014) 

 Phase IV: Site 3.2 & Site 2 channel re-alignment to bring the channel away from 

sanitary infrastructure, protect the sewers with concrete encasements and armour stone 

retaining walls; channel widening, habitat enhancement, trail re-alignment and bank 

protection works. (Completed fall 2015) (Parish Aquatic Services, 2013) 

Following the Wilket-Milne Creek Regeneration Concept Plan, the Wilket Creek Channel 

within Wilket Creek Park Rehabilitation Study and Geomorphic Systems and Habitat 

Study aims to reconstruct the channel of Wilket Creek to protect the surrounding 
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infrastructure. The reconstruction/reengineering of the channel used techniques of NCD 

such as riffle-pool design (above); the specifics of Phase II will be discussed below. The 

policies above dictate the plans for this reconstruction/reengineering to occur; next, the 

TRCA commissioned consultants to design the plan for the reconstruction. The interplay 

and interdependence of between policies and conservation authorities stems from the 

original Conservation Authorities Act, while the designs are taken from the ever evolving 

science of geomorphological design. 



102 

 

 

Figure 4.4: The restoration sites as defined by the Wilket Creek Channel within 

Wilket Creek Park Rehabilitation Study and Geomorphic Systems and Habitat 

Study. Emergency works to reconstruct the channel and protect surrounding 

infrastructure at project sites 2, 3.1, 3.2, and 7 was completed between April 2011 

and fall 2015. The two reaches highlighted are the two discussed above in Section 

3.5 (modified from Parish Aquatic Services, 2014)   
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4.2.2 Reconstruction of Site 3 Phase II in Wilket Creek 

The reconstruction and channel realignment of Wilket Creek was made more complicated 

by the dimensions of the valley and the surrounding infrastructure. The meanders 

empirically designed to allow for the urbanized hydrology of the channel would not 

accommodate for the infrastructure also within the valley (Figure 4.5) (Parish Aquatic 

Services, 2014). In order to accommodate for both the new hydrology and the infrastructure 

in the valley, another realigned planform of Wilket Creek was proposed (Figure 4.6). This 

planform design helps stabilize the channel while accommodating the infrastructure in the 

valley. This proposed planform design shows the section of Wilket Creek downstream of 

Lawrence Ave E. Figure 4.7 shows two examples of proposed planform in a reach upstream 

of Lawrence Ave E. These two examples show how varied and invasive the 

reconstruction/reengineering is in Wilket Creek. 

The objectives of the Master Plan and the proposed designs for the Emergency Works at 

the first two priority sites in Wilket Creek were first presented to the public in June 2011. 

Presentation of alternative strategies as well as detailed plans for the open channel south of 

Lawrence Ave E were presented in December 2013. It is not known how much the initial 

proposals were updated before the alternatives were presented. The plan proposals 

presented were divided into three different maps covering Sites 1 through 10 (Figure 4.8 - 

Figure 4.10). Each of these maps detail the channel realignment, the riffle-pool sequences, 

and the vegetation and rip-rap placement on the banks. These alternatives were put into 

action based on severity of the damage. 
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Figure 4.5: The current planform of Wilket Creek’s watercourse (blue) south of 

Lawrence Ave E. This is compared to the empirically designed proposed planform 



105 

 

for the reconstruction/reengineering of the channel. (Parish Aquatic Services, 2014).
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Figure 4.6: The proposed realigned planform of Wilket Creek south of Lawrence Ave 

E. This planform design helps stabilize the channel while accommodating the 

infrastructure in the valley (Parish Aquatic Services, 2014). 
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Figure 4.7: The two proposed planform designs for TRCA defined Reach 7. The high sinuosity of the channel combined 

with the new urbanized hydrology has led to an unstable channel; the proposed planform designs aims to stabilize this 

section of Wilket Creek (Toronto and Region Conservation Authority & City of Toronto, 2013). 
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Figure 4.8: The alternative plan for Site 1 and 2 presented at Public Information Center #2. This map provides an 

overview of reconstruction plans; more detailed plans were provided for this study (Toronto and Region Conservation 

Authority & City of Toronto, 2013).  
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Figure 4.9: The alternative plan for Sites 3-9 presented at Public Information Center #2. This map provides an 

overview of reconstruction plans; more detailed plans were provided for this study (Toronto and Region Conservation 

Authority & City of Toronto, 2013).  
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Figure 4.10:  The alternative plan for Sites 6-10 presented at Public Information Center #2. This map provides an 

overview of reconstruction plans; more detailed plans were provided for this study (Toronto and Region Conservation 

Authority & City of Toronto, 2013).  
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Chronologically, the restoration of Site 3 in Wilket Creek as part of Phase II followed 

emergency works in Phase I Sites 3, 6, and 7 (Figure 4.4). The Phase I emergency works 

in Sites 6 and 7 involved encasement of the existing sanitary sewer where it crosses under 

the creek, realignment of the existing trail away from the watercourse, two new bridge 

crossings, and modification to the watercourse. The channel was also widened to connect 

the channel to the floodplain. At the same time, works were underway in Site 3 where the 

channel was realigned away from the valley wall contact (Figure 4.11), with a vegetated 

buttress treatment used to stabilize the bank (Figure 4.12). This site was designed with a 

bankfull width of 15m and depths from 0.75-1.7m, with two riffles and a large pool. A new 

30m bridge was installed to accommodate the proposed channel footprint. The 

reconstruction of these sites have been deemed relatively successful; some natural and 

unintended adjustment occurred at Site 3 Phase I which was recommended to be improved 

in future works. 

Following these two works, channel restoration began in Site 3 as part of Phase II. The 

main objectives for this site was to repair eroded areas of the creek while protecting the 

underlying and adjacent sanitary sewer, pedestrian crossings, and multi-use trail. There 

were several considerations and constraints taken into account before construction: 1) 

evidence (undercut banks, exposed till, large quantities of woody debris) in the existing 

channel was undersized for the urban flow regime, 2) evidence (high bank angles, exposed 

length of sanitary sewer and bridge footings) of channel cross-sectional area had increased 

via incision, 3) rates of widening and incision were facilitated by a relatively steep channel 

gradient and a lack of upstream sediment inputs, 4) the channel contacts the valley walls 

in several locations, including along the outside of meander bends at Site 3 Phase II (also 

a constraint on channel design), 5) extremely high energy, urbanized flows acting on 

channel boundary require a limited selection of appropriate bank protection treatment, 6) 

the multi-use trail running along the creek, and 7) the sanitary trunk sewer line running 

along and crossing under the channel at the upstream extent of Site 3 Phase II (Parish 

Aquatic Services, 2014). 

The design parameters for Site 3 include the design discharge, planform and profile, cross 

sections, stone sizing, bank treatment, and restoration planting plan. The design discharge 
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for Site 3 Phase II is the same as was used for Site 3, 6, and 7 in Phase II. The discharge 

was determined to be 38m3/s, and is based on a detailed geomorphic field investigation 

conducted for Phase I sites. This roughly correlates to the 10-year storm events as indicated 

through the hydraulic analysis for the study area (Parish Aquatic Services, 2012). The 

overall bankfull gradient is 1.3%; planform adjustment to decrease the bankfull gradient 

for Site 3 Phase II is restricted by the local infrastructure and valley walls. The sinuousity 

of the planform along this site is reduced slightly as the channel is pulled away from two 

major valley wall contacts and the sanitary sewer. The profile design consists of three riffle 

features, one shoal feature, and three pools of varying length. The riffle slopes range from 

2.5% to 2.9%; the first riffle is located over where the sanitary sewer crosses under the 

channel (Figure 4.13) (Parish Aquatic Services, 2014).  

 

Figure 4.11: Sketches and photographs of realignment in Wilket Creek. This type of 

realignment took place at many of the reconstruction sites including Site 3 Phase II 

(Toronto and Region Conservation Authority & City of Toronto, 2013). 
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Figure 4.12: Examples of bank stabilization measures undertaken in Wilket Creek. 

In Site 3 Phase II, vegetation was used extensively to provide stability to the bank 

which had been moved off valley walls (Toronto and Region Conservation Authority 

& City of Toronto, 2013).  
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Figure 4.13: Detailed plans of the reconstruction of Site 3 (upstream) and Site 2 (downstream) (Parish Aquatic Services, 

2014). 
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The final design will incorporate a channel width that is consistent with, or larger than, the 

existing cross-section in order to increase the capacity of the system, and reduce flooding 

on the adjacent footpath and trails. To avoid entrenchment, the design ensured that the 

creek is well-connected to the floodplain. The cross-section dimensions are similar to those 

used for Site 3 Phase I for continuity (Table 4.1). Cross sections at riffle crests are 15m 

wide with a maximum bankfull depth of 0.75m, while pools have a maximum bankfull 

depth of 1.8 and range in width between 15.0 and 18.0m. The width of a pool depends on 

whether a point bar has been designated to be established during construction. For Site 3 

Phase II, point bars are included in the design at the pools and have been incorporated into 

the cross-sectional design on the inside of two bends that are adjacent to valley wall 

contacts. This design element allows higher flows to spill out onto the floodplain bench, 

dissipating energy and erosive forces and improving flow around the bend (Parish Aquatic 

Services, 2014). 

Table 4.1: Cross sectional characteristics of Wilket Creek at Site 3 Phase II (Parish 

Aquatic Services, 2014). 

Design Element  

(m) 

Riffle Transition/

Shoal 

Pool (no constructed 

 point bar) 

Pool (with constructed 

point bar) 

Bankfull Width 15.0 15.0 15.0 18.0 

Max Bankfull 

Depth 
0.75 1.05 1.8 1.8 

The stone sizing for the reconstruction of Site 3 Phase II was designed to provide channel 

stability over a range of flows. These stones were purposefully over-sized to provide this 

stability, as well as minimize potential risk to the underlying sewer. (Table 4.2) provides 

the riffle-boulder mix gradation for the proposed design. The robustness of the riffle stone 

is partially a function of how well the stone is interlocked during construction. The largest 

diameter stones (the keystones) range from 1250-1300mm and are used to create ribs at the 

crest and toe of the riffles. The boulder mix has a D84 of 1200mm, a D50 of 700mm, and a 

D16 of 300mm. This is substantially larger than the grain sizes noted in Sections 3.5.2 and 

3.5.3, in the ‘natural’ sections of the channel. The shoal design (which does not include 

ribs) will not experience the same magnitude of velocities as on the riffles, however the 
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shoal boulder mix is similar to that of the riffle to allow for ease of construction. Voids 

between boulders were filled with a matrix mix consisting of native materials and pit-run 

gravel. The pools between riffles consist of natural substrate. 

Table 4.2: Riffle and shoal boulder mix gradation for Site 3 Phase II (Parish Aquatic 

Services, 2014). 

Size Class (mm) Riffle Stone Size (mm) 

D95 – keystone 1250 – 1300 

D84 1200 

D50 700 

D16 300 

Size Class (mm) Shoal Stone Size (mm) 

D84 1200 

D50 700 

D16 300 

A variety of bank treatments are included in the design for Site 3 Phase II including 

vegetated stone protection along sections of the channel which are in close proximity to 

the sanitary sewer line. Due to high velocities and erosive forces, the toe stabilization at 

the upstream extent of Site 3 Phase II will have vegetated stone protection due to its 

robustness. Table 4.3 provides bank treatment stone gradation for the proposed design. The 

recommended stone is angular in nature in order to maximize the degree of internal friction 

and interlocking between particles. Brush layering is used at the second location where the 

channel has been pulled back from the valley wall contact and will include embedded 

woody debris to provide roughness and enhance aquatic habitat opportunities. The 

remainder of the banks will be stabilized using a combination of coir cloth and live stakes 

to stabilize the disturbed native materials along the channel banks. Additionally, the two 

manholes which are located directly adjacent to the channel are to be protected using 

armour stone. Finally, restoration planting is used to provide vegetative stabilization in the 

riparian zone and floodplain. In addition, any areas disturbed during construction activities 

will require plantings for restoration purposes (Table 4.4). 
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While the designs for Site 3 Phase II stabilized the channel, there may continue to be some 

adjustment to natural flows. Some adjustments of sediment transport from reaches 

upstream, siltation in pools ‘flushed’ during bankfull and higher flows, subtle planform 

adjustments, and some bar formation are anticipated. Photographs of the finished site from 

March 2016 can be seen in (Figure 4.14). 

Table 4.3: Bank treatment stone size gradation for Wilket Creek (Parish Aquatic 

Services, 2014). 

Size Class (mm) Stone Size (mm) 

D95 - keystone 1300 

D50 900 

D15 600 

 

Table 4.4: Restoration planting list for Site 3 Phase II (modified from Parish Aquatic 

Services, 2014) . 

Trees 

Common Name Scientific Name Quantity 

American beech Fagus grandifalia 2 

White pine  Pinus strobus 5 

White oak  Quercus alba 3 

Shrubs 

Common Name Scientific Name Quantity 

Speckled alder Alnus incana 21 

Smooth service berry Amelanchierlaevis 28 

Alternate leaf dogwood Cornus alternifalia 50 

Redbud Cercis canadensis 130 

Grey dogwood Cornus racemosa 80 

Common ninebark Physocarpus opulifalius 150 

American elderberry Sambucus canadensis 170 

Pussy willow Salix discolor 55 

Nannyberry Viburnum lentago 80 
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Figure 4.14: Photographs of the completed reconstruction of Wilket Creek in March 2016. 
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4.3 Summary 

It is the urban nature of Wilket Creek that prompted the need for the channel and valley to 

be safe for multi-use activities (e.g. pedestrian pathway, parks). In order to ensure the safety 

and stability of the channel and valley, policies and channel reconstruction were put into 

place, beginning with the Conservation Authorities Act (1946). As the creek changes 

morphology in a particular way over time, both hydrologic and policy/science ‘events’ 

initiate further reconstruction and alterations to the channel. These policies allow for 

external science to drive the ideas about what morphology of the river should be. The 

knowledge from experts in particular technical groups, such as the TRCA, translated into 

a narrow idea of what channels ‘should’ look like (i.e. tables, pools and riffles, etc.). The 

community which uses the pathway and parks, also influences the channel morphology; 

the community has expressed preferences for the creek form and function to remain as it 

has been historically to retain their sense of place.   

Unfortunately, this may not be what it would look like either before or after urbanization 

without direct human interventions. The channel design is explicitly related to the technical 

knowledge of agency, and steered by policy that favours or requires NCD. The culmination 

of these effects means that the current channel of Wilket Creek is socio-natural: policy, 

politics, Natural Channel Design science, and community. Together these combine and 

interact to produce the “reconstructed” channel morphology, contrary to the ‘traditional’ 

effects of urbanization on river morphology of the type previously undertaken (e.g., Chin, 

(2006)).  
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Chapter Five 

5 Summary and conclusions of this study 

The goal of this thesis was to describe a glacially-conditioned, semi-alluvial channel in an 

urbanized setting, with an examination of the human influences and interventions in the 

creek. This study examined how the current morphology of Wilket Creek was created as a 

product of its geologic history, urbanization, provincial and municipal policies and 

regulations, scientific and community views of the river, and changing approaches to river 

engineering and design.  

The morphology of Wilket Creek is partly related to the geological setting. This resulted 

in its semi-alluvial character, and effects the local glacial history, landforms and sediments. 

The glacial sediments into which it has incised, Newmarket Till, behaves similarly to 

bedrock, though more erodible in nature; overlying alluvial cover protects the till from 

erosion. This has produced a distinctive morphology and a particular response to 

urbanization, and also vulnerability to the effects of urbanization with eventual 

consequences for river engineering and design and its current morphology. 

Urbanization took place in Wilket Creek’s catchment in the 1900s, starting with the 

construction of the first house in the Bridle Path development in 1929. Since then, rapid 

residential, commercial, and industrial development began in the late 1940s in the 

catchment; becoming fully urbanized by the mid-1970s. The types of development have 

evolved over time (Figure 3.9 - Figure 3.17). Based on the hydrologic history of three 

neighbouring catchments, this urbanization caused the hydrology of Wilket Creek to have 

large, flashy summer flows, as well as higher annual flow. Based on the literature 

(Hammer, 1972; Hollis, 1975; Rutherfurd & Ducatel, 1994; Trimble, 1997; Chin, 2006; 

Colosimo & Wilcock, 2007a; Trudeau & Richardson, 2015), hydrologic change due to 

urbanization would had an effect on channel morphology. Many features of the current 

morphology of Wilket Creek can be attributed to hydrologic change. The planform pattern 

has changed between 1965 and 2009; width measurements between 1947 and 2016 show 

that the channel has widened over the course of urbanization. Additionally, when compared 
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to historical ground photos from the 1960s, the current channel has incised by 

approximately 1m, exposing the Newmarket Till on the channel bed.  

The current morphology is further complicated by reconstruction in the channel. While the 

TRCA has labelled works in the channel as restoration, it is not possible to know what the 

channel was prior to urbanization based on the current data. As previously mentioned, the 

channel size no longer accommodates the urbanized flow. Therefore, instead of restoration, 

the channel has actually experienced reconstruction and reengineering to accommodate for 

the new flow regime.  

Previous urban geomorphology papers view channels as a merely a product of the 

hydrological change due to urbanization in the catchment. The socio-geomorphology of a 

channel extends beyond the ‘physical only’ account of urban channels. This type of 

analysis extends to include reports from provincial and local municipalities, conservation 

authorities, and consultant companies. Hurricane Hazel jump-started conservation 

authorities in the Toronto area into making policies which regulate the city’s watercourses 

to protect citizens and surrounding infrastructure. Policies such as the Forty Steps to a New 

Don, the Royal Commission on the Future of the Toronto Waterfront, and Natural Channel 

System set the recommendations for watershed management implementation. The effects 

of these policies and reports is still seen in the current catchments. This type of analysis 

results in a more complete understanding of geomorphology and of the role and 

consequences of geomorphologists’ understanding of, and interventions in, these systems 

(Ashmore, 2015).  

Intervention measures were discussed in detail in Section 4.2.2, for a site located at the 

confluence of Wilket Creek and the West Don River. Located upstream of this site, the two 

reaches documented in Chapter 3 are scheduled for reconstruction in the next two years. 

Unfortunately, this means that the physical characteristics of these reaches – mainly its 

semi-alluvial nature – will no longer be visible after this time. These reaches will become 

the same homogenous riffle-pool reconstruction as seen in Site 3 Phase II (Section 4.2.2), 

decreasing the heterogeneous, and ‘natural’ state of the channel. This study does however 

bring the urban geomorphology community one step closer to fully understanding and 

documenting what urban channels look like and why they look as they do; these are 
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complex systems involving natural controls on channel form as well as human influences 

and interventions. 

5.1 Future research 

There were some limitations to this study (Section 3.6), however it also opened several 

different avenues of research. First, this study is not a unique case in Toronto; there are 

many applications of this kind of reflective study in Toronto, and other areas with semi-

alluvial systems. It is possible to use a socio-geomorphologic approach in urban channels 

outside of Toronto. Unfortunately, a direct application of the approach used in this case 

study is not possible, partly due to different policies and policy creators in each catchment 

investigated outside of Toronto. 

Interview data behind the thinking, arguments, and rational of the policy creation and 

implementation would aid the social aspects in a study of urban riverscapes, following 

work by Lave (2012) and Lave et al. (2014). Second, as noted by Chapuis et al. (2015), an 

investigation into the success and longevity of the riffle-pool system used primarily in 

Natural Channel Design should also be undertaken. As well, an analysis of the vague 

language which is used by the TRCA and other conservation authorities would prove 

useful. Since much of sociogeomorphology relies on reports from conservation authorities, 

the philosophy and language of these groups would allow for a more in-depth analysis of 

the influence that these policies and reports have on catchments under the control of 

conservation authorities.  
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