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Tutorial: The quantum finite square well and
the Lambert W function

——————————————————————–
Ken Roberts1 and S. R. Valluri2

Abstract

We present a solution of the quantum mechanics problem of the allowable energy levels of a bound
particle in a one-dimensional finite square well. The method is a geometric-analytic technique utilizing
the conformal mapping w → z = we

w between two complex domains. The solution of the finite square
well problem can be seen to be described by the images of simple geometric shapes, lines and circles, under
this map and its inverse image. The technique can also be described using the Lambert W function. One
can work in either of the complex domains, thereby obtaining additional insight into the finite square well
problem and its bound energy states. This suggests interesting possibilities for the design of materials
that are sensitive to minute changes in their environment such as nano structures and the quantum well
infrared photodetector (QWIP).

1 Introduction

Quantum well models are important for the design
of semiconductor devices, such as the quantum well
infrared photodetector (QWIP) which is used for in-
frared imaging applications; see Schneider and Liu [1]
for an overview. The QWIP relies upon a quantum
well which has been sized so that the energy of an
electron in the first excited state is quite near the
threshold of confinement in the well. The QWIP is
therefore very sensitive to the arrival of a single pho-
ton. There are many other uses of quantum well mod-
els in nanostructures; the textbook by Harrison [2] is
a good survey of the field.

The one-dimensional quantum finite square well
(FSW) model is a familiar topic in most introductory
quantum mechanics books; see for instance Bransden
and Joachain [3], section 4.6. After deriving a pair of
equations to describe the bound energy levels within
the well, the solution is carried out by graphical or
computational methods. It is sometimes said that
the FSW problem does not have an exact solution,
but there are in fact exact solutions as presented in
the papers of Burniston and Siewert [4–6] and oth-
ers [7–9, 17–19]. Those exact methods generally rely
upon contour integration in the complex plane.

We have found a simple geometric method which
can be used to describe the solutions of the one-
dimensional finite square well problem. Our approach
is analytic, using complex variables, but does not rely

upon contour integration as such. We instead make a
strong appeal to geometric imagination. We focus on
the description of the solution set via conformal map-
ping of simple geometric shapes (lines and circles)
between two complex domains, using the mapping
given by w → z = w ew. Thus our solution might
be described as “geometric-analytic”. The method
is presented in mathematical and physical detail to
stimulate further research in this and related avenues.

Our paper is organized as follows. Section 2 pro-
vides the motivation for an analysis of this classic
problem in quantum mechanics. In section 3 we show
the mathematical details of our solution to the square
well problem using the Lambert W function. The re-
sults of our analysis are discussed in section 4 and
section 5 summarizes our conclusions

2 Motivation

When solving the one-dimensional FSW problem,
after some initial definitions and discussion, a text-
book will arrive at the task of finding solutions to one
of the two equations

v tan v = u (1)

or

v cot v = −u (2)
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ψ2(−L) = AeiαL +B e−iαL (11)

= D e−βL = ψ1(−L)

ψ′

2(L) = −iαA e−iαL + iαB eiαL (12)

= −β C e−βL = ψ′

3(L)

ψ′

2(−L) = −iαA eiαL + iαB e−iαL (13)

= β D e−βL = ψ′

1(−L)

We form linear combinations of these equations as
follows: iα times equation (10) plus or minus equa-
tion (12), and iα times equation (11) plus or minus
equation (13). Conceptually, those manipulations
correspond to factoring

−
(

α2ψ + ψ′2
)

=
(

iαψ + ψ′
) (

iαψ − ψ′
)

(14)

and requiring that one of the right-hand factors be
zero, when evaluated at each of the points x = −L
and x = L. We obtain four new equations:

2iαB eiαL = (iα− β)C e−βL (15)

2iαA e−iαL = (iα+ β)C e−βL (16)

2iαB e−iαL = (iα+ β)D e−βL (17)

2iαA eiαL = (iα− β)D e−βL (18)

One way to proceed is to divide equation (15) by
equation (18), and realize that B/A and C/D are
equal. Let ǫ denote B/A. Similarly, dividing equa-
tion (16) by equation (17) shows that A/B also equals
C/D. Hence ǫ equals 1/ǫ, which leads to two cases:
ǫ is either 1 or -1.

ǫ equals 1/ǫ. That corresponds to the conclusion
that ψ must be either an even function (also called an
even parity solution) or an odd function (odd parity
solution). If ǫ is 1, then

ψ2(x) = A( e−iαx + eiαx), (19)

which is the even function cos(αx) times a complex
constant 2A, whose phase may be chosen arbitrarily.
If ǫ is -1, then

ψ2(x) = A( e−iαx − eiαx), (20)

which is the odd function sin(αx) times a complex
constant −2iA, whose phase may be chosen arbitrar-
ily.

The usual approach to find the solution of Brans-
den and Joachain [3], works with real values and

hence trigonometric functions. That dichotomy even-
tually results in the two distinct equations (1) and
(2). Here, we continue with a complex valued ap-
proach to the FSW problem to get the insights that
brings. So we will simply for the time being let ǫ de-
note a value which, in the solution, will be either 1
or -1. That is, ǫ represents either of the two square
roots of unity.

The four equations (15) through (18) reduce to
two equations:

ǫ 2iαA eiαL = (iα− β)C e−βL (21)

2iαA e−iαL = (iα+ β)C e−βL (22)

Dividing equation (21) by (22) gives (since ǫ = ±1,
−ǫ = ±1)

ǫ e2iαL =
β − iα

β + iα
(23)

We introduce variables u = βL and v = αL to
express (23) as

ǫ e2iv =
u− iv

u+ iv
=

(u− iv)2

u2 + v2
(24)

The values of u and v are related to the energy E via
u2 = (2m/~2)EL2, and v2 = (2m/~2) (V0 − E)L2,
so if we know u or v, then the energy E can be de-
termined. Moreover, u2 + v2 = (2m/~2)V0L

2 = R2,
say. The values of u and v lie on an R-circle. Here R
does not depend upon the energy, but is a parameter
of the FSW problem, depending only on the (spa-
tial) width and (energy) depth of the potential well
and called the ”strength parameter” [3]. R is unit-
less, and as will be seen, the number of solutions of
the FSW problem will increase as the value of R gets
larger.

Equation (24) thus simplifies to

(u− iv)2 = ǫR2e2iv (25)

We introduce the Lambert W function. Some ref-
erences to Lambert W properties and applications
are [10–12]. This function is creating a renaissance in
the solution of many problems in diverse fields. For
the present purpose, it suffices to know that Lam-
bert W (z) is the analytic multi-branch solution of
W (z)eW (z) = wew = z, where z is the complex ar-
gument of W (z). That is, if we can manipulate an
equation into the form wew = z, then the solution
will be one or all of the branches of w =W (z).

Comparing the Lambert function with the natu-
ral logarithm function log(z), we observe that they
are closely related. w = log(z) is the multi-branch
analytic function which solves the equation elog(z) =
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ew = z. The natural logarithm is very familiar, and it
has many useful properties. Lambert W is similarly
useful, once one learns to recognize problem situa-
tions where it has application.

Taking the square root of equation (25), one ob-
tains

u− iv = ±
√
ǫReiv = γReiv (26)

Here γ represent the square root of ǫ, as well as a
±1 factor which comes from taking the square root
of e2iv. That is, there are four alternatives; γ may
be any of ±1 or ±i. γ is the fourth root of unity.
Letting γ represent an arbitrary member of that set
of four alternatives is convenient, since for instance
the conjugate, reciprocal or negative of the symbol γ
is just γ, that is, another representative of that set
of four alternatives. From the conjugate of equation
(26), one obtains a simpler-looking equation

(u+ iv)eiv = γR (27)

At this point replacing eiv by cos v+ i sin v, would
result in

(u+ iv)(cos v + i sin v) = γR (28)

Supposing for instance that γ = 1, and taking the
imaginary part of equation (28) gives

v cos v + u sin v = 0 (29)

which is
v cot v = −u

which, together with the constraint that u and v lie
on the circle of radius R, is the textbook version of
the FSW solution. Keeping the solution process gen-
eral for a bit longer reveals further insights.

Consider the geometric content of equation (27).
Supposing u and v are positive, and writing w =
u + iv, the point w lies in the first quadrant. Fur-
ther, we know that the magnitude of w is R, since
u2+ v2 = R2. The effect of the factor eiv in equation
(27) is to rotate w counterclockwise by an angle of
at most R radians, so that the product weiv can lie
in any quadrant. However, the condition that weiv

equal γ (one of the four fourth roots of unity) times
the real number R, means that only certain rotational
angles v are allowable as solutions of equation (27).
The point weiv cannot lie “within” a quadrant; it
must lie on either the real or the imaginary axis. That
of course is the resonance phenomenon which is famil-
iar with regard to stabilizing the values of quantum
mechanical observables.

The geometric description of equation (27) is con-
nected to the Lambert W function. Consider the real
and imaginary parts of the expression z = wew where
w = u+ iv. We have

z = wew = (u+ iv) eu+iv = eu (u+ iv) eiv

= eu (u+ iv) (cos v + i sin v)

= eu
(

u cos v − v sin v
)

+ i eu
(

u sin v + v cos v
)

Imagine the mappings between the z-plane and
the w-plane. The map z = wew carries the w-plane
to the z-plane, and the inverse map (multi-branch) is
the Lambert W function, carrying the z-plane to the
w-plane. The two rays from the origin in the z-plane
along the imaginary axis, are the values of γr when
γ = ±i and r is a positive real. Those rays in the
z-plane correspond to the w-plane values for which

u cos v − v sin v = 0

which is equivalent to the equation

v tan v = u.

Similarly, the two rays from the origin in the z-
plane along the real axis, are the values of γr when
γ = ±1 and r is a positive real. Those rays in the
z-plane corresponds to the w-values for which

u sin v + v cos v = 0

which is equivalent to the equation

v cot v = −u.

Finally, the R-circle in the w-plane, under the
mapping z = wew, has its image as a closed (multi-
loop, self-intersecting) curve in the z-plane as shown
in figure 3.

Those set correspondences show how to visual-
ize the solution of the FSW problem in terms of the
Lambert W function. There are two alternative ap-
proaches:

(A) Start with the axes (both real and imaginary)
of the z-plane excluding the point at the origin. Let’s
call those two axes the sets X and Y , and let their
union be S = X ∪ Y . That is, the set S is four axial
rays from the origin in the z-plane. Map the axial
rays to the w-plane via the multi-branch Lambert W
function, obtaining the set W (S) = W (X) ∪W (Y )
as a family of lines in the w-plane – one line for each
combination of an axial ray and a branch of the Lam-
bert W function. Intersect that set W (S), in the w-
plane, with the circle |w| = R. That is the solution
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of the particular problem which may be simpler in one
or the other of those representations.

This technique bears some similarities to the
method used in [12] to determine the fringing fields
of a parallel plate capacitor, representative of prob-
lems that can be solved using the conformal group of
transformations.

Because the mapping is conformal, the angles be-
tween the circle in figure 2 and the various Lambert
W lines are equal to the angles of the correspond-
ing intersections in figure 3 of the multi-loop image
of the circle and the axial rays. That suggests some
possibilities for design of materials to be sensitive to
slight changes in their environment, and leads back to
the topic of the quantum well infrared photodetector
(QWIP) with which we introduced this paper.

It is worth noting that the finite square well is
“realistic” despite its simplicity, and continues to
find use in contemporary research. Harrison [2],
chapter 2, describes applications of the finite square
well in semiconductor device design. See also Miller
[13], section 2.9. Deshmukh, et al [14] use a 3-
dimensional radial finite square well model to char-
acterize the attosecond-scale time delays of the pho-
toionization of an atom of Xenon trapped within a
C60 fullerine molecule. Kocabas, et al [15], in a
study of mathematical models for metal-insulator-
metal waveguides, note (pages 13-14 of their paper)
that there is a close relationship between the one-
dimensional Schrödinger equation and the electro-
magnetic wave equation in layered media, and men-
tion several ideas for investigation. They write “It is
intriguing to ask whether such studies [of FSW solu-
tions and their relationship to changes in reflection
spectra of wells] could be useful in optics for the in-
vestigation of the effects of material interfaces”. Thus
there is plenty of opportunity to do interesting work
even with as old and familiar a topic as the finite
square well.

There is a relationship of the solutions of the fi-
nite square well to the quadratix of Hippias, which
is the solutions in the (x, y) plane of the equation
x = y cot y. One can flip the axes or make trans-
lations to get other similar expressions of the rela-
tionship between the two variables. See Corless, et
al [10].

The quadratix of Hippias can be used to solve var-
ious problems, such as the trisection of an arbitrary
angle. Harper and Driskell [16] have an enjoyable
description of construction of the quadratix, using
interactive software for geometric constructions, and

show how to use the quadratix to multiply an angle
by any factor which can be expressed as a ratio of
the lengths of two straight lines. That raises the en-
tertaining possibility that one could perhaps present
some aspects of quantum mechanics in the language
of Euclidean geometry. Quantum mechanics is al-
ready often described with a visual, diagrammatic
language.

We anticipate there may be other interesting as-
pects of this geometric-analytic solution technique.

5 Conclusions

We have presented a solution of the quantum me-
chanics problem of the allowable energy levels of a
bound particle in a 1-dimensional finite square well
potential. The solution is a “geometric-analytic”
technique utilizing the Lambert W function. The so-
lutions can be represented in either of two domains,
and a representation in the transformed domain has
a particularly simple geometry. More work on this
vibrant field of the application of the Lambert W
function is anticipated.
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