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Abstract 
 

Water and ion homeostasis has emerged as an important factor limiting chill-susceptible 

insects at low temperatures; loss of this homeostasis in the cold likely contributes to chronic 

chilling injury, and reestablishment of homeostasis is required for recovery from chilling. 

Both plastic and interspecific variation in cold tolerance correlates with enhanced defense 

of water and ion homeostasis during cold exposure, however the mechanisms are poorly 

understood. Using Gryllus crickets, I generated and tested hypotheses about the 

mechanisms underlying this variation in transport function. I first related interspecific 

variation in cold tolerance to water and ion balance in early chill coma. A rapid influx of 

Na+ to the hemolymph suggests that Na+ first leaks from the tissues, and could drive 

migration of Na+ and water to the gut.  Gryllus veletis (a more cold-tolerant species) may 

avoid or slow this Na+ leak by maintaining lower hemolymph Na+ content and lower 

osmotic pressure between the gut and hemolymph, compared to G. pennsylvanicus. 

Plasticity in defense of water and ion homeostasis during cold exposure is thought to 

involve enhanced active transport function and/or decreased permeability of 

ionoregulatory tissues. Using G. pennsylvanicus I identified specific candidate 

mechanisms related to these transport function modifications by comparing the hindgut 

and Malpighian tubule transcriptomes of warm- and cold-acclimated individuals. Cold 

acclimation modified the expression of hindgut and Malpighian tubule ion transporters, 

and hindgut structural (cytoskeletal and cell junction) genes. Rectal macromorphology and 

rectal pad scalariform complex ultrastructure were unchanged (suggesting that modified 

permeability does not involve these structural elements), however cytoskeletal 

modifications do protect rectal pad actin stability during cold shock. Cold acclimation 

decreases excretion rate (i.e. active transport) across the Malpighian tubules, which may 

be driven by modified activity of Na+-K+ ATPase but not of V-ATPase. Increased 

expression of hindgut Na+-K+ ATPase did not alter the activity of this enzyme in the 

rectum. Overall I show that cold acclimation modifies active transport function in the 

Malpighian tubules and modifies rectal pad structure to enhance cytoskeletal stability 

during cold exposure.  
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Chapter 1 

1 General introduction 

1.1 Importance of understanding insect cold physiology 

Insects account for most of the eukaryotic ectotherm diversity and biomass in terrestrial 

and freshwater ecosystems (Costello et al., 2012). This group is important not only for their 

role in ecosystem function but also for their impacts on global health and economy. Some 

estimates place the annual global value of pollination services at over $500 billion (Breeze 

et al., 2016). Ecological services of unmanaged insect populations (e.g. pollination, 

facilitation of decomposition, pest control, and as a food source) have an estimated annual 

value exceeding $57 billion in the USA alone (Losey and Vaughan, 2006). Insects also 

cause great economic loss; they consume 10-16% of pre-harvest agricultural crops globally 

(Bradshaw et al., 2016) and can have devastating impacts on forest composition. For 

example, the invasive emerald ash borer has destroyed millions of North American ash 

trees, costing billions of dollars in management (Herms and McCullough, 2014). Insect 

disease vectors have large impacts on health, especially in developing countries; mosquito-

vectored malaria alone killed nearly half a million people in 2015 (WHO, 2016).  

Effective management and distribution forecasting of insect populations requires a firm 

understanding of their thermal physiology (Hawkins et al., 2007; Somero, 2010; Lehmann 

et al., 2015). The field of insect cold tolerance gained momentum with foundational studies 

by Reginald Salt in the mid-1900s (Salt, 1953, 1961) and has expanded rapidly since the 

1980s (Zachariassen, 1985; Block et al., 1990; Lee, 1991; Bale, 1993; Sinclair et al., 2003b; 

Storey and Storey, 2012; Teets and Denlinger, 2013b). Although the literature has 

classically focused on insect freeze tolerance and freeze avoidance (Salt, 1961; Lee, 1991; 

Bale, 1993; Hochachka and Somero, 2002; Chown and Nicolson, 2004), recent mechanistic 

studies are addressing the means by which insects are limited by chilling (i.e. the 

physiological challenges of cold exposure unrelated to freezing; Baust and Rojas, 1985; 

Bale, 1987; Sinclair and Roberts, 2005).   
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As ectotherms, insect body temperatures typically reflect the ambient thermal environment 

(although some species are heterothermic; see, e.g., Heinrich, 1993). Because reaction rates 

in biological systems decrease with temperature, so too does the physiology of the insect 

as a whole (Hochachka and Somero, 2002; Tattersall et al., 2012; Sinclair, 2015). 

Temperature therefore indirectly regulates ecosystem function via direct effects on insect 

physiology and performance (Huey and Berrigan, 2001; Bale, 2002; Sunday et al., 2011). 

Insects in polar, temperate, and alpine zones spend over half of their lives overwintering 

and are thus challenged with prolonged and/or repeated cold exposures (Block et al., 1990; 

Hahn and Denlinger, 2007; Marshall and Sinclair, 2012). Cold exposures have variable 

consequences for insect energetics and homeostasis (Zachariassen, 1991; Lee, 2010; Hahn 

and Denlinger, 2011; MacMillan et al., 2015a), protein and membrane function 

(Hochachka and Somero, 2002), reproductive potential, and survival (Marshall and 

Sinclair, 2009; Williams et al., 2015). These overwintering challenges are further 

complicated by changing mean temperatures and increased climate variability (especially 

in the Northern Hemisphere; Hartmann et al., 2013; Scheffers et al., 2016), further 

necessitating adequate understanding of insect ecophysiology (Sinclair et al., 2003b; 

Kearney et al., 2009; Williams et al., 2015). 

1.2 Strategies of insect cold tolerance 

Insects have evolved a multitude of behavioural, morphological, and physiological means 

of surviving low temperatures. Behaviourally, insects can avoid the cold by migrating 

(Masters et al., 1988) or by selecting warmer microhabitats (e.g. remaining within soil or 

under bark; Willmer, 1982). Shivering and or basking (as exhibited by some flies, bees, 

butterflies, and moths) in addition to flight also help to raise thoracic temperature (Kukal 

et al., 1988; Masters et al., 1988; O'Neill et al., 1990; Heinrich, 1993; Van Dyck and 

Matthysen, 1998). Morphologically, darker pigmentation (e.g. in wood butterflies and 

ambush bugs) can facilitate active mate-searching at lower temperatures (Van Dyck and 

Matthysen, 1998; Punzalan et al., 2008).  

Insects that do not avoid cold exposure (e.g. those overwintering at high latitudes or 

altitudes) exhibit a variety of physiological strategies to survive the cold. Some species 
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overwinter in diapause – an endocrine-controlled state of developmental arrest (Danks, 

1987; Denlinger, 2002; Hahn and Denlinger, 2011). Although diapausing insects often 

exhibit enhanced cold tolerance, the mechanistic overlap between these states is unclear 

(Denlinger, 1991). Species considered most cold tolerant typically employ strategies of 

freeze tolerance or freeze avoidance (including cryoprotective dehydration; Lee, 1989; 

Bale, 1993; Ramløv, 2000; Sformo et al., 2010), and some species can switch between  

both strategies (Horwath and Duman, 1984; Sformo et al., 2009). Freeze avoidance appears 

to be more common than freeze tolerance, at least in the Northern Hemisphere (Bale, 1993; 

Sinclair et al., 2003a). Globally, however, a majority of insects are killed or injured at low 

but above-freezing temperatures and are considered chill-susceptible (Salt, 1961; Bale, 

1996). I briefly introduce the physiology of insect freeze tolerance and freeze avoidance 

strategies before outlining the physiology of chill-susceptible species (which are the focus 

of this dissertation). 

1.2.1 Freeze tolerance  

Freeze tolerance has evolved independently in multiple lineages (Sinclair et al., 2003a), 

and internal freezing (and thawing) presents many physiological challenges for the insect 

(Lee, 2010). In the generally-accepted model of freeze tolerance, insects survive internal 

ice formation by confining freezing to the extracellular space (e.g. hemolymph) and 

controlling the rate and temperature at which that freezing occurs (Zachariassen, 1991; 

Ramløv, 2000; Chown and Nicolson, 2004). Some insects survive intracellular ice 

formation (at least in certain tissues; Worland et al., 2004; Sinclair and Renault, 2010; 

Wharton, 2011) and cells may freeze at the same temperature as the hemolymph (Toxopeus 

et al., 2016). Mechanisms underlying survival of intracellular freezing have received 

relatively little attention in the literature (Sinclair and Renault, 2010), but may involve 

control of ice crystal size (Raymond and Wharton, 2016). 

As the extracellular fluid freezes, water is drawn from the cell. The consequent cytosolic 

dehydration concentrates solutes in the cytoplasm and lowers the supercooling point (SCP) 

such that intracellular freezing is generally prevented (Duman et al., 1991; Lee, 1991; 

Zachariassen, 1991; Storey, 1997; Danks, 2006). However, intracellular dehydration 
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causes osmotic stress, protein denaturation, concentration of toxins (Lee, 1991; Yi and Lee, 

2003; Zachariassen et al., 2004), and can damage the membrane and cell structure (Ramløv, 

2000). Recrystallization can also mechanically damage proteins and membranes (Storey 

and Storey, 1988). The temperature at which freezing is initiated matters; lower 

temperatures mean more rapid ice crystal growth and a larger proportion of body water 

freezes (causing further dehydration and associated challenges thereof; Duman et al., 1991; 

Zachariassen, 1991; Wharton, 2011). Damage also depends on the rates of cooling and 

rewarming; rapid cooling can lead to intracellular ice formation which is often lethal 

(Raymond and Wharton, 2016), while rapid rewarming can cause rehydration swelling and 

cell rupture (Gao and Critser, 2000; Dumont et al., 2004). To control the temperature at 

which freezing occurs, freeze-tolerant insects produce hemolymph ice-nucleating proteins 

to initiate extracellular freezing at relatively high sub-zero temperatures (e.g. -4°C in spring 

field cricket nymphs or -5°C in adult hornets; Duman et al., 1984; McKinnon, 2015), 

allowing ice to grow slowly (Duman et al., 1991; Lundheim and Zachariassen, 1993; 

Ramløv, 2000). Selection of moist microhabitats can also raise the freezing temperature 

via inoculation, as contact with external ice initiates internal freezing (Layne et al., 1990; 

Gehrken et al., 1991).  

Water management is important for surviving dehydration stress during freezing; in 

goldenrod gall fly larvae, aquaporin function is crucial for protection of cell viability during 

both freezing and thawing (Philip et al., 2008). Insects can also accumulate high (molar) 

concentrations of sugars and polyols (e.g. glycerol and sorbitol) to limit structural and 

osmotic stresses of cellular dehydration. For example, high concentrations of hemolymph 

trehalose or glucose protect isolated Malpighian tubules of New Zealand alpine weta from 

freezing damage (Neufeld and Leader, 1998). Maintaining membrane function is also 

important; modification of phospholipid composition may prevent loss of membrane 

structure during freezing (Koštál et al., 2003), while production of polyols prevent protein 

denaturation and also stabilize the membrane (Storey and Storey, 1988; Block et al., 1990).  
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1.2.2 Freeze avoidance  

Freeze-avoidant insects are killed by internal ice formation but survive sub-zero 

temperatures by depressing the SCP (Salt, 1961; Zachariassen, 1985). This strategy allows 

some insects to avoid freezing to extremely low temperatures (e.g. -54°C in a salpingid 

beetle, -63°C in a gall fly, or even -100°C in vitrified Arctic bark beetles; Miller, 1982; 

Ring, 1982; Lee, 1991; Addo-Bediako et al., 2000; Sformo et al., 2010). As in freeze-

tolerant insects, survival of freeze-avoidant insects is time- and temperature-dependent; the 

chance of spontaneous freezing increases as temperatures decrease and cold exposure 

durations increase (Salt, 1961; Sømme, 1982). 

To lower the SCP, freeze-avoiding insects typically increase their body osmolality by 

accumulating polyols and sugars (Zachariassen, 1991; Zachariassen et al., 2004), salts 

(Williams et al., 2014), or via dehydration (which effectively increases osmolality; 

Rickards et al., 1987; Lundheim and Zachariassen, 1993; Danks, 2000). For example, the 

emerald ash borer accumulates as much as 4 M glycerol in preparation for overwintering, 

which likely contributes to a 10°C reduction in SCP (Crosthwaite et al., 2011). Freeze-

avoiding insects also mask or remove internal ice-nucleators (e.g. by clearing bacteria, 

fungi, and food particles in the gut; Salt, 1953; Sømme, 1982; Zachariassen, 1985; Lee et 

al., 1991; Tsumuki et al., 1992), and may select dry microhabitats to prevent inoculative 

freezing (Layne et al., 1990; Gehrken et al., 1991). Modification of cuticular waxes 

function to prevent internal freezing following contact with external nucleators (Olsen et 

al., 1998). In the event of spontaneous nucleation, accumulation of thermal hysteresis 

factors (e.g. antifreeze proteins) help freeze-avoidant insects to suppress ice crystal growth 

(DeVries, 1982; Zachariassen, 1991; Sinclair and Chown, 2002). Antifreeze proteins also 

help to lower the probability of freezing by stabilizing supercooled hemolymph 

(Zachariassen and Husby, 1982). 

1.2.3 Chill susceptibility 

We expect insects overwintering in exposed microhabitats or particularly cold regions to 

exhibit freeze avoidance and freeze tolerance strategies. However many species in such 
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regions overwinter in insulated habitats (under snow, soil, leaf litter, bark etc.; Willmer, 

1982; Danks, 2006; Sformo et al., 2010; Udaka and Sinclair, 2014; Sinclair, 2015) or 

overwinter as embryos which have naturally low SCPs (due to their small size and 

impermeability; Sømme, 1964, 1982; Bale, 1993; Jing and Kang, 2003, Sinclair et al. 

2003a). Many of these insects are chill susceptible, whereby injury or mortality from mild 

cold exposure is unrelated to ice formation or supercooling (Bale, 1993; Lee, 2010).  

The activity of chill-susceptible insects is bounded at low temperatures by the critical 

thermal minimum (CTmin), below which insects enter chill coma, a reversible 

neuromuscular paralysis (Hosler et al., 2000; Gibert et al., 2001; Hazell and Bale, 2011; 

Findsen et al., 2014; Andersen et al., 2015). The time required to regain neuromuscular 

function upon rewarming (e.g. display correct posturing) is termed the chill coma recovery 

time (CCRT). During cold exposure, chill-susceptible insects can accumulate chilling 

injuries which manifest as loss of coordination (Koštál et al., 2006), behavioural changes 

(Yocum et al., 1994), disruption of development (Rojas and Leopold, 1996), and/or death 

(Chen et al., 1987; Koštál et al., 2004). The CTmin, CCRT, and chilling injury are 

commonly-used cold tolerance metrics for chill-susceptible insect populations (MacMillan 

and Sinclair, 2011a; Kellermann et al., 2012; Andersen et al., 2014), and they appear to 

driven by interrelated but distinct underlying processes (Ransberry et al., 2011). 

Insects in chill coma gradually lose ion and water homeostasis. Hemolymph Na+ (as well 

as Ca2+ and Mg2+) migrates to the gut lumen, driving a similar migration of water. This 

loss of hemolymph volume consequently raises hemolymph [K+] (Koštál et al., 2004; 

MacMillan and Sinclair, 2011b; Coello Alvarado, 2012; Findsen et al., 2014; MacMillan 

et al., 2014). High hemolymph [K+] during cold exposure was previously thought to 

explain muscular paralysis (MacMillan and Sinclair, 2011b), however chill coma onset – 

a relatively rapid process – precedes substantial imbalance of hemolymph K+ (which 

increases gradually over hours to days; MacMillan and Sinclair, 2011b; Armstrong et al., 

2012; MacMillan et al., 2014). Low temperature also directly inhibits muscle excitability 

(Wareham et al., 1974; MacMillan et al., 2014) and, in the migratory locust, accounts for 

a greater loss of muscle tetanic force than does increased extracellular [K+] (Findsen et al., 

2014).  
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Why insects lose ion and water balance during cold exposure is not understood, but this 

loss of balance suggests a failure of transport function. Transporting epithelia rely on 

electrochemical gradients established by active ion transport enzymes (Shaw and Stobbart, 

1963; Phillips et al., 1987). As temperatures decrease, so too do the reaction rates of these 

enzymes according to their temperature coefficient (Q10; Hochachka and Somero, 2002; 

Nespolo et al., 2003), while passive leak may be relatively unaffected (Fig. 1.1A). We  

therefore expect ionic (and osmotic) gradients to be lost over time at low temperatures, 

assuming that the cold does not substantially alter epithelial permeability (but see Motais 

and Isaia, 1972; Dokladny et al., 2006; Ionenko et al., 2010). The CTmin thus appears to 

approximate the theoretical threshold below which an insect fails to maintain transport 

function (in addition to marking the temperature of neuromuscular silencing). 

Recovery from chill coma corresponds with the re-establishment of water and ion 

homeostasis (MacMillan et al 2012). A low CTmin typically correlates with shorter CCRT 

(Ransberry et al., 2011), however the process of chill coma entry is somewhat 

complementary to that of chill coma recovery. Rewarming of the body to temperatures 

required for generation of muscular action potentials typically precedes an insect’s CCRT 

(i.e. the actual regaining of neuromuscular function; Macdonald et al., 2004). As ion and 

water imbalance is progressive during cold exposure, increasing cold exposure durations 

are reflected by longer CCRTs (Macdonald et al., 2004; MacMillan et al., 2012). The 

CCRT therefore approximates the relative rate at which insects restore water and ion 

balance (Koštál et al., 2007; MacMillan et al., 2012). If cold exposure is deep or prolonged, 

insects may be unable to restore homeostasis and can accumulate chilling injuries (or fail 

to recover entirely; Lavy and Verhoef, 1998; Gibert et al., 2001; Macdonald et al., 2004; 

MacMillan, 2013). 
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Figure 1.1. Conceptual models for loss of homeostasis in chill-susceptible insects 

during cold exposure (A) and mechanisms by which cold acclimation may alter 

transport function to defend homeostasis (B, C). The theoretical threshold temperature 

at which passive ion diffusion exceeds active ion transport could be lowered by reducing 

passive diffusion or by increasing active transport at lower temperatures (indicated in 

orange on panels B and C). Modified from MacMillan and Sinclair (2011a). 

 

We understand relatively little about mechanisms underlying injuries unrelated to freezing 

(Sinclair and Roberts, 2005; MacMillan et al., 2015c), and the nature of such injuries also 

differs depending on the time and temperature of cold exposure. Brief cold shock causes 

acute (direct) injury while longer, milder cold exposures lead to chronic (indirect) injuries 

(Macdonald et al., 2004; Sinclair and Roberts, 2005). Potential mechanisms of acute injury 

include apoptosis, protein misfolding, and damage to DNA, the cell membrane, and 
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cytoskeleton (Ramløv, 2000; Yi et al., 2007; MacMillan et al., 2009; Teets et al., 2012; 

Yao and Somero, 2012; Štětina et al., 2015).  

Chronic chilling injuries are accumulated gradually over days to months (Lee, 2010; Koštál 

et al., 2011; MacMillan, 2013), and proposed mechanisms include energy depletion and 

build-up of metabolic wastes (Koštál et al., 2011; Teets and Denlinger, 2013b). In addition 

to membrane damage and oxidative stress (Rojas and Leopold, 1996; Lalouette et al., 2011) 

osmotic stress (e.g. ion imbalance) during prolonged cold exposure is also thought to 

contribute to chronic chilling injury (Koštál et al., 2006; Lee, 2010; Findsen et al., 2014). 

Loss of ion balance leads to failure of trans-membrane potentials (e.g. neuromuscular 

impairment) and disruption of signaling pathways (which can initiate apoptosis; Lee, 1991; 

Heimlich et al., 2004; Michaud and Denlinger, 2004; Koštál et al., 2007; Teets et al., 2013; 

MacMillan et al., 2015c). Loss of transport function following enzyme misfolding and 

cytoskeletal failure (e.g. actin depolymerization) at low temperatures can further 

exacerbate loss of water and balance (Khurana, 2000; Kim et al., 2006; Kayukawa and 

Ishikawa, 2009). The gut – which is an important regulator of ion and water balance – may 

be particularly susceptible to damage from cold exposure (at least with freezing; Izumi et 

al., 2005; Teets et al., 2011). Re-establishment of ion and water balance is necessary for 

recovery, but is energetically costly (Koštál et al., 2007) and therefore has reproductive 

and fitness consequences for overwintering insects (Marshall and Sinclair, 2009; Arrese 

and Soulages, 2010).  

 

1.3 Plasticity of cold tolerance 

Insects can modify their cold tolerance in response to thermal conditions, and the nature 

and extent of this plasticity varies among lineages (Lee et al., 1987; Koštál et al., 2007; 

Findsen et al., 2013; Foray et al., 2013; Kvist et al., 2013; Jakobs et al., 2015; MacMillan 

et al., 2015d; Schoville et al., 2015). In some cases, plasticity can even account for a larger 

proportion of cold tolerance variation than do interspecific (adaptive) differences 

(Ayrinhac et al., 2004; Hoffmann et al., 2005; Koštál et al., 2012; McKinnon, 2015). This 

plasticity can be invoked by prior chilling at both short- and long-term scales (Chen et al., 
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1987; Sinclair and Roberts, 2005; Somero, 2010).  Mild cold exposures on the scale of 

hours (and in some cases in as little as ten minutes) can improve insect cold tolerance by 

the process of rapid cold-hardening (RCH; Lee et al., 1987; Chen et al., 1987). In the 

process of cold acclimation (akin to seasonal acclimatization), cold tolerance is enhanced 

by mild chilling over days, weeks, or months (Ding et al., 2003; Sinclair and Roberts, 2005; 

Rako and Hoffmann, 2006; Coello Alvarado et al., 2015). Insects can also be deacclimated 

by exposure to warmer conditions; simulated winter warm-snaps increase the SCP and 

lower hemolymph cryoprotectant content in Anise swallowtails and (irreversibly) in 

freeze-avoiding emerald ash borers (Sobek-Swant et al., 2012; Williams et al., 2014). 

1.3.1 Rapid cold-hardening  

RCH lowers the CTmin (Overgaard et al., 2005), can reduce the time required to re-establish 

homeostasis upon recovery (i.e. reduce the CCRT; Overgaard et al., 2005; Findsen et al., 

2013), and improves survival of acute and chronic cold exposure (Chen et al., 1987; Lee et 

al., 1987; Yi et al., 2007). This swift plastic response likely prepares insects for the 

physiological challenges of daily temperature fluctuations or cold fronts (Gerken et al., 

2015). The mechanisms of RCH remain poorly understood, however a number of candidate 

mechanisms are proposed (Teets et al., 2012; Teets and Denlinger, 2013b; Gerken et al., 

2015). For example, RCH can increase hemolymph osmolality, glycerol content (Chen et 

al., 1987), and membrane fatty acid unsaturation (Overgaard et al., 2005; Michaud and 

Denlinger, 2007), which may account for a decreased SCP and protection against loss of 

membrane fluidity, respectively. However, these changes with RCH are not necessarily 

consistent across species (MacMillan et al., 2009). RCH can also alter or indirectly 

influence ion transport, signaling, apoptosis and autophagy, and the cytoskeleton (at least, 

in Drosophila melanogaster; Overgaard et al., 2005; Teets et al., 2012; Gerken et al., 2015) 

which may help to maintain homeostasis, tissue structure, and repair chilling injuries.  
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1.3.2 Cold acclimation  

Cold acclimation regimes typically involve constant exposure to low temperatures (but 

may mimic fall-like conditions of decreasing or fluctuating temperatures and sometimes 

shorter photoperiods; Gibert and Huey, 2001; Koštál et al., 2006; Koštál et al., 2007; 

Lachenicht et al., 2010; Coello Alvarado et al., 2015; Jakobs et al., 2015; Sinclair et al., 

2015; MacMillan et al., 2016), but may also include dietary manipulation (Koštál et al., 

2012; McKinnon, 2015). These manipulations decrease the CTmin and CCRT, improve 

survival from cold exposure (Gibert and Huey, 2001; Ayrinhac et al., 2004; Sinclair and 

Roberts, 2005; MacMillan and Sinclair, 2011b; Coello Alvarado, 2012; MacMillan et al., 

2015b). Enhancement of cold tolerance by acclimation can be more substantial than by 

RCH (at least for some metrics; Gibert and Huey, 2001; Ayrinhac et al., 2004; Sinclair and 

Roberts, 2005; Rako and Hoffmann, 2006; Ransberry et al., 2011). Cold acclimation can 

even confer freeze-tolerance to otherwise chill-susceptible D. melanogaster and spring 

field crickets (Koštál et al., 2012; McKinnon, 2015). RCH and cold acclimation can act 

synergistically (Gerken et al., 2015) or antagonistically (Rajamohan and Sinclair, 2009). 

For example, rearing temperature explains a greater variation in the CTmin and CCRT than 

does population latitude in D. melanogaster (Addo-Bediako et al., 2000; Gibert and Huey, 

2001). The mechanistic overlap between cold acclimation and RCH is therefore not entirely 

clear (Sinclair and Roberts, 2005; Rako and Hoffmann, 2006; Teets and Denlinger, 2013b; 

Gerken et al., 2015). 

Mechanisms underlying cold acclimation are not well-understood in general (Gerken et al., 

2015), but this process should involve physiological modifications that either protect 

against chilling injury and/or facilitate repair of injuries upon rewarming. A number of 

studies have provided hints as to the potential mechanisms; in addition to changing 

membrane composition, cold acclimation alters expression of heat shock proteins (hsps), 

cryoprotectants, apoptosis and autophagy factors, cytoskeletal components, and ion 

transporters (Lee, 1991; Hazel, 1995; Chown and Nicolson, 2004; Loeschcke and 

Sørensen, 2005; Teets et al., 2012).  
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Modifications to maintain membrane fluidity in the cold (e.g. decreased fatty acid 

saturation)  protect against acute chilling damage in cold-acclimated arctiid moths and flies 

Chymomyza costata, Delia antiqua, and D. melanogaster (Koštál and Simek, 1998; Koštál 

et al., 2003; Overgaard et al., 2005; Kayukawa et al., 2007). Maintenance of membrane 

fluidity at lower temperatures – which is important for water and ion transport function – 

also likely protects against chronic chilling injuries (Gonzalez-Mariscal et al., 1984; 

Khurana, 2000; section 1.4.3). In addition to their roles in freeze-tolerance and freeze-

avoidance, cryoprotectants (e.g. sugars, polyols, and amino acids) accumulated during cold 

acclimation can also stabilize the membrane, enzymes, and other proteins to prevent 

chilling damage (Lee, 1991; Overgaard et al., 2007).  

Expression of hsps can prevent chilling injuries not only by maintaining protein folding 

but also by stabilizing the cytoskeleton and preventing cell death (Huot et al., 1996; 

Russotti et al., 1997; Sonoda et al., 2006; Štětina et al., 2015). For example, suppression of 

hsp70 and hsp23 decreases cold survival in Sarcophaga crassipalpis flies (Rinehart et al., 

2007), and hsp70 among others inhibits stress-induced apoptosis (Yi et al., 2007). Hsps are 

also important for repair of damage; RNA-interference of hsp70 in Pyrrhocoris apterous 

bugs hinders repair of chilling injuries (Koštál and Tollarová-Borovanská, 2009). 

Acclimation to cold or fluctuating temperatures increases expression of genes involved in 

repair of DNA and oxidative damage in D. melanogaster and alfalfa leaf cutter bees 

(Torson et al., 2015; MacMillan et al., 2016). Upregulation of genes promoting apoptosis 

and autophagy likely function to clear cold-damaged cells and cellular components, 

respectively (Teets and Denlinger, 2013a; Gerken et al., 2015). However, cold-hardening 

inhibits apoptotic cell death following cold shock in D. melanogaster (Yi et al., 2007). 

As the cytoskeleton is involved in many of the aforementioned processes which are thought 

to underlie chilling injury, it is not surprising that acquired cold tolerance (i.e. RCH or 

acclimation) often correlates with changes in the expression of cytoskeletal genes (Teets et 

al., 2012; Gerken et al., 2015; Torson et al., 2015; MacMillan et al., 2016). These changes 

may act to protect cell volume and transport across the membrane (Cantiello, 1995; 

Khurana, 2000; Pedersen et al., 2001), tissue integrity and permeability (Madara et al., 
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1986; Hartsock and Nelson, 2008), and regulate autophagy (Monastyrska et al., 2008; 

Monastyrska et al., 2009; Lee and Yao, 2010; Aguilera et al., 2012).   

Recovery from cold exposure and avoidance of chilling injury are governed in part by 

water and ion homeostasis (see section 1.2.3). Cold-acclimated insects defend transport 

function to lower temperatures (Koštál et al., 2004; Koštál et al., 2006; MacMillan et al., 

2015a) and recover water and ion balance faster upon rewarming, compared to warm-

acclimated conspecifics (Rako and Hoffmann, 2006; Ransberry et al., 2011; Coello 

Alvarado et al., 2015). In this dissertation I focus on understanding the mechanisms 

underlying changes in transport function in cold-acclimated insects (and, to a lesser extent, 

the means by which cold acclimation defense against chilling injury). The mechanisms 

underlying modified transport function in cold-acclimated insects are introduced in more 

detail in section 1.4.3).  

 

1.4 Regulation of ion and water balance 

In insects, ion and water balance are regulated by the Malpighian tubules (which produce 

the primary urine) and the hindgut (where water and ions are selectively reabsorbed). Much 

of our basic understanding about these processes in terrestrial insects is derived from 

studies in locusts (Dow, 1981; Chamberlin and Phillips, 1982; Hanrahan and Phillips, 

1982; Morgan and Mordue, 1985; Phillips et al., 1987; Phillips and Audsley, 1995; Findsen 

et al., 2014) and, as Orthoptera is the focus of this dissertation, the following sections 

pertain primarily to water and ion regulation in this group. 

1.4.1 Primary urine production by the Malpighian tubules 

The Malpighian tubules excrete water, ions, toxins, and metabolic wastes (the primary 

urine), and transport water and ions at some of the highest rates known among animals 

(e.g. the Malpighian tubules of blood-fed Rhodnius prolixus bugs turn over total cellular 

Cl- and water volume every 5 and 15 seconds, respectively; Berridge, 1972; Beyenbach, 

2003; O'Donnell and Simpson, 2008). Malpighian tubules may be simple or differentiated 
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into distal/main (secreting) or proximal (reabsorbing) regions (Irvine, 1969). Many 

endopterygotes including dipterans, hymenopterans, and lepidopterans possess two 

functionally-distinct tubule cell types: the numerous principal cells (responsible for water 

and cation transport, Fig. 1.2) and stellate cells (specialized for transcellular water transport 

and acting as Cl- shunts; O'Donnell et al., 1996; Coast, 2012; Halberg et al., 2015). 

Evidence of stellate cells in Orthoptera, Hemiptera, and Coleoptera is limited (Halberg et 

al., 2015); transport of water and ions in these lineages may occur across an epithelium 

composed of a single (principal) cell type. Transport across the Malpighian tubules is also 

regulated by a suite of neuropeptides which differ depending on taxonomic group and 

target cell (principal or stellate; O'Donnell et al., 1996; Coast, 2007; Halberg et al., 2015).  

The primary urine is isosmotic to the hemolymph (Ramsay, 1954), however excretion by 

the Malpighian tubules relies on local osmotic and electrochemical gradients established 

by facilitated, unidirectional cation transport at the folded apical border of principal cells 

(Berridge and Oschman, 1969; Pannabecker, 1995). First, basolateral Na+-K+ ATPase 

(NKA) generates a high extracellular (hemolymph) [Na+], favoring secondary active 

transport of Na+, K+, and Cl- from the hemolymph into the cell by Na+-K+-Cl- (NKCC), K+ 

channels, and K+-Cl- cotransporters (Ianowski and O'Donnell, 2004). Intracellular carbonic 

anhydrase (CA) catalyzes the hydration of CO2 to produce carbonic acid (H2CO3), which 

spontaneously dissociates into a proton and bicarbonate (Edwards and Patton, 1967; 

Maddrell and O'Donnell, 1992; Wessing et al., 1997; Chintapalli et al., 2013). Bicarbonate 

is used to import hemolymph Cl- via basolateral Cl--HCO3
- exchangers (Coast, 2012). 

Protons are exported to the lumen by apical H+-ATPase, creating a lumen-positive 

transcellular voltage potential (Wessing et al., 1997; Coast, 2009; Harvey, 2009; 

Chintapalli et al., 2013). Lumenal protons are then exchanged for intracellular Na+ or K+ 

by cation-H+ antiporters, resulting in a net cation secretion (Klein, 1992; Maddrell and 

O'Donnell, 1992; Harvey, 2009). Para- and transcellular Cl- transport is passive and driven 

by the lumen-positive transcellular voltage potential (Nicolson, 1993; Coast, 1998; 

Ianowski and O'Donnell, 2006). Passive movement of water to the lumen by trans- or 

paracellular routes is favorited by transcellular osmotic gradients (O'Donnell and Maddrell, 

1983; Collier and O'Donnell, 1997; Spring et al., 2009; Coast, 2012).  
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Figure 1.2. A simplified schematic of water and ion transport across the distal 

Malpighian tubules of an endopterygote insect. Na+, K+ and Cl- enter the principal cell 

via basolateral Na+- K+-2Cl- cotransporter (NKCC) among other transporters (1). Carbonic 

anhydrase (CA) facilitates the production of protons which are then pumped into the lumen 

by apical V-ATPase (V-ATP) (2,3). Intracellular Na+ and K+ are transported to the lumen 

in exchange for protons (4). The lumen-positive voltage potential drives Cl- (via 

paracellular shunt), while the osmotic gradient favors movement of water to the lumen (via 

paracellular routes as well as transcellularly via aquaporins) (5).  
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The ratio of K+ to Na+ in the primary urine may be modified depending on hemolymph 

composition and diet (e.g. K+ is the dominant excreted ion in herbivorous insects, while 

some blood-feeders favor excretion of Na+; Berridge and Oschman, 1969; Irvine, 1969; 

Maddrell and O'Donnell, 1992). In some species the primary urine is also partially modified 

by reabsorption of water and ions at the proximal Malpighian tubule (Beyenbach, 1995; 

Coast, 1998; Beyenbach, 2003). Urine mixes with the gut contents at the anterior hindgut, 

and this mixture is further modified by selective reabsorption across the ileum and rectum 

before voiding (Coast, 2007; O'Donnell and Simpson, 2008). 

1.4.2 Reabsorption across the rectum 

Conservation of water, ions, and other solutes is achieved by selective reabsorption across 

the hindgut. The final excreta may be hypo- or hyperosmotic to the hemolymph, as the 

proportion of gut water or ions recovered can range from 10 to 90% depending on the needs 

of the insect (Wall and Oschman, 1970; Phillips et al., 1987; O'Donnell and Simpson, 

2008). In most insects the ileum reabsorbs some water and ions but is a major site of pH 

regulation (whereby protons, carried as NH4
+, are exported in exchange for Na+; Phillips 

et al., 1987; Phillips et al., 1988; O'Donnell and Simpson, 2008). The majority of water and 

ion reabsorption occurs across the rectal epithelium, which may be specialized as rectal 

papillae (e.g. in blowflies) or rectal pads (in cockroaches and orthopterans; Phillips, 1964; 

Oschman and Wall, 1969; Berridge, 1972; Phillips et al., 1987). Reabsorption across the 

rectum is regulated by a suite of diuretic and antidiuretic peptides (for more details, see 

Schooley et al., 2012). 

The orthopteran rectum is comprised of six rectal pads composed of well-tracheated, 

thickened, pseudostratified columnar epithelium (Oschman and Wall, 1969; Berridge, 

1972). The rectum is lined by thin, porous, unsclerotized cuticle that is permeable to water, 

amino acids, and monovalent ions (as well as Ca 2+ and Mg2+) but which excludes larger 

waste products (Phillips et al., 1987). Below the cuticle the apical plasma membrane is in-

folded and rich in mitochondria (Oschman and Wall, 1969). In the most apical and basal 

cell regions, adjacent cells are closely-apposed by tight and septate (or adherens) junctions 

(Satir and Gilula, 1973; Phillips et al., 1987; Tepass et al., 2001; Matter and Balda, 2003). 
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In the mid-cell region, invaginated lateral cell borders form open, convoluted (stacked), 

intercellular channels (Wall and Oschman, 1970). These convoluted plasma membranes 

are packed with mitochondria, together forming the ‘scalariform complex’ (Hanrahan and 

Phillips, 1982; Chapman, 2013; Fig. 1.3).  Basally, channels of the scalariform complex 

open into epithelial sinuses (Wall and Oschman, 1970; Phillips et al., 1987). Absorbate 

from the sinuses is further filtered by the basal lamina and must pass through valves in the 

underlying circular muscle to reach the hemolymph (Oschman and Wall, 1969). 

Active transport of Na+, K+, and Cl- establishes local osmotic gradients in the rectal pad, 

driving passive uptake of water from the lumen (despite an opposing osmotic gradient 

between the lumen and hemolymph; Wall and Oschman, 1970; Phillips et al., 1987). 

Chloride from the gut lumen is transported into the rectal epithelial cells by an apical Cl- 

pump (the activity of which is regulated by neuropeptides acting via cAMP; Phillips et al., 

1988; Coast, 2007; O'Donnell and Simpson, 2008). This negative intracellular voltage 

potential favors passive influx of Na+ and K+ through apical channels (Phillips et al., 1987; 

Phillips and Audsley, 1995). Influx of K+ from the lumen is also favored by a steep pre-

existing ionic gradient, as lumen [K+] is much higher than the hemolymph (Phillips et al., 

1987). At the scalariform complex, NKA pumps intracellular Na+ into the meandering 

paracellular channels in exchange for extracellular K+ (Lechleitner and Phillips, 1988). 

This high [Na+] within the channels drives paracellular migration of water from the lumen 

to the hemolymph (Phillips et al., 1987). Solute reabsorption across the rectal pads is 

predominately transcellular (Phillips et al., 1987), however some ions and amino acids are 

swept to the hemolymph along with water (Berridge, 1972). 
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Figure 1.3. (above) A schematic of the rectum of an orthopteran insect (in cross 

section) (A) with a simplified schematic of water and ion transport across the rectal 

pad epithelium (B, detail). The basolateral borders of the epithelial cells are mitochondria-

dense and form meandering paracellular channels lined with Na+-K+ ATPase (Na+ pump), 

together comprising the scalariform complex. High [Na+] within the channels (established 

by the Na+ pump) favors migration of water from the lumen to the hemolymph (otherwise 

against osmotic and ionic gradients between the hemolymph and gut). Some extracellular 

Na+ in the basolateral region is recycled into the cell. An apical semi-permeable cuticle 

filters the absorbate. 

 

1.4.3 The role of cold acclimation in transport function 

Because transport is temperature-sensitive, one might reasonably predict that cold 

acclimation modifies transport processes to maintain that function in the cold, but our 

current understanding of any such modifications is incomplete (Gibert and Huey, 2001; 

Ransberry et al., 2011; Findsen et al., 2013; MacMillan et al., 2015a). The severity of ion 

and water imbalance also impacts both chill coma recovery and chilling injury, and cold 

acclimation confers chill hardiness by improving defense of homeostasis at low 

temperatures and/or allowing faster re-establishment of homeostasis upon recovery. 

Terhzaz et al. (2015) recently showed that a neuropeptide (capa) which mediates water and 

ion balance is important for recovery from cold stress in Drosophila, however the role of 

the endocrine system during cold acclimation is generally not well explored and not 

addressed in this dissertation. I instead focus on the tissues regulating homeostasis (the 

rectum and Malpighian tubules), which are obvious targets for modification during the cold 

acclimation process.  

Maintenance of transport function at low temperatures in the cold-acclimated hindgut and 

Malpighian tubules is likely achieved by either of two mechanisms: 1) by reduced rates of 

diffusion (Fig. 1.1B) or 2) by enhanced active transport to exceed passive diffusion (Fig. 

1.1C). Here I address these hypotheses based on the following rationale: reduction in 

passive diffusion – which has received very little attention – likely involves modifications 

to epithelial structure that decrease ion and water permeability, e.g. via changes to cellular 

adhesion or the cytoskeleton (Gonzalez-Mariscal et al., 1984; Belous, 1992; Behrens et al., 

1993; Turner et al., 1997; Kim et al., 2006). Because the primary urine is isosmotic to the 
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hemolymph, I do not expect Malpighian tubule permeability to change appreciably during 

cold acclimation. Instead, modification of transport function in cold-acclimated 

Malpighian tubules is more likely to reflect changes in active transport. Active transport 

rates could be maintained at low temperatures by increasing the expression, recruitment, 

and/or activity of active ion pumps (Koštál et al., 2007; McMullen and Storey, 2008; 

MacMillan et al., 2012; MacMillan et al., 2015a; MacMillan et al., 2015d). As the gut 

maintains ionic and osmotic gradients between the hemolymph and lumen, leak of water 

and Na+ during cold exposure should occur by way of hindgut (or midgut) epithelium 

(Treherne, 1967). Epithelial permeability is therefore a likely target for modification during 

the cold acclimation process in the hindgut. Because reabsorption across the rectal pads 

relies on active transport, cold acclimation may also act to modify the function of ion 

transporters (e.g. NKA) at low temperatures.   

 

1.5 Dissertation overview 

In this dissertation I focused on generating and testing hypotheses about candidate 

mechanisms underlying a) the loss of ion and water homeostasis in chill-susceptible insects 

during cold exposure, and b) variation in cold tolerance as related to ion and water 

homeostasis. I also generate and test some candidate mechanisms of chilling injury. My 

approach was to exploit both plastic (intraspecific) and interspecific variation in insect cold 

tolerance and relate that variation to differences in transport function (active and passive; 

Fig. 1). For this work I used chill-susceptible adult female Gryllus crickets (Orthoptera: 

Gryllidae). To investigate interspecific variation (Chapter 2) I compared Gryllus 

pennsylvanicus (the fall field cricket) and G. veletis (the spring field cricket). These species 

are emerging models for studies of insect cold tolerance plasticity and homeostasis at low 

temperatures (MacMillan and Sinclair, 2011b; MacMillan et al., 2012; Coello Alvarado et 

al., 2015; McKinnon, 2015). Gryllus pennsylvanicus has an obligate embryonic diapause 

and is less cold-tolerant than G. veletis (which has a late-instar facultative diapause). I 

investigate cold tolerance plasticity by comparing G. pennsylvanicus acclimated to fall-

like conditions (12°C and 10 h day length) to those acclimated to summer-like conditions 
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(25°C, 14 h day length; Chapters 3-5). Cold acclimation to fall-like conditions improves 

defense of ion and water homeostasis, lowers the CTmin, and improves survival following 

cold exposure (Coello Alvarado et al., 2015). 

In Chapter 2 I explored ion and water balance in the early stages of cold exposure 1) to 

understand how rapidly homeostasis is lost, 2) to determine whether adaptive variation in 

cold tolerance corresponds with defense of homeostasis, and 3) to use the patterns of ion 

and water balance in Gryllus spp. to generate hypotheses about the mechanisms underlying 

loss of homeostasis and the means by which more cold-tolerant species defend 

homeostasis. I found that hemolymph Na+ balance is lost rapidly during the first hour of 

cold exposure, and may result from leak of Na+ from the tissues. Patterns of hemolymph 

[Na+] differed from those in later (>12 h) stages of cold exposure, suggesting multiple 

processes underlying loss of ion and water balance. Patterns of ion and water balance 

during early cold exposure were similar for the two cricket species and therefore did not 

reflect interspecific variation in cold tolerance. However, ion and water gradients pre-cold 

exposure did differ between the two species. 

In Chapter 3 I used a tissue-specific comparative transcriptomic approach to generate 

candidate mechanistic hypotheses about cold tolerance plasticity. Specifically, I compared 

the Malpighian tubule and hindgut transcriptomes of warm- and cold-acclimated G. 

pennsylvanicus. Differential gene expression profiles suggest that cold acclimation protects 

against a loss of hemolymph volume and Na+ in the cold by three potential mechanisms: 

1) by lowering primary urine production rates via reduced expression of V-ATPase (and 

perhaps CA) in the Malpighian tubules, 2) by increasing water and Na+ uptake across the 

hindgut via increased expression of NKA, and 3) by restructuring of the epithelium to 

prevent ion and water leak. Cell or tissue restructuring and altered transport function could 

also protect from direct and indirect chilling injury, respectively. I used the candidate cold 

tolerance genes identified in this chapter to direct my approach for Chapters 4 and 5. 

In Chapter 4 I aimed to address the hypothesis that cold acclimation alters ion and water 

diffusion (leak). In the context of tissue permeability (and chilling injury) I quantified the 

cell and tissue structural changes accompanying cold acclimation by comparing warm- and 
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cold-acclimated G. pennsylvanicus for hindgut structural differences at three levels: 1) 

macromorphology of the rectum (via brightfield microscopy), 2) ultrastructure of the rectal 

pad scalariform complexes (via transmission electron microscopy), and 3) stability of the 

actin cytoskeleton following a cold shock (via fluorescence confocal microscopy). I found 

no effect of cold acclimation on macromorphology or scalariform complex ultrastructure, 

however cold acclimation protected (and even enhanced) filamentous actin following cold 

shock. I discuss how protection of cytoskeletal structure at low temperatures can both 

maintain transport function and prevent chilling injury. 

In Chapter 5 I test the hypothesis that cold acclimation alters active transport function. 

Using warm- and cold-acclimated G. pennsylvanicus, active transport function across the 

Malpighian tubules was first quantified by Ramsay assay. I found that cold acclimation 

decreased primary urine production rates across a broad range of temperatures, indicating 

a decrease in active ion pump activity and/or quantity. Although cold acclimation 

decreased V-ATPase expression in the Malpighian tubules (Chapter 3), the activity of this 

enzyme was not modified. NKA activity in the Malpighian tubules may be increased by 

cold acclimation, and this could drive reduced urine production, retain hemolymph Na+, 

and rid excess hemolymph K+. NKA activity in the rectum was not modified by cold 

acclimation (despite an increase in transcript abundance). Overall, shifts in active transport 

across the Malpighian tubules that slow primary urine production may allow cold-

acclimated insects to retain hemolymph volume and ion balance during cold exposure.  

In Chapter 6 I synthesize my findings into a conceptual framework about how cold 

acclimation alters transport function to prevent chilling injury and loss of homeostasis 

during cold exposure. My results support the hypothesis that altered active transport 

following cold acclimation help to maintain hemolymph volume and mitigate leak, but I 

find no evidence of a role for modification of passive diffusion based on rectal structural 

changes. I suggest future directions to strengthen our understanding of the cold acclimation 

process as related to homeostasis and chilling injury, and discuss some additional candidate 

mechanisms that warrant further exploration.  
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Chapter 2 

2 Ion and water balance in Gryllus crickets during the first 

twelve hours of cold exposure 

A version of this chapter was published in the Journal of Insect Physiology (Des 

Marteaux and Sinclair, 2016). 

 

2.1 Introduction 

Because insects are ectotherms, many of their physiological processes are directly 

influenced by ambient temperature. The mechanisms that underlie thermal physiology 

therefore determine how climate impacts insect performance and, consequently, ecosystem 

function (Sinclair et al., 2003; Chown and Terblanche, 2006; Somero, 2010; Williams et 

al., 2015). Insect performance is bounded at low temperatures by the critical thermal 

minimum (CTmin), below which insects enter a reversible paralysis termed chill coma. 

Insects lose ion and water homeostasis when in chill coma and regain homeostasis during 

recovery (Koštál et al., 2004; MacMillan et al., 2012). The ability to survive and maintain 

homeostasis in the cold is variable and plastic; cold-acclimated or -adapted insect 

populations sustain water and ion balance at lower temperatures than their warm-

acclimated or -adapted counterparts (Gibert and Huey, 2001; Ayrinhac et al., 2004; Koštál 

et al., 2004; Koštál et al., 2006; Andersen et al., 2014; Coello Alvarado et al., 2015; 

MacMillan et al., 2015a).  

 

In several insects (including crickets, locusts, and cockroaches), Na+ and water migrate out 

of the hemolymph during chilling, while hemolymph [K+] increases (Koštál et al., 2006; 

MacMillan and Sinclair, 2011; Andersen et al., 2013; Findsen et al., 2014; Coello Alvarado 

et al., 2015). The migration of Na+ is likely a result of reduced ion pumping (such that 

active ion transport no longer exceeds passive diffusion) and, as water balance is often 

tightly linked to Na+ gradients, hemolymph water balance is lost as Na+ balance is lost. 
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Increased hemolymph [K+] is thought to result from decreased hemolymph volume 

(MacMillan and Sinclair, 2011). Chill coma onset occurs rapidly (within minutes of cold 

exposure) and appears to be mechanistically unrelated to processes underlying loss of water 

and ion homeostasis (Findsen et al., 2014; MacMillan et al., 2014; Andersen et al., 2015). 

In particular, previous authors have not observed a loss of water or ion homeostasis 

associated with chill coma paralysis within the first few minutes of cold exposure (Findsen 

et al., 2014; MacMillan et al., 2014; Andersen et al., 2015). However, loss of water and ion 

homeostasis during chilling is readily apparent at longer timescales (hours to days) in the 

context of studies of chill coma recovery time (CCRT) and chilling injury (e.g. Koštál et 

al., 2006; MacMillan and Sinclair, 2011; Findsen et al., 2013). In Gryllus pennsylvanicus 

crickets, the largest decrease in hemolymph [Na+] and increase in hemolymph [K+] occurs 

within the first 12 h of cold exposure (MacMillan and Sinclair, 2011), but we do not know 

how rapidly Na+ or K+ balance is lost, or whether the patterns of homeostasis in the initial 

cold exposure reflect those observed at longer timescales. Similarly, how ion and water 

imbalance during chilling relates to or predicts survival and chilling injury is not well 

understood (MacMillan et al., 2014). 

 

Insects vary in their ability to maintain ion and water balance in the cold (Koštál et al., 

2004; Koštál et al., 2007; Coello Alvarado et al., 2015; MacMillan et al., 2015a; MacMillan 

et al., 2015c). Our understanding about the mechanisms underlying this variation is 

incomplete (Gibert and Huey, 2001; Ransberry et al., 2011), but recent studies have 

revealed a potential role for modified Na+ balance. Cold-acclimated Drosophila 

melanogaster maintain low hemolymph [Na+] (and consequently low [K+]) in both warm 

and cold conditions, and may also exhibit lower Na+ transport capacity (MacMillan et al., 

2015a; MacMillan et al., 2015c). Gryllus veletis (Alexander and Bigelow) nymphs 

maintain tissue and hemolymph Na+ balance at 0°C, while G. pennsylvanicus adults (which 

are less chill tolerant) lose this Na+ balance at 0°C unless they have undergone prior cold 

acclimation (Coello Alvarado et al., 2015).  

 

Here I explored the patterns of water and ion balance at the organismal and tissue levels 

during the first 12 h of chilling with the aim of testing and generating mechanistic 
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hypotheses for why homeostasis is lost in the cold, and why chill-tolerant insects are better 

at maintaining homeostasis at low temperatures. I used two species of field cricket: G. 

pennsylvanicus (the species in which the initial model of loss of ion and water homeostasis 

in the cold was developed), and G. veletis, which are more chill-tolerant and maintain ion 

and water homeostasis to lower temperatures (Coello Alvarado et al., 2015).  

 

2.2 Methods 

Gryllus pennsylvanicus and G. veletis colonies originated from individuals collected from 

the University of Toronto at Mississauga campus, Ontario (2004) and the University of 

Lethbridge, Alberta (2010), respectively.  I reared crickets under constant summer-like 

conditions (25°C, 14 light:10 dark photoperiod, 70% RH) at the University of Western 

Ontario Biotron Research Center, as described previously (MacMillan and Sinclair, 2011; 

Coello Alvarado et al., 2015). Crickets were housed in transparent plastic containers with 

stacked cardboard egg cartons for shelter and provided with tap water and ad libitum 

commercial rabbit food (Little Friends Original Rabbit Food, Martin Mills, Elmira, ON, 

Canada). I collected eggs in containers of moist vermiculite and sterile sand; G. veletis eggs 

hatched after two weeks, and I placed G. pennsylvanicus eggs at 4°C to accommodate an 

obligate three-month (minimum) diapause (Rakshpal, 1962) before returning them to 25°C 

to hatch. For all experiments I used adult virgin female G. pennsylvanicus and G. veletis 

(approximately 1 and 5 weeks post final molt, respectively). The difference in age reflected 

a longer development time for G. veletis. For one week prior to experiments, crickets were 

held individually in 180 mL transparent cups (Polar Plastics, Summit Food Distributors, 

London, ON, Canada) with mesh fabric lids and containing egg carton shelters, rabbit food, 

and water. Isolation prevented cannibalism and any associated changes in gut contents.  

2.2.1 Measuring chill tolerance 

I assessed low temperature performance of G. pennsylvanicus and G. veletis adult females 

by measuring the CTmin, CCRT, and survival following cold exposure. Measurement of the 

CTmin (n = 20 per species) was as described by (MacMillan and Sinclair, 2011). Briefly, I 
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placed crickets into individual 200 mL glass beakers within a Plexiglas® encasement 

containing a solution of equal parts ethylene glycol and water. The solution was circulated 

with a refrigerated bath (Model 1157P, VWR International, Mississauga ON). To monitor 

cricket body temperatures I placed a type T thermocouple in contact with each cricket. 

Thermocouples were connected to a computer by a Picotech TC-08 thermocouple interface 

and data were recording with PicoLog software (Pico Technology, Cambridge, UK). I 

cooled these crickets from room temperature at 0.25°C min-1 until the CTmin was reached. 

I defined the CTmin as the temperature at which physical stimulus with a metal probe 

elicited no muscular response. I defined CCRT as the time required for the righting 

response (a coordinated movement) after 48 h of cold exposure. To measure CCRT and 

survival of cold exposure I placed crickets (n = 24 per species) in 15 mL Falcon tubes 

immersed in an ice-water slurry at 0°C (a temperature that induced chill coma in both G. 

pennsylvanicus and G. veletis in preliminary experiments) for 48 h. This chilling duration 

should not cause mortality; G. veletis survive at least five days at 0°C, while approximately 

20% of G. pennsylvanicus die after 108 h at 0°C (Coello Alvarado et al., 2015). After 

chilling I moved the crickets to room temperature, placed them on their dorsum in a 6-well 

plate, and video recorded their recovery for up to 9 h (Hazell et al., 2008). I extracted 

righting response times from the video. Crickets that did not exhibit signs of recovery 

within 9 h were not included in CCRT analyses. All crickets were then returned to 25°C in 

individual cups and provided with food, water, and shelter. After 24 h at 25°C, I assessed 

survival and injury (the latter defined as uncoordinated locomotion or inability to jump 

when stimulated with a probe; MacMillan and Sinclair, 2011).   

 

2.2.2 Cold exposure and dissection 

I held crickets at 25°C (control, 0 h) or exposed them to 0°C for a duration of 0.5, 1, 3, 6, 

or 12 h (n = 14-19 individuals per species per treatment). Size-matching of crickets ensured 

that mean wet mass did not differ among treatments within each species (F5,83 = 0.30, P > 

0.9 and F5,89 = 0.32, P > 0.9 for G. pennsylvanicus and G. veletis, respectively). I placed 

cold-exposed crickets individually into loosely-capped 50 mL plastic tubes suspended in a 

bath of 50% methanol in water, pre-cooled to 0°C (Lauda Proline RP 3530, Würzburg, 
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Germany). I added a thermocouple in contact with one of the crickets to monitor its body 

temperature during cold exposure.  

 

Immediately after removal from 0°C I dissected crickets on a Petri dish surrounded by ice 

within a large Styrofoam box. I punctured the pronotum with an insect pin and collected 

hemolymph (5-30 μl) with a micropipette, then opened the body cavity by a mid-dorsal 

incision and collected as much hemolymph from the body as possible by applying gentle 

pressure to the abdomen. I approximated hemolymph volume gravimetrically by weighing 

extracted hemolymph and assuming a density equal to water. This method of hemolymph 

extraction and approximation correlates linearly with inulin dilution estimates for 

hemolymph volume in G. pennsylvanicus (MacMillan et al., 2012). I pinned open the body 

cavity and removed the gut (from anterior foregut to rectum) into a pre-weighed 

microcentrifuge tube. I then severed the hind legs and used forceps to extract femur 

muscles into pre-weighed 0.2 mL microcentrifuge tubes.  

 

To identify potential reservoirs of Na+ (as I observed increased hemolymph Na+ content 

during chilling), I measured Na+ in the fat body, head, Malpighian tubules, and ovaries 

from an additional six control G. pennsylvanicus females. I calculated tissue water contents 

from the difference between the tissue fresh (wet) mass and mass after drying at 70°C for 

24 h (muscle, Malpighian tubules, and fat body) or 48 h (gut, head, and ovaries). 

 

2.2.3 Quantification of ion balance 

I assessed ion homeostasis over 12 h of cold exposure by quantifying the concentration and 

content of Na+ and K+ in the hemolymph and tissues. I measured shifts in ion contents as 

they indicate bulk movement of Na+ or K+ between body compartments (which in turn 

affects bulk movement of water), and measured ion concentrations as they are important 

for neuromuscular function and as directional predictors of ion leak. I quantified ions as 

described by MacMillan and Sinclair (2011). Briefly, I digested hemolymph and dried 

tissues in nitric acid (70%) at room temperature for 24 h (hemolymph, muscle, fat body, 

and Malpighian tubules), 48 h (gut), or 72 h (head, ovaries). I quantified [Na+] and [K+] in 
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the dissolved, diluted hemolymph and tissue samples using an atomic absorption 

spectrometer (iCE 3300, Thermo Scientific, Waltham, MA, USA). From the measured 

absorbance, I calculated sample ion concentrations by comparison with standard curves 

generated from Na+ and K+ reference solutions containing 0.2% and 1% nitric acid, 

respectively. The water contents of each tissue (assumed to be intracellular water) or 

hemolymph (assumed to represent extracellular water) allowed me to calculate the ion 

concentration in the tissue or hemolymph. To determine sample ion content, I corrected 

ion concentrations for the volume or mass of hemolymph or tissue in the sample.  

2.2.4 Data analyses 

I expected that G. veletis would exhibit a lower CTmin and CCRT, and greater survival 

following cold exposure than G. pennsylvanicus (Coello Alvarado et al., 2015), therefore 

I made interspecies comparisons of the CTmin, CCRT, and survival following cold exposure 

using one-sided Welch’s t-tests. I compared initial and endpoint (12 h) ion and water 

measurements as well as trajectories of ion and water balance during cold exposure among 

species, but I did not make point-by-point comparisons. To compare control ion or water 

measurements among species, I used two-sided Student’s t-tests (if variance was equal) or 

Welch’s t-tests (if variance was unequal). I quantified the relationship between cold 

exposure time and water or ion balance using generalized least squares models and linear 

regression, and compared discrete cold exposure time points by one-way ANOVA and 

Tukey’s HSD. I log-transformed cold exposure times prior to analysis in cases when this 

transformation improved normality, and used exponential weighting for generalized 

nonlinear least squares models if variance was unequal across cold exposure times (Gałecki 

and Burzykowski, 2013). Tissue water and ion contents were positively correlated with 

tissue dry mass (P < 0.05, see Table A1) with the exception of muscle water (P > 0.1), 

therefore I corrected ion contents for tissue dry mass before quantifying the effect of cold 

exposure on water or ion content (i.e. cold exposure effects were modeled with the 

residuals of water or ion content regressed against tissue dry mass; MacMillan and Sinclair, 

2011). Similarly, because hemolymph volume was positively related to cricket wet mass 

(F1,85 = 61.89, P < 0.001 and F1,93 = 31.05, P < 0.001 for G. pennsylvanicus and G. veletis, 
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respectively), I corrected hemolymph volume for cricket wet mass prior to quantifying the 

effect of cold exposure on hemolymph volume. 

 

I calculated muscle Na+ and K+ equilibrium potentials at 23°C (control crickets) and at 0°C 

(cold-exposed crickets) as described by MacMillan and Sinclair (2011) using the Nernst 

equation (Nernst, 1888): 

𝐸 = (
𝑅𝑇

𝑧𝐹
) ln (

[𝑜]

[𝑖]
)         (1), 

where R is the universal gas constant, T is the absolute temperature, z is the ionic charge 

(e.g. z for Na+ or K+ = 1), F is Faraday’s constant, [o] is the ion concentration outside of 

the muscle (i.e. the hemolymph), and [i] is the ion concentration inside the muscle, i.e.  the 

estimate from the tissue.  

 

Descriptive values reported in the text, tables, and figures are given as mean ± s.e.m. 

Detailed statistics for regression models are included in supplementary material (Table 

A2). All statistical analyses were performed in R (v3.1.2, R Development Core Team, 

2014). 

 

2.3 Results 

Gryllus veletis was more chill tolerant than G. pennsylvanicus. The CTmin of G. veletis (0.7 

± 0.2°C) was lower than that of G. pennsylvanicus (2.2 ± 0.13°C) (t36.2 = 7.38, P < 0.001). 

Following exposure to 0°C for 48 h, G. veletis recovered 20-times faster than G. 

pennsylvanicus on average (t8.02 = 4.75, P < 0.001). Sixteen of the 25 G. pennsylvanicus 

never regained righting ability within 9 hours of measuring CCRT (Fig. 2.1A), eight of 

which never recovered. Twenty-four hours after this cold exposure, 84% of Gryllus 

pennsylvanicus crickets were dead or injured, while only 20% of G. veletis crickets were 

injured and none were dead (Fig. 2.1B). 
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Figure 2.1. Recovery time (A) and injury and mortality (B) of G. veletis and G. 

pennsylvanicus after 24 h of recovery following 48 h in chill coma at 0°C.  A. n = 9 and 

24 for G. pennsylvanicus and G. veletis, respectively. B.  n = 25 crickets per species.  

 

2.3.1 Water balance 

Under control conditions, hemolymph volume relative to gut water content was lower in 

G. veletis than in G. pennsylvanicus (t31 = 2.49, P = 0.019). The gut of G. veletis accounted 

for a slightly greater proportion of body fresh mass (11.5 ± 0.9%) compared to G. 

pennsylvanicus (8.2 ± 0.5%) (t32 = 3.10, P = 0.004). The volume of hemolymph relative to 

cricket fresh mass did not differ between species (t32 = 1.59, P > 0.1).  

 

Gut water content increased over 12 h of cold exposure for both G. pennsylvanicus and G. 

veletis (P = 0.032 and P = 0.004, respectively; Appendix A, Fig. A1A). Hemolymph 

volume decreased by 25% for G. veletis during 12 h of cold exposure (P = 0.001). For G. 

pennsylvanicus, hemolymph volume first increased before decreasing slightly but I 

observed no significant change in hemolymph volume over the 12 h of cold exposure (P = 

0.091; Appendix A, Fig. A1B). The water content of the hemolymph relative to the gut 

decreased linearly by 23% for G. pennsylvanicus and 38% for G. veletis (P = 0.009 and P 

= 0.023, respectively; Fig. 2.2A). Muscle water content was unchanged over 12 h of cold 

exposure for G. pennsylvanicus and G. veletis (P > 0.3 and P > 0.2). 
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Figure 2.2. Ratio of hemolymph-to-gut water volume (A) and [Na+] (B) in G. 

pennsylvanicus and G. veletis crickets exposed to 0°C for up to 12 h.  Dashed lines 

indicate a significant linear relationship between water volume or [Na+] ratio and cold 

exposure time. n = 11 to 18 crickets per species per time point; see Table A2 for statistics. 
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2.3.2 Ion balance 

Na+ gradients between the hemolymph and the gut did not differ between species under 

control conditions (t33 = 0.927, P = 0.361), however both species exhibited linear decreases 

in the hemolymph-to-gut [Na+] ratio during 12 h of cold exposure (P < 0.001 and P < 0.002 

for G. pennsylvanicus and G. veletis, respectively; Fig. 2.2B). Gut Na+ content increased 

by approximately 21% during cold exposure for G. veletis, while a 29% increase in gut Na+ 

content for G. pennsylvanicus was non-significant  (P = 0.032 and P = 0.073, respectively; 

Fig. 2.3). Gut K+ content did not change over cold exposure time in G. pennsylvanicus or 

G. veletis (P > 0.8) despite a decrease in gut [K+] (P = 0.036 and P = 0.005, respectively). 

 

In the hemolymph of G. pennsylvanicus, [Na+] initially increased (from 110 mM to 130 

mM within 0.5 h of cold exposure) before returning to control values by 6 h (F5, 78 = 4.34, 

P < 0.002) (Fig. 2.4A). A rise and fall of hemolymph [Na+] also occurred in cold-exposed 

G. veletis but with a much smaller overall change (from 106 mM to 119 mM) (F5,88 = 2.35, 

P = 0.048), such that differences among time points were not identified using Tukey’s 

HSD. General patterns of hemolymph [Na+] during cold exposure in G. pennsylvanicus 

were mirrored by the hemolymph Na+ content (F5,77 = 2.42, P = 0.043), however a similar 

trend observed for Na+ content in the hemolymph of G. veletis was non-significant (F5,88 = 

2.25, P = 0.056; Fig. 2.4C).  

 

I observed a movement of Na+ to the hemolymph in the first hour of exposure to 0°C, 

therefore I quantified [Na+] and Na+ content in the ovaries, fat body, head, and Malpighian 

tubules of G. pennsylvanicus under control conditions to identify potential reservoirs of 

Na+. The [Na+] in both the fat body and ovaries exceeded that of the hemolymph, while 

[Na+] in the head and Malpighian tubules were lower than the hemolymph (Table 2.1). The 

ovaries –which accounted for 32 ± 1.7 % of the adult female body mass – held the largest 

reservoir of total Na+. For both species, cold exposure caused linear increases in both 

hemolymph [K+] (P < 0.001) and K+ content (P = 0.037 and P < 0.001 for G. veletis and 

G. pennsylvanicus, respectively; Fig. 2.5A,C). 
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Figure 2.3. Content of gut Na+ (A) and K+ (B) in G. pennsylvanicus and G. veletis 

exposed to 0°C for up to 12 h.  Ion contents are represented as the residuals of a regression 

of μmoles Na+ or K+ against gut dry mass and are expressed as mean residual ± s.e.m. The 

dashed line indicates a significant relationship between gut ion content and cold exposure 

time in G. veletis. n = 13 to 18 per species per time point; see Table A2 for statistics. 
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Figure 2.4. Balance of Na+ in the hemolymph (A, C) and muscle (B, D) of G. pennsylvanicus and G. veletis crickets exposed to 

0°C for up to 12 h. [Na+] (A, B) is expressed in mM, while Na+ content is expressed as total μmoles (C, D). Effects of cold on muscle 

Na+ (B, D) were modeled using the residuals of a regression of total μmoles Na+ against muscle dry mass. Dashed lines indicate 

significant relationships between muscle Na+ and 0°C exposure time. Solid lines are used to illustrate trends in hemolymph Na+ during 

cold exposure. Different letters indicate differences in mean hemolymph Na+ of G. pennsylvanicus according to Tukey’s HSD. Tukey’s 

HSD failed to detect differences among mean for G. veletis. Asterisks denote significant differences in Na+ between species at time = 0 

h. n = 11 to 18 crickets per species per time point; see Table A2 for statistics. 
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Table 2.1. Content and concentration of Na+ in the fat body, ovaries, head, 

Malpighian tubules, and hemolymph of adult G. pennsylvanicus crickets under 

control conditions (25°C, 14 h day length). n = 17 (hemolymph) or 6 (all other tissues). 

 

 Tissue [Na+] (mM) Total Na+ content (μmoles) 

Malpighian tubules 65 ± 4.2 0.3 ± 0.03 

Head 70 ± 3.8 2.2 ± 0.14 

Hemolymph 110 ± 6.6 5.5 ± 0.57 

Fat body 123 ± 5.3 0.5 ± 0.05 

Ovaries 135 ± 6.0 11.5 ± 0.86 

 

Gryllus pennsylvanicus had higher muscle [K+] compared to G. veletis under control 

conditions (t23.3 = 2.36, P = 0.027). I observed a slight increase in muscle [K+] for G. veletis 

(P = 0.049) over 12 h, however cold exposure had no effect on muscle [K+] in G. 

pennsylvanicus (P > 0.4). Muscle K+ content was not affected by cold exposure in G. 

pennsylvanicus (P > 0.3) or G. veletis (P = 0.080, Fig. 2.5B,D). Muscle [Na+] in G. 

pennsylvanicus was lower than in G. veletis under control conditions (t30.5 = 2.04, P = 

0.025). During 12 h of cold exposure, muscle [Na+] decreased for both G. pennsylvanicus 

and G. veletis (P < 0.001) and this decrease reflected a loss of muscle Na+ content (P < 

0.002 and P = 0.007, respectively; Fig. 2.4B,D). Gryllus veletis appeared to lose muscle 

Na+ more slowly than G. pennsylvanicus. 

 

Control G. pennsylvanicus exhibited higher muscle Na+ equilibrium potential (by c. 5.5 

mV; t33 = 1.92, P = 0.032) and lower muscle K+ equilibrium potential (by c. 11.5 mV; t23 

= 2.38, P = 0.013) compared to G. veletis (Fig. 2.6). I did not observe significant changes 

in muscle Na+ potential during 12 h of cold exposure for G. pennsylvanicus or G. veletis 

(F5,80 = 1.20, P > 0.3 and F5,85 = 0.79, P > 0.5, respectively). Muscle K+ equilibrium 

potential depolarized from -75.4 mV (G. pennsylvanicus) and -63.9 mV (G. veletis) to 

approximately -40 mV in both species after 12 h at 0°C. 
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Figure 2.5. Balance of K+ in the hemolymph (A, C) and muscle (B, D) of G. pennsylvanicus and G. veletis crickets exposed to 0°C 

for up to 12 h. Potassium concentration (A, B) is expressed in mM, while hemolymph K+ content is expressed as total μmoles (C). 

Effects of cold on muscle K+ content (D) was modeled as the residuals of a regression of total μmoles K+ against muscle dry mass. 

Dashed lines indicate significant linear relationships between muscle or hemolymph K+ and cold exposure time. Asterisks denote 

significant differences between species at time = 0 h (see Table A2 for statistics). n = 13 to 18 crickets per species per time point.
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Figure 2.6. Na+ (A) and K+ (B) potentials (mV) across the muscle cell membrane in G. 

pennsylvanicus and G. veletis exposed to 0°C for up to 12 h.  Solid lines are used to 

illustrate trends in muscle Na+ potential, but muscle Na+ potentials did not differ between 

cold exposure times for either species according to ANOVA. Dashed lines indicate 

significant relationships between muscle K+ potential and cold exposure time. Asterisks 

denote significantly different potentials between species at exposure time = 0 according to 

a t-test. n = 12 to 18 per species per time point. 
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2.4 Discussion 

The mechanisms underlying loss of ion and water balance at low temperatures and the 

means by which chill-tolerant insects avoid this loss are not fully understood. By 

quantifying the ion and water balance in crickets during the first 12 h of cold exposure I 

show that shifts in hemolymph Na+ balance observed at later stages (days) of cold exposure 

do not reflect changes in these early stages. I hypothesize that loss of Na+ balance during 

chill coma may be driven by a loss of Na+ from the tissues. While neither species could 

defend water, [Na+], or [K+] balance during cold exposure, shifts in ion contents across the 

hemolymph and muscle were slower and/or less extensive in the more chill-tolerant cricket 

(G. veletis) compared to the less chill-tolerant cricket (G. pennsylvanicus). These findings 

support the hypothesis that chill tolerance (as assessed by the CTmin, CCRT, and survival 

of cold exposure) may be associated with a greater resistance of the tissues to ion leak in 

the cold (MacMillan et al., 2015a). 

  

MacMillan and Sinclair (2011) report that hemolymph [Na+] of G. pennsylvanicus adults 

drops substantially by 12 h of cold exposure and decreases gradually thereafter over 120 h 

(MacMillan and Sinclair, 2011). However, within the first 12 h of cold exposure I instead 

observed a rapid increase in hemolymph [Na+], peaking at 1 h of exposure to 0°C and then 

returning to control values by 6 h such that there was no net change in [Na+] by 12 h. Some 

of this discrepancy could be explained by differences in hemolymph [Na+] of control 

crickets (a mean of 110 mM [Na+] was measured in the present study compared to an 

approximate 185 mM measured by MacMillan and Sinclair, 2011). Typical orthopteran 

hemolymph [Na+] is closer to 91 mM (Piek and Njio, 1979). Food and rearing conditions 

were identical between the present study and a previous study by MacMillan and Sinclair 

(2011), however I isolated crickets for one week prior to experiments to prevent 

cannibalism and any consequent effects on gut ion content. I also controlled for potential 

inconsistencies in mating status by ensuring that all females were virgin; gravid females 

used in the previous study likely exhibit some differences in ovary and/or fat body mass, 

and this could affect total available tissue Na+. Finally, CO2 used for cricket anesthesia in 

the previous study could affect hemolymph Na+ balance (Stewart, 1978; Nilson et al., 2006; 
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Matthews and White, 2011). A higher hemolymph [Na+], as measured by MacMillan and 

Sinclair (2011) would present a steeper gradient of Na+ between the hemolymph and gut, 

favoring greater migration of Na+ towards the gut (and perhaps this accounted for the rapid 

drop in hemolymph [Na+] in the first 12 h).  

 

In the present study, the peak of hemolymph [Na+] in the first hour of cold exposure 

reflected a peak in hemolymph Na+ content and also coincided with increases in gut Na+ 

content (at least statistically for G. veletis). However, by 12 h in the cold I had observed no 

net change in hemolymph Na+ content in either species. A net increase in gut Na+ content 

without a net decrease in hemolymph Na+ content was also observed by Coello Alvarado 

et al. (2015), and suggests that Na+ may have entered the hemolymph from surrounding 

tissues before migrating to the gut where it remained. This hypothesis is supported by the 

loss of muscle Na+ content observed during cold exposure, which agrees with previous 

observations for G. pennsylvanicus at 12 h in chill coma (MacMillan and Sinclair, 2011). 

Tissues other than the muscle could also lose Na+ during cold exposure; the ovaries are a 

large potential reservoir of Na+ and have a higher [Na+] than the hemolymph. However, I 

did not measure changes in Na+ balance within the ovaries during cold exposure. As male 

crickets lack ovaries, it is unclear whether they will exhibit a similar increase in 

hemolymph Na+ content during early chill coma, or if the testes act as a potential source of 

this Na+. Quantifying changes in Na+ balance of non-muscle tissues (e.g. fat body, gonads, 

or ganglia) during chill coma would confirm whether a loss of homeostasis in the tissues 

manifests as imbalance in hemolymph Na+ content.  

 

Cold exposure caused a gradual redistribution of water between the hemolymph and gut, 

as observed during longer-term cold exposure (MacMillan and Sinclair, 2011; Coello 

Alvarado et al., 2015). However, gut water content in G. pennsylvanicus increased despite 

no measurable decrease in hemolymph volume. This phenomenon was also observed in G. 

veletis nymphs over longer cold exposures, and it is possible that dehydration of tissues 

accounted for the gain of gut water (Coello Alvarado et al., 2015). Cold-acclimated 

Pyrrhocoris apterus L. bugs lose water from the fat body during chill coma (Koštál et al., 

2004), and while I did not observe changes in muscle water content in crickets during chill 



58 

 

coma, water could have been lost from the fat body or other tissues and followed Na+ to 

the gut.   

 

Cold exposure caused hemolymph [K+] to increase steadily over 12 h in for both species, 

reflecting trends observed at longer durations of chilling (MacMillan and Sinclair, 2011; 

Coello Alvarado et al., 2015). Increased hemolymph [K+] in the cold is thought to result 

from loss of hemolymph volume, rather than changes in hemolymph K+ content 

(MacMillan and Sinclair, 2011). My observations support a gradual loss of hemolymph 

volume concurrent with a gradual increase in hemolymph [K+], and without changes in gut 

K+ content (similar trends were observed in crickets after a 120 h cold exposure; MacMillan 

and Sinclair, 2011; Coello Alvarado et al., 2015). However, I also observed an increase in 

hemolymph K+ content during cold exposure. This K+ was unlikely to be sourced from the 

muscle; unlike our observation of decreased muscle Na+ content, muscle K+ content did 

not change during cold exposure (similar to the findings of MacMillan and Sinclair, 2011). 

Potassium could enter the hemolymph from other tissues; P. apterus bugs lose K+ from the 

fat body when exposed to -5°C (Koštál et al., 2004). Alternatively, the gut contents could 

act as a source of K+; the gut lumen [K+] is roughly 17-fold higher than the hemolymph 

and presents a steep gradient for K+ favoring migration to the hemolymph. Leak of K+ 

across the gut may be enhanced during cold exposure due to changes in the permeability 

of gut epithelium (Motais and Isaia, 1972; Dokladny et al., 2006; Ionenko et al., 2010). 

Although I did not observe a change in gut K+ content during early chill coma, small 

amounts of K+ lost from the gut could have large impacts on hemolymph K+ content. 

 

Increased hemolymph [K+] during cold exposure (which disrupts muscle K+ equilibrium 

potential) was initially proposed by MacMillan and Sinclair (2011) to explain chill coma 

paralysis by causing a loss of muscle resting potential. However recent studies of Locusta 

migratoria L. indicate that chill coma paralysis precedes hemolymph [K+] imbalance and 

that low temperatures play a direct role in neuromuscular silencing (Koštál et al., 2006; 

Findsen et al., 2014; MacMillan et al., 2014; Andersen et al., 2015). It is therefore now 

generally accepted that chill coma onset and loss of ion homeostasis during cold exposure 

are mechanistically unrelated. I too show that loss of muscle EK
+ due to hemolymph [K+] 
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imbalance does not account for a total loss of muscle resting potential during very early 

stages of cold exposure. The hypothesized muscle membrane potential threshold for chill 

coma is between -37 and -45 mV in D. melanogaster and Apis mellifera L. (Hosler et al., 

2000), which is supported by Andersen et al. (2015) in locusts. Although chill coma onset 

is rapid, muscle potential based on [K+] balance in crickets did not reach -45 mV prior to 

7 h in the cold. 

 

2.4.1 Do chill-tolerant crickets maintain homeostasis better in the 

cold?  

Gryllus veletis had better performance in the cold (faster CCRT, lower incidence of chilling 

injury, and increased survival) compared to G. pennsylvanicus, agreeing with Coello 

Alvarado et al. (2015) who compared chill tolerance of G. pennsylvanicus adults with G. 

veletis nymphs. However unlike G. veletis nymphs, G. veletis adults were not much better 

than G. pennsylvanicus at maintaining water balance and, in most cases, [Na+] and [K+] 

balance during 12 h of cold exposure were similar between the two species. It is not known 

whether sex or a 6-week age gap in G. pennsylvanicus adults accounted for differences in 

homeostasis observed by Coello Alvarado et al. (2015) and the present study. Gryllus 

veletis did, however, better-maintain hemolymph Na+ and K+ content and to some degree, 

muscle Na+ content.  

 

Under control conditions and during cold exposure, G. veletis exhibited less water in the 

hemolymph relative to the gut compared to G. pennsylvanicus. This difference was not due 

to a higher relative gut water content in G. veletis. Nevertheless, G. veletis did not avoid a 

loss of water balance over 12 h of cold exposure; the rate of water redistribution from 

hemolymph to gut was roughly parallel for the two species. This suggests that regulation 

of ion homeostasis may be more important than water balance for surviving cold exposure. 

 

Hemolymph [Na+] was similar for both crickets under control conditions but changed less 

in G. veletis during 12 h of cold exposure due to lesser influx of Na+ to the hemolymph. 

Coello Alvarado et al. (2015) also observed that G. veletis nymphs, and to some degree 
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cold-acclimated G. pennsylvanicus adults, avoid this Na+ influx up to 120 h in the cold. 

Chill-tolerant insect tissues may therefore be more resistant to Na+ leak in the cold; in 

support of this hypothesis, G. veletis appeared to lose muscle Na+ content somewhat more 

slowly than G. pennsylvanicus. This prevention of ion leak could be achieved by a 

tightening paracellular junctions or other modification of epithelial ultrastructure. 

Additionally (but not necessarily alternatively), G. veletis could combat Na+ leak by 

enhancing Na+ pump activity in the cold (Galarza-Muñoz et al., 2011). However, chill 

tolerance in D. melanogaster is correlated with a decrease in whole-body Na+-K+ ATPase 

(NKA) activity (MacMillan et al., 2015c). As NKA maintains higher hemolymph [Na+] 

relative to the gut, lower NKA activity suggests that chill-tolerant insects may reduce Na+ 

gradients across the gut. Cold tolerance in D. melanogaster is correlated with a reduction 

in the [Na+] gradient across the gut, and it is thought that this reduced gradient minimizes 

the driving force for bulk movement of Na+ and water from the hemolymph to the gut 

during cold exposure (MacMillan et al., 2015a; MacMillan et al., 2015c). However, this 

hypothesis was not well-supported by my observations, as the mean hemolymph-to-gut 

[Na+] ratio in G. veletis was not significantly lower than for G. pennsylvanicus under 

control conditions (nor did it appear lower throughout cold exposure). Neither species 

exhibited a net loss of hemolymph Na+ content by 12 h of cold exposure, yet both species 

suffered a loss of hemolymph volume and a rise in hemolymph [K+]. 

 

Increased hemolymph [K+] during cold exposure may lead to chilling injury via signalling 

disruption and cell death (Rojas and Leopold, 1996; Koštál et al., 2006; MacMillan et al., 

2015b), however the accumulation of chilling injuries in adult Gryllus crickets was not 

predicted by the ability to defend hemolymph [K+] in the first 12 h of cold exposure. It is 

therefore unclear whether ion imbalance in the first 12 h of chill coma plays a role in  

chilling injury. Gryllus veletis did exhibit lesser increases in hemolymph K+ content 

compared to G. pennsylvanicus, so perhaps the gut epithelium of G. veletis is more resistant 

to changes in ion permeability at low temperatures. This hypothesis could be tested by 

manipulating the [K+] gradient between the hemolymph and gut prior to cold exposure by 

artificial diets, as was attempted in a previous study with L. migratoria (Andersen et al., 

2013). Preventing leak of K+ into the hemolymph could also explain shorter CCRT in G. 
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veletis, as recovery requires reestablishment of water balance in addition to the reversal of 

any bulk movement of ions that occurred during cold exposure (MacMillan et al., 2012).  

 

Under control conditions, G. veletis exhibited a lower muscle Na+ potential and higher 

muscle K+ equilibrium potential compared to G. pennsylvanicus. Without direct 

measurements of muscle resting potential it is unclear whether these differences in Na+ and 

K+ potentials help G. veletis delay muscle depolarization in early chill coma or play some 

role in a more rapid CCRT compared to G. pennsylvanicus (MacMillan et al., 2014; Coello 

Alvarado et al., 2015). Nevertheless, both species entered chill coma well before muscle 

K+ equilibrium potentials had reached the theoretical threshold for chill coma at 7 h of cold 

exposure.  

 

2.4.2 Conclusions 

After characterizing patterns of ion and water balance in the first 12 h of cold exposure, I 

propose some refinements to the current model of homeostasis in the cold.  During cold 

exposure, Na+ appears to be lost from tissues and enters the hemolymph before ultimately 

migrating to the gut along with water. Loss of hemolymph volume in addition to possible 

leak of K+ from the gut to the hemolymph leads to an increase in hemolymph [K+]. This 

K+ imbalance does not cause paralysis in early stages of cold exposure, but may negatively 

affect CCRT. Chill tolerance based on avoidance of chilling injury was not associated with 

the ability to defend the water balance or ion concentrations, however chill-tolerant crickets 

(G. veletis) better defended the balance of Na+ and K+ contents compared to less chill-

tolerant crickets (G. pennsylvanicus). I therefore hypothesize that in addition to the gut 

epithelium, other tissues (e.g. muscle or ovaries) in chill-tolerant insects have lower 

permeability to ions in the cold, such that Na+ does not leak from tissues to the hemolymph 

and K+ does not leak across the gut epithelium to the hemolymph. Thus, an important future 

direction is to quantify the effects of cold on tissue permeability and transport function, 

with special consideration of ultrastructure and ion pump activities (e.g. NKA or the proton 

pump) in the hindgut and Malpighian tubules, as these tissues are responsible for the bulk 

of ion and water transport. 
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Chapter 3 

3 Effects of cold acclimation on gene expression in the 
Fall field cricket (Gryllus pennsylvanicus) ionoregulatory 
tissues 

A version of this chapter is in press at BMC Genomics. 

3.1 Introduction 

Most insects are chill-susceptible, such that their thermal performance and survival are 

limited in the cold at temperatures well above the freezing point (Bale, 1993). Although 

ice formation causes direct injury, cold injury not associated with ice formation is less well-

understood. Direct cold shock probably causes immediate damage to cells, for example by 

causing membrane phase transition (Overgaard et al., 2005; Clark and Worland, 2008), 

disruption of the cytoskeleton (Belous, 1992; Örvar et al., 2000; Michaud and Denlinger, 

2004; Kim et al., 2006; Kayukawa and Ishikawa, 2009), or induction of apoptosis (Yi et 

al., 2007). Indirect cold injury accumulates over time, most likely as a result of a loss of 

ion and water balance in the cold (MacMillan and Sinclair, 2011b; MacMillan et al., 2012; 

MacMillan et al., 2015a; MacMillan et al., 2015b; MacMillan et al., 2015c), although there 

is also evidence of roles for oxidative damage and disruption of signalling pathways 

(Michaud and Denlinger, 2004; Lalouette et al., 2011; Teets et al., 2013). Cold-acclimated 

insects better maintain homeostasis and avoid chilling injury and mortality at lower 

temperatures than warm-acclimated insects (Chen et al., 1987; Koštál et al., 2007; 

Armstrong et al., 2012; Coello Alvarado, 2012; Findsen et al., 2013; MacMillan et al., 

2015d), but the underlying mechanisms are not completely understood.  

 

During cold exposure, chill-susceptible insects lose water and Na+ from the hemolymph to 

the gut lumen (Koštál et al., 2004; Koštál et al., 2006; MacMillan and Sinclair, 2011b; 

Findsen et al., 2014) and re-establish water and ion homeostasis during recovery 

(MacMillan et al., 2012). Ion and water homeostasis in insects is primarily regulated at the 

Malpighian tubules and hindgut (Phillips, 1981). The distal Malpighian tubules actively 

transport ions across a leaky epithelium to drive secretion of water, metabolic wastes, and 
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other ions into the tubule lumen. This primary urine – which is isosmotic to the hemolymph 

(Ramsay, 1954) – is partially modified at the proximal tubule (a tight epithelium) prior to 

entering the gut lumen (Beyenbach, 1995; Coast, 1998; Beyenbach, 2003). Water and ions 

are then selectively reabsorbed from the gut lumen by the hindgut, particularly across the 

rectum (Phillips et al., 1987). Na+-K+ ATPase (NKA) maintains high paracellular [Na+] in 

the rectal epithelium, driving paracellular migration of water (and concurrent reabsorption 

of some Na+ and Cl-) from the gut lumen to the hemolymph. Secretion and reabsorption 

are regulated by diuretic and antidiuretic peptides (see Schooley et al., 2012), and these 

peptides are important for recovery from cold stress in Drosophila (Tehrzaz et al., 2015). 

Loss and recovery of ion and water balance in the cold is likely dependent upon processes 

at the Malpighian tubule and hindgut epithelia; specifically, changes in pumping rate at 

low temperatures could maintain ion balance for longer, and decreased epithelial 

permeability could reduce the rate of ion leakage. 

 

Transport enzyme function is temperature-dependent (Wolfenden et al., 1999); thus cold 

exposure should limit ion pumping rates while the rate of passive leak should remain 

relatively unchanged (MacMillan and Sinclair, 2011a). To compensate, insects could 

increase transport capacity by expressing or mobilizing more transport enzymes (Storey 

and Storey, 1981; Fujiwara and Denlinger, 2007; Kayukawa et al., 2007; Clark and 

Worland, 2008). In Drosophila melanogaster, cold acclimation instead lowers hemolymph 

[Na+] and whole-body NKA activity (MacMillan et al., 2015d), however it is unclear how 

NKA activity changes in ionoregulatory tissues specifically. An obvious hypothesis, then, 

is that expression or function of NKA and other transport enzymes in the Malpighian 

tubules and hindgut may be targeted for modification during cold acclimation. 

 

Water and ion leak during cold exposure will depend on tissue permeability (MacMillan 

and Sinclair, 2011a, b; Coello Alvarado et al., 2015), particularly of paracellular pathways 

(e.g. by a loss of cell-to-cell junctional integrity; Armitage et al., 1994). Paracellular shunts 

are the primary pathway for water and anion movement across the Malpighian tubule and 

rectal epithelia (O'Donnell and Maddrell, 1983; Phillips et al., 1987; O'Donnell et al., 1996; 

Beyenbach, 2003). During cold exposure, loss of extracellular Ca2+ balance (MacMillan 
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and Sinclair, 2011b) could further alter epithelial permeability by altering junctional 

integrity (Martinez-Palomo et al., 1980; Dokladny et al., 2006), Malpighian tubule 

secretion rates (Morgan and Mordue, 1985), and/or cold-related cellular signalling (Teets 

et al., 2013). As paracellular shunts are plastic and temperature-sensitive (Gonzalez-

Mariscal et al., 1984; Behrens et al., 1993; Turner et al., 1997), they could be modified 

during cold acclimation to reduce epithelial permeability.  

 

Surprisingly few genes have been directly associated with insect cold tolerance (Clark and 

Worland, 2008; Storey and Storey, 2012), but transcriptomics approaches have revealed 

many candidates. For example, modified expression of cuticular genes underlie cold 

tolerance variation in New Zealand stick insects (Dunning et al., 2014; Dennis et al., 2015), 

and the gene Frost is associated with recovery from cold exposure in Drosophila (Sinclair 

et al., 2007; Colinet et al., 2010; Hoffmann et al., 2012), although its function remains 

elusive (Udaka et al., 2013). Cold shock recovery in Sarcophaga bullata flesh flies changes 

the expression of genes related to the membrane and cytoskeletal structure, apoptosis, 

protein folding, oxidative stress, and signaling (Teets et al., 2012), and many of these genes 

(in addition to those involving autophagy and ion transport) are also modified with cold 

acclimation and rapid cold-hardening in D. melanogaster (Gerken et al., 2015). Most 

transcriptomic studies have explored responses to acute cold exposure (e.g. Qin et al., 2005; 

Zhang et al., 2011), or compared natural variation among populations and species whose 

underlying differences may render the specific drivers of cold-related phenotypes difficult 

to detect (e.g. Dunning et al., 2014). Acclimation of a single population is therefore a useful 

approach to identify candidates associated with cold tolerance plasticity. 

 

A few single population studies have identified transcriptomic changes associated with 

cold acclimation, e.g. MacMillan et al. (2016b) and Gerken et al. (2015) recently identified 

key pathways and 1000s of genes associated with cold acclimation in D. melanogaster. In 

these Drosophila datasets, modification of ion transport (particularly altered expression of 

Na+ transporters) and cellular adhesion is consistent with our expectation that modulating 

epithelial transport is associated with cold tolerance plasticity. However, these and other 

related studies have examined the transcriptome of either entire animals (e.g. MacMillan 
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et al., 2016b), or mixed tissues (e.g. the entire excised heads of stick insects; Dunning et 

al., 2014; Dennis et al., 2015). Because the Malpighian tubules and hindgut effectively 

work antagonistically in insect ion and water balance, transcriptomic shifts in these 

epithelia are likely to be masked in whole-animal homogenates. Thus, a tissue-specific 

approach to transcriptomics is urgently needed to more precisely determine the cellular- 

and tissue-level changes underlying cold acclimation in chill-susceptible insects. 

 

The fall field cricket, Gryllus pennsylvanicus (Orthoptera: Gryllidae) inhabits the Eastern 

North American temperate zone (Criddle, 1925). The species is univoltine and overwinters 

in diapause in the soil as an egg (Carrière et al., 1996). Adult G. pennsylvanicus are chill-

susceptible; they develop chilling injuries in as little as 12 h at 0°C, and are killed by 3-5 d 

at this temperature (MacMillan and Sinclair, 2011b). Gryllus pennsylvanicus has also 

emerged as a model for understanding cold-induced loss of ion and water balance 

(MacMillan and Sinclair, 2011b; Coello Alvarado et al., 2015). Briefly, when these crickets 

are exposed to cold, Na+, Ca2+, Mg2+, and water migrate from the hemolymph to the gut, 

hemolymph [K+] rises, and muscle equilibrium potential is lost (MacMillan and Sinclair, 

2011b; Coello Alvarado et al., 2015). Ion and water balance are actively re-established 

during recovery from cold (MacMillan et al., 2012). Gryllus pennsylvanicus exhibits 

plasticity in its cold tolerance whereby cold-acclimated individuals have improved defense 

of ion and water homeostasis in the cold, a lowered critical thermal minimum, faster chill 

coma recovery time, and suffer lower rates of injury and mortality following cold shock 

(Coello Alvarado et al., 2015).  

 

Here I took a tissue-specific comparative gene expression approach to understand the 

processes of cold acclimation in the transporting epithelia of chill-susceptible insects. I 

assembled a transcriptome for G. pennsylvanicus and compared the expression of 

Malpighian tubule and hindgut genes between warm- and cold-acclimated adults (with a 

focus on genes involved in ion and water homeostasis and cellular and junctional integrity). 

I aimed to generate mechanistic hypotheses about specific molecular underpinnings of cold 

acclimation, and provide insights into the causes of water and ion disruption during cold 

exposure.  
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3.2 Methods 

3.2.1 Insect rearing 

A colony of G. pennsylvanicus originated from individuals collected in 2004 from the 

University of Toronto at Mississauga campus, Ontario and was reared under constant 

summer-like conditions (25ºC, 14 light:10 dark photoperiod, 70% RH), as described 

previously (MacMillan and Sinclair, 2011b; Coello Alvarado et al., 2015). At 

approximately 8 weeks post-hatch, and prior to sexual maturation, female crickets were 

separated from males to prevent mating. Adult females at approximately 11 weeks post-

hatch were used for experiments. 

3.2.2 Acclimation and dissection  

Crickets were first isolated individually in common summer-like conditions in mesh-

covered 180 mL transparent cups (Polar Plastics, Summit Food Distributors, London, ON, 

Canada) containing egg carton shelters, rabbit food, and water. Isolation prevented 

cannibalism and lasted one week. I then haphazardly assigned crickets into cold- and 

warm-acclimations (n = 30 per treatment). For warm acclimation, crickets remained in the 

rearing growth chamber under constant summer-like conditions. I cold-acclimated crickets 

in a Sanyo MIR 154 incubator (Sanyo Scientific, Bensenville, Illinois) at 10 light:14 dark 

with temperature decreasing from 25 to 12ºC over seven days followed by constant 12ºC 

for three weeks. This regime lowers the critical thermal minimum c. 2ºC, reduces chill 

coma recovery time by c. 65%, increases survival following 5 d at 0ºC by nearly 80%, and 

enhances maintenance of ion and water homeostasis in the cold (Coello Alvarado et al., 

2015). While the two acclimation temperatures are likely to affect physiological ageing, 

the four weeks of acclimation represent approximately 20% of the adult cricket lifespan. 

Therefore I assumed that the effect of physiological age on gene expression would be less 

than the effect of acclimation temperature (Lai et al., 2007). 

 

Cricket hindguts were dissected as described previously (Chapter 2) immediately following 

the four weeks of warm- or cold-acclimation. Under Ringer’s solution (110 Na+, 8.5 K+, 6 

Mg2+, 7 Ca2+
, 144.5 Cl-, pH 7.6, concentrations in mM, derived from measurements of G. 



71 

 

pennsylvanicus, Chapter 2) in a Petri dish the hindgut (rectum, colon, and ileum) was cut 

away from the gastrointestinal tract and flushed of fecal material with approximately 3 mL 

of Ringer’s using a syringe (this procedure took < 3 min). Malpighian tubules were 

removed as a single bunch by detaching the ureter with forceps, rinsing briefly in Ringer’s, 

and blotting on a tissue. Malpighian tubules and hindguts were flash-frozen in liquid 

nitrogen. The three biological replicates for the hindgut and Malpighian tubules were each 

comprised of tissue pooled from ten individuals. To maximize transcript coverage for the 

de novo assembly, warm- and cold-acclimated whole male and female adult crickets, eggs, 

and warm-acclimated juveniles were pooled and added to an additional 1.5 mL 

microcentrifuge tube and flash frozen in liquid nitrogen. All samples were stored at -80 ºC 

until RNA extraction. 

 

3.2.3 RNA extraction & cDNA library preparation 

I homogenized thawed tissues with a plastic micropestle (ThermoFisher Scientific, Ottawa 

ON, Canada) in 1.1 mL TRIzol (Invitrogen, Burlington ON, Canada), and extracted RNA 

according to manufacturer’s instructions. I purified RNA extracts using the RNeasy Mini 

kit (Qiagen, Mississauga ON, Canada) according to manufacturer’s instructions, measured 

absorbance at 260 nm to determine RNA concentrations, and checked for RNA quality 

with an Agilent Bioanalyzer. cDNA library production and sequencing were performed by 

the Donnelly Sequencing Center (Toronto ON, Canada). At 13 samples per lane, each 

cDNA library was sequenced twice using the Illumina HiSeq2500 platform (Illumina, San 

Diego, CA) with single-end, 50-bp reads. 

 

3.2.4 De novo transcriptome assembly and annotation 

I removed Illumina adapter sequences and discarded sequences shorter than 15 nucleotides 

or containing unknown bases using the Galaxy web service (Goecks et al., 2010). 

Sequenced libraries were then grouped and assembled de novo using Trinity release 2012-

10-25 (Grabherr et al., 2011; Haas et al., 2013) on the SHARCNET computing cluster 

(https://www.sharcnet.ca), with 1 GB Jellyfish Memory and a minimum contig (a set of 
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overlapping sequence fragments representing a consensus regions of DNA) length criterion 

of 100 nucleotides. Transcriptome assembly “completeness” was compared to a database 

of arthropod Benchmark Universal Single Copy Orthologs (BUSCO) using BUSCO v1.22 

(Simão et al., 2015).  Contigs from the Trinity assembly were compared to the National 

Centre for Biotechnology Information (NCBI) non-redundant (nr) protein database 

(September 2013) by BLASTx (e-value threshold = 1 x 10-3). Gene Ontology (GO) 

annotation (e-value threshold = 1 x 10-6) was based on SwissProt BLAST matches using 

Blast2GO version 2.7.2 (Conesa et al., 2005). To filter out transcriptional artifacts, 

misassembled transcripts, and poorly-supported transcripts, the original cleaned sequence 

reads were mapped back onto the Trinity-assembly using Bowtie2 version 2.1.0 (Li et al., 

2009; Langmead and Salzberg, 2012) and reassembled with the Cufflinks package version 

2.1.1 (Trapnell et al., 2012). Blast2GO (Conesa et al., 2005) and the NCBI database was 

used to obtain putative identities and GO annotation for mapped transcripts. I accepted one 

hit for each transcript at an e-value threshold of 1 x 10-3. 

 

3.2.5 Gene expression analyses 

I used normalized read counts of genes in warm- and cold-acclimated hindgut and 

Malpighian tubule libraries for differential gene expression analysis using the edgeR 

Bioconductor package (Robinson et al., 2010) in R (v3.2.2, R Development Core Team, 

2015; Risso et al., 2014). Because each biological replicate was sequenced twice (two 

technical sequencing replicates), read counts from these technical replicate libraries were 

summed for each gene. For analyses I retained only those genes with at least 10 counts per 

million in three of the six libraries being compared (warm- vs cold-acclimated hindguts 

each had three biological replicates) (Robinson et al., 2010). Filtering yielded 11,140 and 

11,066 contigs for differential gene expression analyses of hindgut and Malpighian tubules, 

respectively. I compared gene expression profiles within tissues (i.e. warm- vs cold-

acclimated), and also compared the hindgut and Malpighian tubules for genes that were 

uniquely up- or downregulated between those tissues with cold acclimation. Individual 

genes were considered differentially expressed if the absolute fold change was ≥ 2 and if 

the P-value adjusted for false discovery rate (FDR) was < 0.05.  
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I used contigs that met the criteria for inclusion (fold change ≥ 2, FDR-adjusted P-value < 

0.05) to identify the GO terms associated with the responses to cold acclimation in each 

tissue (note that I did not formally compare GO terms among tissues or treatments). 

Differentially-expressed pathways in warm- and cold-acclimated tissues were analyzed 

using the Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa and Goto, 2000). 

KEGG identities were assigned to contigs by the KEGG Automatic Annotation Server 

(Moriya et al., 2007), and differential expression analyses of pathway components were 

performed using the Generally Applicable Gene-set Enrichment (GAGE) and Pathview 

Bioconductor packages (Luo et al., 2009; Luo and Brouwer, 2013) in R. These packages 

identify coordinated differential expression in gene sets (pre-defined, functionally-related 

groups of genes; Luo et al., 2009). I accepted pathways as differentially-expressed if the 

FDR-adjusted P-value was < 0.1. 

 

3.3 Results 

Sequencing of 26 libraries yielded 286 million 50-bp reads, which were assembled into 

70,037 contigs (Table 3.1). The transcriptome included 1808 (67.6%) complete and 415 

(15.5%) fragmented of 2675 arthropod BUSCOs; which is similar to other recent arthropod 

transcriptome assemblies (e.g. Tassone et al., 2016; Theissinger et al., 2016), and 

comparable or better than the transcriptomes referred to by Simão et al. (2015). 

Approximately 44% of these contigs in the transcriptome had putative identities by BLAST 

(Supplementary material, Spreadsheet S1), and of these approximately 36% aligned to 

genes of the termite Zootermopsis nevadensis. Cold acclimation led to a two-fold or greater 

change in 1,493 genes in the hindgut and 2008 genes in the Malpighian tubules (Fig. 3.1). 

Within a given tissue, the number of genes up- and down-regulated were approximately 

equal. Approximately 52% of all upregulated genes and 60% of all downregulated genes 

exhibited unique differential expression across the two tissues. Eighty-one genes that 

appear to be important for cold acclimation (those with a 10-fold or greater change in 

expression) were unidentifiable by BLAST (Supplementary material, Spreadsheet S1). 

These represented 22 upregulated and 11 downregulated genes in the hindgut, and 26 

upregulated and 22 downregulated genes in the Malpighian tubules.  
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Table 3.1. Summary of G. pennsylvanicus transcriptome de novo assembly. 

 

Sequencing & Quality Control  

Libraries  26 

50-bp reads (raw) 286 million 

50-bp reads (trimmed/cleaned) 266 million 

Trinity assembly  

Assembly length (bp)  92 million 

Contigs 260,407 

Mean contig length (bp) 352 

Median contig length (bp) 156 

N50 716 

GC % 38 

Cufflinks refined assembly  

Length (bp)  59 million 

Contigs 70,037 

Mean contig length (bp) 839 

Median contig length (bp) 459 

N50 1,524 

GC % 39 

Identification  

Contigs with BLAST hit 30,666 

Contigs with GO description 5,292 
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Figure 3.1. Number of genes upregulated, down-regulated, or unchanged in the 

hindgut and Malpighian tubules of G. pennsylvanicus crickets following cold 

acclimation. Differentially-expressed genes are those with an FDR alpha < 0.05 and a fold-

change > 2. Note that due to some overlap in contigs the sum of genes up- or down-

regulated across both tissues is less than the sum of genes up- or down-regulated in separate 

tissues (1,439 and 1,424 unique genes were up- and downregulated across both tissues, 

respectively). 
 

 

The GO domain profiles that changed with cold acclimation were similar across the two 

tissues; of all up- or downregulated GO terms, just over half related to ‘molecular function’ 

(i.e. transport, binding, enzyme and receptor activities), over one third related to ‘biological 

processes’ (series of molecular events with a defined beginning and end), and roughly one 

tenth were ‘cellular components’ (i.e. specific locations of subcellular structures and 
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macromolecular complexes; Supplementary material, Spreadsheet S2). Within the 

molecular function GO domain, genes involved in nucleotide, protein, metal, and ion 

binding accounted for over 50% of the upregulated transcripts and approximately 30% of 

downregulated transcripts in both tissues. Most of the cellular components that were 

differentially-expressed with cold acclimation involved the cell membrane and 

extracellular region. In the Malpighian tubules, genes pertaining to the cytoskeleton and 

cellular junctions accounted for 5% of all upregulated cellular component transcripts, while 

V-ATPase accounted for 2% of the downregulated transcripts. Metabolic genes accounted 

for much of the downregulated biological process transcripts counts in both tissues. 

However, some unique differences in biological process profiles between the two tissues 

were apparent; approximately 17% of downregulated transcripts in the Malpighian tubules 

were transport-related (2% of which were ion transport-specific), compared to just over 

8% of downregulated transcripts in the hindgut. Of the upregulated biological processes 

over 30% of transcripts in the hindgut involved stress response, protein folding, and repair, 

while over 10% of transcripts in the Malpighian tubules related to transport. 

 

3.3.1 Hindgut 

Cold-acclimated G. pennsylvanicus had altered expression of putative gene orthologs 

related to apoptosis, the cytoskeleton, detoxification and repair, ion transport and pH 

regulation, phosphorylation, protein folding, and signal transduction in the hindgut (Tables 

3.2, 3.3). A complete list of differentially-expressed genes in the hindgut is provided in 

Supplemental material Spreadsheet S1. Upregulated genes involved in water and ion 

balance included those encoding atrial natriuretic peptide-converting enzyme, NKA α-

subunit, and a Ca2+ release-activated Ca2+ channel protein, while downregulated genes 

included those putatively encoding bumetanide-sensitive Na+-Cl+ channel (the Na+-K+-

2Cl- cotransporter, or NKCC), carbonic anhydrase (CA) isozymes 1 and 9, and a 

mitochondrial Na+-H+ exchanger (NHA). A gene encoding the putative microtubule-

associated protein Jupiter increased during cold acclimation, while a putative enzyme 

involved in homeoviscous adaptation—∆9 desaturase 1—was downregulated 3.9-fold. 

Among the genes most differentially-expressed in cold-acclimated crickets related to repair 
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and oxidative damage, including those encoding cytochrome P450 (26-fold increase) and 

a putative cytochrome P450 cyp44 (5.5-fold decrease), glutathione S-transferase (6.8-fold 

decrease), and vitellogenin (40-fold decrease). Cold acclimation altered expression of 

hindgut heat shock proteins (hsp70 and hsp90 were upregulated, while hsp67B and hspβ11 

were downregulated), and altered the expression of some apoptosis genes. Cold-acclimated 

hindguts exhibited upregulation of a number of protein kinases, phosphodiesterases, and 

adenylate cyclase. Circadian genes per, clock, and nocturnin were upregulated with cold 

acclimation, while timeless was downregulated.  

 

More KEGG pathways in the hindgut were downregulated with cold acclimation than were 

upregulated (Fig. 3.2). Among 25 upregulated pathways, ‘adherens junction’ (Fig. 3.3) and 

‘gap junction’ are likely to be directly relevant to ion and water balance. Cold acclimation 

shifted actin regulation within the ‘adherens junction’ pathway; some genes putatively 

encoding actin-associated proteins (FRG and α-actinin) were upregulated while others 

were downregulated (β/γ actin, vinculin, and α-catenin). The putative proteins vascular 

endothelial protein tyrosine phosphatase (VE-PTP), transforming growth factor β2 

(TGFβ2), and partitioning defective protein 3 (PAR3) were also upregulated. Upregulation 

of the ‘gap junction’ pathway was driven by increased expression of a gene putatively 

encoding tubulin α (TUBA), and to some degree epidermal growth factor receptor (EGFR, 

or ErbB-1,1 listed as the receptor tyrosine kinase, RTK), while the gene encoding protein 

kinase C α (PKC-α) was downregulated. Many of the 47 downregulated KEGG pathways 

in the hindgut were related to metabolism, but also included ‘cardiac muscle contraction’ 

(Fig. 3.4) and ‘synaptic vesicle cycle’. Downregulation of the ‘cardiac muscle contraction 

pathway’ was driven by a decrease in expression of the gene encoding cytochrome c 

reductase, however there were also significant increases in the expression of genes 

encoding the NKA α subunit, tropomyosin 1, and myosin heavy chain 6/7. Downregulation 

of the ‘synaptic vesicle cycle’ was driven by a reduction in the expression of the putative 

proton pump (V-ATPase), however the gene encoding the dynamin GTPase increased.  
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Table 2.2. Selected upregulated genes in the G. pennsylvanicus hindgut following cold 

acclimation whose putative function in relation to cold tolerance is discussed in the 

text. For a full list of the 760 upregulated hindgut genes, see Spreadsheet S1. P-values were 

adjusted for false discovery rate (FDR). For each gene, the species with the highest sequence 

similarity via BLAST is given. Species codes: Aa (Aedes aegypti), Ap (Acyrthosiphon pisum), Gb 

(Gryllus bimaculatus), Gf (Gryllus firmus), Gm (Galleria mellonella), Ll (Lutzomyia longipalpis), 

Lm (Locusta migratoria), Md (Microplitis demolitor), Ms (Modicogryllus siamensis), Tc 

(Tribolium castaneum), Xt (Xenopus tropicalis), Zn (Zootermopsis nevadensis). 

Function Description 
Fold 

change  
P-value Species 

     

Apoptosis Caspase-6 4.0 1.8E-31 Gs 
 

Caspase-8 4.0 9.1E-39 Zn 

Circadian Clock 2.7 1.7E-17 Gb 
 

Nocturnin 2.4 1.8E-16 Zn 
 

Period 7.4 1.6E-50 Gb 

Cytoskeleton Microtubule-Associated Protein Jupiter 4.2 5.3E-31 Zn 

Diuresis Atrial Natriuretic Peptide-Converting 

Enzyme 

3.5 3.7E-15 Zn 

Ion transport Ca2+ Release-Activated Ca2+ Channel 

Protein 1 

2.3 4.3E-17 Zn 

 
Na+-K+ ATPase Alpha Subunit 2.8 2.7E-21 Ll 

Neurotransmission Na+- and Cl--Dependent GABA Transporter 

Ine 

2.1 8.8E-10 Md 

Phosphorylation Dual Specificity Tyrosine-Phosphorylation-

Regulated Kinase 2 

2.7 2.2E-04 Zn 

 
Serine Threonine-Protein Kinase Rio3 2.9 3.7E-07 Zn 

 
Serine Threonine-Protein Kinase Sik3-Like 

Isoform X3 

2.9 8.7E-16 Ap 

Protein folding Heat Shock Protein 90 3.0 1.7E-28 Gf 
 

Hsp70 Family Member 2.1 8.0E-14 Lm 

Repair/antioxidant Cytochrome P450 26.0 7.7E-108 Aa 

 Cytochrome P450 4C1 2.0 7.2E-05 Zn 

 DNA Mismatch Repair Protein Mlh1 3.5 1.2E-22 Xt 

 DNA Repair Protein Complementing Xp-G 

Cells 

2.7 4.8E-20 Zn 

 Glutathione S-Transferase D7 2.1 2.6E-05 Zn 

Signal transduction cAMP-Specific 3',5'-Cyclic 

Phosphodiesterase, Isoform F Isoform X2 

2.1 3.3E-12 Tc 

 
Dual 3’,5’ Cyclic-AMP and -GMP 

Phosphodiesterase 11 

2.5 1.5E-17 Zn 

 
G Kinase-Anchoring Protein 1 3.8 6.5E-34 Zn 

 
G-Protein Coupled Receptor Mth2-Like 2.2 4.5E-14 Ap 

 
Protein Kinase C Iota (partial) 2.4 1.5E-16 Zn 

Signalling/gut 

contraction 

Adenylate Cyclase Type (partial) 2.5 1.2E-13 Zn 
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Table 3.3. Selected genes downregulated in the G. pennsylvanicus hindgut following 

cold acclimation whose putative function in relation to cold tolerance is discussed in 

the text. For a full list of the 733 downregulated hindgut genes, see Spreadsheet S1. P-values were 

adjusted for false discovery rate (FDR). For each gene, the species with the highest sequence 

similarity via BLAST is given. Species codes: Ac (Acheta domesticus), Ap (Aphis gossypii), Ar 

(Athalia rosae), Bt (Bemisia tabaci), Dp (Diploptera punctata), Gb (Gryllus bimaculatus), Go 

(Gryllus orientalis), Lm (Locusta migratoria), Md (Microplitis demolitor), Mr (Megachile 

rotundata), Nv (Nasonia vitripennis), Ps (Plautia stali), Sg (Schistocerca gregaria), Tc (Tribolium 

castaneum), Zn (Zootermopsis nevadensis). 

Function Description Fold change  P-value Species 

     

Apoptosis Apoptosis-Inducing Factor 3-Like -4.4 6.1E-29 Nv 

Circadian Timeless -4.3 2.3E-36 Gb 

Ion transport Bumetanide-Sensitive Na+-Cl- 

(partial) (NKCC) 

-2.9 6.9E-25 Zn 

 Na+-Independent Sulfate Anion 

Transporter-Like 

-2.8 1.9E-12 Mr 

 Organic Cation Transporter Protein -2.6 4.2E-19 Zn 

Ion transport/pH 

regulation 

Carbonic Anhydrase 1 -4.6 4.9E-49 Tc 

 Carbonic Anhydrase 9 -3.9 6.5E-40 Zn 

 Mitochondrial Na+-H+ Exchanger 

NHA2 

-2.9 7.0E-18 Zn 

Phospholipid 

biochemistry 

∆9 Desaturase 1 -3.9 1.4E-10 Ad 

Protein folding Heat Shock Protein 67B2 -2.1 3.3E-09 Zn 

 Heat Shock Protein β-11 -4.5 5.1E-29 Zn 

Repair/antioxidant Antioxidant Enzyme -2.0 1.6E-12 Go 

 Cytochrome P450 4C1 -4.1 4.0E-42 Zn 

 Cytochrome P450 6A14 -3.8 1.3E-12 Zn 

 Cytochrome P450 9E1 -2.5 9.5E-19 Dp 

 Cytochrome P450 Cyp44 -5.5 1.9E-43 Zn 

 Epsilon Glutathione S-Transferase -2.1 7.8E-11 Lm 

 Glutathione S-Transferase -6.8 1.2E-35 Bt 

 Glutathione S-Transferase-Like -2.5 2.3E-15 Md 

 Glutathione S-Transferase Sigma 1 -2.5 2.1E-10 Sg 

 Glutathione S-Transferase Sigma 7 -4.8 1.5E-26 Lm 

 Glutathione S-Transferase Theta 1 -2.8 2.5E-21 Lm 

 Peroxiredoxin -2.6 4.3E-17 Go 

 Vitellogenin -40.0 1.7E-47 Ar 

 Vitellogenin-2 -18.4 1.2E-50 Ps 
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Figure 3.2. Heat map of differentially-expressed KEGG pathways in the hindgut and 

Malpighian tubules of G. pennsylvanicus crickets following cold acclimation. 
Upregulated pathways are given in orange and downregulated pathways are given in blue. 

Each heat map contains three column indicating three cold-acclimated biological replicates 

(CA 1-3) each compared to the mean expression among warm-acclimated replicates. For a 

complete description of each pathway, see the KEGG online resource 

(http://www.genome.jp/kegg/). 
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Figure 3.3. Shifts in the expression of ‘adherens junction’ KEGG pathway 

components in the G. pennsylvanicus hindgut following cold acclimation, as an 

example of a pathway that was significantly differentially regulated. Each pathway 

component contains three color bars indicating three cold-acclimated biological replicates 

each compared to the mean expression among warm-acclimated replicates. For cold-

acclimated crickets relative to warm-acclimated crickets, shifts in expression are either 

upregulated (orange), downregulated (blue), or unchanged (grey). For a complete 

description of each pathway component, see the KEGG ‘adherens junction’ reference 

pathway (http://www.genome.jp/kegg-bin/show_pathway?ko04520). 
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Figure 3.4. Shifts in expression of the ‘cardiac muscle contraction’ KEGG pathway 

components in the G. pennsylvanicus hindgut following cold acclimation, as an 

example of a pathway that was significantly differentially regulated.  Cardiac muscle 

is analogous to insect striated muscle. Each pathway component contains three color bars 

indicating three cold-acclimated biological replicates each compared to the mean 

expression among warm-acclimated replicates. For cold-acclimated crickets relative to 

warm-acclimated crickets, shifts in expression are either upregulated (orange), 

downregulated (blue), or unchanged (grey). ATP - Na+-K+ ATPase α subunit, Cyto - 

cytochrome c reductase iron-sulfur subunit, TPM - tropomyosin 1, Myosin - myosin heavy 

chain 6/7. For a complete description of each pathway component, see the KEGG ‘adherens 

junction’ reference pathway (http://www.genome.jp/kegg-bin/show_pathway?ko04520). 
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3.3.2 Malpighian tubules 

Cold acclimation shifted the expression of Malpighian tubule genes related to apoptosis 

and autophagy, the cytoskeleton, detoxification and repair, ion transport, pH regulation, 

phosphorylation and signal transduction, and protein folding (Tables 3.4, 3.5; see 

Supplemental material, Spreadsheet S1A for a complete list of differentially-expressed 

genes). Ion transporters included a putative V-ATPase (downregulated 2-fold), Ca2+ and 

anion transporters (upregulated over 2-fold), and both CA 1 and 9 (downregulated 2- and 

4-fold, respectively). Cold acclimation led to variable expression of cytoskeletal genes, 

increased the expression of two apoptosis genes, and decreased expression of one gene 

involved in autophagosome formation. Similar to the hindgut, cold-acclimated Malpighian 

tubules also exhibited increased expression of hsp70 and downregulation of hsp67B, and 

both up- and downregulation of multiple repair and antioxidant genes (e.g. cytochrome 

P450s and glutathione S-transferases). Multiple kinase genes were upregulated in cold-

acclimated Malpighian tubules while inositol monophosphatase expression decreased (6.9-

fold). Altered expression of circadian genes following cold acclimation were also similar 

to that of the hindgut, and juvenile hormone expression was reduced nearly 11-fold. 

 

Similar to patterns in the hindgut, more KEGG pathways were downregulated than were 

upregulated in cold-acclimated Malpighian tubules (Fig. 3.2). Many of the 20 upregulated 

pathways were involved in signaling, and most of the 47 downregulated pathways related 

to metabolism. The ‘cardiac muscle contraction’ pathway (analogous to insect striated 

muscle; Piek and Njio, 1979) was downregulated based on reduced expression of a 

cytochrome c reductase gene. Unlike in the hindgut, NKA, tropomyosin, or myosin heavy 

chain components of this pathway were not upregulated in Malpighian tubules. The 

‘synaptic vesicle cycle’ pathway exhibited downregulation overall (driven by 

downregulation of V-ATPase), however a number of genes involved in endocytosis and 

vesicle-membrane fusion were upregulated. These upregulated genes include those 

encoding putative N-ethylmaleimide-sensitive factor (NSF, an ATPase), dynamin, AP2 

complex α (a protein associated with endocytosis of clathrin-coated vesicles), and syntaxin 

1A (involved in vesicle fusion for exocytosis). 
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Table 3.4. Selected upregulated genes in G. pennsylvanicus Malpighian tubules 

following cold acclimation whose putative function in relation to cold tolerance is 

discussed in the text.  For a full list of the 999 upregulated Malpighian tubule genes, see 

Spreadsheet S1. P-values were adjusted for false discovery rate (FDR). For each gene, the species 

with the highest sequence similarity via BLAST is given. Species codes: Aa (Aedes aegypti), Gb 

(Gryllus bimaculatus), Hs (Harpegnathos saltator), Lm (Locusta migratoria), Ms (Modicogryllus 

siamensis), Nv (Nasonia vitripennis), Phc (Pediculus humanus corporis), Tc (Tribolium 

castaneum), Xt (Xenopus tropicalis), Zn (Zootermopsis nevadensis). 

Function Description 
Fold 

change  
P-value Species 

     

Apoptosis Caspase-8  2.1 1.7E-5 Zn 

 Programmed Cell Death Protein 2 2.4 7.0E-10 Nv 

Circadian Clock 2.5 6.4E-9 Gb 

 Nocturnin 3.5 1.2E-23 Zn 

 Period  7.6 2.5E-63 Ms 

Cytoskeleton Gamma-Tubulin Complex Component 6 2.2 8.6E-10 Zn 

 Kinesin-Like Protein Costa 2.8 2.6E-9 Zn 

 Protein Shroom 2.5 1.6E-9 Zn 

 Microtubule-Associated Protein Jupiter 2.2 1.8E-8 Zn 

Ion transport Ca2+-Transporting ATPase Type 2C Member 1 2.2 1.1E-8 Zn 

 Solute Carrier Organic Anion Transporter Family 

Member 5a1 
2.4 3.0E-11 Hs 

Phosphorylation Inositol Polyphosphate Multikinase 2.2 2.6E-15 Zn 

 Serine Threonine-Protein Kinase rio3 3.4 5.4E-35 Zn 

 Serine Threonine-Protein Kinase pctaire-2 2.6 3.9E-14 Zn 

 Serine Threonine-Protein Kinase Tousled-Like 2 2.9 2.7E-11 Zn 

 

Tyrosine-Protein Kinase Transmembrane Receptor 

ror1 2.5 6.6E-10 Phc 

 

Tyrosine-Protein Phosphatase Non-Receptor Type 

23 2.5 1.6E-15 Zn 

Protein folding Hsp 70 Family Member 2.0 1.0E-10 Lm 

 Hsp 70-binding Protein 1 3.3 2.7E-22 Zn 

Repair/antioxidant Alkylated DNA Repair Protein Alkb-Like Protein  2.6 1.4E-12 Zn 

 Cytochrome P450 14.6 3.7E-58 Aa 

 Cytochrome P450 2j2 3.4 4.6E-7 Zn 

 Cytochrome P450 partial 6.1 9.1E-11 Zn 

 DNA Mismatch Repair Protein mlh1 4.2 3.9E-24 Xt 

 Glutathione S-Transferase Sigma 7 2.3 9.5E-9 Zn 

 Peroxiredoxin-6 2.1 4.0E-9 Lm 

Signal transduction cAMP-Specific 3’,5’-Cyclic Isoform F Isoform X2 3.2 2.4E-30 Tc 

 G Kinase-Anchoring Protein 1 3.7 1.2E-28 Zn 
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Table 3.5. Selected downregulated genes in G. pennsylvanicus Malpighian tubules 

following cold acclimation whose putative function in relation to cold tolerance is 

discussed in the text. For a full list of the 1009 downregulated Malpighian tubule genes, see 

Spreadsheet S1. P-values were adjusted for false discovery rate (FDR). For each gene, the species 

with the highest sequence similarity via BLAST is given. Species codes: Aa (Aedes aegypti), Bt 

(Bemisia tabaci), Dp (Diplotera punctata), Gb (Gryllus bimaculatus), Go (Gryllotalpa orientalis), 

Lm (Locusta migratoria), Md (Microplitis demolitor), Tc (Tribolium castaneum), Zn (Zootermopsis 

nevadensis). 

Function Description Fold change  P-value Species 

     

Autophagy Autophagy-Related Protein 2-Like 

Protein B 

-2.1 1.5E-7 Zn 

Circadian Timeless -3.0 3.3E-13 Gb 

Cytoskeleton Microtubule-Associated Proteins 1A 

1B Light Chain 3C -4.9 8.5E-23 Zn 

 Epidermal Growth Factor Receptor 

Kinase Substrate 8-Like Isoform X1 -2.4 1.9E-9 Md 

 Gamma-Tubulin Complex 

Component 3 

-2.0 4.7E-9 Zn 

Development Juvenile Hormone-Inducible -10.6 3.8E-50 Aa 

Ion transport/pH 

regulation 

Carbonic Anhydrase 9 -4.2 2.1E-33 Zn 

 Carbonic Anhydrase 1 -2.2 5.9E-15 Tc 

 V-ATPase Subunit D -2.1 1.2E-14 Lm 

Phosphorylation Inositol Monophosphatase -6.9 1.1E-58 Zn 

 Serine Threonine-Protein 

Phosphatase 2B Catalytic Subunit 2-

Like Isoform X2 

-2.1 9.0E-14 Tc 

Protein folding Heat Shock Protein 67B2 -2.8 1.6E-16 Zn 

Repair/antioxidant Antioxidant Enzyme -2.9 3.7E-23 Go 

 Cytochrome P450 -2.9 1.4E-11 Bt 

 Cytochrome P450 4C1 -2.7 3.2E-22 Zn 

 Cytochrome P450 6A14 -2.5 3.2E-13 Zn 

 Cytochrome P450 9E2 -2.3 1.4E-11 Zn 

 Cytochrome P450 (partial) -2.3 3.6E-12 Zn 

 Cytochrome P450 9E1 -2.2 3.3E-14 Dp 

 Glutathione S-Transferase -3.2 1.8E-23 Bt 

 Glutathione S-Transferase Theta 1 -3.1 1.9E-28 Lm 
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3.4 Discussion 

Cold acclimation altered the expression of genes associated with water and ion homeostasis 

and cellular junctions in addition to those involved in prevention and/or repair of chilling 

injury (e.g. those associated with apoptosis, cell structure, detoxification and repair, and 

protein folding). Similar functional changes occur during both cold acclimation and rapid 

cold-hardening in Drosophila (Gerken et al., 2015; MacMillan et al., 2016a). In crickets, 

stress response, protein folding, and repair appear to be particularly important aspects of 

cold acclimation in the hindgut, while cold acclimation in the Malpighian tubules appears 

to involve shifts in transport function. In both tissues, cold acclimation reduced metabolic 

gene expression and altered the expression of many genes encoding components of the 

membrane and extracellular space.  

3.4.1 Water balance 

Only one gene with known function in insect water homeostasis – that encoding atrial 

natriuretic peptide-converting enzyme – was upregulated in the hindgut following cold 

acclimation. Homologs of this enzyme in mosquitos stimulate primary urine production by 

the Malpighian tubules by increasing secretion of Na+ and Cl- (Petzel et al., 1985; Schooley 

et al., 2012). Precisely how shifts in the expression of this peptide act on the insect hindgut 

is less certain, but stimulation of Na+ and Cl- transport would suggest enhanced water 

reabsorption by the rectum (Phillips and Audsley, 1995), and this could aid in the 

maintenance of hemolymph volume during cold exposure. The effect of cold acclimation 

on the expression of other known diuretic peptides in the nervous system tissues should be 

characterized in future (cf. Paluzzi et al., 2008). Although some aquaporins are associated 

with insect desiccation and freeze-tolerance (Philip et al., 2008; Philip and Lee, 2010; Goto 

et al., 2011), their role in cold acclimation among chill-susceptible insects remains to be 

investigated. None of the six known water-transporting insect aquaporins were 

differentially-expressed genes in the hindgut or Malpighian tubules. 
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3.4.2 Ion transport 

Cold acclimation altered the expression of putative NKA, NKCC, CA, NHA, and V-

ATPase, which are typically enriched in insect transporting epithelia (Chintapalli et al., 

2013). While all of these transport enzymes contribute to primary urine production by the 

Malpighian tubules (Ianowski and O'Donnell, 2004), most of these gene expression 

changes were observed in the hindgut; cold acclimation in the Malpighian tubules only 

downregulated genes encoding V-ATPase and CAs 1 and 9.  

 

CA catalyzes the hydration of CO2 to produce H2CO3, a source of protons for export by 

apical V-ATPase by the Malpighian tubules (Maddrell and O'Donnell, 1992; Wessing et 

al., 1997; Chintapalli et al., 2013). These lumenal protons are then exchanged for Na+ or 

K+ by NHA and K+-H+ antiporters (Ianowski and O'Donnell, 2006; Chintapalli et al., 

2013), driving passive excretion of water and anions (Nicolson, 1993; Beyenbach, 2003). 

Downregulation of CA9 (membrane-bound), CA1 (cytosolic), and V-ATPase in the 

Malpighian tubules during cold acclimation could therefore have an antidiuretic effect, 

perhaps defending hemolymph volume in the cold. Indeed, cold-acclimated G. 

pennsylvanicus Malpighian tubules produce primary urine more slowly (Chapter 5).  

 

Paracellular Na+ gradients across the rectal pads drives passive reabsorption of water 

against osmotic gradients (Hanrahan and Phillips, 1982; Phillips et al., 1987; Chapman, 

2013). Failure of NKA to maintain these Na+ gradients during cold exposure could account 

for leak of Na+, and consequently water, to the gut. We might therefore expect cold 

acclimation to increase NKA protein abundance as compensation for slower enzyme 

activity at low temperatures. In support of this prediction, expression of the α (catalytic) 

subunit of NKA increased nearly 3-fold in the cricket hindgut after cold acclimation (and 

despite overall metabolic downregulation in that tissue). However, cold acclimation in D. 

melanogaster lowers whole-body NKA activity (MacMillan et al., 2015d), suggesting a 

decoupling of Na+ gradients across the gut rather than compensation for slowed NKA 

activity in the cold. This discrepancy in the apparent strategies of maintaining Na+ balance 

stresses the importance of tissue-specific analysis. Alternately, it is possible that Diptera 
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and Orthoptera use different acclimation strategies with regards to Na+ balance; a 

possibility that merits additional exploration. Hindgut NKCC (which imports Na+
, K

+, Cl- 

basally and drives apical ion exchange; Zeuthen and MacAulay, 2012; Chintapalli et al., 

2013) was downregulated, however it is difficult to predict how this might influence 

homeostasis as the role of NKCC in insect hindgut transport has received relatively little 

attention. 

3.4.3 Cell junctions and structure 

Reduced rectal pad permeability could enhance cold tolerance by minimizing Na+ and 

water leak in the cold (MacMillan and Sinclair, 2011b). Cold acclimation did indeed 

change the expression of many tissue structural genes, which could indicate modified rectal 

pad epithelium. Upregulated hindgut genes involved in cell growth, differentiation, and 

adhesion included endothelial growth factor (EGFR), PAR3, VE-PTP, and TGFβ2 (Boyer 

et al., 1999; Ebnet et al., 2003; Broermann et al., 2011), and I observed both upregulation 

of apoptotic promoters (caspases 6 and 8) and down-regulation of a mitochondrial 

apoptosis-inducing factor. CA9 may reduce cellular adhesion (via interaction with β-

catenin; Švastová et al., 2003) and also regulates proliferation, and differentiation (at least 

in mammals) (Gut et al., 2002), therefore a downregulation of CA9 expression in and 

hindgut and Malpighian tubules during cold acclimation may increase cellular adhesion 

and epithelial tightness (but see also comments above about the role of CA9 in providing 

protons to V-ATPase; the precise role of this enzyme in the rectum is uncertain). Tissue-

specific post-translational modification of CA9 is an important means of regulating 

expression of this gene (Hilvo et al., 2004), however I could not identify such modifications 

in the present study. 

 

Candidates for modification of epithelial permeability include septate and/or adherens 

junctions (comprising the bulk of rectal pad paracellular connections; Satir and Gilula, 

1973; Phillips et al., 1987; Tepass et al., 2001; Matter and Balda, 2003; Adam, 2015). Cold 

acclimation changed the expression of hindgut adherens junction components (and 

potentially septate junctions, which share many components with adherens junctions; 

Matter and Balda, 2003). In addition to promoting actin stabilization (discussed below), I 
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observed both up- and down-regulation of genes encoding actin-membrane anchors with 

cold acclimation, which could influence cell junction characteristics or cell shape. During 

cold exposure, migration of water distends the gut (MacMillan and Sinclair, 2011b) and 

osmotic stress or changes in membrane viscosity could alter both cell shape and volume. 

Thus, reduced actin-membrane anchoring could minimize tension, shearing damage, or 

stretch-activation of membrane-bound ion channels (Örvar et al., 2000; Lecuit and Lenne, 

2007). Cold acclimation also altered some gap and tight (septate) junction components, 

which are important for electrochemical coupling and ion and water recycling between the 

cytoplasm and paracellular channels (Gupta et al., 1980; Haraguchi et al., 2006), electrical 

insulation, shunt pathways, and selectivity of absorption (Reuss, 2001; Hartsock and 

Nelson, 2008), respectively. Upregulation of PAR3 (Ebnet et al., 2003) and 

downregulation of PKC-α (Rosson et al., 1997) suggests increased septate junction 

formation and therefore increased tightness of the hindgut epithelium during acclimation. 

Enhanced epithelial tightness could mitigate ion and water leak, however changes in 

septate junction morphology in the rectal pads following acclimation should be confirmed 

by transmission electron microscopy or immunostaining (Berridge, 1972; Dokladny et al., 

2006). Leak of water and ions across the Malpighian tubules may also be altered with cold 

acclimation, as I observed shifts in the expression of multiple genes involving the 

cytoskeleton and cell junctions (e.g. protein shroom) (Hildebrand and Soriano, 1999; 

Hildebrand, 2005). Whether these structural changes actually affect ion and water balance 

requires some assessment of Malpighian tubule permeability following cold acclimation. 

3.4.4 Chilling injury 

Cold-attributed oxidative stress, disruption of homeostasis and signaling, protein mis-

folding, and loss of membrane and cytoskeletal integrity may all contribute to chilling 

injury and mortality in chill-susceptible insects (Rojas and Leopold, 1996; Yu et al., 2001; 

Heimlich et al., 2004; Kim and Denlinger, 2009; Teets et al., 2013; MacMillan et al., 2015c; 

Štětina et al., 2015). Cold hardening must therefore induce physiological changes that 

prevent cold damage and/or repair damage upon rewarming. Upregulation of putative 

apoptosis genes (e.g. those encoding caspase 6 - an apoptosis initiator and caspase 8 - an 

apoptosis effector; Elmore, 2007) during cold acclimation might contribute to rectal pad or 
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Malpighian tubule epithelial restructuring (discussed above) and/or repair of damage. 

Similarly, shifts in autophagy-related gene expression (e.g. upregulation of Ras and 

ubiquitin signaling KEGG pathways) indicates that clearing of cell components 

(potentially following cold damage) is an important aspect of cold tolerance (Denton et al., 

2012; Pérez et al., 2015). Polymorphisms or shifts in the expression of genes associated 

with both apoptosis and autophagy appear to be common to the rapid cold-hardening 

processes (Gerken et al., 2015), as well as dehydration (Teets and Denlinger, 2013; Lee 

and Denlinger, 2014). 

 

Cytoskeletal components such as actin and tubulin depolymerize at low temperatures in 

fish, mammals, and insects (Madara et al., 1986; Belous, 1992; Kayukawa and Ishikawa, 

2009; Kim and Denlinger, 2009). This depolymerization could cause chilling injury by 

modifying ion transporter recruitment to the membrane (e.g. lack of V-ATPase recruitment 

could lead to ion and pH imbalance; Breton et al., 2000), or by disrupting signaling (e.g. 

via Ca2+ influx; Örvar et al., 2000). Water loss (which occurs during cold exposure in chill-

susceptible species) appears to drive shifts in cytoskeletal gene expression in other insects 

(Lee and Denlinger, 2014). Not surprisingly, cold acclimation enhanced expression of 

cytoskeletal branching and stabilizing proteins, similar to observations in cold-acclimated 

Culex pipiens (Kim et al., 2006), Delia antiqua (Kayukawa and Ishikawa, 2009), alfalfa 

(Medicago sativa) (Örvar et al., 2000), and Drosophila melanogaster (Cottam et al., 2006; 

MacMillan et al., 2016a). Specifically, α-catenin – which suppresses actin polymerization 

by binding with cadherin-β-catenin (Knudsen et al., 1995; Drees et al., 2005) – was 

downregulated, while ARP2/3 – which serves as a nucleation site for actin polymerization 

(Drees et al., 2005) – was upregulated. Tropomyosin (one of whose functions is to stabilize 

actin) was also upregulated in the cold-acclimated hindgut, as were microtubule protein 

Jupiter and MAP1A/B which promote microtubule polymerization and stabilization, 

respectively (Karpova et al., 2006; Riederer, 2007).   

 

Cold exposure appears to cause oxidative stress (Huot et al., 1996; Lalouette et al., 2011), 

which may be exacerbated by decreased activity of antioxidant enzymes. Cold acclimation 

increases antioxidant activity and/or expression in a number of insects (Lalouette et al., 
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2011; Storey and Storey, 2012), and this was true for crickets; I observed substantial 

increases in the expression of putative cytochrome P450s in both the hindgut and 

Malpighian tubules, in addition to some increases in DNA repair genes and a glutathione 

S-transferase. These may represent only a subset of cold tolerance genes as antioxidant 

expression can also be upregulated upon rewarming (Joanisse and Storey, 1996; Lalouette 

et al., 2011; Storey and Storey, 2012). It should be noted that cold acclimation also reduced 

the expression of multiple cytochrome P450 and glutathione S-transferase genes. This 

downregulation could be a consequence of lower metabolic rates during cold acclimation 

(i.e. lower oxygen radical stress; Lalouette et al., 2011; Niehaus et al., 2012).  

 

Cold acclimation increased the expression of hsp70 in both tissues (as well as hindgut 

hsp90 expression). In addition to its role as a protein chaperone, hsp70 also acts to suppress 

apoptosis, promote DNA repair, and enhance cell survival (Moskalev et al., 2008). Hsps 

70 and 90 may also protect against thermal disruption of tight junctions (Dokladny et al., 

2006), which could help to prevent epithelial ion leak in the cold. Downregulated hsps 

included the less-characterized hspβ11 (involved in the vertebrate heat stress response; 

Quinn et al., 2011) and hsp67B2 or hsp67Bb (which may protect against heat and oxidative 

stress in Drosophila; Pauli et al., 1988; Moskalev et al., 2008).  

3.4.5 Other differentially-expressed genes 

Membrane remodeling is likely an important aspect of cold acclimation (Clark and 

Worland, 2008; Lopez-Martinez et al., 2009; MacMillan et al., 2009) which may help to 

defend transport function in addition to membrane viscosity at low temperatures. Indeed, 

a large proportion of differentially-expressed GO cellular components in the cold-

acclimated Malpighian tubules and hindgut were membrane-associated. In the hindgut, a 

gene encoding ∆9 desaturase – which is implicated in homeoviscous adaptation – was 

downregulated with acclimation. Cold acclimation in carp and two flies (Belgica antarctica 

and Delia radicum) has been associated with upregulation of ∆9 desaturase (Tiku et al., 

1996; Kayukawa et al., 2007; Zerai et al., 2010). We do not know whether cold acclimation 

causes changes in membrane fluidity in G. pennsylvanicus, but this would require acyl 
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chain desaturation or choline intercalation, which could also be achieved by other enzymes 

or by post-translational modification of desaturases.  

 

Loss of synaptic transmission and/or signal transduction in the cold is a proposed 

mechanism of chill coma, and recent evidence suggests that paralysis during cold exposure 

results from direct inhibitory effects of low temperature on neuromuscular function (Koštál 

et al., 2006; Findsen et al., 2014; MacMillan et al., 2014; Andersen et al., 2015, Chapter 

2). Cold acclimation altered the expression of some signal transduction proteins (e.g. 

cAMP, G-proteins, and PKC) and upregulated some neurotransmission proteins (a GABA 

transporter and Ca2+ channel), however it is difficult to predict if and how these changes 

enhance cold tolerance by lowering the critical thermal minimum. Perhaps of greater 

interest were upregulated vesicle localization and fusion genes such as dynamin (which 

mediates membrane-vesicle fusion), NSF (a vesicle-fusing ATPase), AP2 (involved in 

vesicle endocytosis), and syntaxin 1A (which promotes vesicle-membrane docking). 

Vesicle-membrane localization is important for both neurotransmission and recruitment of 

ion transporters (the latter of which could directly affect ion homeostasis in the cold; 

Bezzerides et al., 2004). Neurotransmitters are accumulated in synaptic vesicles by the 

action of V-ATPase (Moriyama et al., 1992) which was downregulated with cold 

acclimation. 

 

Cold acclimation affected the expression of some genes associated with circadian rhythm, 

storage and metabolism, development, and phosphorylation. Differential expression of 

circadian genes was likely a result of the cold (e.g. low temperatures decrease the 

expression of timeless and increase the expression of per in flesh flies; Goto and Denlinger, 

2002). Cold acclimation drastically lowered the expression of hindgut genes encoding 

vitellogenin – a yolk protein precursor. I suspect that vitellogenin mRNA came from traces 

of fat body remaining on the gut during dissections (Bownes, 1986). Adenylate cyclase 

was upregulated with cold acclimation, and may increase hindgut muscular contraction, 

which in turn could reduce the depth of unstirred boundary layers to aid in ion transport 

(Wright et al., 1986; Collier and O'Donnell, 1997). 
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Figure 3.5. Candidate mechanisms of cold acclimation in G. pennsylvanicus.  A) 

Increased abundance of NKA in rectal pad epithelia should increase Na+ and water 

reabsorption; this may counteract leak of water and ions and aid in chill coma recovery). 

B) Downregulation of CA and V-ATPase expression in the Malpighian tubules should slow 

primary urine production, thereby retaining hemolymph volume. C) Cytoskeletal and 

junctional remodeling of the hindgut may mitigate water and ion leak during cold exposure. 

 

3.4.6 Conclusions 

I have sequenced and assembled the first transcriptome of Gryllus pennsylvanicus and my 

tissue-specific comparisons suggest that cold acclimation involves modification of both 

ion transport function and cellular/junctional integrity (summarized in Fig. 3.5, above). I 

have generated three precise mechanistic hypotheses about the cold acclimation process. 

1) Ion transport modifications defend hemolymph volume in the cold; decreased 

Malpighian tubule V-ATPase and CA expression should slow primary urine production, 

while upregulation of hindgut NKA should increase Na+ and water reabsorption and may 

account for faster chill coma recovery in cold-acclimated insects. 2) Remodeling of the 
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cytoskeleton and adherens junctions (and potentially tight junctions) may mitigate 

paracellular leak of water and ions in both the hindgut and Malpighian tubules. 3) Cold-

acclimated crickets may prevent direct chilling injury by stabilizing the actin cytoskeleton 

and by changing the way in which actin anchors to the membrane, while upregulation of 

antioxidant, DNA repair, apoptosis, autophagy, and chaperone genes may aid in repair of 

chilling injuries.  
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Chapter 4 

4 Effects of cold acclimation on rectal macromorphology, 
ultrastructure, and cytoskeletal stability 

I have prepared this chapter for submission to the Journal of Experimental Biology. 

4.1 Introduction 

Chill-susceptible insects lose ion and water homeostasis at low temperatures and may 

accumulate chilling injuries if the cold exposure is deep or prolonged (Koštál et al., 2004; 

Koštál et al., 2006; MacMillan and Sinclair, 2011b; Findsen et al., 2014; Coello Alvarado 

et al., 2015). This loss of homeostasis is thought to result from the failure of active transport 

to combat Na+ leak down concentration gradients (MacMillan and Sinclair, 2011a), leading 

to bulk migration of Na+ and water from the hemolymph to the gut (MacMillan and 

Sinclair, 2011b; Coello Alvarado et al., 2015). To recover from cold exposure, insects must 

re-establish ion and water balance and repair chilling injuries (MacMillan et al., 2012; 

Findsen et al., 2013; Findsen et al., 2014). Currently, our understanding of the mechanisms 

underlying loss of homeostasis in the cold, chilling injury, and how these two process are 

related, is incomplete (Rojas and Leopold, 1996; Yu et al., 2001; Teets et al., 2013; 

MacMillan et al., 2015c; Štětina et al., 2015). Even less is understood about the 

mechanisms by which cold-adapted or -acclimated insect populations sustain water and ion 

balance at lower temperatures and avoid chilling injury (Chen et al., 1987; Gibert and 

Huey, 2001; Ayrinhac et al., 2004; Koštál et al., 2004; Koštál et al., 2006; Findsen et al., 

2013; Andersen et al., 2014; Coello Alvarado et al., 2015; MacMillan et al., 2015b).  

 

Water and ion homeostasis is largely maintained by the Malpighian tubules (which excrete 

primary urine) and the rectum (where water and ions from the gut lumen are selectively 

reabsorbed). In orthopterans, reabsorption occurs across specialized epithelia of the rectal 

pads. The lateral borders of rectal pad cells form meandering channels that are intimately-

associated with mitochondria, collectively termed the scalariform complex (Wall and 

Oschman, 1970; Noirot and Noirot-Timothée, 1976; Noirot-Timothée and Noirot, 1980). 

Sodium-Potassium ATPase (NKA) in the lateral cell membrane generates a high [Na+] in 
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the paracellular channels, driving water para- and transcellularly from the lumen across the 

rectal pads (Wall et al., 1970; Phillips et al., 1987). Absorbate enters the hemolymph via 

one-way valves in the muscle underlying the rectal pads (Oschman and Wall, 1969). Unlike 

in the Malpighian tubules, where the lumen is isosmotic to the hemolymph (Ramsay, 

1954), the rectal pads establish steep osmotic and ionic gradients between the gut lumen 

and hemolymph (Dow, 1981; MacMillan and Sinclair, 2011b; Chapter 2).  

 

Cold-acclimated insects defend water and ion balance to lower temperatures than warm-

acclimated insects, and this is likely achieved by enhanced active transport function in the 

cold and/or reduction in epithelial permeability to minimize water and ion leak (Koštál et 

al., 2004; MacMillan and Sinclair, 2011a, b; Coello Alvarado et al., 2015). Some of these 

active transport modifications have been explored recently; seasonally-acquired cold 

tolerance has been related to whole-body NKA activity in the flies Drosophila 

melanogaster and Eurosta solidaginis (Koštál et al., 2007; McMullen and Storey, 2008; 

MacMillan et al., 2015a; MacMillan et al., 2015c), and variation in cold tolerance among 

Drosophila spp. has been correlated with selectivity of cation excretion by the Malpighian 

tubules (MacMillan et al., 2015a). However, the means by which epithelial permeability 

may be altered via tissue structural modifications during cold acclimation has been 

relatively unexplored. The insect gut is damaged by cold exposure (Yi and Lee, 2003; 

Izumi et al., 2005; Sinclair and Chown, 2005; Yi et al., 2007; Philip et al., 2008), and this 

is likely to exacerbate epithelial leak across the rectum. I hypothesize that cold acclimation 

reduces epithelial permeability (i.e. reduces water and ion diffusion) by modifying rectal 

tissue structure. For example, thickening of the rectal pads and associated tissues (e.g. 

muscle or inner cuticle) would increase water and ion diffusion distance, while narrowing 

and/or lengthening of the scalariform complex channels would reduce paracellular 

permeability across the rectum.  

 

Multimeric cytoskeletal components (e.g. actin and tubulin) depolymerize during cold 

exposure in plants, mammals, and insects (Job et al., 1982; Belous, 1992; Russotti et al., 

1997; Örvar et al., 2000; Pokorna et al., 2004; Cottam et al., 2006; Kim et al., 2006), and 

depolymerization is likely to impair gut transport function (Cantiello, 1995a; Tilly et al., 
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1996; Khurana, 2000). Cytoskeletal failure may also cause a loss of cell junction integrity 

and exacerbate paracellular leak of water and ions (Gonzalez-Mariscal et al., 1984; Belous, 

1992; Behrens et al., 1993; Turner et al., 1997), while loss of epithelial rigidity could lead 

to cell swelling or collapse as water traverses the rectum (Berridge, 1972). Actin is 

particularly important for the regulation of ion transport (e.g. for localizing enzymes to the 

membrane and maintaining membrane fluidity; Cantiello, 1995a; Hilgemann, 1997; 

Khurana, 2000), and membrane (transcellular) permeability (O'Donnell and Maddrell, 

1983). Depolymerization of actin filaments activates Na+ channels in amphibian renal cell 

lines (Cantiello, 1995b) and, in rats, unpolymerized actin stimulates renal NKA activity by 

increasing affinity for Na+ (Cantiello, 1995a). As NKA activity is crucial for establishing 

osmotic gradients within the scalariform complex, actin failure in the cold could directly 

hinder water and Na+ reabsorption. Actin depolymerization is associated with membrane 

damage in cold-exposed Delia antiqua onion maggots (Kayukawa and Ishikawa, 2009). 

Actin failure could also impede repair of chilling injuries (as epithelial wound closure 

requires localization of actin to the cell membrane; Rodriguez et al., 2003; Fernandez-

Gonzalez et al., 2009; Fernandez-Gonzalez and Zallen, 2013). 

 

If the actin cytoskeleton is damaged by cold, then cold acclimation should protect insects 

from chilling injury and loss of transport function by stabilizing actin at low temperatures 

(Khurana, 2000; Yi et al., 2007; Kayukawa and Ishikawa, 2009; Gerken et al., 2015). 

Acquired cold tolerance appears to involve modification of genes associated with the actin 

cytoskeleton (Teets et al., 2012; Gerken et al., 2015; Torson et al., 2015; MacMillan et al., 

2016), which corroborates this hypothesis. Both cryoprotective dehydration and 

rehydration in the freeze-avoidant Antarctic midge also cause shifts in actin gene 

expression (Lopez-Martinez et al., 2009). In the dipterans Culex pipiens and D. antiqua, 

acquired cold tolerance is associated with defense of F-actin polymerization during cold 

exposure; Kim et al., 2006; Kayukawa and Ishikawa, 2009). In C. pipiens, improved actin 

filament stability appears to be driven by upregulation of actin genes (Kim et al., 2006). In 

Chapter 3 I showed that cold acclimation modifies the expression of multiple actin-

associated genes in the cricket hindgut, but how these modifications affect cold tolerance 

or transport function is unknown. 
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The fall field cricket, Gryllus pennsylvanicus (Burmeister) (Orthoptera: Gryllidae) is a 

chill-susceptible species that has emerged as a model for understanding cold-induced loss 

of ion and water balance (MacMillan and Sinclair, 2011b; Coello Alvarado et al., 2015; 

Des Marteaux and Sinclair, 2016). When exposed to 0°C, G. pennsylvanicus exhibits 

chilling injury in as little as 12 h and mortality at 3-5 d (MacMillan and Sinclair, 2011b), 

however cold tolerance in this species is plastic; prior cold-acclimation lowers the critical 

thermal minimum, chill coma recovery time, incidence of injury and mortality following 

cold shock, and improve defense of ion and water homeostasis in the cold (Coello Alvarado 

et al., 2015). Cold acclimation in this species also causes differential expression of multiple 

cytoskeletal genes in the hindgut, many of which are actin-associated (e.g. actin-stabilizing 

and actin-to-membrane anchoring proteins; Fig. 4.1 and Chapter 3). 

 

Here I aimed to test two hypotheses: 1) that cold acclimation alters the structure of the 

rectum and/or rectal pad scalariform complex, and 2) that cold acclimation protects 

cytoskeletal integrity at low temperatures. Using warm- and cold-acclimated G. 

pennsylvanicus I measured the macromorphological characteristics of the rectum (via 

brightfield microscopy), ultrastructure of the scalariform complex (via transmission 

electron microscopy), and rectal pad actin polymerization before and after cold shock (via 

fluorescence confocal microscopy). 

 

4.2 Methods 

Gryllus pennsylvanicus were reared as described by Des Marteaux and Sinclair (2016) 

(Chapter 2). Briefly, I reared crickets under constant summer-like conditions (25°C, 14 

light:10 dark photoperiod, 70% RH) in transparent 60 L plastic containers with stacked 

cardboard egg cartons for shelter, tap water, and ad libitum commercial rabbit food (Little 

Friends Original Rabbit Food, Martin Mills, Elmira, ON, Canada). I collected eggs in 

containers of moist vermiculite and sterile sand and placed them at 4°C to accommodate 

an obligate three-month diapause (Rakshpal, 1962) before returning them to 25°C to hatch. 

I used adult female crickets at approximately three months post-hatch for all experiments. 
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Figure 4.1. (above) Shifts in the expression of the ‘regulation of actin cytoskeleton’ 

KEGG pathway in cold-acclimated G. pennsylvanicus cricket hindguts. Each pathway 

component contains three color bars (right to left) indicating three biological replicates 

comparing warm- and cold-acclimation. For cold-acclimated crickets relative to warm-

acclimated crickets, shifts in expression are either upregulated (orange), downregulated 

(blue), or unchanged (grey). For a complete description of each pathway component, see 

the reference pathway (http://www.genome.jp/kegg-bin/show_pathway?ko04810). F-actin 

- filamentous actin, ACTN - α-actinin, Arp2/3 - actin related proteins 2 and 3, VCL - 

vinculin (Chapter 3).  

 

 
 

4.2.1 Cold acclimation and cold shock 

During acclimation, crickets were isolated in 180 mL transparent cups (Polar Plastics, 

Summit Food Distributors, London, ON, Canada) with mesh fabric lids, containing egg 

carton shelters, rabbit food, and water. Warm-acclimated crickets remained in summer-like 

conditions (25°C, 14 light:10 dark photoperiod) for one week, while cold-acclimated 

crickets were housed in a Sanyo MIR 154 incubator (Sanyo Scientific, Bensenville, 

Illinois) at 12°C, 10 light:14 dark photoperiod for one week. I cold-shocked crickets for 1 

h at -4°C in loosely-capped 50 mL plastic tubes suspended in a pre-cooled bath of 50:50 

methanol:water (Lauda Proline RP 3530, Würzburg, Germany). Eight crickets (four warm- 

and four cold-acclimated) were cold-shocked for cytoskeletal stability measurements 

(described below). To assess whether cold shock affects survival, 40 crickets (20 warm-

acclimated, 20 cold-acclimated) were cold-shocked, then returned to cups with food and 

water at 25°C. I assessed survival 48 h later. 

4.2.2 Rectal macromorphology and ultrastructure 

Warm-acclimated crickets (mean ± s.e.m. mass: 491 ± 17 mg) and cold-acclimated crickets 

(506 ± 36 mg) were size-matched for measurements (t4.3 = 0.36, P = 0.73). Warm- and 

cold-acclimated crickets were secured to Sylgard-lined Petri dish by a pin through the 

pronotum and dissected. I opened the body cavity by a mid-dorsal incision and pinned the 

body open to remove the rectum with microscissors. The severed rectum was placed in a 

droplet of Ringer’s solution (110 Na+, 8.5 K+, 6 Mg2+, 7 Ca2+
, 144.5 Cl-, pH 7.6, 
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concentrations in mM, derived from measurements of G. pennsylvanicus in Chapter 2) and 

the fecal material flushed out with a Ringer’s-filled 5 mL syringe.  

 

I used brightfield microscopy to visualize rectal macrostructure in cross-section. Recta 

were fixed in 10% formalin and paraffin-embedded, mounted, cross-sectioned, and stained 

with Movat’s pentachrome stain (Movat, 1955) at the Robarts Research Institute 

(Molecular Pathology Facility, London, ON, Canada). I captured images of the cross-

sections with an AxioImager Z1 Microscope (Carl Zeiss Microscopy GmbH, Jena, 

Germany), and used Image-Pro Premier software (Media Cybernetics Inc, Rockville, MD) 

to measure macrostructural features. I counted the number of nuclei (as a proxy for 

epithelial cell density) and measured the length of all six rectal pads for each cricket (Fig. 

4.2C). Nuclei count per rectal pad was averaged across the six rectal pads for each cricket. 

For each rectal pad I made five to seven width measurements (at regular intervals). For the 

entire cross-section I made sequential clockwise measurements of outer circular muscle 

width (at least 75 measurements per section) and cuticle width (at least 30 measurements 

per section) at regular intervals. I used the grand mean (± s.e.m.) for each metric for each 

cricket to compare warm- and cold-acclimated individuals (n = 4 per treatment) with 

Welch’s t-tests in R (v3.2.2, R Development Core Team, 2015).  

 

I used transmission electron microscopy (TEM) to visualize the ultrastructure of the mid-

cell scalariform complexes in rectal pad epithelia. Recta were fixed (2.5% glutaraldehyde, 

0.1 M cacodylate, pH 7.4) and then stained with 1% (v/v) osmium tetroxide (pH 7.4), with 

three washes in 0.1 M cacodylate buffer (pH 7.4). Recta were then serially dehydrated in 

acetone and embedded in Epon-Araldite resin (Electron Microscopy Sciences, Fort 

Washington, PA, USA), which was polymerized at 60°C for 48 hr. I cut 0.5 μm sections 

and stained with 2% uranyl acetate (20 min) followed by Reynold’s lead citrate (1 min) 

(Graham and Orenstein, 2007). I imaged sections with a Philips CM10 Transmission 

Microscope (Philips Electron Optics, Eindhoven, The Netherlands) and AMT Advantage 

digital imaging system with Hamamatsu Orca 2 MPx HRL Camera (Advanced Microscopy 

Techniques, Woburn, MA). I measured scalariform complex tortuosity (n = 3 cold-

acclimated and 4 warm-acclimated crickets, 1-9 different scalariform complexes measured 
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per cricket) and channel widths (n = 4 crickets per treatment, 2-8 channels measured per 

cricket) using ImageJ software (Schindelin et al., 2015). Tortuosity was quantified as the 

length of scalariform complex channel relative to the length of a straight trajectory between 

each end of the channel. I compared measurements from warm- and cold-acclimated 

crickets using Welch’s t-tests in R. Reported values are means (± s.e.m.).  

4.2.3 Cytoskeletal stability 

To determine whether cold acclimation protects cytoskeletal stability at low temperatures, 

I quantified actin polymerization in recta of warm- and cold-acclimated crickets with and 

without cold shock (described above, n = 4 crickets per treatment combination). Recta were 

dissected from each cricket and flushed with insect Ringer’s (as above). I fixed recta in 4% 

paraformaldehyde overnight at 4°C and then embedded, cross-sectioned, and mounted the 

tissues on slides. Tissues were deparaffinized in xylene and progressively rehydrated to 

70% ethanol before rinsing in water and PBS. To stain for filamentous actin (F-actin), I 

first permeabilized rectal sections for 5 min using 0.1% (v/v) Triton X-100 in PBS and I 

applied Background Sniper (Biocare Medical, Concord, CA) for 5 min to reduce 

background florescence. Sections were stained in PBS with 2.5 % Phalloidin (Alexa-Fluor 

488, Thermo Scientific, Mississauga, ON) for F-actin and 0.6 μM DAPI for nuclei. I used 

PermaFluor mountant (Thermo Scientific, Mississauga, ON) to reduce fading and stored 

slides at 4°C until imaging.  

 

I imaged rectal pad F-actin with a Zeiss LSM 5 Duo Vario confocal microscope and ZEN 

Pro software (Carl Zeiss Microscopy GmbH, Jena, Germany). F-actin fluorescence was 

converted to grayscale for analysis using ImageJ. Because F-actin density was consistently 

higher in the basal region of the rectal pads (generally between the nuclei and basal lamina) 

compared to the apical region (between the nuclei and apical border), apical and basal F-

actin intensities were measured separately. Approximately five rectal pads (but ranging 

from one to six) were measured for each cricket. For each rectal pad measured, four to five 

80 μm2 regions in each of the apical and basal areas were haphazardly selected to quantify 

grey pixel intensity. The grey pixel density of the background (regions where no tissue was 

present) were measured in two 80 μm2 regions per section and subtracted this value from 
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rectal pad measurements. Grey pixel intensity was averaged first for each section, then 

averaged for the whole individual prior to analysis. Grey pixel intensity measurements 

were natural log-transformed prior to analysis to meet the assumption of normality, and 

these measurements were compared for warm- and cold-acclimated crickets using a three-

way ANOVA in R. The standardized effect size for acclimation was calculated as the 

difference in grey pixel intensity between warm and cold acclimated rectal pads divided 

by their pooled standard deviation. The standardized effect size for cold shock was 

calculated as the difference in grey pixel intensity of cold shocked and non-cold shocked 

rectal pads divided by their pooled standard deviation. 

 

4.3 Results 

4.3.1 Rectal macromorphology and ultrastructure 

Cold acclimation had no discernible effects on rectal pad length (t4.3 = 1.47, P = 0.21) or 

width (t4.5 = 0.70, P = 0.52; Figs. 4.2, 4.3A), nor did it alter the thickness of the cuticle (t5.9 

= 0.11, P = 0.92) or outer circular muscle (t4.7 = 0.01, P = 0.99; Figs. 4.2,4.3B). Mean 

nuclear density of cold-acclimated rectal pad cross sections (55 ± 5 nuclei per pad) did not 

differ from that of warm-acclimated rectal pads (57 ± 4 nuclei per pad; t3.3 = 0.26, P = 

0.81). Paracellular channel structure differed between apical (Fig. 4.4) and mid-cell regions 

(Fig. 4.5) of the rectal pads. Tortuosity of the mid-cell scalariform complexes did not differ 

between warm-acclimated crickets (5.3 ± 0.4 μm/μm) and cold-acclimated crickets (5.2 ± 

1.5 μm/μm) (t2.3 = 0.105, P = 0.925). Similarly, cold acclimation did not alter the mid-cell 

scalariform channel width (26.4 ± 1.5 nm in warm-acclimated crickets, 29.3 ± 1.7 nm in 

cold-acclimated crickets) (t4.8 = 0.89, P = 0.42; Fig 4.5).  
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Figure 4.2. Representative rectal cross sections from warm-acclimated (A) and cold-

acclimated (B) adult G. pennsylvanicus.  I compared the rectal macromorphology (C) of 

crickets that were cold-acclimated (12°C, 10 light:14 dark photoperiod for one week) with 

those that were warm-acclimated (25°C, 14 light:10 dark photoperiod for one week). 

Sections were stained with Movat’s stain: nuclei/elastin (black), ground substance/mucin 

(blue), cytoplasm/muscle (red). 
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Figure 4.3. Effect of cold acclimation on the macromorphology of G. pennsylvanicus 

rectal pads, as measured by brightfield microscopy of stained rectal cross sections. 
Neither the mean length or width of rectal pads (A) nor the mean thickness of the rectal 

cuticle and circular muscles (B) differed between warm- and cold-acclimated crickets. 

 

4.3.2 Cytoskeletal stability 

The density of F-actin was higher in the cytoplasm basal to nuclei compared to the 

cytoplasm apical to the nuclei (Fig. 4.6). These differences may reflect greater density of 

organelles (e.g. mitochondria) in the scalariform complexes of the basal cell regions 

(Khurana, 2000). Cold shock alone did not reduce F-actin density (P = 0.098, standardized 

effect size = -0.53; Fig. 4.7). Cold acclimation enhanced F-actin in the basal cell region 

(F1,14 = 10.7, P = 0.006) but not in the apical region (F1,14 = 0.93, P = 0.35).  

 

F-actin density in the basal region following cold shock was higher in cold-acclimated 

crickets compared to warm-acclimated crickets (F1,14 = 11.4, P = 0.004; Tukey’s HSD P < 

0.001, standardized effect size = 0.71). Although I found a significant interaction between 

acclimation and cold shock in the apical region (F1,14 = 5.1, P = 0.04), I could not determine 

the driver of this interaction using Tukey’s HSD. All crickets survived cold shock, 

regardless of acclimation. 
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Figure 4.4. Representative cross sections of G. pennsylvanicus rectal pads imaged by TEM. A) a meandering apical 

paracellular channel (pca) separates two rectal pad epithelial cells. lu - lumen. B) the apical and mid-cell intersection is marked 

by a shift in lateral cell border characteristics; the paracellular channel in close association with mitochondria (m) forms the 

scalariform complex (scm) in the mid-cell region. C) ladder-like structure of the tightly-opposed apical paracellular channel. 

Sections A and C belonged to warm-acclimated crickets, while section B belonged to a cold-acclimated cricket. 
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Figure 4.5. Example cross-sections of G. pennsylvanicus rectal pads for ultrastructure 

measurements.  Sections represent the mid-cell region (in the vicinity of the nuclei) and 

were imaged by TEM at increasing magnification from A to D. A) epithelial cells (ec) are 

each bordered by meandering scalariform complexes. One nucleus (nu) is visible. B) 

scalariform complex (sc) between the nuclei of two epithelial cells. This approximate 

magnification was used for measurements of scalariform tortuosity. C) close association of 

mitochondria (m) with the paracellular channel (ch) of the scalariform complex. D) the 

paracellular channel of a scalariform complex. This magnification was used to measure 

channel width. Sections A and C belonged to warm-acclimated crickets, while sections B 

and D belonged to cold-acclimated crickets. 
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Figure 4.6. Effect of cold acclimation and cold shock on the density of filamentous 

actin in the rectal pads of adult G. pennsylvanicus crickets. Warm- and cold-acclimated 

crickets were either not cold shocked (control) or cold shocked at -4°C for 1 h. Images 

represent one of four crickets from each treatment combination. F-actin was stained with 

phalloidin (green). ap - apical region, ba - basal region, cm - circular muscle, cu - cuticle, 

lu - gut lumen, nu - nuclei (blue).  
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Figure 4.7. Effect of cold acclimation and acute cold exposure on the polymerization 

state of actin in G. pennsylvanicus cricket rectal pads. Actin polymerization was 

measured by fluorescence of F-actin. Both warm- and cold-acclimated crickets were either 

cold shocked (exposed to -4°C for 1 h) or not cold shocked (control). Significant effects of 

acclimation, cold shock (treatment), or their interaction are indicated above each figure in 

italics. 

 

4.4 Discussion 

 

Cold acclimation may allow crickets to defend water and ion homeostasis during cold 

exposure by restructuring the ionoregulatory tissues to reduce permeability (MacMillan 

and Sinclair, 2011a). Structural modifications that enhance cytoskeletal stability in the cold 

should also protect ionoregulatory tissues chilling injury and loss of transport function 

(Kim et al., 2006; Kayukawa and Ishikawa, 2009; Teets et al., 2012; Torson et al., 2015). 

By comparing rectal tissue structure of warm- and cold-acclimated crickets I show that 

cold acclimation does not modify rectal macromorphology or the structure of the rectal pad 

scalariform complex. Cold acclimation does modify the cytoskeleton such that actin 

polymerization is protected (and even enhanced) following cold shock.  
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4.4.1 Rectal macromorphology and scalariform complex 
ultrastructure are not targets of cold acclimation 

I hypothesized that cold acclimation could reduce hindgut permeability (thereby 

minimizing leak during cold exposure) by thickening the rectal pads, inner cuticle, and/or 

rectal musculature to increase diffusion distance. Cold acclimation could also narrow the 

scalariform complex channels and/or increase the tortuosity of those channels. The benefit 

of the former to maintain water and ion homeostasis would be two-fold; narrowed channels 

could prevent leak of Na+ and water from the hemolymph, while decreased channel volume 

would reduce the NKA activity required to achieve a given [Na+] within the channels 

(thereby mitigating effects of reduced enzyme activity in the cold). In the latter scenario, 

increased channel tortuosity would increase diffusion (leak) distance. However, I observed 

none of these predicted structural changes, indicating that if cold acclimation modifies 

tissue permeability this modification involves other aspects of tissue structure.  

 

I observed altered tissue structural and cytoskeletal gene expression in G. pennsylvanicus 

hindguts following a four-week cold acclimation regime (Chapter 3), and crickets in the 

present study were acclimated for only one week. However, one week of cold acclimation 

is as effective at enhancing cold tolerance as a four-week acclimation (based on similar or 

greater reduction the CTmin and CCRT, and improved survival of chronic cold exposure, 

Chapter 5). Therefore I assume that any tissue structural modifications involved in 

prevention of chilling injury or re-establishment of water and ion homeostasis during 

recovery from cold exposure should be apparent within one week of cold acclimation.  

 

Cold acclimation may cause other hindgut structural modifications that were not apparent 

by the methods I employed. Cell junctions (e.g. tight and occluding junctions) are 

temperature-sensitive (Gonzalez-Mariscal et al., 1984; Behrens et al., 1993; Turner et al., 

1997) and their failure may contribute to paracellular water and ion leak during cold 

exposure. Narrowing or reducing the thermal sensitivity of cell junctions in the apical (or 

basal) rectal pad regions (Fig. 4.3) could therefore reduce paracellular permeability. 

Indeed, the expression of multiple genes encoding components of tight and adherens 

(septate) junctions (e.g. vinculin, partitioning defective protein 3, protein shroom, α-
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actinin, and casein kinase II) are altered by cold acclimation in crickets (Chapter 3). In 

flies, acquired cold tolerance is also accompanied by shifts in the expression cellular 

adhesion genes (Teets et al., 2012; MacMillan et al., 2016). To reduce transcellular 

permeability, cold acclimation could reduce the abundance or membrane-localization of 

aquaporins and/or ion channels. Shifts in the type or abundance of aquaporins appear to be 

important for acquired freeze tolerance in dipterans (Philip et al., 2008; Philip and Lee, 

2010), however I found no evidence of altered aquaporin transcript abundance following 

cold acclimation in crickets (Chapter 3). Cold acclimation does reduce the expression of 

Na+-K+-2Cl- cotransporter and organic anion/cation transporters in cricket hindguts. Post-

translational modifications of aquaporins, ion transporters, and cytoskeletal components 

could also affect transport function (Seo and Lee, 2004; Teets and Denlinger, 2016). 

Whether transcriptional or post-translational shifts correlate with a reduction in ion channel 

abundance and hindgut permeability requires verification. 

4.4.2 Cold acclimation protects cytoskeletal stability from cold 
shock 

Both cold acclimation and seasonally-acquired cold tolerance correlate with shifts in 

cytoskeletal gene expression, and actin stability appears to be particularly important for 

survival of cold exposure (Kim et al., 2006; Kayukawa and Ishikawa, 2009; Teets et al., 

2012; Gerken et al., 2015; Torson et al., 2015). In cold-acclimated crickets, genes 

promoting actin stability are upregulated in the hindgut specifically (Chapter 3). Here I 

demonstrated that these transcriptional changes protect F-actin against depolymerization 

in the rectal pads during cold shock. By quantifying F-actin polymerization before and after 

cold shock, I also showed that cold shock can either enhance or reduce F-actin 

polymerization depending on whether or not crickets were cold acclimated. For example, 

cold shock increased F-actin density in cold-acclimated rectal pads compared to warm-

acclimated rectal pads. Increased polymerization and distribution of actin in the midguts 

of cold-exposed C. pipiens mosquitoes is more pronounced in diapausing, rather than non-

diapausing individuals (Kim et al., 2006). It is unclear how cytoskeletal modifications 

allow for cold exposure to directly enhance actin polymerization.  
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In addition to cold-acclimated crickets and diapausing C. pipiens, both diapausing and 

cold-acclimated D. antiqua onion maggots also defend actin polymerization in the cold 

(Kayukawa and Ishikawa, 2009). Therefore cytoskeletal modification appears to be a 

shared mechanism among diapause and cold acclimation processes. Which molecules 

actually promote actin stability is unclear; defense of actin polymerization in the cold 

correlates with actin expression in C. pipiens, hsp60 expression in D. antiqua, and a 

plethora of cytoskeleton-associated genes in G. pennsylvanicus (Chapter 3). The 

cytoskeleton includes multiple accessory proteins in addition to actin and tubulin, and 

transcriptional changes in one of these components may not necessarily alter overall 

cytoskeletal stability. To identify which proteins enhance cytoskeletal stability in the cold, 

cold tolerance and actin polymerization could be compared for insects with or without 

knockdown or mutation of candidate cytoskeletal components.  

 

Although crickets were not injured by the cold shock I applied, loss of cytoskeletal 

structure likely contributes to transport failure, chronic chilling injury, and/or failure to 

clear or repair damaged cellular components (Koštál et al., 2006; Kayukawa and Ishikawa, 

2009; Monastyrska et al., 2009; Lee, 2010; Fernandez-Gonzalez and Zallen, 2013; Findsen 

et al., 2014). In the rectum, defense of cytoskeletal structure during cold chronic exposure 

should therefore help cold-acclimated insects to maintain transport function, thereby 

directly or indirectly preventing chilling injuries. Changes in actin should be linked to 

improved cell and tissue survival following chronic cold exposure. 

4.4.3 Conclusions 

I aimed to demonstrate the functional significance of modified hindgut tissue and cell 

structural gene expression following cold acclimation. I hypothesized that structural 

changes to reduce rectal epithelial permeability should prevent water and ion leak during 

cold exposure, however these permeability changes do not appear to involve modification 

of rectal macromorphology or rectal pad scalariform complex ultrastructure. Cold 

acclimation does protect actin from depolymerization at low temperatures, suggesting that 

cytoskeletal modification plays a role in preventing cellular chilling injury and maintaining 

transport function in the insect rectum.   
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Chapter 5 

5 Effect of cold acclimation on active ion transport in 
insect ionoregulatory tissues 

I have prepared this chapter for submission to Comparative Biochemistry and Physiology 

A. 

5.1 Introduction 

Chill-susceptible insects lose ion and water homeostasis at temperatures below their critical 

thermal minimum (the CTmin). This loss of homeostasis progresses over hours to days and 

appears to be driven by gradual migration of Na+ down a concentration gradient from the 

hemolymph to the gut lumen (MacMillan and Sinclair, 2011b; Coello Alvarado et al., 

2015). Water follows the migration of Na+, leading to decreased hemolymph volume and 

consequent increase in the concentration of hemolymph K+ (in addition to Mg2+ and Ca2+) 

(Koštál et al., 2006; MacMillan and Sinclair, 2011b; Coello Alvarado et al., 2015; 

MacMillan et al., 2015a; Chapter 2). This ionic imbalance increases the time required for 

insects to recover from chill coma (Koštál et al., 2007; MacMillan et al., 2012; Findsen et 

al., 2013; MacMillan et al., 2014) and likely contributes to the accumulation of chronic 

chilling injuries (Koštál et al., 2006; Lee, 2010; Findsen et al., 2014; MacMillan et al., 

2015b). Defense of water and ion homeostasis during cold exposure is plastic (i.e. 

improved with prior mild chilling; Koštál et al., 2006; Coello Alvarado et al., 2015; 

MacMillan et al., 2015a), but the mechanisms underlying transport plasticity are not well 

understood.  

 

Insects maintain water and ion balance via the Malpighian tubules (which excrete primary 

urine) and hindgut (across which selective reabsorption of water and ions occurs; Phillips 

et al., 1988; O'Donnell and Simpson, 2008). Although the primary urine is isosmotic to the 

hemolymph, excretion by the Malpighian tubules is dependent on ionic gradients 

established at the apical cell membrane by active cation transport (Beyenbach, 2003). 

These transporters include the Na+-K+-2Cl- cotransporter (NKCC, which imports Na+, K+, 

and Cl- into the basal cell), carbonic anhydrase (CA, which provides cytosolic protons), 
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and V-ATPase (which pumps protons to the lumen for future exchange with intracellular 

cations; Coast, 2012; Chintapalli et al., 2013; Halberg et al., 2015). Within the rectal pads, 

highly convoluted, mitochondria-dense paracellular channels form the scalariform 

complex, in which membrane-bound Na+-K+ ATPase (NKA) establishes a high 

extracellular [Na+] (Phillips et al., 1988; O'Donnell and Simpson, 2008). This Na+ 

concentration gradient drives migration of water from the rectal lumen to the hemolymph 

against an osmotic gradient.  

 

During cold exposure, active transport of ions across ionoregulatory epithelia is thought to 

be exceeded by passive leak of ions down their concentration gradients (MacMillan and 

Sinclair, 2011a). Cold-acclimated insects are therefore expected to defend water and ion 

homeostasis by reducing epithelial permeability (to minimize water and ion leak) and/or 

by enhancing active ion transport at lower temperatures (MacMillan and Sinclair, 2011a). 

The latter hypothesis is supported by shifts the transcription of ion pumps driving transport 

across both the Malpighian tubules and hindguts of cold-acclimated fall field crickets 

[Gryllus pennsylvanicus (Burmeister), Orthoptera: Gryllidae, Chapter 3]. However, V-

ATPase expression in the Malpighian tubules was actually downregulated with cold 

acclimation, while hindgut NKA expression increased. These transcriptional changes 

suggest that cold acclimation reduces active transport across the Malpighian tubules while 

enhancing active transport across the rectum. 

 

I hypothesized that cold acclimation: 1) reduces excretion rates by decreasing Malpighian 

tubule V-ATPase activity, and 2) increases NKA activity in the rectum (which would likely 

enhance reabsorption of Na+ and water). To test these hypotheses I compared Malpighian 

tubule excretion rates (a proxy for active transport) of warm- and cold-acclimated insects, 

and related transcriptional changes in ion pumps (NKA and/or V-ATPase) accompanying 

cold acclimation (Chapter 3) to functional changes in tissue transport via enzyme activity 

assays in homogenized Malpighian tubules and recta. For this work I used warm- and cold-

acclimated G. pennsylvanicus; an emerging model system for the study of cold tolerance 

plasticity and its relation to water and ion homeostasis (MacMillan and Sinclair, 2011b; 

MacMillan et al., 2012; Coello Alvarado et al., 2015; Des Marteaux and Sinclair, 2016). 
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5.2 Methods 

5.2.1 Insect rearing 

I reared G. pennsylvanicus crickets as described in Chapter 2. Briefly, crickets were housed 

in transparent 60 L plastic containers with stacked cardboard egg cartons for shelter, tap 

water, and ad libitum commercial rabbit food (Little Friends Original Rabbit Food, Martin 

Mills, Elmira, ON, Canada) and developed under constant summer-like conditions (25°C, 

14 light:10 dark photoperiod, 70% RH). Crickets laid eggs in containers of moist 

vermiculite and sterile sand which were placed at 4°C to accommodate an obligate three-

month diapause (Rakshpal, 1962) before being returned to 25°C to hatch. I used adult 

female crickets at approximately three months post-hatch for all experiments. 

5.2.2 Cold acclimation  

Crickets were isolated in 180 mL transparent cups (Polar Plastics, Summit Food 

Distributors, London, ON, Canada) with mesh fabric lids, containing egg carton shelters, 

rabbit food, and water. Warm-acclimated crickets remained in summer-like conditions 

(25°C, 14 light:10 dark photoperiod) for the week, while cold-acclimated crickets were 

placed in a Sanyo MIR 154 incubator (Sanyo Scientific, Bensenville, Illinois) at 12°C, 10 

light:14 dark photoperiod for one week.  

5.2.3 Cold tolerance measurements  

The CTmin was quantified as described by MacMillan and Sinclair (2011b) and defined as 

the temperature at which physical stimulus with a metal probe elicited no movement. 

Crickets were cooled from room temperature to the CTmin at 0.25°C min-1 (n = 10 per 

acclimation). To measure chill coma recovery time (CCRT) I placed crickets in 15 mL 

Falcon tubes immersed in an ice-water slurry at 0ºC (n = 9 crickets per acclimation). After 

12 h, crickets were returned to room temperature, placed on their dorsum in wells of flat-

bottom six-well cell culture plates, and I measured the time taken for crickets for right 

themselves (the chill coma recovery time, CCRT). To assess survival of chronic cold 

exposure, warm- and cold-acclimated crickets (n = 12 and 10, respectively) were placed in 
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15 mL Falcon tubes immersed in an ice-water slurry at 0ºC for 72 h. Crickets were then 

returned to 25°C in transparent cups containing food, water, and shelter, and I assessed 

mortality and injury (uncoordinated locomotion or the inability to jump when prodded) 24 

h later.   

5.2.4 Dissections 

Crickets were affixed to a Petri dish by a pin through the pronotum and the body cavity 

was opened by mid-dorsal incision. The Malpighian tubules were removed as a bundle by 

detaching the ureter from the gut with forceps. The rectum was severed from the rest of the 

gut with microscissors. Both tissues were immediately placed in droplets of simple 

Ringer’s solution specific to G. pennsylvanicus hemolymph: (in mM) 110 Na+, 8.5 K+, 6 

Mg2+, 7 Ca2+
, 144.5 Cl-, pH 7.6 (Chapter 2). Any adhering fat body or tracheae were 

removed from tissues. For Ramsay assays, individual Malpighian tubules were detached 

from the bundle by severing with forceps as close as possible to the ampulla (where 

multiple tubules coalesce towards the ureter; Wall et al., 1975).  

 

For enzyme activity assays, entire Malpighian tubule bundles were blotted on tissue paper, 

flash frozen in liquid nitrogen, and stored at -80°C until use. Recta were cut open with 

microscissors to empty the lumen of fecal material, blotted on a tissue, and stored on ice 

for enzyme activity assays performed on the same day. Each replicate for enzyme activity 

assays in the Malpighian tubules was comprised of entire Malpighian tubule bundles 

pooled from five crickets. For enzyme activity assays in the recta, each replicate was 

comprised of 8-11 pooled cricket recta.  

 

5.2.5 Active transport across the Malpighian tubules (Ramsay 
assay) 

The rate of primary urine excretion (a proxy for active transport function) was quantified 

by Ramsay assay (Ramsay, 1954) using methodology modified from Rheault and 

O’Donnell (2004). Assays were carried out using a custom acrylic enclosure. The top 

surface of the enclosure contained four, flat-bottomed wells (3.5 cm diameter, 2.5 cm 
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depth) which were filled with paraffin oil. Well temperature was monitored with type-T 

thermocouples connected to Picotech TC-08 interface and processed by PicoLog software 

(Pico Technology, Cambridge, UK). The enclosure was connected to a refrigerated 

circulator (Model 1157P, VWR International, Mississauga, ON, Canada) filled with an 

equal ratio mixture of ethylene glycol and water.  

 

Four Sylgard® blocks (5 x 2.5 mm) were affixed to the bottom of each well in the 

enclosure, and a shallow incision was made by razorblade medially on the top edge of each 

block. A 10 μL droplet of Ringer’s (with 4 mM glucose and 15 mM HEPES, buffered to 

pH 7.6) was added 3 mm from each block and one Malpighian tubule was placed 

individually into each droplet. The distal end of each tubule was pulled from the droplet 

through the paraffin oil and ‘cleated’ into the incision on the edge of a block. The region 

of tubule between the droplet and block was gently punctured using fine forceps to produce 

an initial droplet of primary urine. This first droplet was discarded after 15 min. Each tubule 

was then allowed to excrete through this puncture for 2 h and the diameter of all droplets 

were measured using a microscope with an ocular micrometer. Droplet diameters were 

used to calculate droplet volume (πd3/6) excreted per hour, and divided by the length of 

tubule within the droplet (measured by ocular micrometer). Malpighian tubule excretion 

rate was measured at 24, 16, 12, 8, and 4°C (n = 4, 5, 5, 6, and 2 crickets per treatment, 

respectively). The excretion rate for each cricket was taken as the mean of the excretion 

rates measured from six individual Malpighian tubules. 

5.2.6 Malpighian tubule NKA and V-ATPase activity 

I measured NKA and V-ATPase activity in homogenized Malpighian tubules of warm- and 

cold-acclimated crickets using an NADH-linked activity assay. Pooled tissues were diluted 

in 400 μL in SEID buffer (in mM: 150 sucrose, 10 EDTA, 50 imidazole, and 2.5 Na+-

deoxycholate, pH 7.3) and homogenized on ice for 10 s with a 7 mm attachment on a 

Polytron PT 10-35 homogenizer (Kinetica, USA). Homogenates were centrifuged at 10000 

× g for 10 min at 4°C and the supernatant was collected. Supernatants were diluted 5-fold 

further with SEID for use in activity assays. A reaction buffer was comprised (in mM) of 

47 NaCl, 2.6 MgCl2, 10.5 KCl, 50 imidazole, 0.27 NADH, 2.6 ATP, and 2.1 
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phosphoenolpyruvate, with 3 U.mL-1 lactate dehydrogenase (E.C. 1.1.1.27) and 3.75 

U.mL-1 pyruvate kinase (E.C. 2.7.1.40), pH 7.5.  

 

Duplicate wells on a 96-well plate each received 10 μL of dilute supernatant and 200 μL 

of either assay buffer, assay buffer with 5 mM ouabain (to inhibit NKA), or assay buffer 

with 10 mM bafilomycin A1 (to inhibit V-ATPase). NADH absorbance (at 340 nm) of the 

reaction at 21°C (n = 6 biological replicates per acclimation) was then measured each 

minute for 30 min in a Multiskan® Spectrum spectrophotometer and SkanIt Software 

(v2.2) (Thermo Scientific, Wilmington, DE, USA), simultaneously for all samples. Total 

protein concentrations of dilute sample supernatants were quantified by Bradford assay 

against albumin standards (Kruger, 1994). Enzyme activities were calculated as the 

difference in rates between reactions with and without enzyme inhibitors, corrected for 

total protein abundance. 

5.2.7 Hindgut NKA activity 

I quantified the activity of NKA in homogenized recta from warm- and cold-acclimated 

crickets using assays modified from MacMillan et al. (2015c) (see 5.2.3). Briefly, recta 

were diluted in 14 volumes of homogenization buffer (25 mM imidazole, 10 mM β-

mercaptoethanol, 0.2% w/v Na+-deoxycholate, pH 7.5), homogenized with a Polytron PT 

10-35, and sonicated with a Virsonic 100 (VirTis, Gardiner, NY, USA). Tissues were 

homogenized and sonicated each in four, 10 s bursts followed by 20 s on ice. Homogenates 

were then centrifuged at 7000 × g for 5 min at 4°C and the supernatant was collected. 300 

μL aliquots of supernatant were filtered through a size-exclusion column (a 3 mL syringe 

barrel plugged with glass wool, containing 3 mL of Sephadex G50, and equilibrated with 

homogenization buffer) by centrifuging at 500 × g for 1 min. The total protein 

concentrations of filtered supernatants were quantified by Bradford assay against albumin 

standards. 

 

I added 10 μL of filtered sample to each of four ultra-micro cuvettes; one pair of cuvettes 

then received 350 μL of reaction buffer (30 mM KCl, 156 mM NaCl, 7.8 mM MgCl2, 74 

mM imidazole, pH 7.5), while a second pair of cuvettes received 350 μL of reaction buffer 
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also containing 1.0 mM ouabain. I then added phosphoenolpyruvate, NADH, lactate 

dehydrogenase, and pyruvate kinase (final reaction concentrations of 4 mM, 300 mM, 20 

U.mL-1, and 20 U.mL-1, respectively). Reactions were initiated by adding 40 μL of 50 mM 

ATP in reaction buffer.  

 

NADH absorbance of each reaction was recorded five times per min for 20 min at 21°C or 

6°C (n = 6 biological replicates per acclimation per temperature) in a Cary 100 Bio 

spectrophotometer (Varian, Palo Alto, CA, USA) using WinUV Thermal Application 

software (v3.0, Agilent Technologies). Temperature was maintained with a Cary 

Temperature Controller (Varian, Palo Alto, CA, USA). To monitor temperature, a type-T 

thermocouple connected to a TC-08 interface was placed in a microvolume cuvette 

containing 400 μL of water. Enzyme activities were calculated as the difference in rates 

between reactions with and without ouabain, corrected for total protein abundance. 

5.2.8 Data analyses 

I compared the CTmin, CCRT, and Malpighian tubule enzyme activities from warm- and 

cold-acclimated crickets using Welch’s t-tests. I used two-way ANOVAs to compare the 

Malpighian tubule excretion rates and rectal NKA activity of warm- and cold-acclimated 

crickets. Values reported in the text are means ± s.e.m. All statistical analyses were 

performed in R (v3.2.2, R Development Core Team, 2015). 

 

5.3 Results 

5.3.1 Effect of a one-week cold acclimation on cold tolerance 

One week of cold acclimation enhanced multiple aspects of cold tolerance. In cold-

acclimated cricket the CTmin was approximately 1.7°C lower (t13.2 = 7.9, P < 0.001), and 

chill coma recovery was over 3.5-fold faster compared to warm-acclimated crickets (t8.9 = 

7.0, P < 0.001; Fig. 5.1). Chronic cold exposure injured only 30% of cold-acclimated 

crickets, but injured and killed 50 and 33% of warm-acclimated crickets, respectively. 
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Figure 5.1. One week of cold acclimation improves cold tolerance of adult G. 

pennsylvanicus crickets. Cold acclimation decreased the CTmin (A), CCRT following 12 

h at 0°C (B), and mortality following three days at 0°C (C) (see text for statistics). 

 

 

5.3.2 Active transport across the Malpighian tubules  

The rate of primary urine production by the Malpighian tubules decreased with temperature 

(F1,40 = 102, P < 0.001). The Q10s of secretion rate for warm- and cold-acclimated tubules 

were 2.2 and 1.9, respectively (calculated between 15.4°C and 24.8°C). Primary urine 

production by cold-acclimated crickets was approximately 35% slower at all temperatures 

compared to warm-acclimated crickets (F1,40 = 20.5, P < 0.001; Fig. 5.2). I found no 

interaction between temperature and acclimation (F1,40 = 0.046, P > 0.8). 

5.3.3 NKA and V-ATPase activities in the Malpighian tubules 

NKA activity in the Malpighian tubules of cold-acclimated crickets was higher than for 

warm-acclimated crickets, and this was nearly significant (t10 = 2.17, P = 0.055). A power 

analysis based on the observed standardized effect size (the difference in mean enzyme 

activities divided by the pooled variance) indicated that a sample size of eight would be 

sufficient to detect this difference; this was close to my current sample size of six. I did not 

observe a decrease in V-ATPase activity (a prediction based on previous observations of 
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decreased transcript abundance; t6.5 = 1.54, P = 0.92; Fig. 5.3). Total protein abundance 

did not differ between warm- and cold-acclimated Malpighian tubules (t6.1 = 0.73, P = 

0.49).   

 

 

 

Figure 5.2. Effect of cold acclimation on primary urine excretion rate (a proxy for 

active ion transport) by the Malpighian tubules in adult G. pennsylvanicus crickets. 

Primary urine production was measured on isolated tubules using the Ramsay assay (n = 

12 to 36 tubules per temperature-acclimation combination). The effect of temperature and 

acclimation on excretion rates were compared by two-way ANOVA (see text for statistics), 

and displayed trend lines represent linear models for each acclimation treatment. 
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Figure 5.3. Effect of cold acclimation on the activity of Na+-K+ ATPase (NKA) and V-

ATPase in Malpighian tubules of G. pennsylvanicus crickets. Activity rates were 

measured at 21°C via NADH-linked assays, and given as moles of ADP converted per hour 

(corrected for protein concentration in homogenates). Differences in enzyme activities 

between warm- and cold-acclimated crickets were statistically non-significant, however an 

increase in NKA activity with cold acclimation was nearly-significant. 

 

 

5.3.4 NKA activity in the rectum 

NKA activity in homogenized recta decreased with temperature (F1,20 = 16.6, P < 0.001), 

but was unaffected by acclimation (F1,20 = 2.5, P = 0.13). The interaction between 

acclimation and assay temperature was also non-significant (F1,20 = 2.4, P = 0.14; Fig. 5.4). 

Although NKA activity at 21°C was higher in the recta of cold-acclimated crickets, a power 

analysis based on the observed standardized effect size indicated that a sample size of 15 

would be required to detect this difference; the current sample size was six.  
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Figure 5.4. Effect of cold acclimation on the activity of Na+-K+ ATPase (NKA) activity 

in adult G. pennsylvanicus cricket recta. NKA activity was measured in homogenized 

recta by NADH-linked activity assay. Significant effects of acclimation, assay temperature, 

or their interaction is indicated at the top right of the figure in italics (see text for statistics).  

 

 

5.4 Discussion 

 

I hypothesized that cold-acclimated insects defend hemolymph volume by slowing primary 

urine excretion rates, and that this is driven by a reduction in V-ATPase activity. Cold 

acclimation did modify active transport across the Malpighian tubules, manifesting as a 

reduction in primary urine excretion rate at both low and optimal temperatures. However, 

slower primary urine was not related to V-ATPase activity, rather it was coincident with 

increased NKA activity. Although I expected cold acclimation to increase rectal NKA 

activity (thereby enhancing water and ion reabsorption), I did not observe this increase  in 

activity at either 6°C or 21°C.  
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5.4.1 Cold acclimation modifies active transport across the 
Malpighian tubules  

Primary urine excretion by the Malpighian tubules is driven by active ion transporters, most 

of which are temperature-sensitive (Dietz et al., 2001; Somero, 2004; O'Donnell and 

Simpson, 2008; Galarza-Muñoz et al., 2011). MacMillan and Sinclair (2011a) 

hypothesized that cold acclimation modifies active ion transport such that ion pumping 

rates are maintained to lower temperatures compared to warm-acclimated insects, however 

I show that the Malpighian tubules of cold-acclimated crickets excrete urine more slowly 

across a range of temperatures. Seasonal acclimatization between September and 

December also corresponds with a reduction in the rate of Malpighian tubule transport in 

Eurosta solidaginis larvae (Yi and Lee, 2005). By reducing active transport across the 

Malpighian tubules, cold-acclimated insects may retain hemolymph volume (i.e. mitigate 

leak of water) during cold exposure. However this mechanism may not be conserved within 

or among insect lineages; in D. melanogaster, knockdown of diuretic capa peptides instead 

slows chill coma recovery (Tehrzaz et al. 2015).   

 

Proton pumping drives net cation transport across the Malpighian tubules, and V-ATPase 

is central to this process (Klein, 1992; Chintapalli et al., 2013). Although V-ATPase mRNA 

abundance is reduced in the Malpighian tubules of cold-acclimated crickets (Chapter 3), 

cold acclimation did not cause a reduction in the activity of this enzyme overall. Decreased 

primary urine production should therefore involve modification of other enzymes (e.g. CA 

or NKA). CA in the Malpighian tubules provides protons for transport by V-ATPase and 

provides the counterions (H+ and HCO3
-) for import of hemolymph Na+, K+, and Cl- 

(Henry, 1984; Phillips et al., 1987; Wessing et al., 1997; del Pilar Corena et al., 2005). A 

decrease in CA activity could therefore drive decreased primary urine excretion in cold-

acclimated crickets. Because CA is a thermally-insensitive enzyme (Feller and Gerday, 

1997), cold exposure alone would not be expected to reduce activity. A reduction in CA 

protein abundance, membrane localization, or other post-translational modification may be 

involved (see section 5.4.3). CA expression is indeed reduced in the Malpighian tubules of 

cold-acclimated crickets (Chapter 3), but whether this correlates with reduced enzyme 

activity requires verification (e.g. by colorimetric assay; Wilbur and Anderson, 1948). 
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Cold acclimation may increase Malpighian tubule NKA activity (based on a trend in cold-

acclimated crickets at 21°C), and this could have multiple effects on water and ion balance 

in the hemolymph. In Rhodnius spp., inhibition of NKA stimulates diuresis (Grieco and 

Lopes, 1997; Caruso-Neves and Lopes, 2000), therefore increased NKA activity in the 

Malpighian tubules could account in part for the decreased primary urine production rate 

observed in cold-acclimated crickets. NKA activity in the Malpighian tubules also 

regulates selectivity of excreted cations. For example, inhibition of NKA by ouabain 

increases the Na+:K+ ratio of the primary urine in Acheta domesticus crickets (Coast, 2012). 

Therefore, an increase in Malpighian tubule NKA activity under optimal temperatures 

could hasten to the removal of K+ to re-establish hemolymph [K+] during recovery from 

cold exposure (Beyenbach, 2003). Chill-tolerant Drosophila spp. indeed excrete primary 

urine with lower Na+:K+ ratios compared to chill-susceptible species (MacMillan et al., 

2015a). Although I did not measure Malpighian tubule enzyme activities at low 

temperatures, enhanced NKA activity during cold exposure could prevent or delay 

imbalance of hemolymph Na+, water, and K+ during chill coma (both reducing the CCRT 

and the energetic costs of re-establishing ionic and osmotic gradients; MacMillan et al., 

2012).  

5.4.2 Rectal NKA activity is unchanged by cold acclimation 

I hypothesized that cold acclimation increases hindgut NKA activity. As NKA partially 

drives reabsorption across the rectal pads (Tolman and Steele, 1976; Phillips et al., 1988), 

increasing rectal NKA activity at low temperatures could allow cold-acclimated insects to 

maintain transport function during cold exposure. Increased rectal NKA activity during 

rewarming should also increase Na+ and water reabsorption rates (i.e. reduce CCRT). 

However I found no evidence of this increase in NKA activity at 6°C, and higher NKA 

activity in cold-acclimated recta at 21°C was non-significant. Thus NKA does not appear 

to be a target of modification by cold acclimation. The significance of increased hindgut 

NKA transcript abundance in cold-acclimated G. pennsylvanicus (Chapter 3) therefore 

remains in question (although mRNA this does not necessarily reflect increased enzyme 

abundance; Gygi et al., 1999). It should be determined if and how cold acclimation 
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modifies active transport function across the rectum, either at low or optimal temperatures 

(e.g. with an Ussing chamber; Ussing and Zerahn, 1951; Clarke, 2009).  

Many other hindgut enzymes could be modified by cold acclimation, however multiple 

enzymes controlling reabsorption across the rectum remain unidentified (O'Donnell and 

Simpson, 2008; Chintapalli et al., 2013). This poses a challenge for predicting how 

modification of hindgut water or ion transporters may affect transport in the cold. For 

example, cold acclimation decreases the expression of hindgut NKCC and two CAs 

(Chapter 3), however, unlike in the Malpighian tubules, the precise roles of these enzymes 

in rectal reabsorption have not been demonstrated. Similarly, very little is known about a 

cAMP-stimulated apical Cl- pump thought to drive rectal transport (Phillips et al., 1987). 

To determine how cold acclimation modifies transport function we therefore require a 

better understanding about the fundamentals of hindgut transport (and this has not been 

revisited appreciably since the 1990s). The specific enzymatic targets of cold acclimation 

(and their relative contribution to altered transport function) could be determined by 

comparing active transport rates across the rectum ex vivo with and without selective 

enzyme inhibitors (Hanrahan et al., 1984; Bertram et al., 1991; Clarke, 2009). 

5.4.3 A global role for NKA in cold acclimation 

Acquired cold tolerance is associated with a reduction in whole-body NKA activity in 

Drosophila melanogaster (MacMillan et al., 2015c) and goldenrod gall fly larvae (Eurosta 

solidaginis; McMullen and Storey, 2008). However, the functional significance of 

modified active transport should depend on the specific enzyme and tissue in which that 

modification occurs. In the Malpighian tubules of cold-acclimated G. pennsylvanicus I 

instead observed potentially increased NKA activity, and this should prevent loss of 

hemolymph volume during cold exposure. It is possible that cold acclimation in dipterans 

modifies transport function differently than in orthopterans. However, as NKA is 

ubiquitously expressed, comparisons of whole-body NKA activity are not informative for 

predicting how cold acclimation affects transport function in ionoregulatory tissues 

specifically.  
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Changes in total rectal protein abundance could not explain a potential increase in 

Malpighian tubule NKA activity, however it is possible that the abundance of NKA 

increases proportionally with decreased abundance of other enzymes (e.g. V-ATPase), and 

I did not measure NKA abundance specifically. Cold-acclimated crickets could instead 

express NKA isozymes with different activities or thermal sensitivities (Blanco, 2005; 

Galarza-Muñoz et al., 2011), and post-transcriptional modification (via RNA editing) can 

also affect NKA activity (Colina et al., 2010).  

Cold acclimation may also regulate active transport by post-translational modifications 

(e.g. phosphorylation or dephosphorylation) of NKA or other enzymes (Seo and Lee, 2004; 

McMullen and Storey, 2008; Poulsen et al., 2010). Kinase-mediated phosphorylation is 

proposed to reduce NKA activity in overwintering goldenrod gall flies (McMullen and 

Storey, 2008). Transcriptional upregulation of protein kinases could reduce NKA activity 

in cold-acclimated G. pennsylvanicus hindgut and Malpighian tubules (Chapter 3), 

however this requires experimental verification. Membrane localization affects the 

function of membrane-bound enzymes (Khurana, 2000; Lai and Jan, 2006), and genes 

regulating endocytosis and vesicle-membrane fusion were upregulated in the Malpighian 

tubules cold-acclimated crickets. Membrane fluidity also affects enzyme activity (Lam et 

al., 2004), therefore cold acclimation could regulate NKA activity by modifying membrane 

composition. The expression of multiple membrane-associated genes indeed changed with 

cold acclimation in crickets.  

5.4.4 Conclusions 

Cold acclimation modifies active transport function across the insect Malpighian tubules 

and possibly the rectum, and these modifications could explain why cold-acclimated 

insects defend hemolymph ion and water balance to lower temperatures and/or recover that 

balance more rapidly upon rewarming. Cold-acclimated crickets retain hemolymph volume 

at both low and optimal temperatures by reducing primary urine production (driven by 

modification of enzymes other than V-ATPase). Upon rewarming, enhanced Malpighian 

tubule NKA activity may allow cold-acclimated insects to retain hemolymph Na+ content 

and counteract high hemolymph [K+] by excreting more K+. 
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Chapter 6 

6 General discussion 

6.1 Thesis summary 

Chill-susceptible insects lose water and ion homeostasis during cold exposure, and 

variation in insect cold tolerance is intimately linked with defense of this homeostasis 

during cold exposure, however the mechanisms are poorly understood. To generate 

hypotheses about why homeostasis is lost in the cold what mechanisms may explain  

interspecific cold tolerance variation I first compared patterns of water and ion balance in 

Gryllus veletis and G. pennsylvanicus crickets during early stages cold exposure. 

Hemolymph Na+ balance was lost rapidly during cold exposure (preceding a gradual loss 

of water balance), and the pattern of Na+ balance in early chill coma was unlike that 

observed at later stages (12 h or longer; Chapter 2). A bulk influx of Na+ to the hemolymph 

within the first hour of cold exposure may indicate that leak of Na+ from the tissues 

precedes (and may partially drive) migration of Na+ and water to the gut. Gryllus veletis 

may avoid or slow or reduce Na+ and water migration during early chill coma by 

maintaining a lower hemolymph Na+ content and lower osmotic pressure between the 

hemolymph water compared to the less cold-tolerant G. pennsylvanicus.  

 

I then generated and tested hypotheses about the mechanisms underlying cold tolerance 

plasticity by quantifying the effects of cold acclimation on transport-related gene 

expression and transport function in G. pennsylvanicus crickets. To generate hypotheses I 

performed tissue-specific transcriptome comparisons of warm- and cold-acclimated 

crickets (Chapter 3). Differential gene expression analyses revealed multiple candidate 

mechanisms related to both transport function and chilling injury. Changes in the 

expression of hindgut cytoskeletal and cell junction components suggested tissue 

restructuring, which could act to modify epithelial permeability. I tested this hypothesis by 

comparing the hindgut macromorphology and scalariform complex ultrastructure of warm- 

and cold-acclimated crickets, however I observed none of these structural changes (Chapter 

4). Modification of water and ion permeability across the rectum by cold acclimation would 
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therefore involve other structural aspects. Cytoskeletal modifications did protect and (even 

enhance) F-actin polymerization during cold shock, which may protect the rectal pads from 

chilling injury and loss of transport function.  

 

Cold acclimation decreased the expression of Malpighian tubule V-ATPase and increased 

expression of hindgut NKA, suggesting a reduction in primary urine production and an 

increase in reabsorption across the rectum. Ramsay assays confirmed that cold-acclimated 

Malpighian tubules indeed produce primary urine more slowly across a range of 

temperatures, however this was not explained by lower V-ATPase activity (Chapter 5). 

Increased NKA activity in the Malpighian tubules could partially account for reduced 

excretion and may also decrease Na+:K+ ratios in the excreta. NKA in the rectum activity 

was not modified by cold acclimation, therefore if cold acclimation modifies rectal 

transport function, those modifications must target other enzymes. 

 

Overall, my work helps to revise the conceptual model of homeostasis during chill coma 

and supports the hypothesis that modified active transport function underlies plasticity in 

cold tolerance (by both preventing loss of ion and water balance in the cold and by aiding 

in recovery of that balance). While tissue structural modifications following cold 

acclimation have an as yet to be determined influence on passive leak, I demonstrate their 

functional significance with regards to protection against chilling injury. I suggest future 

approaches to test other mechanistic hypotheses about cold acclimation that I generated in 

this dissertation. 

 

6.2 Revisiting loss of water and ion homeostasis during chill 

coma  

The critical thermal minimum (CTmin) appears to align with the threshold temperature 

below which enzyme pumping rates are exceeded by passive diffusion. At or below the 

CTmin, hemolymph Na+ and water gradually leak to the gut and hemolymph volume 

decreases. Consequently, hemolymph [K+] increases and this high extracellular [K+] was 
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proposed to explain the onset of chill coma paralysis via loss of muscle resting potential 

(MacMillan and Sinclair, 2011b). This conceptual model was based on water and ion 

imbalance apparent after 12 h of chill coma (Koštál et al., 2004; Koštál et al., 2006; 

MacMillan and Sinclair, 2011). However, some questions remained: how soon is water and 

ion balance perturbed upon entry into chill coma, and do patterns of water and ion balance 

in the early stages of chill coma reflect those in later stages? Furthermore, can a gradual 

loss of water and ion balance explain the onset of chill coma paralysis (which occurs within 

minutes of cold exposure)?  

 

I show that Na+ balance is lost rapidly during chill coma, and that both the content and 

concentration of hemolymph Na+ increase (rather than decrease) within the first hour. This 

transient increase in hemolymph Na+ had not been captured by previous studies, and 

introduces another step in the process of ion and water disruption during chill coma. It is 

likely that Na+ first leaks to the hemolymph from surrounding tissues before migrating to 

the gut lumen. Although the hindgut maintains high paracellular [Na+], a relatively stable 

gut Na+ content during the first hour of chill coma (and increase thereafter) eliminates this 

tissue as a contributor to the initial hemolymph Na+ influx. Femur muscle did lose Na+ 

content rapidly, which is supported by decreased muscle [Na+] without changes in muscle 

water content observed in a similar study (MacMillan and Sinclair, 2011b). Leak of Na+ 

from other tissues may also contribute to the hemolymph Na+ influx during cold exposure. 

For instance, the egg masses may have provided a large reservoir of Na+ (and egg [Na+] 

favors leak of this ion towards the hemolymph). It is not known whether males exhibit a 

similar spike in hemolymph Na+. Determining the origin of the hemolymph Na+ influx 

therefore requires analyses of Na+ content in other tissues of both male and female insects 

during early chill coma.  

 

Water and [K+] imbalance proceed gradually during the first 12 h of chill coma (as 

predicted by progressive imbalance during later chill coma), but bulk movement of K+ is 

not included in the conceptual model of homeostasis during chill coma (hemolymph K+ 

content in G. pennsylvanicus does not change appreciably over days of cold exposure; 

MacMillan and Sinclair, 2011b; Coello Alvarado et al., 2015). However, I observed 
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hemolymph K+ content to increase during the first 12 h of chill coma; this K+ may have 

leaked from the gut lumen down a concentration gradient. However, hemolymph [K+] 

imbalance in crickets does not account for muscle depolarization prior to 12 h of cold 

exposure (MacMillan and Sinclair, 2011b; Coello Alvarado et al., 2015; Chapter 2). This 

is also true for locusts (MacMillan et al., 2014) and tropical cockroaches (Koštál et al., 

2006). It is now clear that while loss of homeostasis (in particular K+ balance) can explain 

muscle depolarization in later chill coma, it does not explain the onset of chill coma 

paralysis. Rather, paralysis likely results from direct effects of low temperatures on muscle 

or nervous system excitability (Goller and Esch, 1990; Hosler et al., 2000; Armstrong et 

al., 2012; Findsen et al., 2014; MacMillan et al., 2014; Andersen et al., 2015). Unlike in 

the hemolymph, cold exposure causes a rapid surge in extracellular [K+] in the nervous 

tissues and neural depolarization (Robertson, 2004; Armstrong et al., 2012). However, this 

K+ disruption may not actually cause paralysis; rapid cold-hardening (RCH) lowers the 

temperature of chill coma onset but does not prevent or mitigate the surge of K+. To my 

knowledge the effect of cold acclimation on defense of ion homeostasis in the nervous 

tissues has not yet been explored. 

6.2.1 Interspecific variation in cold tolerance 

Although both cricket species progressively lost water and ion balance, this loss was slower 

and less-severe in the more cold-tolerant species (G. veletis). It is possible that G. veletis 

tissues are more resistant to passive ion leak during cold exposure (discussed in more detail 

in section 6.3.1). However, G. veletis also maintained lower hemolymph Na+ content (and, 

perhaps consequently) lower osmotic pressure between the hemolymph and gut even prior 

to cold exposure. Passive leak could thus be minimized by reducing transepithelial Na+ and 

osmotic gradients, although manipulation of osmotic gradient alone (via high dietary 

xylitol) does not appear to affect cold tolerance (Lebenzon et al., 2017; Yerushalmi et al., 

2016). That lower Na+ gradients between hemolymph and gut explain interspecific 

differences in cold tolerance is supported by recent work in D. melanogaster (MacMillan 

et al., 2015b). However, dietary manipulation to reduce this Na+ gradient in D. 

melanogaster and G. pennsylvanicus improved CCR and defense of hemolymph salt 

balance without improving survival of chronic cold stress (in the latter species, survival 
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actually decreased; Lebenzon et al., 2017; Yerushalmi et al., 2016). These findings 

therefore somewhat contradict the hypothesis that loss of ion balance during chronic cold 

exposure is a mechanism underlying chilling injury and mortality (Koštál et al., 2006; Lee, 

2010; Findsen et al., 2014). To determine whether hemolymph ion imbalance damages the 

tissues independent of the cold, cell death in the hindgut or other tissues could be quantified 

after repeated salt injection (i.e. chronic hemolymph ionic stress; Weidler, 1977). 

 

6.3 Mechanisms of cold acclimation  

Cold-acclimated insects maintain water and ion homeostasis to lower temperatures (and/or 

recover homeostasis faster upon rewarming) compared to warm-acclimated conspecifics 

(Sinclair and Roberts, 2005; Koštál et al., 2006; Findsen et al., 2013; Coello Alvarado et 

al., 2015), suggesting that cold acclimation modifies transport function. The current 

conceptual model presents two overarching means by which cold acclimation could protect 

transport function: 1) by lowering tissue permeability to reduce ion and water leak, and/or 

2) by maintaining rates of active transport to lower temperatures (Fig. 1; MacMillan and 

Sinclair, 2011a). The mechanisms underlying these modifications have been the main focus 

of my dissertation. 

6.3.1 Modification of diffusion 

MacMillan and Sinclair (2011) hypothesized that cold acclimation reduces ion and water 

diffusion during cold exposure by reducing epithelial permeability to water and/or ions 

(Fig 1.1B). Changes to tissue permeability are likely to be structural, and structural 

modifications are indeed emerging as a potential mechanism of acquired cold tolerance 

(Chapter 3; Teets et al., 2012; Gerken et al., 2015; Torson et al., 2015; MacMillan et al., 

2016). Water and ions are likely to leak across the hindgut (and possibly the midgut) during 

cold exposure, and I find transcriptional but not histological evidence of reduced hindgut 

permeability in cold-acclimated G. pennsylvanicus. Changes to gut permeability following 

cold acclimation could be determined ex vivo by measuring electrophysiological resistance 

(e.g. by Ussing chamber; Ussing and Zerahn, 1951; Clarke, 2009; Brun et al., 2014), or by 
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tracking the movement of marker or labeled solutes across the tissue (Ordin and Bonner, 

1956; Dow, 1981; Peters and Wiese, 1986). Although I have attempted Ussing chamber 

work with G. pennsylvanicus hindguts, loss of tissue viability was too rapid to measure 

steady resistance. Transport across the ileum and rectum in locusts has been measured 

successfully in Ussing chambers, therefore locusts may be better-suited orthopteran models 

for this technique (Hanrahan and Phillips, 1984; Thomson et al., 1988; Audsley et al., 

1992). 

6.3.1.1 Paracellular permeability 

Paracellular permeability is particularly important for reabsorption of water and Na+ across 

the hindgut (O'Donnell and Simpson, 2008), therefore cell junctions are a likely target for 

cold acclimation. In cold-acclimated crickets, differential expression of PAR3 and PCK-α 

suggest increased tight junction assembly and enhanced tightening of those junctions 

(Rosson et al., 1997; Ebnet et al., 2003). I also observed transcriptional modification of 

several genes involved in cell structure and adherens junctions. However, tightening of 

adherens junctions in the scalariform complex was not apparent in histological 

comparisons of warm- and cold-acclimated crickets (Chapter 4). Structural modifications 

to increase diffusion distance (e.g. scalariform complex tortuosity or epithelial cell 

thickening) or to increase absorptive surface area (e.g. by rectal pad cell proliferation) were 

also not apparent. I did not measure apical or basal paracellular channel widths, nor did I 

characterize the structure or localization of junction-related components, however these 

features could also be modified to reduce permeability. The extent to which water and ions 

leak via paracellular routes during cold exposure and how cold acclimation modifies 

paracellular leak should be first determined, e.g. by quantifying mannitol migration across 

warm- and cold-acclimated guts at different temperatures (Barthe et al., 1998).  

 

The cytoskeleton also regulates cell-to-cell adhesion (Knudsen et al., 1995; Drees et al., 

2005; Hartsock and Nelson, 2008), therefore cold acclimation could reduce tissue 

paracellular permeability by modifying cytoskeletal components involved in cell junction 

structure. For example, hindgut α-actinin was upregulated with cold acclimation (Chapter 

3) which may indicate enhanced cell-to-cell adhesion (Knudsen et al., 1995). The 
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contribution of specific cytoskeletal and cell-junction components to enhanced cold 

tolerance and modified water or ion leak could be investigated in D. melanogaster by loss-

of-function assays (e.g. by mutation or knockdown via the GAL4/UAS system; Roulier et 

al., 1992; Bellen et al., 2004; Ni et al., 2011), or gain-of-function assays for those 

components (e.g. using CRISPR; Sander and Joung 2014).  

6.3.1.2 Transcellular permeability 

Cold acclimation could mitigate transcellular leak of water and ions by reducing membrane 

recruitment or abundance of aquaporins and ion channels (Köttgen et al., 2005; Spring et 

al., 2009). Modified aquaporin expression does indeed correlate with acquired cold 

tolerance in the goldenrod gall fly (Philip et al., 2008; Philip and Lee, 2010). However, I 

did not identify any putative aquaporins in the G. pennsylvanicus transcriptome (potentially 

due to a lack of an annotated genome for this species), and few ion channels were 

transcriptionally modified by cold acclimation in the hindgut. The relative contribution of 

transcellular leak to water and ion imbalance during cold exposure should first be 

determined, e.g. by measuring transcellular resistance in an Ussing chamber-impedance 

spectroscopy technique (Krug et al., 2009). The effect of cold acclimation on transcellular 

permeability could then be quantified, and related to modification of aquaporins and ion 

channels by chemical blocking or knockdown of those proteins (Böhme et al., 1992; Philip 

et al., 2008; Neubauer et al., 2013; Drake et al., 2015).  

6.3.2 Modification of active transport 

Reduced enzyme activity at low temperatures likely explains loss of water and ion balance 

during chill coma (Nespolo et al., 2003; MacMillan and Sinclair, 2011a), and cold-

acclimated insects are better able to defend this balance in the cold (Koštál et al., 2004; 

Coello Alvarado et al., 2015). Modifying ion pumps to maintain transport function at lower 

temperatures is therefore proposed as a mechanism of cold acclimation (Fig. 1.1C). 

Enhanced active transport function at higher temperatures should also speed the recovery 

of water and ion balance upon rewarming, and cold-acclimated insects do exhibit shorter 

CCRTs (Ayrinhac et al., 2004; Rako and Hoffmann, 2006). I show that cold acclimation 
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modifies active transport function in the Malpighian tubules at both optimal and low 

temperatures, and this modification may explain improved defense of hemolymph volume, 

Na+ balance, and K+ balance. 

6.3.2.1 Malpighian tubule transport 

Cold acclimation may defend hemolymph water and ion homeostasis by enhancing active 

transport at low temperatures (MacMillan and Sinclair, 2011a). Cold acclimation indeed 

modifies active transport across the Malpighian tubules such that excretion is reduced 

across a range of temperatures, and this may allow cold-acclimated insects to retain 

hemolymph volume during cold exposure. However a reduction in excretion rate implies 

that active ion transporter activities in the Malpighian tubules are generally reduced by cold 

acclimation, rather than enhanced. The effect of cold acclimation on active transport 

function therefore depends on the tissue in question, illustrating the importance of tissue-

specific comparisons. Although V-ATPase expression was downregulated in cold-

acclimated Malpighian tubules, lack of altered V-ATPase activity suggests that 

modification of other enzymes accounts for reduced excretion. CA expression was also 

reduced following cold acclimation, however the functional significance of this 

transcriptional shift requires a comparison of CA activity in warm- and cold-acclimated 

Malpighian tubules.  

 

Cold acclimation does appear to enhance the activity of NKA in the Malpighian tubules (at 

least at 21°C), and this was not caused by changes in total protein or NKA transcript 

abundance. It is therefore likely that cold acclimation regulates Malpighian tubule NKA 

activity by post-translational modifications (see section 6.3.2.4). Increased pumping of 

NKA in the Malpighian tubules should reduce excretion rates (Grieco and Lopes, 1997; 

Caruso-Neves and Lopes, 2000) and decrease the primary urine Na+:K+ ratio (Coast, 2012). 

Loss of hemolymph water and Na+, and increased hemolymph K+ during cold exposure 

could therefore be mitigated if cold acclimation also enhances Malpighian tubule NKA 

activity at low temperatures. At least upon rewarming, increased NKA activity may explain 

shorter CCRT by re-establishing Na+ and K+ balance more rapidly (MacMillan et al., 

2015a).   
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6.3.2.2 Hindgut transport 

To maintain water and ion homeostasis during cold exposure and restore that homeostasis 

faster upon rewarming (i.e. to shorten the CCRT), cold acclimation should increase rates 

of reabsorption across the rectum at both low and optimal temperatures. Enhanced activity 

of rectal NKA would drive this reabsorption, however despite an increase in hindgut NKA 

transcript abundance following cold acclimation NKA activity in the rectum was 

unchanged at either 6°C or 21°C. First, a more general approach should be taken to 

determine whether cold acclimation indeed modifies rectal reabsorption rate. For example, 

active transport across the recta of warm- and cold-acclimated insects should be compared 

at both low and optimal temperatures (e.g. by Ussing chamber or the scanning ion-selective 

electrode technique; Ussing and Zerahn, 1951; Clarke, 2009; Nguyen and Donini, 2010). 

The contribution of other enzymes to altered rectal transport could then be quantified by 

selective inhibition (Hanrahan et al., 1984; Bertram et al., 1991; Clarke, 2009). 

 

Although transport mechanisms of the Malpighian tubules have been relatively well-

studied in the last 60 years, our understanding of hindgut transport mechanisms is lagging 

(Chintapalli et al., 2013). As such I can only speculate about the functional significance of 

downregulated NKCC, CA, V-ATPase, and a Na+-H+ exchanger in cold-acclimated 

hindguts. For example, NKCC is important for unidirectional transport of ions across 

Malpighian tubule principal cells (O'Donnell and Maddrell, 1984; Ianowski and O'Donnell, 

2004), but its specific roles in the hindgut have not been demonstrated (Phillips et al., 1987; 

Chintapalli et al., 2013). The activity of CAs in the gut is coupled with V-ATPase and 

NHA for proton exchange (Zeiske, 1992; Chintapalli et al., 2013). Downregulation for 

these enzymes in the hindgut could potentially reduce apical Na+ export at the expense of 

pH regulation (O'Donnell and Simpson, 2008; Chintapalli et al., 2013). Cricket hindgut 

transcriptomes did not reveal changes in the expression of any putative apical Cl- pump 

(thought to be an important driver of reabsorption across the rectum; Phillips et al., 1988; 

Coast, 2007; O'Donnell and Simpson, 2008). However, neuropeptide stimulation of active 

Cl- transport acts through cAMP (Phillips et al., 1988; O'Donnell and Simpson, 2008) 

which was upregulated in the hindgut following cold acclimation (see section 6.4.2).  
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6.3.2.3 The diverse roles of NKA in cold acclimation 

Insect cold tolerance should be improved if water and ion homeostasis is defended in the 

cold (or at least re-established more rapidly upon recovery). This could be achieved by 

increasing NKA activity in the Malpighian tubules (reducing diuresis) and rectum 

(enhancing reabsorption), and I provide some evidence in support of this in crickets. 

However, interspecific and acquired cold tolerance has been associated previously with 

decreased whole-animal NKA activity, at least in dipterans (McMullen and Storey, 2008; 

MacMillan et al., 2015c). MacMillan et al. (2015c) suggest that a reduction in Na+ pumping 

may reduce Na+ gradients across insect epithelia, thereby minimizing the leak of Na+ (and 

therefore water) during cold exposure (see section 6.2.3). It is possible that these disparate 

findings simply illustrate variation in cold tolerance mechanisms among insect lineages 

(see section 6.4.1). However, the effect of NKA on Na+ transport differs among tissues 

(NKA activity prevents net Na+ transport across the Malpighian tubules but drives Na+ 

transport across the rectum). Therefore it is difficult to make specific predictions about 

how overall transport and ion balance may be modified based on whole-body NKA activity 

comparisons. The role of NKA in interspecific and plastic cold tolerance variation likely 

differs among lineages according to the dominant hemolymph cation (whether Na+ or K+). 

For example, I would predict that acquired cold tolerance should correlate with increased 

NKA activity in ionoregulatory tissues if Na+ is the dominant hemolymph cation. To 

determine the ubiquity of NKA modification for maintaining transport function in the cold, 

variation in cold tolerance within and among lineages should be linked to NKA activity in 

specific ionoregulatory tissues. 

6.3.2.4 Other mechanisms underlying modified active transport   

In this dissertation I have not endeavored to identify active transport modifications 

unrelated to altered transcript or total protein abundance. Expression of isozymes with 

lower thermal sensitivities could allow cold-acclimated insects to maintain transport 

function at lower temperatures (Angilletta et al., 2003; Blanco, 2005). Isozymes are 

difficult to distinguish in de novo transcriptome assemblies (as fine sequence variation is 

not apparent after alignment), but their expression could be investigated by amplification 
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and sequencing for ion pumps of interest. Post-translational modifications (e.g. 

phosphorylation, oxidation of protein motifs, complexation with other molecules, and 

membrane recruitment) could also underlie plasticity in water and ion transport function in 

the cold (Merzendorfer et al., 1997; Khurana, 2000; Wieczorek et al., 2000; Seo and Lee, 

2004; Hilvo et al., 2008; Galarza-Muñoz et al., 2011; Zeuthen and MacAulay, 2012). For 

example, suppression of NKA activity in overwintering Eurosta solidaginis gall flies is 

proposed to occur by kinase-mediated phosphorylation (McMullen and Storey, 2008). 

Multiple protein kinases in G. pennsylvanicus ionoregulatory tissues were upregulated by 

cold acclimation (Chapter 3), however should reduce NKA activity, in contrast to my 

observations (Chapter 5). The role of these protein kinases in transport modification of 

NKA or other enzymes could be quantified by comparing the phosphorylation states of ion 

pumps in the Malpighian tubules and recta of warm- and cold-acclimated insects. 

Similarly, we could measure the effect of cold acclimation on recruitment of ion pumps to 

the cell membrane (Hundal et al., 1992; Martens et al., 2004; Misonou et al., 2004), and 

relate those differences to modified expression of vesicle transport genes. 

 

Transport function of ion pumps and channels can also be modified indirectly via changes 

to membrane fluidity at low temperatures (Lam et al., 2004; Galarza-Muñoz et al., 2011), 

and many membrane-associated genes in the hindgut and Malpighian tubules were 

transcriptionally altered with cold acclimation. Similarly, modification of the actin 

cytoskeleton (which was also apparent in cold-acclimated tissue transcriptomes) can also 

regulate enzymatic pump activity (Cantiello, 1995; Hilgemann, 1997; Khurana, 2000). The 

activity of enzymes such as V-ATPase are hormonally-regulated in insects (Phillips and 

Audsley, 1995; O'Donnell et al., 1996; Phillips et al., 1998; Harrison, 2001; Coast, 2012; 

Paluzzi, 2012), but the role of hormones in cold acclimation is almost completely 

unexplored (see section 6.4.3). 
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6.3.3 How does cold acclimation protect against chilling injury? 

Although many mechanisms have been proposed to explain insect chilling injury, empirical 

evidence for these mechanisms is currently lacking. Part of the problem is that we have yet 

to identify the cells and tissues most susceptible to chilling (both acute and chronic), and 

the extent to which cell death is necrotic or apoptotic. The midgut and fat body appear to 

be particularly susceptible to freezing damage (Izumi et al., 2005; Philip et al., 2008), and 

the gut may be damaged by cold exposure itself (Sinclair and Chown, 2005). Acute cold 

shock causes apoptosis in D. melanogaster flight muscle, and this cell death is reduced by 

RCH (potentially via decreased abundance of apoptosis initiator and executioner caspases; 

Yi et al., 2007). However, I observed an upregulation of apoptosis-promoting caspases in 

cold-acclimated crickets (Chapter 3). It is possible that apoptosis is required for tissue 

restructuring during cold acclimation (as evinced by transcriptomic comparisons, see 

section 6.3.1). Tissues exhibiting apoptotic cell death with chilling could be confirmed by 

TUNEL assay (Gavrieli et al., 1992; Yi et al., 2007; Vasudevan and Ryoo, 2016).  

My attempts to identify chilling-attributed cell death in G. pennsylvanicus ionoregulatory 

tissues by live-dead staining have been unsuccessful, but Drosophila melanogaster or 

Sarcophaga crassipalpis appear to be suitable models for this technique (personal 

observations; Yi and Lee, 2004). Cellular components with non-repairable damages must 

be cleared, and regulation of autophagy is also emerging as an important aspect of acquired 

cold tolerance (Teets and Denlinger, 2013a; Gerken et al., 2015). Crickets exhibited shifts 

in the expression of genes related to autophagy following cold acclimation (Chapter 3), 

however their role in repair of chilling injuries requires further investigation. For example, 

we may compare survival of injury-inducing cold exposure for insects with and without 

knockdown of specific autophagy-regulating genes or proteins (Juhász et al., 2003; 

Pattingre and Levine, 2006). 

 

Water and ion imbalance does not appear to cause immediate damage; G. pennsylvanicus 

survival is relatively high despite substantial loss of hemolymph water and Na+ during the 

first day of chilling at 0°C (MacMillan and Sinclair, 2011b; Coello Alvarado et al., 2015). 

This imbalance during prolonged cold exposure is instead proposed to cause chronic 



164 

 

chilling injury (Koštál et al., 2006; Lee, 2010; Findsen et al., 2014), but the precise 

mechanisms remain unknown. We should first correlate the onset of lethal chilling injury 

with the extent of water and ion imbalance. For example, a steep increase in mortality for 

G. pennsylvanicus occurs at two to three days of chilling at 0°C (MacMillan and Sinclair, 

2011b; Coello Alvarado et al., 2015). If hemolymph ionic imbalance accounts for this 

mortality, then mortality or injury should be induced by manipulating cricket extracellular 

ion concentrations (via injection of salts) to reflect hemolymph conditions after two to three 

days of chilling. Damage to specific tissues could then be assessed by live-dead stain.  

 

As cold exposure affects membrane structure and fluidity, ion and water imbalance is likely 

exacerbated by chilling damage to the cell membrane (O'Donnell and Maddrell, 1983; 

Ramløv, 2000; Lam et al., 2009). Cold tolerance is thus commonly associated with 

membrane modification (Hazel, 1989; Hazel, 1995; Gerken et al., 2015). In crickets, a 

relatively large proportion of genes encoding membrane-associated cellular components 

were differentially-expressed following cold acclimation, however I did not further 

investigate the relationship of these genes to modified membrane fluidity. Enhanced cold 

tolerance corresponds with increased unsaturation of the phospholipid bilayer in dipterans 

and moths (Koštál and Simek, 1998; Koštál et al., 2003; Overgaard et al., 2005; Shreve et 

al., 2007), however to my knowledge a link between these membrane modifications and 

enhanced transport function in the cold has not been demonstrated.  

 

Chilling injury could result from cytoskeletal failure at low temperatures (Madara et al., 

1986; Belous, 1992; Khurana, 2000; Pedersen et al., 2001; Kim and Denlinger, 2009; 

Monastyrska et al., 2009), and modified expression of actin- and tubulin-related genes is 

emerging as an important aspect of the cold-hardening process (RCH, cold acclimation, 

and even diapause; Cottam et al., 2006; Kim et al., 2006; Kayukawa and Ishikawa, 2009; 

Teets et al., 2012; Gerken et al., 2015; MacMillan et al., 2016). Actin appears to be a central 

target for modification, and genes that promote actin branching and stabilization were 

upregulated in crickets following cold acclimation (Chapter 3). I show in Chapter 4 that 

these transcriptional shifts correlate with both the protection (and even enhancement) of F-

actin polymerization following cold shock. The effect of cold-hardening on the 
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microtubules is somewhat less clear; diapause entry and cold exposure reduces beta-tubulin 

expression and microtubule abundance in C. pipiens (at least in flight muscles; Kim and 

Denlinger, 2009), while cold acclimation in G. pennsylvanicus transport tissues increases 

the expression of at least two genes promoting microtubule stability and polymerization. 

Altered expression of microtubule-associated proteins 1A/1B light chain 3A in crickets 

may also modify autophagic processes (Pankiv et al., 2007). Phosphorylation of 

cytoskeletal components could also affect cell structure in the cold; and this appears to at 

least partially underlie rapid cold hardening in Sarcophaga bullata (Teets and Denlinger, 

2016). We now need to show that these cytoskeletal modifications improve cell survival 

and/or transport function following cold exposure (see section 6.3.1).   

 

To better understand how cold acclimation enhances survival of chilling, candidate cold 

tolerance mechanisms should be linked with cellular, tissue, and whole-organism 

performance in the cold. Ideally, the expression or titres of specific candidate molecules 

(e.g. antioxidants, cytoskeletal stabilizers, and those involved in apoptosis or autophagy) 

would be manipulated via RNA interference or gene editing using CRISPR and correlated 

with survival of cold exposure (Huvenne and Smagghe, 2010; Ni et al., 2011; Sander and 

Joung, 2014; Dong et al., 2015). A time-course analysis of gene expression prior to and 

following cold exposure could also help to define which molecules are involved in 

prevention of chilling injury, repair, or both. Transcriptome comparisons of chilling-

susceptible tissues (such as the fat body and midgut) after acute and chronic chilling could 

provide hints about the nature of each type of injury.   

 

6.4 Other aspects of cold tolerance and transport function  

Regulation of transport function involves multiple molecules and processes, many of which 

appear to be modified by cold acclimation in the ionoregulatory tissues of G. 

pennsylvanicus (Chapter 3). In the following sections I briefly discuss some of these 

processes and their potential relationship to modified transport function and survival of 

cold exposure.  
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6.4.1 Neuropeptides and secondary messengers 

Excretion and reabsorption of water and ions are controlled by multiple neuropeptide 

families acting on the Malpighian tubules and hindgut (Phillips and Audsley, 1995; 

Audsley et al., 2013; Halberg et al., 2015). Terhzaz et al. (2015) recently demonstrated a 

role for the diuretic capa peptides in insect cold tolerance, whereby knockdown of the capa 

gene increased CCRT in D. melanogaster. Chilling of D. melanogaster at 0°C increased 

capa mRNA abundance, and release of the peptide from neuroendocrine cells occurred 

primarily during recovery from cold stress (Terhzaz et al., 2015). This transcriptional shift 

indicates that modified endocrine function is one mechanism of cold acclimation (with 

regards to chill coma recovery).  

 

Cold acclimation upregulated atrial natriuretic peptide converting enzyme (which 

stimulates Malpighian tubule secretion in mosquitoes; Petzel et al., 1985), however the role 

of this enzyme in hindgut reabsorption is not known. I also did not observe shifts in the 

expression of excretory neuropeptide receptors in the hindgut or Malpighian tubules of 

cold-acclimated insects. Whether or not cold acclimation alters neuropeptide expression in 

crickets and other insects may be best determined by comparing the nervous tissue 

transcriptomes or hemolymph proteomes of warm- and cold-acclimated individuals. The 

functional significance of specific neuropeptides (e.g. antidiuretic hormone, ion transport 

peptide, or capa) could also be determined by comparing the cold tolerance of insects with 

and without peptide injection (Phillips and Audsley, 1995; Paluzzi, 2012; Halberg et al., 

2015; Terhzaz et al., 2015).  

 

Most insect neuropeptides stimulate excretion and reabsorption via secondary messengers 

such as cAMP and cGMP, inositol triphosphate (IP3), and adenylate cyclase (Schooley et 

al., 2012). A number of these secondary messengers were transcriptionally-altered by cold 

acclimation, however the functional significance of their alteration for defense of 

hemolymph volume and ion balance is not entirely clear. For example, ion transport peptide 

stimulates ileal Na+ reabsorption by elevating cytosolic cAMP and cGMP (Audsley et al., 

2013). Increased expression of hindgut adenylate cyclase (which produces cAMP) could 
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thereby enhance ion reabsorption across the ileum in cold-acclimated G. pennsylvanicus 

(Schooley et al., 2012). However, upregulation of hindgut cAMP/cGMP 

phosphodiesterases might depress reabsorption rates by reducing cytosolic cAMP or cGMP 

(Schooley et al., 2012). Upregulation of a putative cAMP phosphodiesterase and 

downregulation of inositol monophosphatase (which is required for IP3 recycling) in the 

Malpighian tubules of cold-acclimated crickets could contribute to reduced excretion rates 

(Coyle and Duman, 2003). If these transcriptional shifts reflect altered secondary 

messenger abundance, we could perhaps quantify their contribution to altered transport 

function by selective inhibition in the hindgut and Malpighian tubules ex vivo (Sharma et 

al., 1975; Genain et al., 1995; Sarkar et al., 2005).  

6.4.2 Ca2+ imbalance and signaling 

Literature on the mechanistic roles of Ca2+ balance in cellular chilling injury, cold-sensing, 

and both interspecific and plastic variation in cold tolerance for plants is extensive 

(Minorsky, 1985; Knight et al., 1996; Jian et al., 1999; Thomashow, 1999; Nayyar et al., 

2005; Lukatkin et al., 2012). However, relatively little is known about the role of Ca2+ 

balance in insects during cold exposure. Hemolymph Ca2+ in crickets was unchanged 

within the first 12 h of cold exposure (personal observations), but both the content and 

concentration of hemolymph Ca2+ appear to decrease gradually on the order of days 

(MacMillan and Sinclair, 2011b). Decreased extracellular Ca2+ can reduce rates of primary 

urine production by the Malpighian tubules (Morgan and Mordue, 1985), but this does not 

appear to defend hemolymph volume during cold exposure (MacMillan and Sinclair, 

2011b). Ca2+ imbalance itself appears to be important for insect cold sensing and RCH 

(Teets et al., 2008; Teets et al., 2013). 

Intracellular [Ca2+] in goldenrod gall fly tracheal cells nearly doubles with chilling at 0°C 

(Teets et al., 2013). Although total muscle [Ca2+] was unchanged over five days at 0°C in 

G. pennsylvanicus (MacMillan and Sinclair, 2011b), this does not necessarily reflect 

cytosolic (active) [Ca2+]. Muscle depolarization resulting from hemolymph ion imbalance 

during chill coma in general could initiate a voltage-dependent release of Ca2+ to the 

cytosol (Koštál et al., 2006), and even minute shifts in free intracellular [Ca2+] can have 
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drastic impacts on signaling cascades and other cellular processes (Orrenius et al., 1989). 

For example, sustained increased cytosolic [Ca2+] can cause membrane degradation, 

cytoskeletal disruption, oxidative stress, and damage to DNA and cellular components 

(Hochachka, 1986; Orrenius et al., 1989; Wahlström et al., 2006; Lukatkin et al., 2012). 

Export or sequestration of cytosolic Ca2+  to reduce [Ca2+] is likely to be hindered at low 

temperatures by slowed Ca2+-ATPase activity. Cold-acclimated insects may defend 

cytosolic [Ca2+] by modifying Ca2+ transport, and this hypothesis is supported by an 

increase in the expression of Malpighian tubule Ca2+-ATPase and hindgut Ca2+-release-

activated Ca2+ channels for cold-acclimated G. pennsylvanicus (Chapter 3). These 

transcriptional modifications should now be linked to enhanced abundance and/or activity 

of these enzymes in the ionoregulatory tissues.   

6.4.3 Unidentified molecules associated with cold acclimation 

Our understanding of water and ion transport processes in the Malpighian tubules and 

hindgut within and among insect lineages is incomplete. For example, neuroendocrine 

control and partitioning of anion and cation transport across Malpighian tubule cells 

appears to vary considerably among insects but only a few taxonomic orders have been 

studied in this regard (Halberg et al., 2015). Comparative studies on hindgut transport 

function are even fewer, and the hindgut is enriched in many genes with unknown function 

(Chintapalli et al., 2013). In both the hindgut and Malpighian tubules of G. pennsylvanicus, 

many of the genes most altered by cold acclimation had no putative identity via BLAST 

(these included contigs downregulated by 37-fold in both tissues, and genes upregulated 

59- and 100-fold in the hindgut and Malpighian tubules, respectively; Chapter 3). 

Identification of these genes would be invaluable not only for understanding about hindgut 

and Malpighian tubule transport function in Orthoptera but how those processes relate to 

cold acclimation and defense of homeostasis at low temperatures.  These genes may be 

identifiable as genomic databases become more robust (especially for non-model species 

such as G. pennsylvanicus). 
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6.5 Dissecting plastic and interspecific mechanisms of cold 
tolerance 

Many questions about acquired cold tolerance still remain: what are the limits of cold 

tolerance plasticity and what are the associated costs or trade-offs? How conserved are the 

mechanisms of acquired cold tolerance within and among taxa? How rapid is the cold 

acclimation process, and what distinguishes it from RCH? Cold tolerance plasticity appears 

to involve multiple physiological systems and various timescales. For example, cold 

acclimation regimes in the literature span from two days to four months (Ding et al., 2003; 

Rako and Hoffmann, 2006), and the duration of acclimation is likely to influence 

conclusions about the underlying mechanisms. At least in adult G. pennsylvanicus, a one-

week cold acclimation regime improves cold tolerance as effectively as a four-week cold 

acclimation under similar conditions (Coello Alvarado et al., 2015). One week may 

therefore be sufficient for steady-state alteration of cold tolerance phenotype, but do the 

physiological mechanisms driving this phenotype differ between one and four weeks of 

cold acclimation? The energetic costs of enhanced cold tolerance may change over time, 

and could reflect different mechanisms (e.g. short-term mechanisms may involve active 

transport modifications while longer-term mechanisms may involve structural 

modifications).  

 

Cold acclimation and RCH appear to share some targets for modification (e.g. the 

membrane, cytoskeleton, ion transport, apoptosis, and autophagy; Teets et al., 2012; 

Gerken et al., 2015; Koštál and Simek, 1998; Overgaard et al., 2005; Findsen et al., 2013). 

Distinguishing the mechanistic overlap of RCH and cold acclimation processes is therefore 

an ongoing area of investigation (Colinet and Hoffmann, 2012; Teets and Denlinger, 

2013b; Gerken et al., 2015). Although acclimation is commonly associated with gradual, 

transcription-driven modifications (Clark and Worland, 2008), RCH can also alter gene 

expression and induce alternative splicing (Overgaard et al., 2005; Qin et al., 2005; Teets 

et al., 2012; Gerken et al., 2015). It is suggested that RCH (as well as cold acclimation) can 

act via post-translational modifications (Misener et al., 2001; Storey and Storey, 2012; 

Colinet et al., 2013; MacMillan et al., 2015c), and RCH has recently been shown to modify 

signaling cascades that alter protein phosphorylation (Teets and Denlinger, 2016).  
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6.6 Applications in insect management 

Plasticity can enhance cold tolerance beyond adaptive differences (e.g. based on 

phylogeny; Ayrinhac et al., 2004; Ransberry et al., 2011; McKinnon, 2015). However in 

an increasingly variable climate this plasticity may pose a problem with regard to insect 

pests, especially if species’ invasive potential is associated with a greater capacity for cold 

tolerance plasticity (Lehmann et al., 2015). Uncovering common themes of interspecific 

and plastic cold tolerance could help to identify widely-applicable physiological targets for 

manipulating insect cold tolerance (Huvenne and Smagghe, 2010; Andreadis and 

Athanassiou, 2017). For example, cold tolerance within and among Drosophila spp. is 

correlated with a reduction in hemolymph [Na+] (MacMillan et al., 2015b; MacMillan et 

al., 2015c), and this strategy could be common to other dipterans or other lineages. 

Manipulation of insect water and ion homeostasis is a promising means of population 

management (Cohen, 2013), therefore understanding the link between water or ion 

homeostasis and insect cold tolerance would add to the utility of these manipulations for 

controlling pests or beneficial species at low temperatures. 

 

6.7 Concluding remarks 

In addition to understanding the evolution of insect cold tolerance, uncovering the means 

by which insects modify their cold tolerance has substantial practical importance for mass-

rearing or population management of disease vectors, pest, and beneficial insects. Insects 

lose hemolymph water and ion balance rapidly upon exposure to the cold, and this process 

may involve leak of ions from surrounding tissues. Although loss of homeostasis does not 

account for paralysis in early stages chill coma, progressive water and ion imbalance 

hinders chill coma recovery and may lead to the accumulation chilling injuries by as yet to 

be determined mechanisms. Cold acclimation appears to involve both a modification of 

both Malpighian tubule active transport function and rectal cytoskeletal structure, and these 

changes may explain improved chilling survival and enhanced defense or recovery of water 

and ion homeostasis. Many questions still remain about the mechanisms underlying both 

plastic and interspecific variation in cold tolerance for chill-susceptible insects. My work 
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has yielded specific hypotheses about these mechanisms with regard to transport function, 

which should help to move the insect thermal physiology field from correlative to 

manipulative, causative approaches to address candidate mechanisms of cold tolerance.  
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Appendix A: Chapter 2 supplementary material 

 

Figure A 1. Gut water (A) and hemolymph (B) volume of G. pennsylvanicus and G. 

veletis crickets exposed to 0ºC for up to 12 h.  The cold exposure time axis in A is log-

transformed. Dashed lines indicate a significant linear relationship between water volume 

and cold exposure time. n = 11 to 17 crickets per species per time point; see Table A2 for 

statistics.   
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Table A 1. Relationship between tissue dry mass (DM) and ion or water content in 

crickets G. pennsylvanicus and G. veletis.  Relationships were quantified using general 

linear models and P-values are adjusted for false discovery rate. Bold P-values are those 

lower than α of 0.05. 

 
COMPARISON SPECIES STATISTIC D.F. P-VALUE 
     

IONS     

Gut DM vs. gut Na+ content G. pennsylvanicus F = 113.0 1, 88 <0.0001 
 

G. veletis F = 175.8 1, 93 <0.0001 

Gut DM vs. gut K+ content G. pennsylvanicus F = 210.9 1, 88 <0.0001 
 

G. veletis F = 466.6 1, 92 <0.0001 

Muscle DM vs. muscle Na+ content G. pennsylvanicus F = 62.83 1, 84 <0.0001 

G. veletis F = 125.1 1, 91 <0.0001 

Muscle DM vs. muscle K+ content G. pennsylvanicus F = 267.0 1, 84 <0.0001 
 

G. veletis F = 738.4 1, 88 <0.0001 

WATER     

Gut DM vs. gut water content G. pennsylvanicus F = 4.119 1, 87 0.0545 
 

G. veletis F = 13.30 1, 93 0.0006 

Muscle DM vs. muscle water content G. pennsylvanicus F = 1.049 1, 87 0.3087 

 G. veletis F = 1.771 1, 91 0.2036 
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Table A 2. Test statistics for models of water balance and ion balance over 12 h 

exposure to 0ºC in crickets G. pennsylvanicus and G. veletis.  Models were either general 

linear regressions (GLS) or generalized nonlinear least squares regression (GNLS), and P-

values were corrected for false discovery rate (Benjamini and Hochberg, 1995). Bold P-

values are those lower than α of 0.05. 

 

MEASUREMENT MODEL SPECIES STATISTIC D.F. P-VALUE 
      

WATER BALANCE      

Hemolymph volume GLS G. pennsylvanicus F = 3.359 1, 85 0.0914 
  

G. veletis F = 13.85 1, 93 0.0013 

Gut water content GLS G. pennsylvanicus F = 5.942 1, 87 0.0323 
  

G. veletis F = 11.12 1, 93 0.0039 

Hemolymph:gut water 
volume 

GLS G. pennsylvanicus F = 8.887 1, 85 0.0090 
 

G. veletis F = 6.833 1, 92 0.0228 

Muscle water content GLS G. pennsylvanicus F = 1.049 1, 87 0.3648 
  

G. veletis F = 1.892 
 

1, 88 0.2134 

ION BALANCE      

Hemolymph:gut Na+ 
ratio 

GLS G. pennsylvanicus F = 14.44 1, 82 <0.0001 

 G. veletis F = 10.18 1, 91 0.0015 

Gut Na+ content GNLS G. pennsylvanicus F = 3.932 1, 88 0.0729 
  

G. veletis F = 5.863 1, 93 0.0323 

Gut K+ content GLS G. pennsylvanicus F = 0.047 1, 88 0.8613 
  

G. veletis F = 0.025 1, 92 0.8740 

Gut [K+] GLS G. pennsylvanicus F = 5.389 1, 88 0.0367 
  

G. veletis F = 10.55 1, 92 0.0046 

Hemolymph [K+] GLS G. pennsylvanicus F = 50.80 1, 74 <0.0001 
  

G. veletis F = 28.89 1, 65 <0.0001 

Hemolymph K+ content GLS G. pennsylvanicus F = 34.51 1, 33 <0.0001 
  

G. veletis F = 6.65 1, 65 0.0367 

Muscle [Na+] GLS G. pennsylvanicus F = 21.93 1, 86 <0.0001 
  

G. veletis F = 23.99 1, 92 <0.0001 

Muscle Na+ content GNLS G. pennsylvanicus F = 15.46 1, 33 0.0015 
  

G. veletis F = 5.052 1, 91 0.0070 

Muscle [K+] GLS G. pennsylvanicus F = 0.554 1, 87 0.4971 
  

G. veletis F = 4.708 1, 92 0.0489 

Muscle K+ content GLS G. pennsylvanicus F = 0.951 1, 84 0.3755 
  

G. veletis F = 3.676 1, 88 0.0799 

 

 



187 

 

Appendix B: Reprint permission for Chapter 2 

 

This Agreement between Lauren Des Marteaux ("You") and Elsevier ("Elsevier") consists 

of your license details and the terms and conditions provided by Elsevier and Copyright 

Clearance Center. 

 

License Number 4052510173792 

License date Feb 19, 2017 

Licensed Content Publisher Elsevier 

Licensed Content Publication Journal of Insect Physiology 

Licensed Content Title 
Ion and water balance in Gryllus crickets during the 

first twelve hours of cold exposure 

Licensed Content Author Lauren E. Des Marteaux, Brent J. Sinclair 

Licensed Content Date June 2016 

Licensed Content Volume 89 

Licensed Content Issue n/a 

Licensed Content Pages 9 

Start Page 19 

End Page 27 

Type of Use reuse in a thesis/dissertation 

Portion full article 

Format electronic 

Are you the author of this Elsevier 

article? 
Yes 

Will you be translating? No 

Order reference number  

Title of your thesis/dissertation  
Mechanisms underlying variation in insect chill 

tolerance: the role of ion and water transport function 

Expected completion date Apr 2017 

Estimated size (number of pages) 207 

Elsevier VAT number GB 494 6272 12 

Requestor Location 

Lauren Des Marteaux 

  

 

 

 

Attn: Lauren Des Marteaux 

  

Total 0.00 CAD   



188 

 

Terms and Conditions 

GENERAL TERMS 

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject 

to the terms and conditions indicated. 

3. Acknowledgement: If any part of the material to be used (for example, figures) has 

appeared in our publication with credit or acknowledgement to another source, permission 

must also be sought from that source.  If such permission is not obtained then that material 

may not be included in your publication/copies. Suitable acknowledgement to the source 

must be made, either as a footnote or in a reference list at the end of your publication, as 

follows: 

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of 

chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE 

SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The 

Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with 

permission from Elsevier." 

4. Reproduction of this material is confined to the purpose and/or media for which 

permission is hereby given. 

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be 

altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions 

and/or any other alterations shall be made only with prior written authorization of Elsevier 

Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications can be made 

to any Lancet figures/tables and they must be reproduced in full.  

6. If the permission fee for the requested use of our material is waived in this instance, 

please be advised that your future requests for Elsevier materials may attract a fee. 

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the 

combination of (i) the license details provided by you and accepted in the course of this 

licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment 

terms and conditions. 

8. License Contingent Upon Payment: While you may exercise the rights licensed 

immediately upon issuance of the license at the end of the licensing process for the 

transaction, provided that you have disclosed complete and accurate details of your 

proposed use, no license is finally effective unless and until full payment is received from 

you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and 

conditions.  If full payment is not received on a timely basis, then any license preliminarily 

granted shall be deemed automatically revoked and shall be void as if never 

granted.  Further, in the event that you breach any of these terms and conditions or any of 

CCC's Billing and Payment terms and conditions, the license is automatically revoked and 

shall be void as if never granted.  Use of materials as described in a revoked license, as 

  



189 

 

well as any use of the materials beyond the scope of an unrevoked license, may constitute 

copyright infringement and publisher reserves the right to take any and all action to protect 

its copyright in the materials. 

9. Warranties: Publisher makes no representations or warranties with respect to the licensed 

material. 

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and 

their respective officers, directors, employees and agents, from and against any and all 

claims arising out of your use of the licensed material other than as specifically authorized 

pursuant to this license. 

11. No Transfer of License: This license is personal to you and may not be sublicensed, 

assigned, or transferred by you to any other person without publisher's written permission. 

12. No Amendment Except in Writing: This license may not be amended except in a 

writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf). 

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any 

purchase order, acknowledgment, check endorsement or other writing prepared by you, 

which terms are inconsistent with these terms and conditions or CCC's Billing and 

Payment terms and conditions.  These terms and conditions, together with CCC's Billing 

and Payment terms and conditions (which are incorporated herein), comprise the entire 

agreement between you and publisher (and CCC) concerning this licensing transaction.  In 

the event of any conflict between your obligations established by these terms and 

conditions and those established by CCC's Billing and Payment terms and conditions, these 

terms and conditions shall control. 

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions 

described in this License at their sole discretion, for any reason or no reason, with a full 

refund payable to you.  Notice of such denial will be made using the contact information 

provided by you.  Failure to receive such notice will not alter or invalidate the denial.  In 

no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, 

expenses or damage incurred by you as a result of a denial of your permission request, 

other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance 

Center for denied permissions. 

LIMITED LICENSE 

The following terms and conditions apply only to specific license types: 

15. Translation: This permission is granted for non-exclusive world English rights only 

unless your license was granted for translation rights. If you licensed translation rights you 

may only translate this content into the languages you requested. A professional translator 

must perform all translations and reproduce the content word for word preserving the 

integrity of the article. 



190 

 

16. Posting licensed content on any Website: The following terms and conditions apply 

as follows: Licensing material from an Elsevier journal: All content posted to the web site 

must maintain the copyright information line on the bottom of each image; A hyper-text 

must be included to the Homepage of the journal from which you are licensing at 

http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at 

http://www.elsevier.com; Central Storage: This license does not include permission for a 

scanned version of the material to be stored in a central repository such as that provided by 

Heron/XanEdu. 

Licensing material from an Elsevier book: A hyper-text link must be included to the 

Elsevier homepage at http://www.elsevier.com . All content posted to the web site must 

maintain the copyright information line on the bottom of each image. 

 

Posting licensed content on Electronic reserve: In addition to the above the following 

clauses are applicable: The web site must be password-protected and made available only 

to bona fide students registered on a relevant course. This permission is granted for 1 year 

only. You may obtain a new license for future website posting.  

17. For journal authors: the following clauses are applicable in addition to the above: 

Preprints: 

A preprint is an author's own write-up of research results and analysis, it has not been peer-

reviewed, nor has it had any other value added to it by a publisher (such as formatting, 

copyright, technical enhancement etc.). 

Authors can share their preprints anywhere at any time. Preprints should not be added to or 

enhanced in any way in order to appear more like, or to substitute for, the final versions of 

articles however authors can update their preprints on arXiv or RePEc with their Accepted 

Author Manuscript (see below). 

If accepted for publication, we encourage authors to link from the preprint to their formal 

publication via its DOI. Millions of researchers have access to the formal publications on 

ScienceDirect, and so links will help users to find, access, cite and use the best available 

version. Please note that Cell Press, The Lancet and some society-owned have different 

preprint policies. Information on these policies is available on the journal homepage. 

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an 

article that has been accepted for publication and which typically includes author-

incorporated changes suggested during submission, peer review and editor-author 

communications. 

 

 



191 

 

Authors can share their accepted author manuscript: 

•          immediately 

o via their non-commercial person homepage or blog 

o by updating a preprint in arXiv or RePEc with the accepted 

manuscript 

o via their research institute or institutional repository for internal 

institutional uses or as part of an invitation-only research 

collaboration work-group 

o directly by providing copies to their students or to research 

collaborators for their personal use 

o for private scholarly sharing as part of an invitation-only work group 

on commercial sites with which Elsevier has an agreement 

•          after the embargo period 

o via non-commercial hosting platforms such as their institutional 

repository 

o via commercial sites with which Elsevier has an agreement 

In all cases accepted manuscripts should: 

•          link to the formal publication via its DOI 

•          bear a CC-BY-NC-ND license - this is easy to do 

•          if aggregated with other manuscripts, for example in a repository or other site, 

be shared in alignment with our hosting policy not be added to or enhanced in any 

way to appear more like, or to substitute for, the published journal article. 

Published journal article (JPA): A published journal article (PJA) is the definitive final 

record of published research that appears or will appear in the journal and embodies all 

value-adding publishing activities including peer review co-ordination, copy-editing, 

formatting, (if relevant) pagination and online enrichment. 

Policies for sharing publishing journal articles differ for subscription and gold open access 

articles: 

Subscription Articles: If you are an author, please share a link to your article rather than 

the full-text. Millions of researchers have access to the formal publications on 

ScienceDirect, and so links will help your users to find, access, cite, and use the best 

available version. 

Theses and dissertations which contain embedded PJAs as part of the formal submission 

can be posted publicly by the awarding institution with DOI links back to the formal 

publications on ScienceDirect. 

If you are affiliated with a library that subscribes to ScienceDirect you have additional 

private sharing rights for others' research accessed under that agreement. This includes use 



192 

 

for classroom teaching and internal training at the institution (including use in course packs 

and courseware programs), and inclusion of the article for grant funding purposes. 

Gold Open Access Articles: May be shared according to the author-selected end-user 

license and should contain a CrossMark logo, the end user license, and a DOI link to the 

formal publication on ScienceDirect. 

Please refer to Elsevier's posting policy for further information. 

18. For book authors the following clauses are applicable in addition to the 

above:   Authors are permitted to place a brief summary of their work online only. You are 

not allowed to download and post the published electronic version of your chapter, nor may 

you scan the printed edition to create an electronic version. Posting to a repository: 

Authors are permitted to post a summary of their chapter only in their institution's 

repository. 

19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may 

be submitted to your institution in either print or electronic form. Should your thesis be 

published commercially, please reapply for permission. These requirements include 

permission for the Library and Archives of Canada to supply single copies, on demand, of 

the complete thesis and include permission for Proquest/UMI to supply single copies, on 

demand, of the complete thesis. Should your thesis be published commercially, please 

reapply for permission. Theses and dissertations which contain embedded PJAs as part of 

the formal submission can be posted publicly by the awarding institution with DOI links 

back to the formal publications on ScienceDirect. 

 

 

 

  



193 

 

Curriculum Vitae 

 

Name:   Lauren Des Marteaux 

 

Post-secondary  The University of Guelph 

Education and  Guelph, Ontario, Canada 

Degrees:   2004-2008 B.Sc. 

 

The University of Guelph 

Guelph, Ontario, Canada 

2009-2012 M.Sc. 

 

The University of Western Ontario 

London, Ontario, Canada 

2013-2017 Ph.D. 

 

Select Honors  Alexander Graham Bell Canada Graduate Scholarship, 2013-2016 

and Awards:   Dr. Irene Uchida Fellowship in Life Sciences, 2016 

Western Science Doctoral Scholarship, 2013 

   Ontario Graduate Scholarship in Science and Technology, 2010 

   Canada Graduate Scholarship (NSERC), 2009 

 

Related Work  Teaching Assistant 

Experience   The University of Guelph and The University of Western Ontario 

2006-2016 (eleven courses taught)  

 

Publications: 

 

Des Marteaux, L.E., McKinnon, A.H, Udaka, H., Toxopeus, J., and Sinclair, B.J. Effects 

of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) 

ionoregulatory tissues. BMC Genomics (in press) 

 

Des Marteaux, L.E., Sinclair, B.J. 2016. Ion and water balance in Gryllus crickets 

during the first twelve hours of cold exposure. Journal of Insect Physiology. 89: 19-27 

 

Des Marteaux, L.E., Habash, M.B., Schmidt, J.M., and Hallett, R.H. 2014. Patterns of 

diapause frequency and emergence in swede midges of southern Ontario. Agricultural 

and Forest Entomology. 17(1): 77-89 

  

Des Marteaux, L.E., Habash, M.B., Schmidt, J.M., and Hallett, R.H. 2012. A method for 

induction and quantification of diapause entry in swede midge (Diptera: Cecidomyiidae). 

The Canadian Entomologist. 144: 792-800 

                                                                



194 

 

Xue, Y., Bahlai, C.A., Frewin, A., McCreary, C.M., Des Marteaux, L.E., Schaafsma, 

A.W., and Hallett, R.H. 2012. Intraguild predation of the aphid parasitoid Aphelinus 

certus by Coccinella septempunctata and Harmonia axyridis. BioControl. 57: 627-634 

 

 

In revision 

 

Lebenzon, J.E., Des Marteaux, L.E., and Sinclair, B.J. Reducing ion gradients between 

the hemolymph and hindgut of the fall field cricket, Gryllus pennsylvanicus, speeds chill 

coma recovery. (Journal of Insect Physiology) 

 


	Mechanisms Underlying Variation in Insect Chill Tolerance: The Role of Ion and Water Transport
	Recommended Citation

	tmp.1494357375.pdf.c4RTn

