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Abstract 

Metals are required by a quarter of all proteins to achieve their biological function, 

whether in an active site involved in catalytic chemistry or in a structural capacity. Metals 

are tightly regulated at the cellular level due to their propensity to cause unwanted side 

reactions and to be scavenged for use by pathogens. One of the proteins involved in this 

regulation of metal homeostasis is metallothionein (MT) which is a small, cysteine rich 

protein primarily involved in the regulation of zinc and copper homeostasis and heavy 

metal detoxification. MT is unique in its high cysteine content (~30% of the residues), its 

high capacity for metal binding and its highly dynamic structure in the absence of metals. 

This fluxionality has made the structure of apo- and partially-metalated MTs difficult to 

study and as a result, the binding pathway of MT for various metals remains unclear.  

This thesis describes the hard-to-characterize structure of apo- and partially-metalated 

MTs, their binding pathways and potential applications. Using electrospray ionization 

mass spectrometry (ESI-MS) and covalent labeling, the structure of apo- and partially 

metalated MTs was probed. Modeling techniques that generate simulated ESI-MS data 

were used to recreate the covalent labeling spectra and aid in the interpretation of this 

complicated reaction. These experiments showed that apo-MT adopts a compact, globular 

conformation that is resistant to initial modification by alkylating reagents. Furthermore, 

this compact conformation is essential to the fast kinetics of cadmium binding and cluster 

formation. This cluster formation was found to be pH dependent and this insight was 

essential in the design of an MT-based biosensor for the detection of As(III) and Hg(II). 

Altogether, these results reconcile previously conflicting reports about the metal binding 

mechanisms of MTs, provide evidence of compact conformations of apo-MT and its role 

in binding kinetics and begin to demonstrate potential application of this fundamental 

knowledge in the design and testing of an electrochemical, MT-based biosensor. 
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Chapter 1  

1 Introduction 

Metallothioneins (MTs) are a ubiquitous family of small, cysteine-rich proteins that are 

primarily involved with metal homeostasis, heavy metal detoxification and cellular redox 

chemistry.1-4 Metal saturated mammalian MTs consist of two metal binding domains, the 

C-terminus α-domain which contains 11 cysteine residues and the N-terminus β-domain 

which contains 9 cysteines.5 These MTs bind up to seven divalent metals, for a maximum 

of 4 in α- and 3 in the β-domain to form a dumbbell shape (Figure 1-1) under saturative 

conditions.6 The stoichiometries and coordination geometry of divalent metals such as 

zinc and cadmium are well defined and have been studied for many years.5, 7-10 However, 

there still remains controversy over the specific binding mechanisms for these two 

metals.11-13 MTs are also known to promiscuously bind soft metals and metalloids such 

as: Uranium14, arsenic15, mercury16, copper17 and lead.18 This promiscuity is facilitated by 

the lack of rigid, formal structure in the peptide backbone, keeping it flexible to 

accommodate metals and metalloids of different sizes and preferred coordination 

geometries.19  

MTs generally lack formal secondary structural elements, especially in the absence of 

metals.16 They also lack aromatic amino acids which limits the usefulness of optical 

methods in the purification and isolation procedure and to probe structural changes. This 

property along with the propensity for the reduced cysteine residues to oxidize forming 

intra-protein covalent linkages, make MTs difficult to work with.  
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Figure 1-1: Representation of the ``dumbbell`` structure of MT. (A) Space-filling 

diagram of Cd7-MT. (B) Ball-and-stick diagram of the fully metalation protein. (C) Ball-

and-stick diagram of the isolated metal-thiolate clusters of each domain of MT. 

Reproduced using data from Chan et al., 2007.20 

 

1.1 Metals in biology 

A number of transition metals are required to catalyze the reactions required for life. 

Nature has selected naturally abundant metals like zinc, copper and iron for their unique 

abilities to perform redox chemistry, transfer electrons and switch back and forth between 

oxidation states.21-22 Redox inactive metals like zinc act more frequently as Lewis acids 
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that promote reactivity of a substrate23-24 or act in a structural role to stabilize inter-

molecular interactions as in the case of zinc-finger proteins.25 While essential for many 

cellular processes, metals also must be strictly controlled and regulated, shuttling 

electrons and changing oxidation states is not without consequences and potential 

unwanted side reactions can occur causing damage to cellular machinery.26-27 In addition, 

pathogens also require metals for their survival and must scavenge them from the host.28 

As a result, an evolutionary arms race has ensued to develop ever more effective metal 

capturing agents for pathogens while being countered by ever more strictly controlled 

cellular and intra-cellular metal concentrations by the host.29-31 

The strict control of metals in biological environments is achieved through binding 

affinity gradients that shuttle metal ions from extra to intracellular spaces and from 

intracellular chaperones to the active sites of metalloenzymes.32 The highest binding 

affinities for various metals are usually found in structural enzymes that utilize those 

metals to stabilize a shape to perform a specific function.33-34 Cells must also transport 

metal ions across the hydrophobic cellular membrane, which requires metal transporter 

proteins.35 These proteins often contain large stretches of hydrophobic residues to anchor 

themselves within the lipid bilayer and provide small electrostatic channels specific for 

certain ions based mostly on size and charge restrictions.36 Thus, during all stages of 

transport the freedom of movement of metal ions is restricted so that side reactions and 

potential thefts by pathogens are minimized. 

MTs are one of the families of chaperones responsible for this strict control of free metal 

concentrations, mainly of copper and zinc.1, 37 Their high capacity for binding these 

metals allows them to act as a buffer, releasing zinc or copper in times of scarcity and 

binding excess ions in times of over-abundance. This is the essence of homeostatic 

control. MTs do not carry out any catalytic function themselves involving metals, 

although reactions related to the redox state of the cell may be facilitated by the many 

cysteinyl thiols of MT.38 Instead, MTs ensure a near constant supply of metals to proteins 

that interact with DNA and catalyze essential reactions, while keeping concentrations of 

free zinc or copper to a minimum. Free copper, in particular, can be damaging to cells 

because of the Fenton and Haber-Weiss reactions it can catalyze.26  
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Interactions of MTs and other metalloproteins have been investigated in vitro in order to 

understand the mechanisms and kinetics involved in biological metal transfer.39 These 

studies have shown potentially dangerous interactions, including the substitution of 

cadmium for zinc in carbonic anhydrase, facilitated by Cd-MT.40-41 Metal swapping 

between MTs has also been demonstrated, highlighting the lability required for proper 

MT function in vivo.42  

Many metals that are considered toxic derive their toxicity from the substitution of an 

essential metal, like zinc, with a toxic metal, like cadmium, altering or inhibiting the 

function of the metalloprotein.41, 43 The substitution is possible due to the electronic 

similarities between the two metals, but size and reactivity differences render the 

substituted metalloprotein useless.44 Two toxic metals we are particularly interested in 

with relation to MT are cadmium and arsenic. 

1.2 Cadmium toxicity and MT 

Since its discovery by Margoshes and Vallee while investigating cadmium-bound 

proteins in horse liver, MT has been known to bind strongly to this toxic metal.45 Like 

many biological processes, the role MT plays in the detoxification of cadmium is 

complicated.3, 46-48  Cadmium toxicity mainly targets the kidneys where significant 

amounts of MTs are expressed concomitantly.48 The first evidence of the detoxifying role 

of MT came from studies where MT was isolated from human kidney, having both Cd(II) 

and Hg(II) bound.49 The binding affinity for these toxic metals is orders of magnitude 

higher than that of Zn(II), (zinc binding range Ka 1011-12, cadmium Ka 1015-16) so native 

Zn-MT is displaced when these metals are present.50 MT knockout mice, while not 

immediately fatal, show greater sensitivity to toxic metal exposure.51 

Occupational exposure to cadmium is the most common source of cadmium poisoning52-

53, although environmental contamination has historically been a problem as well leading 

to itai-itai disease in people eating foods grown in cadmium contaminated irrigation 

water or drinking that contaminated water directly.54 This is exemplified in the Jinzu river 

basin in Japan where industrial contamination led to the poisoning of local inhabitants, 

the name of the disease “itai-itai” deriving from the expression for pain in Japanese.55 
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This was the first officially recognized case of environmental induced disease in Japan 

and serves as a warning for industrially developing regions. 

1.3 Arsenic and MT 

Arsenic is a toxic metalloid known since ancient times as a potent poison and used 

historically as a pest control agent, whether those pests are rats56 or political enemies of 

Pope Alexander VI or Napoleon Bonaparte.57 Today, these sinister uses are much less 

prevalent and the main concern around arsenic poisoning involves naturally contaminated 

well-water in poor, rural areas lacking access to centralized water treatment facilities.58-59 

In areas such as South and South-East Asia, much of the surface water is highly 

contaminated with bacteria and is acutely infectious.60 In the late 1980s and early 90s, 

many NGOs began building wells to alleviate the problem of waterborne diseases.61 The 

drilling of these wells exposed arsenic-containing rock to oxygen when the well was 

depleted, solubilizing the arsenic and contaminating the well water.62 While levels even 

at the most contaminated wells do not approach those that could cause acute effects, the 

long term exposure to arsenic concentrations above 10-20 ppb has serious 

consequences.63 Arsenicosis is characterized by skin lesions, cancers and multi-system 

disease that currently lacks effective treatment options.64 

Drinking water is the main source of hazardous exposure to arsenic, although an 

increasing amount of evidence points to contaminated irrigation water and uptake by rice 

crops as another potential exposure route.65 Arsenic is thought to interfere with proper 

DNA methylation through its interaction with S-adenosylmethionine (SAM).66 SAM is 

the source of the methyl group which attaches to DNA via enzymatic coupling by DNA 

methyltransferase and which detoxifies arsenicals to mono-, di- and tri-methyl arsenic.67-

68 DNA methylation controls transcription and either hypo- or hyper-methylation can 

alter transcription patterns and rates, leading to cancer.69 Arsenic also acts as a 

phosphorous mimic, as they are in the same group in the periodic table sharing many 

chemical properties.70 Arsenic may take the place of phosphorous in ATP molecules, the 

DNA backbone or even in bone structure.71 This replacement of long-lived structures in 

biological systems may contribute to the many effects of chronic arsenic poisoning. In 
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acute poisoning, replacement of phosphate in ATP and inhibition of proteins essential for 

energy metabolism essential starves the cell of energy causing death.72-73 

Arsenical binding to MTs has been studied since the early 2000s,15, 74 with seminal work 

in the determination of kinetic parameters using ESI-MS due to the slow reaction rate of 

MT with As(III).39 Toxicological studies have shown upregulation of MT genes in 

response to acute arsenic exposure, indicating in vivo interaction with at least the metal 

responsive elements that regulate MT expression.75-76 Questions remain about the extent 

to which MTs play a role in defense against arsenicals in vivo as isolation of As-MT from 

biological samples remains elusive.77 Despite lack of clear evidence for As-MT formation 

in biological samples, the interactions in vitro have allowed us to gain more 

understanding of the metal binding pathways of MT, structural determinants and have 

produced unique binding modes under unusual conditions where MT does not typically 

coordinate metals. 

Arsenical binding to MT is curious in that it binds strongly, albeit slowly, at very low pH, 

less than 3.0, where most metals do not bind as they are out-competed for thiolates by the 

wealth of H+ ions.74 Only Cu(I) and Ag(I) can are able to bind at such a low pH, as Cd- 

and Zn-MTs demetalate starting at pH 5.0.78 This is advantageous for manipulation in 

vitro due to the protective effect of low pH on the inadvertent oxidation of MT thiols 

during experimental procedures. Low pH also facilitates the complete dissolution of 

As2O3 used for the experiments, and As(OH)3 tends to precipitate out of solution at 

physiological pH, confounding stoichiometric calculations.42  

The slow binding of As3+ to MT requires a long equilibration time for steady-state 

studies, however this sluggish binding allowed the determination of specific constants 

from ESI-MS relative abundance data that was both time and temperature resolved. The 

detailed investigations of Ngu and coworkers revealed important kinetic properties of the 

MT-1a isoform and its isolated domain fragments.39 The kinetic data show a “kink” in the 

reaction rate, where the first rate constant is lower than second, followed by a linear 

decrease in the subsequent rate constants. This phenomenon was observed in the isolated 

α-domain as well but was absent in the β-domain. These investigations also showed that 
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transfer of As(III) between MT peptides could not be a dissociative mechanism since at 

physiological pH stoichiometric transfer would not occur due to precipitation of arsenic 

species once dissociated from the protein.42 These studies were among the first to 

demonstrate reliably that kinetic parameters can be resolved via ESI-MS. The strengths 

and limitation of this method will be discussed further in section 1.6.4.  

1.4 Structural characterization of MT 

The MT family consists of many isoforms and sub-isoforms that can vary in sequence but 

generally all share Cys-Cys, Cys-X-Cys and Cys-X-X-Cys motifs.79 For the purpose of 

this thesis the discussion will be limited to more generally mammalian MTs and more 

specifically human isoforms. In humans there are four major MT isoforms: MT-1 which 

is constitutively expressed, MT-2 which is also constitutively expressed, MT-3 which is 

expressed in cells of the nervous system including brain cells, and MT-4 which is 

expressed mainly in epithelial cells.80 While differences in sequence of the isoforms exist 

(Figure 1-2), only minor differences in binding properties occur and MT-1 and MT-2 

have been considered to behave in near identical fashion.81  

 

Figure 1-2: Clustal Omega sequence alignment of the major human metallothionein 

isoforms with conserved amino acids highlighted in black. Generated with ESPript 

3.0. 

Mammalian MTs consist of 60-70 residues, 20 of them being cysteine which facilitate the 

coordination of up to seven divalent metals, and twenty monovalent metals such as 

Cu(I).82 The N-terminal β-domain contains 9 cysteine residues that can accommodate up 

to 3 divalent metals, the C-terminal α-domain contains 11 cysteine residues that can 

coordinate up to 4 divalent metals.83 In conditions where there is a vast excess of 

cadmium, these isolated domain fragments and the full-length protein have been shown 

to super-metalate and coordinate an extra Cd(II) ion.84-85 The β-domain M3S9 cluster 

forms a six member ring like structure of alternating metal (M)-sulfur (S) bonds where all 
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the sulfurs in the ring are bridging ligands. The remaining coordination sites on the metal 

are filled by terminal cysteinyl sulfurs. The α-domain forms an adamantine like structure, 

an M4S11 cluster, with 5 bridging and 6 terminal sulfurs. Taken together, the full protein 

forms a “dumbbell” shaped structure when both clusters are formed.8 The differences in 

Cys:metal ratios of these domains are thought to give rise to domain specify observed in 

some MTs. 

While a countless number of MTs exist due to their ubiquitous nature and variety of 

metal available for coordination, only two x-ray structures have been solved to date. MTs 

are notoriously difficult to crystallize due to their small size and inherent fluxionality. 

This high fluxionality has also precluded NMR analysis of many partially metalated 

species with the possible exception of cooperatively formed Cd4-clusters in the α-domain, 

but these are not complete structures of the full protein.86 Full metalation of MT tends to 

limit the conformational freedom which the peptide can explore, allowing a limited 

number of fully-metalated structures to be solved by X-ray and NMR analysis.7, 83, 86 

These structures were determined for divalent species, the only monovalent solved 

structure being the Cu8-MT species from yeast.87 The structure of yeast MT is very 

different from mammalian MTs, and ESI-MS, CD spectroscopy and emission studies 

have suggested that the Cu8-cluster is not formed in mammalian MTs.88-91 No X-ray 

diffraction or NMR structures exist for metal-free MT. 

The absence of metals in apo-MT eliminates the ability of researches to use metal-based 

probes of its structure and greatly complicates structural determination. Techniques like 

molecular dynamics (MD) simulations92-93 and fluorescence resonance energy transfer 

(FRET) have indicated that apo-MT exists as a random coil structure with no well-

defined secondary structural elements like alpha helices or beta sheets.94-95  The lack of 

intrinsic optical probes in the peptide adds further complication to studies of apo-MT. 

Recently, ion-mobility mass spectrometry (IM-MS) has been used to investigate the 

conformation of apo-MT in the gas phase.96 These results show apo-MT adopts both 

compact and extended conformers depending on the charge state and the variety of 

conformations converges as metalation occurs.96-97 As the starting point in the metalation 
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pathway(s) of MT, the determination of apo-MT structure is important in order to fully 

understand the complicated metalation mechanism. 

1.5 Metalation pathways of MT and structural 
intermediates 

To form a metal saturated MT, apo-MT passes through many intermediate metalation 

states, each adopting distinct structure to facilitate the coordination of an additional 

metal. Since metal saturation of MTs is unlikely given normal cellular metal 

concentrations and competition for metals from the binding sites of other 

metallochaperones and enzymes, these metalation intermediates are among the most 

biologically relevant MT species.98  

The flexibility of the peptide backbone allows it to adopt many possible coordination 

geometries and structures of many metalation intermediates remain ambiguous. For 

example, Zn4-MT could exist as a Zn4S11 cluster in the α-domain or 4 separate ZnS4 

coordinated metal structures spread throughout the protein. Zinc being spectroscopically 

silent, makes further structural investigation difficult. The proposed ZnS4 structures are 

termed “beads” as they would be spread across the protein causing local wrapping of the 

peptide backbone to orient the cysteine residues in a way amenable for tetrahedral 

coordination.99 

There has been significant controversy over the mechanism of metal binding and as a 

result, the pathway which apo-MT takes to form the fully metalated species. Significant 

evidence exists for both cooperative and anti- or non-cooperative metal binding.11-12, 91, 99-

100 In addition to the slight differences in pathway preference between MT isoforms, the 

identity of the metal being bound also has a substantial effect. Even electronically similar 

metals like Zn(II) and Cd(II) have radically different pathway preferences as will be 

demontrated in Chapter 2 of this thesis. 

1.5.1 Cooperative vs. non-cooperative metal binding 

When describing the binding properties of proteins and other ligands with multiple 

binding sites the terms “cooperative” and “non-cooperative” are often used but not 
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frequently defined. A cooperative binding mechanism is one where there is an effector, a 

conformation change, for example, which promotes subsequent binding events after the 

first substrate has bound.101 The manifestations of a cooperative mechanism include an 

increasing set of equilibrium binding constants and physical presence of mainly the apo-

ligand and the saturated ligand simultaneously with little contribution from any 

intermediate species.102 A non-cooperative mechanism can be thought of as the “default” 

mechanism where no effector is present and each subsequent binding after the first is less 

favoured due to statistical loss of binding sites as the reaction proceeds. This manifests as 

a series of sequentially decreasing equilibrium constants, significant presence of 

intermediate species and often the final substrate being bound less tightly to the ligand.102  

For MTs both types of binding have been observed. Calculations that involved fine-

tuning equilibrium constants to simulate mass spectra have shown that these alone can 

determine the type of reaction mechanism and can be compared with experimental 

evidence, as seen in Figure 1-3.102 Experimentally, ESI-MS is the most reliable method 

for determining binding mechanisms for MTs because of the lack of unique optical 

signatures for each intermediately metalated species. All species in solution are observed 

via ESI-MS, whereas in optical spectroscopy an average signal of all species in solution 

is observed. Metal titrations of apo-MT monitored solely by optical methods result in a 

steadily increasing peak for the optical spectra with little information about the 

distribution of species in solution. 
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Figure 1-3: ESI-mass spectral data for the metalation of apo-βαMT 1a with Zn2+. 

(A) Experimental ESI-mass spectral data for βαMT 1a at the 0.9 and 5.9 equivalents-

added steps of the Zn2+ metalation reaction. (B) Simulated ESI-mass spectral data based 

upon a noncooperative mechanism (C) Simulated ESI-mass spectral data based upon a 

weakly cooperative mechanism. (D) Simulated ESI-mass spectral data based upon a 

cooperative mechanism. Reproduced with permission from Sutherland et al., 2012.102 
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Results from ESI-MS show that both types of binding are possible and that a mixed 

mechanism is also possible where certain intermediate species are more abundant than 

others and clusters still form with a slight preference.34  

1.6 Methods for structural characterization of MT 

Due to its unique properties, a number of methods are required for proper investigations 

of MT, each with their own specific strengths and weaknesses. Relying on one method 

alone gives a limited picture of the complicated processes of metal binding, protein 

folding and protein-protein interaction that occurs for MTs. The most commonly used 

techniques to study MTs are: ultraviolet (UV) and X-ray absorption, circular dichroism 

(CD) spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and nuclear 

magnetic resonance (111/113Cd and 1H NMR). The strengths and limitations of these 

methods will be discussed in this section with emphasis on those used in this thesis. 

1.6.1 Ultraviolet (UV) absorption spectroscopy 

Ultraviolet spectroscopy is useful for quick characterization of characteristic ligand-to-

metal charge transfer (LMCT) bands for metals such as cadmium and copper in MT. 

Only the far UV-region contains relevant absorption bands. For zinc binding to MT, the 

LMCT band overlaps with the absorption from the protein backbone and is not 

particularly useful for analysis. The 250 nm cysteine-cadmium charge transfer band is 

frequently used to confirm molar equivalents of metal bound to MTs and also for MT 

concentration determination using the molar absorptivity constant. The use of this 

technique primarily occurs during the preparation and purification of recombinant MTs 

due to the speed and simplicity needed for detecting molecules following 

chromatographic separation. In addition to its use in purification protocols, absorption 

spectroscopy is useful in monitoring the fast kinetics of a reaction where measurements 

must be taken on the order of milliseconds. Other techniques cannot achieve this type of 

speed.  

However, absorption spectroscopy suffers from lack of specific information; only the 

average metal loading in solution can be probed. MT also lacks aromatic amino acids that 

typically absorb around the 280 nm region and are frequently used to determine the 
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presence and concentration of proteins. This renders absorption spectroscopy less useful 

than for other proteins. As mentioned previously, if optical absorptions overlap there is 

no way to distinguish between the two using absorption spectroscopy alone. While often 

considered a crude analytical method, this method finds a niche in providing cheap, 

quick, easy and non-specific information in situations where time is important and 

extreme detail is not required. 

1.6.2 Circular dichroism spectroscopy 

Circular dichroism spectroscopy is a technique often used to probe secondary structural 

elements of proteins due to their natural chirality. Given the lack of these features in 

MTs, this is not the primary tool for the measurement of folding but rather to probe the 

chirality of the environment surrounding metal centers. Like UV absorption, CD 

spectroscopy has fast time resolution so it is able to monitor events that happen on the ms 

time scale, like the folding of more typical peptides to form alpha helices and beta sheets.  

The basis of CD spectroscopy is the measurement of differences between the absorption 

of left and right-handed circularly polarized light. Optically active molecules absorb one 

of the two types of polarized light and a difference spectra is generated. Amino acids, 

with the exceptions of glycine and proline, are naturally chiral and have a CD signal in 

the UV region that is sensitive to shifts in the conformation of the protein. The folding of 

these chiral residues into secondary structural elements gives signature spectral features 

that can be identified as α-helices, β-sheets or random coils typically in the far UV 

region, 190-220 nm. In this region, apo-MTs give a strongly negative difference spectra, 

indicative of random coil structure. 

1.6.3 Emission spectroscopy 

For emissive MT species, such as Cu(I) MTs, emission spectroscopy can be used to 

determine and quantify species present in solution. It is known that Cu-thiolate clusters 

that are exposed to the solvent have reduced emission intensity compared to a counterpart 

buried within the interior of the protein. Therefore, by measuring the intensity of 

emission bands, the structure of the Cu-MTs can be determined. Like other optical 

techniques, emission spectroscopy gives an average of all species in solution, so it is 
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difficult to assign spectra to specific species when multiple species are present. ESI-MS 

can confirm the presence of multiple species in solution. 

1.7 Mass spectrometry 

Mass spectrometry (MS) is a technique that relies on the ionization of chemical entities 

and subsequent sorting of ions based on their mass-to-charge ratio. Many methods exist 

for ionization of molecules for analysis by MS, many of which are harsh and cause 

fragmentation of the analyte in the process of ionization. This is useful in structural 

determination of small, organic molecules but not for analysis of larger bio-molecules 

such as proteins when extensive fragmentation occurs. Less harsh fragmentation 

techniques, however, have proven to be useful in the field of proteomics and structural 

biology. 

Electrospray is a soft ionization technique that is especially well suited for the study of 

metalation of metallothioneins. A schematic diagram of a typical ESI mass spectrometer 

is shown in Figure 1-4A. All mass spectrometers contain a sample inlet source that 

converts analytes into ions in the gas phase (a). The ions are then focused with ion optics 

and directed into the mass spectrometer (b). Then they are detected by the ion detector (c) 

and with an analyzer displaying the counts and masses of the detected ions.  

The mechanism of ion formation in electrospray is still being investigated. From what we 

know, a sample solution that is infused through a charged capillary exits as a fine mist of 

tiny, charged droplets. These droplets quickly evaporate increasing the charge density 

until the Rayleigh limit is reached where the electrostatic repulsion overcomes the surface 

tension of the droplet and fission occurs. This process continues until only the gas phase 

analyte remains, and is known as the charged residue model (CRM). The specific 

mechanism of this process depends on the nature of the analyte. 

In the CRM (Figure 1-4B) a distribution of charges per analyte molecule is possible and 

is dependent on solution composition, instrumental conditions and the size of the analyte. 

This results in the formation of a number of "charge states" which have different numbers 

of adducted protons which form [M + nH]n+ species. These proton adducts form more 
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readily with unfolded proteins, due to increased surface area and exposure of 

protonatable sites. This phenomenon results in useful information about conformational 

preferences and folded states to be gained by charge state analysis. 

 

Figure 1-4: Schematic of an electrospray ionization mass spectrometer. (A) 

Schematic of an ESI- mass spectrometer ionization and ion focusing set-up. (a) ion 

source, (b) ion focuser and (c) mass analyzer. (B) Simplified diagram of the charged 

residue model (CRM) of the electrospray ionization mechanism  

Since the development of soft ionization techniques like electrospray, the use of mass 

spectrometry in the field of protein structure and dynamics has grown exponentially.103 

Unlike optical techniques, which examine global properties and observe an average 

response of all species present, MS techniques can simultaneously delineate many 

parameters including: species distribution, relative abundance, protein surface area and 

conformational changes via charge states and information about specific regions within 
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the protein and their solvent exposure via hydrogen/deuterium exchange (HDX).104-105 In 

addition, protein-ligand interactions or site specific covalent modifications can be 

measured.106-107 HDX is suited for larger proteins, with an extensive H-bonding network 

between backbone amide hydrogens which limits the rate of association/dissociation 

resulting in a smaller mass change compared with disordered regions and those that are 

more solvent exposed. These exchange techniques are reviewed in detail elsewhere.108 

1.7.1 ESI-MS for analysis of MT structure and metalation 

ESI-MS is particularly well suited for the study of metalation reactions of MTs due to the 

ease in which metal binding can be detected even for spectroscopically silent ions like 

zinc. The mass increase upon binding of metals is easily distinguished and metals with 

similar masses can be identified via isotopic pattern analysis. In addition, ESI-MS offers 

the ability to: identify individual or many species in solution with unique m/z ratios, use 

dilute samples of small volumes with direct solution injection, monitor structural changes 

via charge state analysis and obtain time and temperature resolved metalation data. 

A potential limitation, especially for semi-quantitative analysis using ESI-MS, lies in the 

ionization efficiencies of the protein analytes. Quantitative analysis of relative 

abundances of species in solution relies on the assumption that all species have the same 

ionization efficiency; meaning that all species in solution have the same likelihood of 

successful ionization into the gas phase and detection by the MS. It is known that 

different isoforms of MT have varying ionization efficiencies and concentrations of 

domain fragments and the full-length protein must be externally quantified in competition 

experiments. However, Fenselau and co-workers showed in 1993 that concentrations of 

Mn-MT species determined via ESI-MS are reliable.109 Further studies used ESI-MS 

semi-quantitatively to determine parameters such as binding and kinetic constants.34, 39, 97, 

110 The equal ionization assumption appears to be valid as long as the analysis only 

considers one isoform or construct of MT at a time.  

Charge state analysis has been applied to MTs in a limited scope due to the small changes 

observed for the unfolding of such a small protein.111 Charge state distributions do not 

change drastically for MTs unless demetalation is being monitored or apo-MT is 
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subjected to extreme conditions (pH 1.8) which may introduce signal masking.20, 112For 

apo-MT, where a multitude of conformers exist, the charge distributions carried by 

individual conformers likely do not vary enough to be distinguished by ESI-MS.113 This 

type of analysis is better suited to larger proteins with more distinct structural features 

that include tertiary strucural elements and dramatic surface area changes when 

unfolding.114-115 

1.7.2 Covalent modification coupled with ESI-MS 

A common criticism of the use of ESI-MS for the analysis of protein structure and 

conformation lies in the radically different surroundings the protein finds itself in when 

being analyzed compared to its native state.116 The native state is one in solution, 

buffered around neutral pH with an appropriate salt concentration, approximately 37oC 

and in the absence of chemical denaturants. The conditions of the electrospray process 

introduce high voltages, evaporating solvents causing a hyper-accumulation of salt ions 

and finally ionization of the protein itself and transition into a gas phase ion.117 The 

assumption that the conformations adopted in solution and under ESI conditions may be a 

tenuous one.  

An advantage of covalent modification is that it probes the conformation in solution and 

changes thereafter during analysis and measurement of the gas phase ions have no effect 

on the modifications that occur prior to ionization. This is especially important for 

proteins whose structure is unstable and whose solution stabilized conformation may not 

reflect those conformers adopted during the electrospray process. 

Cysteine is an important amino acid with high reactivity118, an ability to coordinate a 

variety of soft metals119 and form Cys-Cys covalent linkages that add stability to folded 

proteins.120 Cysteine is also used to attach therapeutic and imaging moieties to proteins in 

vivo.121 Covalent modification coupled with mass spectrometry can easily identify free 

cysteinyl thiols vs those that are oxidized to form crosslinks. New proteomic strategies 

also make use of specific covalent modifiers coupled with LC-MS and tandem MS to 

identify S-sulfenylation of cysteines and identify the most solvent exposed residues.122 

The redox chemistry inherent in quinones has been used for on-line tagging of free 
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cysteines in ESI-MS analysis via a 1,4-Michael addition.123 With the incorporation of a 

photo-active quinone, the protein backbone can be selectively fragmented with ultraviolet 

light for analysis of solution structural properties or to monitor biological quinone post-

translational modifications.124 This technique can also be applied to other amino acids by 

leveraging thiol chemistry to selectively modify phosphorylated serine or threonine 

residues.125 

In the case of MTs, determining the number of free thiols under an assortment of 

different metal coordination numbers and geometries can help in structural determination. 

The number of free thiols can be a good indicator of metal-cysteine cluster formation, as 

clusters involve bridging thiolates and, as a result, more metal ions can be coordinated 

with a smaller number of cysteine residues. Terminally coordinated metals require more 

cysteinyl thiols in MT and are theorized to be more labile and primed for donation to 

other metalloenzymes.126 Also when probing potentially new structures formed by 

coordination of unusual metals and metalloids where the stoichiometry is not defined, the 

quantification of free thiols by cysteine modification and ESI-MS can established defined 

Cys:Metal ratios.127 The reaction profile of alkylation reagents with the many cysteines of 

MT may also be useful in determination of solution structural conformation. Examples of 

three major types of reaction profiles are given in Figure 1-5. 
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Figure 1-5: Possible reaction profiles of a cysteine alkyating reagent with a peptide 

containing 9 reaction sites. (A) Normal distribution of modified species. (B) Semi-

cooperative pattern with significant amount of all possible modified species. (C) 

Cooperative pattern with little contribution from intermediate species, unmodified and 

fully modified species dominate. 
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1.8 Scope of the thesis 

Much of what is known about MTs is based on models and experiments investigating 

fully metalated and well-defined structures. Apo- and partially metalated MTs pose a 

unique challenge to investigators but are critical to the biological function. Key to a 

complete description of MT chemistry and function in vivo is structural information about 

the starting point of the metalation reaction, apo-MT, and the many possible intermediate 

structures the protein can adopt in the metalation pathway before saturation. The research 

presented in this thesis primarily concerns the elucidation of the many structures adopted 

by metal-free and partially metalated MTs along the metalation pathway and their 

implications for binding kinetics and biological function. 

This thesis contains eight Chapters and an Appendix. The first Chapter includes a brief 

introduction of techniques relevant to MT research and what is known about the structure 

and metalation mechanisms of MT. The biological context of MTs is also discussed with 

detailed background information pertaining to the toxicity of arsenic and cadmium and 

the essentiality of zinc. Chapter 2 describes the pH dependence of the cadmium and zinc 

binding pathways of βαMT using ESI-MS and CD spectroscopy. Chapter 3 investigates 

the isolated domains of MT to determine their individual properties and compare them to 

that of the full-length protein. These two chapters reconcile previously conflicting reports 

on the nature of the metalation mechanism. 

Chapter 4 details our use of covalent cysteine modification to determine the 

stoichiometry of As3+ binding to the α- and βMT fragments and the structures adopted 

during metalation. Furthermore, we probe the configuration of apo- and partially 

metalation species under denaturing conditions to investigate the role of metal-induced 

folding and protein-protein interaction of As-MT species. 

Chapter 5 further investigates the use of cysteine alkylating reagents to probe the 

conformations adopted by apo-MTs in a systematic way testing three different reagents 

with the full-length protein and its isolated domains. Chapter 6 builds on the 

conformational investigations of chapter five by testing the Cd2+ metalation kinetics of 

MT under native and denaturing conditions. 
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Chapter 7 chronicles progress in building on knowledge gained by the fundamental 

research into MT binding affinities and the pH dependence of metal binding through the 

design and testing of an MT-based biosensor for the electrochemical detection of arsenic 

and mercury.   

Chapter 8 attempts to bring together the results from the previous seven chapters in order 

to paint a clearer picture of MT structure, metalation mechanisms and possible 

applications of MTs in biosensors. The results are also discussed in a biological context 

to connect the in vitro studies to MT function in vivo. 
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Chapter 2  

2 Defining the metal binding pathways of human 
metallothionein 1a: balancing zinc availability and 
cadmium exclusion1 

2.1 Introduction 

Mammalian metallothioneins (MTs) are a family of small, cysteine rich metal-binding 

proteins that are involved in zinc and copper homeostasis,1-8 heavy metal detoxification9-

16 and cellular redox chemistry.17-21 When saturated with seven divalent metals, 

mammalian MTs consist of an N-terminal β-domain and a C-terminal α-domain 

connected by a flexible linker region.22 The α-domain can accommodate up to 4 divalent 

metals and the β-domain 3 metals by forming MII
4Scys11 and M

II
3Scys9 clusters, 

respectively. This domain description is only relevant in the fully metalated structure as 

there are no true binding domains in the partially-metalated and apo-structures under 

most conditions.23-27 The more biologically relevant structures of the apo- and partially 

metalated MTs are considered to be poorly defined.23,27-28 Currently, these apo- and 

partially metalated MT species are thought to adopt a fluxional, globular structure.29-30  

Metalation of the 20 Cys apo-peptide can take place in a number of different ways.24, 31 

As there is no pre-existing domain structure in the absence of bound metals, the 

thermodynamics and kinetics associated with metal binding control the structures adopted 

at each metalation step.27 For each species (ie. M1-βαMT, M2-βαMT, etc) numerous 

structures are possible and complex rearrangement of the bound metals can occur.32-33 

The mechanism of divalent metal binding to MTs, specifically that of Zn(II) and Cd(II), 

has been a topic of great interest but the results have generated conflicting reports 

                                                 

1 A version of this chapter has been published: 

Reproduced with permission from: Irvine, Gordon W., Tyler BJ Pinter, and Martin J. Stillman. "Defining 

the metal binding pathways of human metallothionein 1a: balancing zinc availability and cadmium 

seclusion." Metallomics 8.1 (2016): 71-81. 

Copyright 2016 Royal Society of Chemistry 
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concerning the identity and description of the intermediate structures formed before the 

complete complement of seven metals has been bound.2, 34-38 Because of the 

spectroscopic accessibility of Cd(II), much of what is currently known about Zn(II) and 

Cd(II) binding to MT has been based largely on the chemistry of Cd(II) or other 

spectroscopically active metals, such as Co(II).25, 39 Indeed, 113Cd is often used to probe 

structural properties of Zn(II) binding sites in proteins other than MTs.40 

 Figure 2-1: Cartoon ribbon representation of proposed MT1a metalation 

intermediates. The "beaded" intermediate and a ball-and-stick representation of the 

terminal coordination of the metals with up to 5 MII(SCys)4 “beads” (left; 4 beads shown). 

The cluster structure M4SCYS11 is shown in the α-domain of the ribbon structure and as a 

ball-and-stick model of the bridged and terminal Cys that make up the cluster (right). 

When discussing metal binding mechanisms of MTs, the terms cooperative and 

noncooperative are often used. In a fully cooperative mechanism, only the apo-MT and 

end-product should be detected at any point during the reaction. In a non-cooperative 

mechanism, intermediates can be measured and become the most abundant species during 



31 

 

the early to mid-stages of the metal titration. The kinetic data for As(III) binding to MT-

1a clearly follow this noncooperative, stochastic model.31  

 

Metalation details from early studies of cadmium binding relied on 113Cd NMR26 or 

protein modification41 and reported the formation of cluster dominated products. With the 

development of new technologies, most notably electrospray ionization mass 

spectrometry (ESI-MS), the description of a purely cluster dominated mechanism became 

less convincing. Some groups have reported a cluster dominated mechanism with ESI-

MS37 and reported that the Cd-thiolate cluster formation occurs first in the α-domain.30 

However, reports by our group and others have shown that the binding pathway involves 

non-clustered intermediates.35-36, 38, 42 It should be noted that these studies used different 

solution conditions and often different isoforms of human MT, which possess different 

metalation properties.43 It has also been suggested that differing ESI-MS settings may 

cause the discrepancy in mechanistic details.30 

In this chapter, we report definitive evidence for two parallel, competing pathways that 

are dependent on metal identity, Zn(II) or Cd(II), and the pH. We have examined the pH 

dependence of the Zn(II) and Cd(II) metalation pathways of human MT1a using ESI-MS 

and circular dichroism spectroscopy at the important early stages of metalation where the 

largest number of conformations are possible. The presence of these two distinct 

metalation pathways was determined by monitoring the formation of the partially 

metalated intermediates during the Zn(II) and Cd(II) metalation reactions of the apo-MT-

1a. We discuss how significant differences in the intermediates formed during metalation 

for each metal may explain how MT-1a functions as a multi-purpose protein: regulating 

zinc levels, providing zinc to other apo-enzymes,44 and sequestering toxic heavy 

metals.45-46 From the data presented here it is clear that metalation can occur via one of 

two major pathways: a cooperative, α-cluster driven pathway or a non-cooperative, 

terminally-bound, beaded pathway (Figure 2-1). 
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2.2 Methods 

2.2.1 Protein preparation 

Recombinant human metallothionein 1a (MGKAAAACSC ATGGSCTCTG 

SCKCKECKCN SCKKCC SCCPMSCAKC AQGCVCKGAS EKCSCCK KAA AA) 

was expressed with an S-tag in BL21 E. coli cells which has been described in detail 

elsewhere.47 In brief, cells containing the plasmid for the full protein (βα-MT1a) were 

plated on to growth media containing kanamycin from a stock culture stored at -80oC and 

grown for 16 hours at 37oC. The grown cells were then inoculated into 4x1L LB broth 

cultures enriched with 50 μL of 1 M cadmium and incubated in a shaker for 4 hours until 

OD600 absorbance was 0.8. An aliquot of 0.7 mL of 1 M Isopropyl β-D-1-

thiogalactopyranoside (IPTG) was then added to induce expression of MT and 30 

minutes later 150 uL of 1 M cadmium sulfate solution was added to the broth. The cells 

were collected 3.5 hours after induction, centrifuged and stored at -80oC. 

The recombinant cells were lysed using a cell disruptor (Constant Systems, UK) shot at 

20K psi. From there, the cell lysate was centrifuged for 1h to pellet out cellular debris. 

The supernatant was filtered and loaded on to a GE healthcare SP ion exchange columns 

with a total volume of 10 mL. The columns were washed with pH 7.4 10 mM Tris(tris-

hydroxymethyl-aminomethane) buffer for approximately 2h to remove loosely bound 

proteins and other organic compounds. MT was eluted using an increasing gradient of 1 

M NaCl + 10 mM Tris buffer at pH 7.4. The eluted MT was concentrated down to <20 

mL and the S-tag cleaved using a Thrombin Clean-Cleave kit as per the manufacturers’ 

instructions (Sigma-Aldrich).  The mixture was then diluted, desalted and placed on 

another SP ion exchange column. The S-tag does not bind as strongly as MT and thus 

elutes at low salt concentrations. The protein and S-tag were separated in this fashion. 

The eluted MT was concentrated to approximately 120 µM and stored at -20oC. 

To prepare MT for the pH titration experiments, aliquots were first demetalated and 

desalted using centrifugal filter tubes with a 3 kDa membrane (Millipore) and a 10 mM 

pH 2.8 ammonium formate buffer. The low pH solutions contained 1 mM Dithiothreitol 

(DTT) to prevent oxidation of the free thiols in MT. The pH was raised by buffer 
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exchange with argon saturated, pH 7.0 10 mM ammonium formate solutions that did not 

contain reductant. The protein solutions were checked for final concentration by 

remetalation of a small aliquot with cadmium using the metal-to-ligand charge transfer 

band at 250 nm (ε250 = 89,000 Lmol-1 cm-1). The solutions were also monitored for 

oxidation using UV-visible absorption spectroscopy to monitor absorption corresponding 

to 280 nm from oxidized disulfide. Once demetalated and desalted, the MT concentration 

was determined, all concentrations were between 40-90 µM to ensure good signal to 

noise ratios In the ESI-MS experiment. We note that this was a concern because the 

titration introduced salt into the solution which suppresses the MT signal at high 

concentrations. 

In addition to demetalating MT in the presence of DTT, the solutions were vacuum 

degassed and bubbled with Argon to displace any dissolved oxygen. This was done for 

the 10 mM Cd2+ and Zn2+ and the 0.5% NH3 and 0.5% formic acid solutions as well to 

ensure no oxygen was introduced into the system during the titration.  Great care was 

taken to reduce the possibility of oxidation pf the protein at neutral pH. 

2.2.2 ESI-MS and circular dichroism pH titrations 

Mass spectra were collected on a micrOTOF II electrospray-ionization time-of-flight 

mass spectrometer (Bruker Daltonics) in the positive ion mode. NaI was used as the mass 

calibrant. The scan conditions for the spectrometer were: end plate offset, −500 V; 

capillary, +4200 V; nebulizer, 2.0 bar; dry gas flow, 8.0 L min−1; dry temperature, 30 °C; 

capillary exit, 180 V; skimmer 1, 22.0 V; hexapole 1, 22.5 V; hexapole RF, 600 Vpp; 

skimmer 2, 22 V; lens 1 transfer, 88 μs; lens 1 pre-pulse storage, 23 μs. The mass range 

was 500.0–3000.0 m/z. Spectra were assembled and deconvoluted using the Bruker 

Compass data analysis software package. ESI-mass spectrometry was used to monitor all 

stages of the pH titration of Cd-MT and Zn-MT. First, approximately 2.5 molar 

equivalents of Cd(II) acetate and Zn(II) acetate were added to the MT solution at pH 5.5. 

This caused a drop in pH due to the displacement of H+ from the thiol groups. After the 

metal solution was added, the ESI-MS spectra were recorded and averaged over 2 

minutes. Then aliquots of 0.5% NH3 were added to raise the pH and the spectra recorded. 

The pH was confirmed using a micro-pH probe (Accumet). This was repeated in steps 
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until the salt peaks became more intense than the peaks corresponding to MT species. No 

change of the M2+/MT ratio was observed meaning no precipitation of Cd(OH)2 or 

Zn(OH)2 occurred. 

The pH titrations of the partially metalated Cd-MT and Zn-MT were performed at least 6 

separate times with different protein preparations and starting at slightly different pH 

values in the region of 4.5-5.5. Thus separate data points were obtained for each pH 

reported increasing in increments of 0.1 pH units and serve as a statistical check. The 

separate preparations were run under the same solution and ESI-MS conditions. The error 

associated with these ESI-MS measurements is estimated to be about ±10%. 

For the circular dichroism (CD) spectra, 2.5 molar equivalents of cadmium acetate were 

added to apo-MT in a pH 7.0 10 mM ammonium formate solution in the manner 

described above for the ESI-MS data. The CD spectra (Jasco J810) were measured over 

the range of 200-300 nm at various stages in the pH titration. Below 220 nm, the CD 

spectrum is skewed due to the absorbance of the ammonium formate buffer and is not 

shown. The significant Cd-dependent CD spectral bands lie in the 240-280 nm region. 

The CD spectra obtained were compared to spectra of apo-MT and Cd4-MT that were 

obtained previously by our group and have been extensively discussed in other works.48-

49 We note that the Zn-S charge transfer band lies at 220-230 nm under the protein bands.  

To determine the degree of cluster formation vs terminally bound metal, the ratios of the 

abundances of the intermediates (Cd1-3-βαMT) to the initial apo-MT and final product 

(Cd4-βαMT) were determined and normalized for each ESI mass spectrum in the pH 

titration. The most clustered spectra (at lower pH) had only a minimal fraction of 

intermediates compared to the spectra recorded at more basic pH. The sigmoidal fit of the 

set of ratios was generated using a least squares method. The lack of saturation of the 

sigmoidal fit is likely due to the 100% terminal coordination binding mechanism 

occurring at the highest pH range of the titration and spectra were not measured above 

pH 8.2. 

The simulated ESI-MS data were calculated using a set of 4 equilibrium constants that 

correspond to each of the bimolecular metalation reactions up to Cd4-MT (Scheme 1). 
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Each sequential bimolecular reaction was controlled by an individual Kf. The values of 

the log(Kf) of the formation constants all average to 14.4 which is within the range 

reported in the literature for Cd(II) binding to MT.50 It should be noted that the binding 

constants presented in this work and those referenced are conditional binding constants 

that amongst other parameters, are dependent on pH. 

2.3 Results 

2.3.1 pH depedence of cadmium binding to apo-MT1a 

Figure 2-2 shows a series of deconvoluted ESI mass spectra recorded for a single sample 

of apo-MT1a metalated with 2.5 equivalents of Cd(II) at increasing pH (A-E). This metal 

loading of 2.5 molar equivalents (mol. eq.) was chosen to challenge the formation of the 

abiguous Cd4 intermediate. This is the point at which the spectra corresponding to the 

cooperative and non-cooperative mechanisms appear in stark contrast to each other. Each 

species present in solution can be identified and the change in its relative abundance 

monitored. At more acidic pH (<6.0) the relative abundance of the intermediates, Cd1-3-

MT1a, is very low and the dominant species is Cd4-MT1a. With increasing pH, the 

appearance of Cd1-3-MT1a can be seen with their relative intensities increasing as the pH 

is raised. At pH 7.9 the distribution of species present is narrower, now completely 

dominated by the terminally-bound Cd1-3-MT1a species, which we describe as being 

comprised of the “beaded” Cd(SCYS )4 structures. Our assignment of these species being 

terminally-bound is supported by the loss of the specific spectral envelope motif in the 

circular dichroism spectral data seen in Figure 2-3. The change in metalation pathway is 

apparent from the complete loss of both the initial apo- and Cd4-MT1a masses in the ESI-

mass spectrum (Figure 2-2A). These two species are replaced by higher intensities of 

Cd1-3-MT1a species (Figure 2-2E). Figure 2-2 B-D show a blending of these two 

pathways leading to a mixture of all species.  
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Figure 2-2: Representative ESI-MS data showing the relative abundances of 

CdxMT species (x=0-4) as a function of pH. These are representative spectra from pH 

titrations after an aliquot of approx. 2.5 molar equivalents of Cd(II) was added to the 

apoMT solution. The species distribution at pH 5.0 (A) and 6.0 (B) represent a mostly 

cluster-dominated pathway for metal binding. The spectra at pH 6.7 (C) shows a blend of 

the pathways, and at pH 7.1 (D) and 7.9 (E) a terminal binding pathway dominates. 

Adduct peaks with a mass of +60 Da were present for each species and were removed for 

clarity. 
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Figure 2-3: Circular dichroism spectra of apoMT1a with 2.5 mol. eq. of Cd(II) 

added as a function of increasing pH. The derivative envelope with a cross-over near 

240 nm is characteristic of the Cd4-cluster whereas the maximum dichroic intensity near 

242 nm is characteristic of partially-metalated species with terminal thiolate coordination 

or supermetallated species. 

The switch from cluster bound Cd(II) to terminally bound Cd(II) was observed in the 

circular dichroism (CD) spectra, Figure 2-3.54-57 When the Cd(II) are bound only as 

Cd4-clusters the spectra show a characteristic derivative envelope with a crossover point 

near 240 nm and a maximum near 260 nm. The shape of this CD envelope has been 

assigned previously as arising from exciton coupling of Cd(II) from the ligand to metal 

charge transfer band.51-54 The spectrum shown here is a combination of contributions 

from apo-MT1a and the clustered intermediate, Cd4-MT1a. As the pH is raised, the 

terminally bound contribution increases and the envelope from the clustered species 

disappears. This neutral pH spectra matches that of previous work where 1-3 mol. eq. 

Cd(II) had been added to mouse apo-MT1.51 When the cluster structure is disrupted by 
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either excess or insufficient Cd(II), the spectra is blue shifted, which can be observed in 

Figure 2-3. The CD spectral data correlate closely with the species measured in the ESI-

mass spectra. The Cd4 cluster, dominant at low pH in the ESI-MS data (Figure 2-2) is 

associated with the derivative envelope in Figure 2-3. The terminally bound Cd(II) at 

neutral pH exhibit a CD envelope centered on the absorption band of Cd-MT (240-250 

nm). The CD data confirm that the gas phase, ESI-MS data are reporting the solution 

species accurately. 

 

Figure 2-4: Change in cadmium binding pathway as a function of pH. The 

"%Terminal Pathway" was calculated from the ESI-MS data shown in Figure 2-2. The 

cluster formation pathway dominates below pH 6.5 (red box), between pH 6.5-7.2 (green) 

the two pathways compete and the terminal pathway based on “beads” dominates above 

pH 7.2 (blue). 

The pH dependence of the Cd-metalation pathway is plotted in Figure 2-4. The trend is 

similar to a standard pH titration with a sharp change just before pH 7.0. Between pH 

5.0-6.4 the change from cluster to terminal pathway is gradual, then the terminally-bound 
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fraction increases sharply between 6.5-7.2. The binding mechanism is mostly terminal 

above pH 7.2, the non-cooperative metalation pathway. 

2.3.2 pH dependence of zinc binding to apo-MT1a 

MT1a speciation during Zn(II) binding differs drastically from that of Cd(II) at all pH 

values, Figure 2-5. This is a very significant result when Cd(II) is considered as a model 

for Zn(II).  Clustering does not become dominant to the extent that it does with the Cd(II) 

metalation at any pH tested here. Only at very low pH, less than 5.0, does some cluster 

formation (Zn4SCYS11) become evident. Even at this low pH, the Zn(II) spectra are 

comparable to the blended pathway shown in Figure 2-2B or C for Cd(II). Such a low pH 

(≤5.0) is not physiologically relevant except for in low pH cellular compartments such as 

the lysosome.55-56 Therefore, we can conclude that the Zn(II) binding pathway is 

dominated by the formation of  terminally-bound Zn(II) intermediates (Figure 2-5B, C) 

over a physiologically relevant pH range, in sharp contrast to Cd(II) binding. 
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Figure 2-5: Representative deconvoluted ESI-MS spectra recorded during the pH 

titration of ZnxMT (x=0-5) after approximately 2.5 equivalents of Zn(II) had been 

added. The spectra at pH 4.5 (A) shows a mixed binding mechanism whereas by pH 5.2 

(B) it is largely distributive and terminally bound remaining unchanged to pH 7.4 (C). 
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2.4 Discussion 

The metalation mechanism of MT1a is critical to our understanding of its in vivo function 

and to the fundamental description of protein based metal-thiolate chemistry. MT1a 

provides a unique example of a highly flexible metal-binding protein that can coordinate 

many metals in a number of conformations. This flexibility makes defining a specific 

binding mechanism difficult as there may be many possible mechanisms and 

conformations that can be adopted. Adding to this difficulty, metallothioneins lack 

spectroscopic features common in other proteins like aromatic amino acids or well-

defined secondary structural elements.57 Thus, spectroscopically active metals like Cd(II) 

have been used as a model for Zn(II) binding which is more difficult to monitor. From 

the experiments presented here, we show that MT1a metalation can begin via two main 

pathways and that Zn(II) and Cd(II) show divergence in their pathway preference and pH 

sensitivity. The presence of a pH dependent equilibrium between structures of the 

partially metalated species has fundamental importance in the assessment of the role of 

MT1a in vivo. 

2.4.1 The pH dependency of cadmium binding 

The data shown in Figures 2-2 and 2-3 demonstrate the pH dependence of the Cd(II) 

binding pathway. The distributed pattern of the Cd1-3-MT1a species at pH 7.9, and 

reported for more basic pH,38 shows a stochastic distribution of metals over 7 possible 

binding sites.  Scheme 1 shows the equilibria for the binding of the first four metals to 

MT with different Ks to indicate that the values of these constants change, depending on 

conditions, and control pathway selection.  
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Scheme 2-1: The possible metalation pathways for the first four metals bound to 

human MT1a. These pathways follow a clustered (cooperative mechanism) or beaded 

(terminally-bound, noncooperative) structure. 

The declining stoichiometric binding constants (K1>K2>K3>K4), calculated to fit the non-

cooperative data are shown in Figure 2-6C. From the binding constants, simulated ESI-

MS spectra were generated which closely match the experimental data. At pH 5.0, the 

data do not show a distributed pattern and we sought to replicate the experimental data by 

modifying the binding constants in the simulation. Figure 2-6A shows that an increasing 

series of binding constants (K1<K2<K3<K4) generates a close fit to the low pH data. In 

Figure 2-6B the intermediate or mixed pathway is replicated by binding constants that are 

approximately equal. These simulations confirm the presence of two major, pH 

dependent metalation pathways: one leading to a clustered Cd4-MT1a and the other a 

series of terminally-bound Cdx-MT1a (x=1-5) species. The analysis shows that the pH 

controls pathway selection based on modification of the relative magnitude of the 

apparent binding constants associated with formation of bead or cluster structures. The 

important feature is the relative magnitude of the constants and the trend that they follow, 

not the absolute magnitude, as concentrations of each species were not directly measured 

through calibration with internal standards. 
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Figure 2-6: Simulated (hatched) and experimental (solid) ESI-MS data for binding 

of 2.5 mol. equivalent of Cd(II) to apo-MT1a at pH 5.0. (A), 6.7 (B) and 7.9(C). The 

experimental ESI-MS data are shown by the solid black bars and the simulated data by 

the hatched bars (left). The simulated data were calculated based on the relative log(K) 

values for 4 consecutive bimolecular reactions assuming 2.5 mol. eq. Cd(II) had been 

added. The log(K) values average to 14.4 in A-C, a value similar to that previously 

reported for the MT Cd-binding affinity.50  The trend in the relative log(K) values are 

shown on the right. K1K4 are the equilibrium constants for the addition of 1 to 4 

Cd(II) to MT1a. It should be noted that these values are relatively correct but not absolute 

and decrease at lower pH. 
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2.4.2 pH dependency of the zinc binding pathway 

The MT1a-Zn(II) binding pathway always proceeds via terminally-bound, beaded species 

near physiological pH.  The pH sensitivity over a physiologically relevant range, as 

shown for the Cd(II) data, was not observed for Zn(II). The ESI-MS spectra for Zn(II)-

binding (Figure 2-5) are essentially unchanged between pH 5.2 and 7.4. This means that 

the declining series of formation constants associated with the sequential Zn(II) 

metalation reactions are much less sensitive to pH and only begin to change below pH 5.2 

which is not physiologically relevant. The pathway selection for the Zn(II) metalation is 

dominated by the non-cooperative, terminally-bound beaded structure.  Figure 2-7, 

specific to Zn(II) binding, was generated in the same way as Figure 2-6 and gives an 

accurate description of the changes in Kf that are involved in pathway selection. Unlike 

for the Cd(II) data, the Kf values do not steadily increase for the lowest pH tested, but 

instead slightly increase then fall. This matches previous work that showed the last Zn(II) 

atoms are bound weakly by MT1a and are available for donation.44  
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Figure 2-7: Simulated (hatched) and experimental (solid) ESI-MS data for MT 

metalation with 2.5 mol. equivalents of Zn(II) at pH 4.5 (A) and 7.4 (B). The 

simulated data were calculated using the relative log(K) values for 5 consecutive 

bimolecular reactions with relative log(K) values similar to those reported in the 

literature.44  

2.4.3 The divergent metalation pathway preferences for zinc and 
cadmium binding 

Critical to the biological functions of MTs are the structures adopted when coordinating 

various metal ions. The proposed in vivo functions of MTs require this family of 

structurally homogenous proteins to bind essential and toxic metals for different 

purposes; namely to act as a metallochaperone for Zn(II) and Cu(I) while aiding in the 

detoxification of heavy metals like Hg(II) and Cd(II). On the surface, this appears to be a 

difficult task for a protein that lacks defined binding sites and formal secondary structure 

in the absence of bound metals. This is especially true for Zn(II) and Cd(II) since they 
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both preferentially adopt tetrahedral coordination geometries and both form M4-Cys11 and 

M3-Cys9 clusters in the α and β domains of MTs. Critical to the use of Cd(II) as a model 

for Zn(II) is that the two metals follow the same metalation pathway, form the same 

intermediates and exhibit similar structural properties. However, our results show that the 

assumption that the binding pathway is the same for both Zn(II) and Cd(II) is flawed. 

Figure 2-8 shows the two competing pathways that account for the metalation of apo-

MT1a to the fully metalated species. At slightly basic pH, Cd(II) passes through 

intermediates to form species similar to those shown in 2-8A and 2-8B before all Cys are 

involved in coordination and clustering must occur to accommodate further metal 

binding. At slightly acidic pH, Cd(II) metalation proceeds through the pathway shown by 

red arrows where the reaction is dominated by the formation of the Cd4-cluster structure. 

The metalation step leading to D may be part of a cooperative pathway that only features 

a clustered intermediate (2-8C) and a fully metalated, two-domain end-product (2-8E).  

The pathway selection for Zn(II) is strongly biased towards the beaded pathway shown 

by the blue arrows in Figure 2-8. At very low pH, a mixture of the two pathways is seen 

with some clustering occurring but with a large fraction of Zn5-MT1a being formed, 

compared to the low pH Cd(II) titration where no Cd5-MT1a was observed. This suggests 

the presence of both clustered (2-8C) and terminally-bound species (2-8B) in equilibrium 

at low pH for Zn(II) metalation. The Zn4-MT1a cluster does not have a stability 

advantage over terminally bound Zn1-5-MT1a. This supports our previous model where 

we suggested that Zn(II) binding to apo-MT1a results in a beaded structure with 5 

terminally bound zinc.58  
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Figure 2-8: Representation of two possible pathways for MT1a metalation with 

Zn(II) or Cd(II). The cooperative cluster driven pathway (red arrows) and the 

noncooperative beaded pathway (blue arrows). The terminally-bound, beaded structure 

(A) is able to coordinate an additional metal terminally, forming (B), which utilizes all 

twenty Cys residues, after which clusters are formed to accommodate the last two metals 

and form the stable two-cluster M7MT (E). The cooperatively formed cluster (C) must 

coordinate additional metals in the β-domain (D). 

Figure 2-9 summarizes the experimental data and compares the pH dependence of the 

Zn(II) and Cd(II) metalation pathways. Significantly, at neutral pH there is a considerable 

contribution from the clustered pathway of Cd(II). This suggests that, in vivo, MT1a can 

sequester Cd(II) into clusters with relatively higher binding constants, making it less 

available for transfer to zinc-dependent enzymes which mostly involve terminal 

coordination.59 
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Figure 2-9: Change in Zn(II) metalation pathway as a function of pH (grey line) 

compared to Cd (orange line). Demetalation begins to occur at pH <4.5 so the curve 

was extrapolated to pH 3 based on the Cd metalation data. At the lowest physiologically 

relevant pH around 5.5 the binding pathway is greater than 80% terminal (blue box) and 

only forms clusters below pH 4.5 (red box). 

Cadmium completely switches pathway preference between pH 6.5 and 7.2, where 

cluster formation is favored at lower pH and terminal coordination at higher pH. At lower 

pH, H+ ions effectively compete with incoming metals for thiolates and the stability 

associated with the Cd4-thiolate cluster becomes the driving force behind cadmium 

binding. At higher pH, cadmium is bound terminally as the competition between metal 

and protons for thiolates is less intense. 

In light of the results presented here, the use of exogenous metals as models for zinc and 

copper binding with respect to cluster formation need to be carried out with caution. Due 

to its spectroscopic properties, many studies on cluster formation in MT used Co(II) as a 

spectroscopic probe.25, 39, 60 Although Zn(II) and Cd(II) are both d10 metals, their Lewis 

acidities differ, resulting in chemistries that change the mechanism in which they are 
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bound by thiolates. It is likely that the differences between Zn(II) and Co(II) are even 

greater. 

2.4.4 The origin of proton sensitivity of the beaded and clustered 
binding constants 

The ESI-MS data show that the [Cd4(Cys)11]
3- cluster dominates as the primary 

metalation intermediate below pH 6.5 in the metalation of MT1a. DFT calculations of 

Ohanessian et al.61 on the proton affinities of thiolates in a wide range of zinc-thiolate 

compounds, have shown the terminal thiolates in [Zn(Cys)4]
2- are significantly more 

basic than in the clustered [Zn4(Cys)11]
3-. In our context, this suggests that the terminally-

coordinated, beaded structures will be less stable under acidic conditions. We show the 

points at which the terminal structures become less stable in MT are approximately pH 

5.0 for Zn(II) and 7.0 for Cd(II).  The increased nephelauxetic effect or propensity for 

covalency of Cd(II) compared with Zn(II) supports the stability of the [Cd4(Cys)11-

clusters] over terminally bound Cd(II) below neutral pH and the different speciation 

observed here by ESI-MS between Zn(II) and Cd(II) for partially metalated MT1a. (The 

nephelauxetic effect refers to the increased propensity for covalency going down the Zn-

Cd-Hg triad.)  

2.4.5 Understanding the multitude of biological functions of MT1a 

The fact that Zn(II) does not cluster as readily as Cd(II) is relevant to its in vivo function. 

MT1a acts as a zinc-chaperone by delivering Zn(II) to newly synthesized 

metalloenzymes which requires a constant shuffling of metal ions.44, 62 This function is 

facilitated by terminally bound Zn(II), increasing accessibility for donation compared to 

the clustered form. On the other hand, the donation of Cd(II) often causes Zn-

metalloenzymes to partially or completely lose function.63-65 By locking most of the 

Cd(II) in a cluster structure, donation may be discouraged. Only a small change in pH 

would induce clustering and many biological compartments have a pH well below 7.2 

where clustering begins to take over as the preferred Cd-binding pathway.55-56, 66 This is 

especially true in the medulla and proximal tubules of the kidneys which are known to be 

at low pH.67-68 Cd(II) has also been shown to accumulate in those areas69-71 and the 
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clustered MT1a may promote this accumulation. Wolff et al. have also demonstrated that 

Cd-MT is localized to lysosomes in proximal tubule cells, which is typically in the pH 

range that favors cluster formation.72 The clustered Cd-MT is also known to be more 

resistant to proteolysis than apo- or partially metalated MT.73-75 This resistance to 

degradation, especially in low pH compartment to which MT1a is localized, may provide 

a mechanism by which cadmium persists in the kidneys for long periods of time, with a 

half-life of 10-30 years.76 Contrary to the concept of detoxification of heavy metals, this 

tendency to cluster and persist in the kidneys may cause more damage. It is for this 

reason that mammalian MTs are not thought of as being "real" cadmium detoxifiers, but 

bind cadmium as a secondary, intrinsic property which exacerbates the toxicity in 

mammalian systems.   

In addition to specialized cells that are typically found at slightly acidic pH, organelles 

responsible for protein maturation, such as the golgi, are also slightly acidic (pH 6.4-

7.0).77 With Zn-MTs being less prone to clustering under acidic conditions, they would 

still be able to effectively donate zinc ions to maturing metalloproteins. The clustering of 

Cd-MTs at these pH ranges may provide a mechanism of protection by which the 

maturing metalloproteins are not improperly metalated with cadmium.  

In addition to metal sequestration, MTs plays a role in cellular redox chemistry due to its 

abundance of thiols.78 For these thiols to be active they need to be exposed, so only apo- 

and partially metalated proteins in the MT pool are redox active.79 The higher propensity 

to cluster in slightly acidic environments exposes more thiols which may affect cellular 

redox balance. This role as a redox active species is not necessarily separate from its 

main function as a zinc chaperone, and many reports have shown that these functions are 

intrinsically linked.21, 80  

2.4.6 Importance of pH control during experimental measurements 

Figures 2-4 and 2-7 highlight the potential complication when determining the metal 

speciation of MT, particularly when partially metalated, due to the pH effect on 

intermediate formation. For example, during Cd(II) metalation, a slight change in pH 

from 7.2 to 7.0 results in a large increase in the cluster pathway contribution. 
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Experimentally, this small pH change could be caused by the displacement of cysteinyl 

protons during metalation so it is essential to monitor pH before and after each metal 

addition. It is also clear that this is much less of a problem during Zn(II) metalation 

because of the decreased pH sensitivity at physiological pH. MT also binds a number of 

exogenous heavy metals involved in chemotherapeutics81-83 and water contamination84 

and the pH considerations raised in this chapter likely apply to other MT-metal binding 

systems. Similar metalation experiments with human MT2a show a mixed mechanism at 

pH 7.430 and rabbit liver MT2a has been shown by NMR to cluster at pH 7.2, with the 

signal disappearing at higher pH.26 The pH dependence curve can likely be modestly 

shifted for different isoforms of MT. Indeed small differences in binding properties were 

found between human MT2 and MT3 isoforms, although the overall trend remained the 

same.85  

2.5 Conclusions 

The considerable debate in the literature over the mechanisms behind MT metalation can 

be reconciled by the results presented in this chapter. MT1a can bind Cd(II) and, to a 

lesser degree, Zn(II) via two distinct pathways that feature either a cooperative 

(clustered) or non-cooperative (beaded) mechanism. Thus, the discrepancy between 

experimental results was likely due to small changes in pH conditions and the specific pH 

at which the cluster pathway dominates for each MT isoform. 

Of the two metalation pathways presented here, Zn(II) has a clear preference for the non-

cooperative, terminally-coordinated pathway under most pH conditions. The trend in Kf 

values associated with Zn(II) metalation of MT is largely unchanged over the range of 

physiologically relevant pH where most experiments are carried out. In contrast, Cd(II) 

showed a change in pathway preference between pH 6.8-7.2 where clustering became 

dominant at slightly acidic pH. This highlights the potential pitfalls in using Cd(II) as a 

model for Zn(II) binding. 

The pH dependence of metal binding pathway and the structures adopted in those 

pathways provide insight into how MT functions as a metallochaperone (for Zn(II)) and 

sequesters toxic Cd(II). The cluster binds Cd(II) with a high affinity preventing the 
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donation to lower affinity, terminal sites for Cd(II) coordination. This structure, resistant 

to degradation, may provide the mechanism by which Cd(II) persists in lower pH 

compartments in renal cells for many years. For Zn(II), these results strengthen our 

previously proposed model, where the terminally-coordinated beaded structure in 

dominant and the Zn5-MT species is more stable compared to the clustered structures. 

The last two Zn(II) are bound weakly and can easily be donated to other metalloenzymes. 
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Chapter 3  

3 Cadmium binding mechanisms of the isolated domains 
of human MT1a: non-cooperative terminal sites and 
cooperative clusters2 

3.1 Introductions 

Mammalian metallothioneins (MTs) are a family of cysteine-rich proteins associated with 

essential metal homeostasis and heavy metal detoxification.1-5 When fully metalated, the 

20 cysteine protein forms two distinct domains, a 9-cysteine N-terminal domain (β) and 

an 11-cysteine C-terminal domain (α).6 When fully metalated with seven divalent metals, 

the β-domain forms an M3Cys9 cluster and the α-domain forms an M4Cys11 cluster.7 

While structures of the fully metalated species are well-known,8 the partially-metalated 

and apo-structures are fluxional and hard-to-characterize.9 Thus, the metalation 

mechanisms and the factors influencing the metalation pathways of apo-MT1a remain 

unclear.10 These mechanisms are essential to our understanding of in vivo metalation 

processes that control the homeostatic role1, toxic metal responses11 and the resistance to 

metal-based chemotherapeutics associated with cellular metallothioneins.12-15 

The well-known description of the clustered domain structure for MT only applies to the 

metalated structures after cluster formation but is not accurate in describing the structure 

of apo- and partially-metalated MT species.9 To investigate the properties of the 

                                                 

2 A version of this chapter has been published.  

Reproduced with permission from: Irvine, Gordon W., and Martin J. Stillman. "Cadmium binding 

mechanisms of isolated domains of human MT isoform 1a: Non-cooperative terminal sites and cooperative 

cluster sites." Journal of inorganic biochemistry 158 (2016): 115-121. 

Copyright 2016 Elsevier 
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individual domains of MT, the isolated domain fragments can be used and metalation 

studies carried out to determine the behaviour of the individual domains.16 It should be 

noted that the isolated domains may have different properties than when joined by the 

linker sequence due to the possibility of entropic effects in cluster formation and protein 

folding and also due to inter-domain exchange of metals.17-19  However, the underlying 

metal binding structures are the same for the full-length protein and the two isolated 

domain fragments, namely terminally bound metals at low metal concentrations leading 

to clustered domains at saturation. For this reason, examining the isolated domains of MT 

allows separation of the domain specific spectral properties which are blurred in the 

complete protein. 

MT simultaneously functions as a zinc and copper chaperone, a heavy metal chelator and 

a redox active agent.20-22 There have been suggestions that different isoforms bind 

specific metals and have their own unique functions, despite high sequence similarity.23 

Domain specificity of metal binding also remains a controversial topic in the field.24-30 

The MT1 and MT2 isoforms are the most widely expressed in human tissues31-32 and 

likely most important isoforms for overall metal homeostasis. They have also been 

implicated in arsenic induced oxidative stress and cancers33-34 and tumor resistance to 

chemotherapeutics.35 Many chemotherapeutics are metal-based so determining the 

binding mechanisms operating at all levels of metalation of MT is important for an 

overall description of its many functions in vivo.12-13, 15, 36 

Electrospray ionization mass spectrometry (ESI-MS) has emerged as one of the most 

useful tools for answering questions about MT structure, dynamics and metalation 

mechanisms.37-40 This is due to the ability of ESI-MS to distinguish all species in solution 
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with different masses (ie. different numbers of metals bound) and to give semi-

quantitative information on their relative abundances.24 The ionization efficiency of 

different metal loadings of the same isoform is essentially the same for MTs and thus the 

relative abundances can be relied upon to accurately reflect solution conditions.41-42  

 In this chapter we have studied metalation of the isolated α- and β-domains of human 

MT1a to determine parameters that change the cadmium binding mechanism resulting in 

either terminally-coordinated or clustered metal binding sites. It is known that the 

mechanism of the metalation of the full protein is pH-dependent24, 43 but little is known 

about the individual domain responses to changes in pH. Biologically, MT-1a is 

upregulated in response to cadmium intoxication, due to displacement of Zn from  Zn-

MT and this newly synthesized apo-MT can be metalated by cadmium.44-45 We also 

reconcile conflicting reports about MT metalation mechanisms and show significant 

differences in binding preferences for the individual domains of human MT-1a. 

3.2 Methods 

3.2.1 Protein preparation 

Individual domain fragments of recombinant human metallothionein 1a (β: 

MGKAAAACSC ATGGSCTCTG SCKCKECKCN SCKKAAAA, α: MGKAAAAC 

CSCCPMSCAK CAQGCVCKGA SEKCSCCKKA AAA) were expressed separately 

with an S-tag in BL21 E. coli cells which has been described in detail elsewhere.46 In 

brief, cells containing the plasmid were grown on kanamycin containing media from a 

stock culture and grown for 16 hours at 37oC. The colonies were then inoculated into 

4x1L broth cultures enriched with 50 μL of 1 M cadmium and incubated in a shaker for 
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approximately 4 hours until an absorbance of 0.8 at 600 nm was reached. Isopropyl β-D-

1-thiogalactopyranoside (IPTG) was then added to induce expression of MT and 30 

minutes later 150 μL of 1 M cadmium sulfate solution was added to the broth. The cells 

were collected 3.5 hours after induction, centrifuged and stored at -80oC. 

The recombinant cells were lysed using a cell disruptor (Constant Systems, UK) at 

20,000 psi. Then, the cell lysate was centrifuged for 1 h to remove cellular debris. The 

supernatant was filtered and loaded on to a GE healthcare SP ion exchange column with a 

total volume of 10 mL. The columns were washed with 10 mM Tris(tris-hydroxymethyl-

aminomethane) buffer at pH 7.4 for approximately 2 h to remove loosely bound proteins 

and other organic compounds. The MT fragments were eluted using an increasing 

gradient of 1 M NaCl + 10 mM Tris buffer at pH 7.4. The eluted MT was concentrated 

down to <20 mL and the S-tag cleaved using a Thrombin Clean-Cleave kit as per the 

manufacturers’ instructions (Sigma-Aldrich). The mixture was then diluted, desalted and 

placed on another SP ion exchange column. The S-tag was eluted at low salt 

concentrations with MT eluting at higher concentrations. The isolated MT fragments 

were concentrated to approximately 100 µM and stored at -20oC. 

To prepare MT for the pH titration experiments, aliquots were first demetalated and 

desalted using centrifugal filter tubes with a 3 kDa membrane (Millipore) and a 10 mM 

pH 2.8 ammonium formate buffer. The low pH solutions contained 1 mM dithiothreitol 

(DTT) to prevent oxidation of the free thiols in MT. The pH was raised by buffer 

exchange with argon saturated, pH 7.0 10 mM ammonium formate solutions that did not 

contain DTT. The concentrations of the protein solutions were checked by remetalation 

of a small aliquot with cadmium using the metal-to-ligand charge transfer band at 250 nm 
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(αε250 = 45,000 M-1 cm-1 βε250= 36,000 M-1 cm-1). The solutions were also monitored for 

oxidation using UV-visible absorption spectroscopy at 280 nm. MT concentrations used 

were 40-90 µM to ensure good signal-to-noise ratios. In addition to demetalating MT in 

the presence of DTT, the solutions were vacuum degassed and bubbled with argon to 

displace any dissolved oxygen. This was done for the 10 mM Cd2+, 0.5% NH3 and 0.5% 

formic acid solutions as well to ensure no oxygen was introduced into the system during 

the titration.  

3.2.2 ESI-MS pH titrations 

Mass spectra were collected on a micrOTOF II electrospray-ionization time-of-flight 

mass spectrometer (Bruker Daltonics) in the positive ion mode. NaI was used as the mass 

calibrant. The scan conditions for the spectrometer were: end plate offset, −500 V; 

capillary, +4200 V; nebulizer, 2.0 bar; dry gas flow, 8.0 L min−1; dry temperature, 30 °C; 

capillary exit, 180 V; skimmer 1, 22.0 V; hexapole 1, 22.5 V; hexapole RF, 600 Vpp; 

skimmer 2, 22 V; lens 1 transfer, 88 μs; lens 1 pre-pulse storage, 23 μs. The mass range 

was 500.0–3000.0 m/z. Spectra were assembled and deconvoluted using the Bruker 

Compass data analysis software package.  

For the metalation experiment, Cd(II) acetate was added sequentially to the MT solution 

and a spectrum recorded for each step. The metalation caused a drop in pH due to the 

displacement of H+ from the thiol groups so the pH was monitored and adjusted as 

needed throughout the titration. The pH was confirmed using a micro-pH probe 

(Accumet). 
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In addition to metal titrations, a pH titration was carried out at the mid-point of the metal 

titration to monitor the change in metal distribution as a function of pH. Solutions of 

oxygen-free 0.5% NH4OH and formic acid were used to adjust the pH. ESI-MS spectra 

were recorded for each change in pH. In total, 4 replicate pH titrations were taken for 

each fragment.  No change in the overall the M2+/MT ratio was observed meaning no 

precipitation of Cd(OH)2 occurred. The error associated with these ESI-MS 

measurements is estimated to be about ±10% and the error associated with the pH probe 

is ±0.1 pH unit. 

3.2.3 Circular dichroism pH titrations 

For the circular dichroism (CD) spectra 1.5 molar equivalents of cadmium acetate were 

added to apo-αMT and apo-βMT in a pH 7.0 10 mM ammonium formate solution. The 

CD spectra (Jasco J810, New Jersey) were measured over the range of 200-310 nm at 

various pH points. At low pH (<4.0) demetalation occurs and a lowering of signal 

intensity can be seen in the βMT CD spectra. Below 220 nm, the CD spectra are skewed 

due to the absorbance of the ammonium formate buffer and are not shown. The 

significant cadmium-dependent CD spectral bands lie in the 240-280 nm region.10, 47-48 

The overall CD envelope was monitored for a signal characteristic of a CdS MT cluster, 

with a crossover point near 250 nm. 

3.3 Results 

3.3.1 The pH dependence of cadmium metalation of the αMT 
fragment 

The metalation reaction was carried out over a wide pH range and the αMT speciation 

recorded via ESI-MS and CD spectroscopy. Of particular importance was detecting the 
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presence or absence of the Cd4-αMT cluster in both sets of spectral data. Unlike, the 

situation for the full protein βαMT where there are 20 cys, the formation of the Cd3- and 

Cd4- species in the -domain fragment must involve bridging cysteinyl thiols due to 

stoichiometric limitations. The nature of the Cdx-MT species can be identified from the 

CD spectral envelope characteristics. The Cd4-MT cluster species exhibits a characteristic 

sigmoidal CD band envelope that arises from exciton splitting of pairs of Cd(II) ions in 

the cluster.48 

Figure 3-1 shows representative deconvoluted ESI mass spectra of the cadmium 

metalation of the αMT fragment. The spectra are separated into three distinct binding 

modes, a cluster-dominated, cooperative binding mechanism at low pH (4.5-6.4), a 

terminal-thiolate-dominated non-cooperative mechanism at high pH (7.3+) and a mixed 

mechanism when close to neutral pH (6.5-7.2). This metalation pH dependence is similar 

to that of the full-length protein where the tendency of the α-domain to cluster dominates 

the reaction at slightly acidic pH.24 This trend holds true for the isolated domain. 
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Figure 3-1: Representative deconvoluted ESI-mass spectra showing the trend in 

speciation as a function of pH for 4 steps in the Cd(II) metalation of apo-αMT. The 

trend in species formation as the Cd(II) is added in mole eqivalent (eq) aliquots can be 

separated into three: a non-cooperative formation of a distribution of species in spectra 

(A-D) at the highest pH (7.3 and above: “7.3+”), semi-cooperative formation of both a 

distribution of species and the Cd4Cys11 cluster in spectra (E-H) found between pH 6.5-

7.2 and the predominant cooperative formation of M4Cys11 clusters in spectra (I-L) below 

pH 6.4. *- acetate adducts at +59 Da, #-Cd5-MT species at +112 Da. Sodium adducts at 

+22 Da not indicated but are present in some spectra in small quantities. 
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3.3.2 pH dependence of the cadmium metalation of the βMT 
fragment 

Figure 3-2 shows representative deconvoluted ESI-MS data for the Cd(II) titration of the 

isolated β-domain fragment. In contrast to the α-domain, the dominant binding mode is 

the formation of terminally bound metals except at very low pH (<5.8). The spectra are 

separated into a mixed mechanism at low pH (<5.8) similar to that of the α-domain in 

Figure 3-1 at pH 6.5-7.2. Even near pH 4.0, there is no strong tendency for the β-

fragment to bind the Cd(II) into clusters confirmed by the presence of intermediate 

metalation products. The non-cooperative, terminal thiolate-bound mechanism becomes 

dominant above pH 6.0 and representative spectra of this mechanism can be seen in 

Figure 3-2 E-H. 
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Figure 3-2: Representative deconvoluted ESI-MS spectra of the metalation of apo-

βMT with Cd(II) at various stages in the titration. Representative deconvoluted ESI-

mass spectra showing the trend in speciation as a function of pH for 4 steps in the Cd(II) 

metalation of apo-βMT. The trend in species formation as the Cd(II) is added in mole eq 

aliquots can be separated into two: a semi-cooperative formation of a mixture of a 

distribution of species and the Cd3Cys9 cluster in spectra (A-D) below pH 5.8 and a non-

cooperative formation of a distribution of species in spectra (E-H) above pH 5.9 (“5.9+”). 

*- acetate adducts at +59 Da. Sodium adducts at +22 Da not indicated but are present in 

some spectra in small quantities. 
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3.3.3 Circular dichroism spectra of the pH titration of partially 
metalated α and βMT fragments 

Figures 3-3 and 3-4 show the CD spectra of the α- and β-domains of MT under a range of 

pH conditions. The partially metalated (1.5 eq. of Cd(II)) domains exhibited a change in 

CD envelope morphology in response to the increasing pH. The bimodal CD envelope 

with a crossover point near 250 nm and a maximum near 260 nm is characteristic of a 

Cd4(SCys)11 cluster.48 The slight blue shift is likely due to the simultaneous presence of 

the apo-fragments and clustered fragments at low pH. The changes in the CD spectra 

mirror those observed by ESI-MS. This supports the reliability of ESI-MS to report the 

solution species distribution correctly as both sets of data match closely.  

 

Figure 3-3: Circular dichroism spectra of Cd1.5-αMT at pH 5.2-7.8. Traces 2-4 

(black) were measured at pH 5.2, 5.7 and 6.2 respectively. The red line (pH 6.7) shows a 

mixed spectrum where both clustered and terminally bound Cd-MT are present. The light 

grey lines 6-7 (pH 7.4 and 7.8) correspond to terminally bound Cd-MT. The apo-αMT 

spectra (line 1) is shown in burgundy as a reference. 
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The α-domain shows a clear shift from the Cd4(SCys)11 cluster signal at low pH with a 

peak centered near 260 nm and a crossover point near 250 nm to a signal with a 

maximum near 250 nm and a crossover point closer to 240 nm (Figure 3-3). This new 

maximum overlaps with the Cd-S ligand-to-metal charge transfer band and is indicative 

of terminally bound Cd(II) lacking symmetrical structure. 

 

Figure 3-4: Circular dichroism spectra of Cd1.5βMT at various pH values. Lines 2 

and 3 (pH 4.0 and 4.5, respectively) are likely partially demetalated as the intensity is 

only slightly higher than the apo-trace in red labeled line 1.  Lines 4-5 (pH 5.0 and 5.5) 

and line 6 to a greater extent (pH 7.2) are blue shifted due to cluster collapse and 

complete binding of free metal, unlike at the lower pH. 

The β-domain shows a more subtle shift in its CD spectrum (Figure 3-4) than the α-

domain which matches the trend in the ESI-MS data closely. The ESI-MS shows that the 

cluster structure is not dominant even at low pH so terminally-bound intermediates are 

present in all CD spectra recorded. The β-fragment spectrum shifts less dramatically from 

a maximum near 255 nm at low pH to 250 nm at neutral pH. The maximum at 255 nm is 
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a result of a mixture of the apo, partially-metalated terminal intermediates and the 

clustered structures. This matches the ESI-MS data in Figure 2 that show a similar 

mixture of MT species. 

3.3.4 pH titration curves of the partially metalated α and β-domains 

Figures 3-5 and 3-6 show the change in ESI mass spectral data as a function of pH of the 

partially metalated domains of MT. The fraction of terminally bound Cd(II) was 

determined by taking the ratio of intermediates (Cd1-3αMT or Cd1-2βMT) to total CdxMT 

species including starting and end products (apo, Cd4αMT or Cd3βMT) over a wide pH 

range. All titrations were performed with approximately 1.5-2 eq. of Cd(II) bound to the 

individual fragments of MT (see Figures 3-1 and 3-2 for representative spectra). Both 

titrations were fit with a sigmoidal curve using a least-squares fitting method. From this 

curve it can be seen that the pKa(clustering) of each domain differs greatly with βMT slightly 

less than 6.0 and αMT at approximately 7.0. 
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Figure 3-5: The pH dependence of the binding mechanism of the αMT fragment. A 

sigmoidal fit (red line) was determined by least squares method. The degree of non-

cooperativity was determined by the normalized ratio of the intermediates to the initial 

and end products observed in the ESI mass spectral data. The pH of the 50% mixture was 

7.0. 
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Figure 3-6: The pH dependence of the binding mechanism of the βMT fragment. A 

sigmoidal fit (red line) was determined by least squares method. The degree of non-

cooperativity was determined by the normalized ratio of the intermediates to the initial 

and end products observed in the ESI mass spectral data. The pH of the 50% mixture was 

5.8. 

Another significant difference between the two titrations is that the fraction of terminally 

bound Cd(II) hovers around 0.2 at low pH for β compared to near 0.0 for the α-domain. 

This indicates an elevated abundance of terminally-bound intermediates in the β-domain 

metalation mechanism. By using these ratios as an indicator of metalation mechanism, 

the sensitivity of the binding mode to pH for each domain can be measured. In addition, 

the pH ranges at which each mechanism dominates can clearly be seen. 
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3.4 Discussion 

3.4.1 Historical conflict on the binding mechanism of MTs 

There have been conflicting reports on the metal binding mechanisms of MT for over 30 

years.20, 39, 49-50 When comparing metals with different electronic properties (ie. Zn(II) vs. 

Cu(I) vs. As(III)), it is clear that MT would adopt different conformations and likely the 

metalation reactions would vary greatly in mechanistic detail.51-52 However, the 

metalation mechanism is controversial because the products of the metalation appear to 

vary for each experiment reported even when focusing only on divalent metals like Zn(II) 

and Cd(II).39, 53-55 For Cd(II) binding, NMR26, 43, 56 and CD47, 57 spectroscopy have been 

employed in an attempt to solve the mystery of the divalent metalation mechanism. In 

addition, metalation with Co(II), a paramagnetic species monitored by visible region 

absorption and EPR spectroscopy has been used to quantify cluster formation.58-60  With 

the development of ESI-MS many groups have probed the metal binding reaction and 

come to a range of conclusions.39, 55, 61-64 We have summarized the results of a selection 

of studies in Table 3-1. The pH dependence of the metalation mechanism presented here 

allows us to reconcile these conflicting reports and characterize the individual domain 

binding preferences of Cd(II). 

The discrepancy in the mechanisms proposed by the different groups is likely a 

combination of many factors including isoform differences, sample preparation 

procedures and ESI-MS settings. However, based on the results we describe here we 

believe the pH under which the experiments are run is the most important factor in 

determining the metalation mechanism. From the ESI-MS and CD spectra shown in 

Figures 3-1 to 3-4 it is clear that the distribution of species in the partially metalated 
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protein solution is dependent on the solution pH. The exact nature of the species in 

solution is dependent on the binding mechanism and from the CD spectra we can obtain 

structural information about the species present. The key to our analysis of the binding 

mechanism is the presence or absence of intermediate species that involve terminal 

coordination. For the α-domain this is Cd1-3-αMT and for the β-domain, Cd1-2-βMT. 

Table 3-1: Summary of results from selected groups using a variety of methods and 

pH conditions to study the M(II) metalation mechanism of metallothioneins 

Metal MT isoform Method pH Mechanism Reference 

Cd rabbit MT2 NMR 7.2 cooperative 41 

Cd rabbit MT2 NMR  8.6 non-cooperative 41 

Cd Blue crab MT1 ESI-MS 7 non-cooperative 18 

Cd hMT1a 

CD/UV/ESI-

MS 8 non-cooperative 46 

Cd rabbit MT2 NMR 7.5 cooperative 54 

Cd hMT1a ESI-MS 8.4 non-cooperative 53 

Cd hMT2a ESI-MS 7.4 cooperative 37 

Cd/Zn hMT3 ESI-MS 7.5 non-cooperative 60 

Cd/Zn hMT2a ESI-MS 7 cooperative 18 

Zn hMT1a ESI-MS 9.2 non-cooperative 52 

Zn hMT2a 
Zn-sensor 
fluorescence 7.4 non-cooperative 61 

Zn rabbit MT2 ESI-MS 7.5 cooperative 62 

Zn hMT1a ESI-MS 7 non-cooperative 14 
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3.4.2 Bridging the gap between apparent discrepancies 

The intermediate species Cd1-2-βMT diminish in intensity at lower pH (<5.7) but do not 

disappear to the extent of the Cd1-3-αMT intermediates. This indicates a fundamental 

difference in binding mechanism between the two domains. The α-domain mechanism is 

dominated by cooperative cluster formation at neutral and slightly acidic pH, whereas 

even at very low pH, the β-domain exhibits a preference for terminal coordination 

through a mostly non-cooperative mechanism.  

 We consider the origin of the mechanistic discrepancy between domains to lie in 

the relative stabilities of the respective metal-thiolate clusters. This is related to the 

stoichiometry of the domain specific clusters for divalent metals: in the α-domain it is 

M4(Cys)11 and in the β-domain M3(Cys)9. In the β-domain the Cys-to-M(II) ratio is 3:1 

compared to the α-domain where it is 2.75:1. More important is likely the overall charge 

and proton accessibility of the basic thiolate ligands. The larger extent of bridging in the 

α-domain reduces the charge-to-metal ratio. The M4(Cys)11 cluster of αMT has a charge 

of -3 and is a 3D-almost rigid cage whereas the βMT domain M3(Cys)9 cluster structure 

also has a charge of -3 but the 9 Cys are much more exposed, and offer much less 

stability than the -cluster. The terminally coordinated M(II) in [M(Cys)4]
2- would be 

more vulnerable to protein attack with a Cys-to-M(II) ratio of 4:1 and an overall charge 

of -2 for each metal bound. The ability to coordinate 4 metals with a -3 overall charge 

makes the α-cluster more resistant to proton attack than terminally coordinated metals or 

the β-cluster. 



77 

 

3.4.3 Isolated domains give insight into the full-length MT binding 
mechanism 

It is important to put these results into context with respect to the binding mechanism of 

the full protein, βαMT. Our results for the domain fragments and the full protein65 show 

that the metalation mechanism, and the intermediates formed before saturation, depend 

on pH. From previous work on the full-length protein it was inferred that the alpha 

domain was responsible for the cooperativity of Cd(II) binding since Cd4-βαMT-1a was 

the dominant intermediate at lower pH.65 We show in this chapter that the α-domain is 

solely responsible for the cooperative, cluster-driven pathway as the pH dependence 

matches that of the full-length protein and the isolated β-domain mostly follows the non-

cooperative, terminally-bound pathway. This divergence in cluster pH sensitivity must 

have important biological implications. 

3.4.4 Biological context of low pH studies 

Many sub-cellular compartments that are involved in protein folding are slightly acidic 

making the titration curve of the α-domain (Figure 3-5) relevant in a biological context.66-

67 The switch in binding preference near pH 7.0 means that MT could behave differently 

depending on its cellular localization. In acidic compartments any cadmium present 

would be bound in a cluster structure in the α-domain, making it less available for 

donation to other metalloenzymes. These results also imply that in the metalation of the 

full-length protein, it is the α-domain that clusters at acidic pH when binding cadmium, in 

agreement with previous work that showed a cooperative binding mechanism for MT-

1a65 and other isoforms.39, 43  Taken together, this implies that the α-domain plays a more 

important role in detoxification, being able to cooperatively bind cadmium in a cluster 
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structure, leaving the β-domain available to terminally coordinate metals that can be 

donated to nascent metalloenzymes. Previous studies have indicated that the β-domain is 

more likely to donate zinc to these newly synthesized proteins because it contains lower 

affinity binding sites than the α-domain.16-17 

 Domain specificity is a topic of interest in the field of metallothionein research 

that has similarly drawn controversy. Recently, we have shown that pH plays an 

important role in inducing some domain specificity, specifically in zinc displacement by 

cadmium.24 At low pH the α-domain shows slight specificity for cadmium but not at 

neutral pH.24 Together with the results presented in this chapter, we can conclude that the 

specificity seen in the α-domain is likely due to the strong clustering preference at acidic 

pH for the α-domain that is not present in the β-domain. The domain specific nature of 

cadmium binding may have evolved as a mechanism for cadmium sequestration, leaving 

the β-domain more or less metal-free and able to participate more readily in redox 

chemistry and the binding of other essential metals like zinc and copper. Indeed, it has 

been suggested that the β-domain is the copper-binding domain.20, 28 

3.5 Conclusions 

We have described the pH dependence of the cadmium metalation reaction for each of 

the isolated domains of human MT-1a. This reconciles previous conflicting reports and 

demonstrates binding differences between the two domains of MT-1a. We demonstrate 

that it is possible for αMT to change binding motifs and metalation mechanism within a 

physiologically relevant pH range and this may help to explain how MTs fulfill their 

multitude of proposed biological roles. In contrast, the preferred cadmium binding 

mechanism of the β-domain is non-cooperative metalation by terminal cysteine ligands.  
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Chapter 4  

4 Structural changes of MT1a during the arsenic 
metalation reaction: folding under typically denaturing 
conditions3 

4.1 Introduction 

Metallothionein (MT) has long been known to be a major player in cellular metal 

homeostasis and since its first isolation in 1957, has been shown to affect many cellular 

processes 1. It is a uniquely structured protein with cysteine accounting for approximately 

30% of its total residues with a mass of approximately 6-10 kDa, depending on the 

isoform. The X-ray determined structure of the fully metalated MT resembles that of a 

dumbbell with two metal binding domains (α and β), separated by a short linker sequence 

2-3. The formal structure of MT is based almost entirely on the changes induced by metal 

coordination and the formation of the metal clusters 4-5. MT binds a wide variety of 

metals including Zn2+, Cu+, Cd2+ and the metalloid As3+.6 However, the structure of the 

partially metalated protein is unknown, yet is important as an intermediate in vital 

cellular metalation chemistries. In this chapter, experimental evidence of As-MT 

coordination geometry and stoichiometry as well as partially metalated MT structure will 

be examined. 

MT is a multi functional protein acting as a source of reducing -SH groups in redox 

reactions, detoxifying heavy metals and regulating cellular zinc and copper 

concentrations. 7 The importance of MT to cellular metal homeostasis is highlighted by 

its ubiquitous nature; nearly all organisms have some type of MT or MT-like protein 

                                                 

3
 A version of this chapter has been published: 

Reproduced with permission from: Irvine, Gordon W., Kelly L. Summers, and Martin J. Stillman. 

"Cysteine accessibility during As3+ metalation of the α-and β-domains of recombinant human MT1a." 

Biochemical and biophysical research communications 433.4 (2013): 477-483. and Irvine, Gordon W., and 

Martin J. Stillman. "Topographical analysis of As-induced folding of α-MT1a." Biochemical and 

biophysical research communications 441.1 (2013): 208-213. 

Copyright 2013 Elsevier 
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coded for in their genomes.8 In addition to the regular functions of MT, it has emerged 

that MT can play a role in cancer progression and drug resistance in tumors. 9-10 With 

many cancer treatments relying on metal based drugs that may induce expression of MTs, 

it is important to determine the mechanism by which MT metalates and the structure of 

the apo- and partially metalated forms of MT that are the predominant species present in 

the cellular environment.1 By studying the structure of the metal-free protein and its 

partially metalated intermediates, predictions about metalation with a wide variety of 

metals and metal complexes can be made. This may prove useful in designing drugs to 

combat tumours that have shown resistance to traditional therapies and in determining 

how MT carries out its many biological functions. 

Partially metalated MT (that is MT with fewer metals bound than its maximum capacity) 

is vital to metal-based cellular chemistry because this species is likely to be the dominant 

form of cellular MT. It has been considered that apo-MT does not have structure in the 

traditional sense but rather it adopts a more randomly coiled and ill-defined conformation 

11. However, more recent studies have suggested that apo-MT may have a loosely 

defined, but structurally significant conformation at neutral pH that is only lost under 

denaturing conditions 12-13. Metalation of apo-MT can lead to the formation of fully 

metalated protein. However, due to the concentrations of metals found in a cell, it would 

be expected that partially metalated species would predominate 14. Unfortunately the only 

solved structures of MT are fully metalated forms 2-3, 15-16. Significantly, structures of 

both the partially metalated MT and apo-MT remain elusive.  

In this chapter, we use the differential rate of the modification of the free cysteines in the 

-metal-binding fragment to probe the spatial distribution of cysteines not involved in 

metal binding as a function of metalation status. We also use this method to quantify free 

thiols in MT as well as to assess the relative accessibilities of cysteines in the alpha and 

beta domains of MT. The reaction profile of Bq with up to 11 cysteines in α-MT provides 

a clear indication of the metal-dependant nature of apo- or partially-metalated MT 

folding. This reaction is dependent on the variable accessibility of the unbound cysteines. 

We confirm a stoichiometry of As3-αMT and As3-βMT and binding mode of terminal 

cysteine coordination with discrete units of As(Cys)3 as opposed to clustered structures. 



85 

 

Overall, the reaction profile of Bq provides a unique description of the topological 

distribution of free cysteine residues, conformations adopted in the partially metalated 

protein and confirms predicted binding motifs of Asx-MT. 

4.2 Methods 

4.2.1 Protein preparation 

Methods for expression and purification of the alpha domain fragment have been 

previously reported in more detail 17. In brief, the α-domain of recombinant human MT 

isoform 1a (α-rhMT 1a) was used having the follow sequence: GSMGKAAAAC 

CSCCPMSCAK CAQGCVCKGA SEKCSCCKKA AAA. The expression of the 

recombinant protein was carried out in E. coli strain BL21 using the recombinant α-rhMT 

1a sequence inserted into a pET29a plasmid. The plasmid also coded for an N-terminal S-

tag with the sequence MKETAAAKFE RQHMDSPDLG TLVPRGS. The inclusion of an 

S-tag into the recombinant protein is done to stabilize the protein during purification 

steps and was removed via a Thrombin CleanCleaveTM kit (Sigma). 

To limit oxidation of the cysteinyl thiols, all solutions used were saturated with argon and 

evacuated before use. In addition, all solutions used in the purification process were 

chilled to maintain the integrity of the protein and prevent degradation. Protein solutions 

were stored at -20oC in sealed vials that had been thoroughly evacuated. 

Demetalation of the protein was achieved by buffer exchange with a 10 mM solution of 

ammonium formate, pH adjusted to 2.8. The solutions were buffer-exchanged by 

centrifuge in an Amicon Ultra Centrifugal Filter Tube (Millipore) with a 3 kDA MW 

filter. This ensured complete demetalation and maintained high concentrations of the 

protein. 

4.2.2 Solution preparation and titrations 

Solutions of 150 mM para-benzoquinone (Bq, Fisher Scientific) were prepared by 

dissolution in 100% methanol (Caledon) and diluted to a final concentration of 15 mM in 

deionized water. These solutions were prepared just before they were to be used, bubbled 
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with argon for at least 20 minutes, evacuated and kept on ice shielded from light until 

use. Solutions of 2 mM As3+ were prepared by dissolving As2O3 in conc. HCl and 

diluting with deionized water. The final pH of the solution was adjusted to 2.8 using 

NH4OH. The solution was then saturated with argon and evacuated before use. 

MT concentrations were determined by metalation of 100 µL aliquots of the apo-MT 

with Cd2+ and examination of the absorption spectrum, specifically the peak at 250 nm. 

The 250 nm peak corresponds to the ligand-to-metal charge transfer transition of the Cd-

thiolate bond (εα;250 nm = 45,000 M−1 cm−1). Concentrations of α-rhMT 1a ranged from 30-

60 μM in order to ensure a strong mass spectral signal for all 27 species that are formed 

during metalation and modification of apo-α-rhMT 1a, that is the set of AsnBqxα-rhMT 

(n=0-2, x=0-11) that will be simultaneously measured. 

Titration of MT with As3+ was carried out by adding approximately 0.5 molar equivalents 

of As3+ to the protein solution. The reaction of MT with As3+ is much slower than with 

metals such as Cd2+ or Zn2+, so the reaction vials were put in an evacuator for 1 hour to 

equilibrate. Once the system came to equilibrium, the speciation of the α-MT was 

checked by ESI-MS to ensure that it had been partially-metalated and a distribution of 

apo-, As1- and As2- α-rhMT existed in solution, Figure 4-1A. Sequential addition of Bq to 

the protein solution was performed and mass spectra acquired until all the species had 

been fully modified (ie. no free cysteinyl thiols remained in any of the partially metalated 

species). Titrations were performed at pH 2.8. 

Mass spectra were measured with a microTOF II electrospray ionization time-of-flight 

mass spectrometer (Bruker Daltonics, Canada) in the positive ion mode. The settings of 

the instrument that were used have been previously described 17. The mass spectra were 

analyzed using the Bruker Daltonics analysis software. 

4.3 Results 

4.3.1 Metalation of α and βMT with As3+ 

Figure 4-1A shows the ESI-MS data recorded for the metal free, apo-αMT with mass 

4,081.8 Da.  Figure 4-1B shows the ESI-MS data after 1 hour equilibration following the 
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addition of 0.75 molar equivalents of As3+.  The data show that there are 3 species of 

αMT present: apo-αMT, As1-αMT and As2-αMT (in order of decreasing abundance).  

These data confirm the non-cooperativity of the As3+ metalation reaction because very 

little As3-MT forms, which is the final product of the metalation reaction.  An excess 

amount of Bq (40 molar equivalents) was added to the reaction vial to ensure complete 

reaction with any available cysteinyl thiols and the ESI mass spectra were recorded.  The 

number of Bq that reacted was dependant on the number of free cysteines available in 

each of the species.  Figure 4-1C shows ESI-MS data after the excess addition of Bq to 

the solution measured in Figure 4-1B.  All 11 cysteine residues of apo- MT were 

modified by binding 11 Bq resulting in a mass of 5,258.9 Da.  Similarly, As1-MT had 8 

cysteines modified for a final mass of 5,008.7 Da, and As2-MT had 5 cysteines 

modified for a mass of 4,760.6 Da.  There was a very small amount of the As3--rhMT 

species present, the two free cysteines were modified by binding 2 Bq resulting in a mass 

of 4,513.5 Da.  The mass spectral data accounted for all the cysteines in each domain.  

In a separate experiment, 2.5 mole equivalents of As3+ were added to apo-αMT and the 

solution was equilibrated for 1 h. The spectrum in Figure 4-1D shows that, when 

compared with the species in Figure 4-1B, the abundance of the apo-αMT and As1-αMT 

species decreased and the proportion of As2-αMT and As3-αMT increased, with As3-αMT 

being the most abundant as expected with the increased concentration of As3+. In this 

case, a limiting amount of 2 mole equivalents of Bq were added to the solution after the 

spectrum in Figure 4-1D was measured to probe the availability and accessibility of the 

free cysteines. The data in Figure 4-1E illustrate the distribution of the free cysteines. The 

As3-αMT species can be seen without Bq modification and with 1 and 2 Bq molecules 

bound. The abundances of the modified species for both As2-αMT and As3-αMT follow 

an approximately normal distribution. This indicates equal accessibility of the remaining 

cysteines after metalation with 2 or 3 As3+ ions. The mass spectrum for the complete 

modification of all free cysteines was achieved by adding a 10-fold excess of Bq, Figure 

4-1F. The presence of As3-αMT with 2 Bq and As2-αMT with 5 Bq (4513.4 and 

4766.6 Da, respectively) is observed in the mass spectra, as expected for the fully 

modified protein species. Taken together, the spectra in Figure 4-1 confirm 

http://www.sciencedirect.com/science/article/pii/S0006291X13004415#f0005
http://www.sciencedirect.com/science/article/pii/S0006291X13004415#f0005
http://www.sciencedirect.com/science/article/pii/S0006291X13004415#f0005
http://www.sciencedirect.com/science/article/pii/S0006291X13004415#f0005
http://www.sciencedirect.com/science/article/pii/S0006291X13004415#f0005
http://www.sciencedirect.com/science/article/pii/S0006291X13004415#f0005
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stoichiometric binding for As(Cys)3 for each step in the metalation reaction and the 

presence of two free cysteinyl thiols upon saturation with arsenic.

 

Figure 4-1: ESI mass spectra of αMT1a with increasing As3+ loading and cysteine 

modifications to form Asn-αMT (n = 1–3). (A) Metal-free apo-αMT. (B) After 1 h 

equilibration with 0.75 mole equivalents of As3+ added. (C) After 40 mole equivalents of 

Bq added to the solution in B. (D) After 1 h equilibration with 2.5  mole equivalents As3+ 

added to the apo-αMT solution. (E) After 2 mole equivalents of Bq added to Asn-αMT 

shown in D. (F) After 10 mole equivalents of Bq added to Asn-αMT species shown in D. 
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The As3+ metalation and Bq reactions of apo-βMT measured by ESI-MS are shown 

in Figure 4-2. The apo-βMT has a mass of 3752.6 Da (Figure 4-2A). Because As3-βMT 

has no free cysteines, the metalation reaction was quenched after 1 h by addition of 2 

mole equivalents of As3+ (Figure 4-2B) to ensure that As1- and As2-βMT were the 

dominant species and probe Cys accessibility. The mass spectrum shows that the most 

abundant species were As2-βMT (3896.1 Da) and As1-βMT (3824.1 Da) with no 

appreciable amount of apo-βMT or As3-βMT. Addition of 10 mole equivalents of Bq 

resulted in the spectrum shown in Figure4- 2C. Unexpectedly, the excess Bq did not react 

with all the free cysteines present. Significant fractions of unreacted As1-βMT and As2-

βMT remained, as well as an approximately normal distribution of 1–3 Bq bound to As2-

βMT and 1–4 Bq bound to As1-βMT (Figure 4-2B). Even when excess (40 mol eq) Bq 

had been added there remained unreacted species (Figure 4-2D). This is likely the result 

of oxidation since the mass of the unreacted species is less than predicted and decreases 

by 3 Da, indicating internal Cys-Cys crosslinks had been formed. Despite the oxidation, 

the Normal distribution pattern can still be deciphered indicating approximately equal 

access to the remaining cysteine of As1-2-βMT. 

http://www.sciencedirect.com/science/article/pii/S0006291X13004415#f0010
http://www.sciencedirect.com/science/article/pii/S0006291X13004415#f0010
http://www.sciencedirect.com/science/article/pii/S0006291X13004415#f0010
http://www.sciencedirect.com/science/article/pii/S0006291X13004415#f0010
http://www.sciencedirect.com/science/article/pii/S0006291X13004415#f0010
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Figure 4-2: ESI mass spectra of βMT1a showing As3+ binding and cysteine 

modification with Bq to form Asn-βMT (n=1–2) using Bq. (A) Metal-free apo-βMT. 

(B) After 2 mole equivalents of As3+ added to solution of apo-βMT. (C) After 10 mole 

equivalents of Bq added to Asn-βMT species shown in B. (D) After 40 mole equivalents 

of Bq added to Asn-βMT species shown in B. 
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4.3.2 Cysteine modification of Asn-αMT with Bq 

 

Figure 4-3: Deconvoluted ESI-MS data showing the binding of As3+ to apo-αMT and 

the subsequent titration of the protein solution with Bq. (A) Distribution of species 

upon reaction of 0.5 mol. eq. of As3+ and inset in the top right is the mass spectrum of the 

starting apo- solution The spectra show the Bq titration at approx. 1 (B), 5 (C) and 10 (D) 

mol. eq. of Bq reacted with the protein solution. 
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The deconvoluted mass spectrum of the apo-αMT is shown in the inset of Figure 4-3A. 

The reaction with As3+ resulted in a distribution of species: apo-, As1- and As2-αMT with 

apo- being the most abundant, As1 at approximately 65% and As2 at approximately 15% 

relative abundance. After As-binding was completed, 1 mol eq of Bq was reacted with 

the solution shown in Figure 4-3A to form the spectrum in Figure 4-3B. In this early 

stage of the Bq titration, both modified and unmodified species are clearly present in 

solution. When further mol eqs of Bq are added, a more complicated mass spectrum is 

recorded, Figure 4-3C, with 27 individual species (more clearly delineated in Figure 4-4).  

This is the midpoint in the reaction, with the mass spectral data complicated by the 

presence of both metalated and apo species each having varying degrees of cysteine 

modification. The identification of all 27 species is shown in Figure 4-4. This spectrum 

beautifully illustrates the power of ESI-MS in providing exquisite detail for the progress 

of complicated, multifaceted reactions. Finally, the addition of excess Bq results in all 

free cysteinyl thiols being modified, greatly simplifying the spectrum (Figure 4-3D). 

Now just three species are observed: the apo-Bq11-MT, singly metalated As1-Bq8-MT and 

the doubly metalated As2-Bq5-MT. Thus, Figure 4-3D shows the completed reaction with 

all the starting species' cysteines being fully modified by Bq.  

This complete modification rules out oxidation as a cause of the unusual patterns seen in 

Figure 4-3C. When MT is oxidized, Cys-Cys bridges are formed and, therefore, are 

unreactive towards Bq. If there was oxidation in the protein solution the endpoint in the 

Bq titration would be changed for some proportion of the protein that had been oxidized. 

For example, instead of Bq11-αMT being an endpoint for the titration of the apo-protein, 

there would be a distribution of endpoints with Bq11, Bq9 and Bq7-αMT being present 

depending on the extent of protein oxidation. In addition the recorded masses would 

differ from the expected masses by 2 Da per mole of Cys-Cys oxidation. No such 

distribution is observed so it can be concluded that the free thiols were not cross-linked 

but all forms covalent bonds with Bq. 
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Figure 4-4: Deconvoluted ESI-MS data showing the 27 individual species of 

intermediate and fully modified MT (A). Peaks are isolated by parent species (ie. apo, 

As1 or As2) and shown on separate axes for clarity. Shown are the reaction profiles for 

the As1 (B), As2 (C) and apo-αMT species (D). 

Figure 4-4A shows the ESI-mass spectrum at the midpoint of the titration (taken from 

Figure 4-3C). This is mass spectral data that include a combination of the spectra of the 
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apo-, As1- and As2-species variably modified by Bq. Figures 4-4B, C and D separate out 

the three key species, namely As2-αMT, As1-αMT, apo-αMT and their respective 

cysteine-modified intermediates. We note that insufficient Bq has been added at this 

stage to fully modify all cysteines in the protein (that saturation point is shown in Figure 

4-3D). In all, there are 27 individual MT species shown in this single mass spectrum. 

This kind of accuracy and resolution of spectral lines is unique to ESI-MS as other 

spectroscopic techniques would not be able to distinguish with the same detail the 

abundance of species present in solution. To simplify the data analysis, the spectra of the 

separately metalated species, along with their intermediate and final products, are isolated 

and are shown in Figure 4-4B (As2-α-MT + up to 5 Bq), C (As1-α-MT + up to 8 Bq) and 

D (apo-α-MT + up to 11 Bq). Key in this series of spectra is that the As3+ can react in 

single steps from 1 to 3 and that it uses 3 cysteine thiols to bind.  So from the 11 

cysteines of apo-αMT, there are 8 left free for As1-, 5 left free for As2-, and 2 left free in 

As3-αMT. When saturated with Bq, all of these free cysteines are modified (Figure 4-3D) 

but when insufficient Bq is added the reaction stops mid-flight providing a snapshot of 

the relative accessibility of the free cysteines because the reaction progress is governed 

by the kinetics of the modification.  

 In the experiment carried out here the dynamic structure of the protein is controlled by 

the metalation status (0, 1, 2, or 3 As3+). The distribution profile of the Bq-modified 

cysteines depends on the relative accessibility between all 4 protein species (i.e. apo-, 

Asn, n=1-3). 

The profile for Bq reacting with the five free cysteines in As2-αMT is complicated. 

Although the Bq modification pattern reported for the apo-αMT, namely a Normal 
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distribution at low pH 13 is expected to be disrupted by the metalation there are no 

previous data to suggest what the effect of the metalation will be. Metal-induced folding 

has been discussed for MT for many years 18-20 and it is to be expected that with 2 As3+ 

bound that the peptide will fold and the cysteines could then be buried. The model of 

As2-αMT in Figure 4-5C shows this possibility. The data in Figure 4-4B suggest that the 

five free cysteines in the As1 species have different steric hindrance with respect to 

reaction with the incoming Bq. The profiles in Figure 4-4 does not exhibit a Normal 

distribution rather the profile indicates that some cysteine residues are buried even under 

denaturing conditions upon metalation with As3+.  
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4.3.3 Modeling the As-MT metalation reaction 

 

Figure 4-5: Scigress models (MM3/MMD) of the structure of Apo-αMT (A), As1–

αMT (B), As2–αMT(C) and As3–αMT (D) using space filling models to visualize the 

extent of folding in each species.  The MD calculations were carried out at 500 K for 

500 ps. The As3+ ions are shown in purple. 
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4.4 Discussion 

Metal-induced folding is a well studied process in the field of bioinorganic chemistry and 

particularly important for metals that play a structural role for metalloproteins.21-23 MT 

does not fit nicely into traditional categorization of a catalytic or structural 

metalloprotein, but instead coordinates metals in a flexible manner as a 

metallochaperone. The ability to accommodate a large number of metal ions per peptide 

in a functional homeostatic role makes investigations of metal-induced folding of MT 

difficult. In addition, the lack of structural features in the random coil, apo-MT further 

complicates structural investigations. Thus, a new technique of cysteine modification to 

probe the global reactivity of cysteine-rich MT was used to probe the metal-induced 

folding and metalation properties of Asx-MTs under denaturing conditions. 

The reaction profile for the reaction of Bq with all 11 free cysteines of the apo-αMT is 

unlike that expected based on the low pH conditions. Based on our previous studies 13, it 

was expected that MT would not have a defined structure capable of interfering with the 

Bq cysteine modification reaction. At pH 2.8, where these titrations were carried out, it 

was expected that the MT would exist in a denatured form, as a random, loosely defined 

structure, as depicted by the model in Figure 4-5A. As such, all cysteine residues would 

be expected to exhibit a similar degree of steric hindrance. This would result in a Normal 

distribution of the modifications with an increasing manifold maximum from apo- to the 

fully modified Bq11 species (see Figure 1-5A for an example of a Normal distribution 

pattern) 13. This was clearly not the case in the reaction profile of the apo- and As1-2-αMT 

species studied here. The presence of As3+ changed the reaction mechanism for each 

species and gave non-Normal reaction profiles. 

For the As1-2-αMT species, the metal-induced folding likely creates an environment 

where cysteines not directly involved in metal coordination are shielded by backbone 

which is now anchored by the metal coordination. For partially-metalated species, the 

metals are still labile, unable to produce sharp signals in NMR spectra.24 The lability of 

the metals may bring other so-called "free" cysteines into transient associated with the 

metal ions, shielding them from reaction with Bq at the exterior of the protein surface. 
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While the reaction profiles for As1-αMT and As2-αMT are relatively straightforward to 

explain, the reaction profile of the apo-species in the presence of the As-bound protein is 

much more difficult to interpret. At pH 2.8 it is unlikely that the apo-αMT adopts a 

compact conformation that should interfere or modify the accessibilities of the free 

cysteinyl thiols of the protein. All other studies which modified apo-MTs in isolation at 

low pH resulted in a Normal distribution of modified species.25-27 In previous metalation 

studies, fully metalated As-MT species have been shown to transfer As3+ to apo-species 

through protein-protein interactions.28 Many other studies have demonstrated MT 

donating metals such as Zn and Cu to other metalloenzymes through direct interaction 

with each other.29 

The pattern is not likely a result of Bq aggregation or some other property of the cysteine-

Bq reaction because the pattern is not replicated in the absence of a bound metal. In 

solutions only containing apo-MT this phenomenon is not seen .13 The presence of metal 

induced structure at pH 2.8 indicates that H-bonding may not be an important factor in 

determining As-MT structure. The pattern shown in Figure 4-4D is very similar to the 

one in 4-4C. It is likely the interaction and transfer from the As1- species to the apo- 

species is causing the altered reaction profile of Bq. 

The models were calculated using MM3/MD techniques at a nominal MD temperature of 

500 K temperature to simulate a low pH environment with the H-bonds disrupted. The 

models suggest that the apo- species is indeed the most open conformation of the protein 

and that when bound to arsenic, the protein adopts a more compact, globular structure. As 

described previously, even though apo-MT may have an open conformation at low pH, 

protein-protein interaction with partially metalated species may account for the Bq 

reaction profile resembling that of a more compact conformer. We suggest that the 

metalated species and apo-species interact with each other shielding the cysteine residues 

that are on the surface of both species. The transfer of arsenic most likely occurs by a 

process of coordination of the As3+ by exposed cysteinyl thiols on the surface of an apo-

protein.28 This would explain the drastic change in reaction profile, since under metal-

free conditions those most exposed residues would be the ones most likely to react with 

an incoming Bq molecule. The inter-protein exchange maintains a pool of apo- and 



99 

 

minimally-modified species by shielding the residues that, under metal-free low pH 

conditions, would be the first to be modified. It should be noted that the most exposed 

residues at such a low pH would likely be closer to the ends of the peptide and have less 

shielding from the backbone on one side when compared to the cysteine residues in the 

middle of the sequence.  

In additional to information gained about the conformations adopted by the MT species 

in solution, the stoichiometry was successfully confirmed. Discrete units of As(Cys)3 

form until all cysteine residues are occupied in the β-domain and all but two are involved 

in coordinated in the α-domain. Unlike for the apo- and As1-2- species the remaining free 

cysteine residues As2/3-species were equally accessible, giving rise to a Normal 

distribution of modified species (Figures 4-1 and 4-2). This is likely the result of 

significant compaction of the protein structure as more metals are coordinated. For Cd2+ 

metalation it was shown through IM-MS that the number of conformers converged as 

metalation proceeded and resulted in a more rigid and compact structure.30 It is likely that 

arsenic metalation mirrors this process, although it is surprising that the convergence on a 

narrower set of compact conformers is possible even under typically denaturing 

conditions.  

4.5 Conclusions 

In this chapter we have demonstrated the multifaceted usefulness of our cysteine 

modification approach. We were able to confirm the stoichiometry of arsenic binding 

predicted through first principles of inorganic chemistry and that the binding mode is the 

same for all levels of arsenic saturation of MT. In addition, information pertaining to 

protein conformation and possible protein-protein interactions was obtained through the 

analysis of modification profiles. The deviance from Normal distribution under 

denaturing conditions is surprising and highlights the importance of metal coordination to 

the folding of MTs. 
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Chapter 5  

5 Selective cysteine modification of metal-free human 
metallothionein 1a and its isolated domain fragments: 
Solution structural properties revealed via ESI-MS4 

5.1 Introduction 

Since their discovery in 19571, metallothioneins (MTs) have been of interest due to their 

many unique structural and metal binding properties. These special properties include 

binding of up to 7 Zn2+ and Cd2+, forming two metal-thiolate clustered domains (the α 

and β-domains) that are joined by a short linker sequence.2-3 While the biological 

function(s) of this family of proteins are still debated, it is generally agreed that their 

functions are connected with zinc and copper homeostasis4-7, redox signalling8-10 and 

toxic metal sequestration.11-15 Despite these many proposed functions, and their capacity 

to bind so many metals,16-17 MTs are surprisingly small, flexible proteins that lack typical 

optically active structural features. This lack of formal secondary and tertiary structure in 

the absence of bound metal ions precludes traditional structural analysis via spectroscopic 

methods.18-19 In addition, the dynamic nature of the coordinated metals in the metal-

binding sites makes characterization even more difficult for metalation states other than 

the fully saturated protein.2, 20 

The structures of metallated metallothioneins have been probed with a wide range of 

methods, including fluorescent resonance energy transfer (FRET)21, ion-mobility mass-

spectrometry (IMS)22 and, following cysteine modification, electrospray ionization mass 

spectrometry (ESI-MS) analysis.23-25 Traditional ESI-MS studies have resulted in a large 

number of mass spectrometric data being reported that clearly distinguish between 

                                                 

4
 A version of this chapter has been published 
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cysteine modification of metal‐ free human metallothionein 1a and its isolated domain fragments: solution 

structural properties revealed via ESI‐ MS." Protein Science (2017). DOI: 10.1002/pro.3139 
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metalation states present in solution. Through the  semi-quantitative properties of ESI-

MS, the distribution of those species can be analyzed.26 In addition to the extent of metal-

saturation, ESI-mass spectral data can also determine the relative concentrations of the 

many differentially modified protein species simultaneously.24 The abundance of easily 

modifiable cysteine residues (20 in human MTs) offers an opportunity to exploit this 

reactivity to obtain information on the solution structure of MTs based on the relative 

reactivity of individual cysteinyl thiols.25, 27-28 This experiment is similar to the use of 

H/D exchange in identifying regions of proteins that are more or less exposed to the 

solvent.29-30 Analysis of charge state distributions31 and ion drift in IMS gives additional 

information about the overall folded state of the protein.32  

ESI-mass spectral data have been used to determine structural properties of apo-MT25 and 

MT partially metalated with As3+24 and Cd2+28, 33. ESI-MS data can also be used to 

determine quantitative biochemical parameters as recently demonstrated in the 

determination of arsenic metalation kinetics34, cadmium and zinc equilibrium and kinetic 

constants28, 35-36 and copper binding affinity.37 The key to these semi-quantitative data is 

the assumption that apo-MTs and those with different numbers of metals coordinated 

exhibit very similar ionization efficiencies; this assumption has been supported by the 

literature, especially for metalation of metallothioneins.38 While it is true that the 

different MT-isoforms will have slightly varying ionization efficiencies,39 when 

analyzing modifications of the same isoform, the behavior of all species in solution has 

been demonstrated to be predictable and the metal-binding parameters determined align 

closely with those determined by other methods.36, 40-41 

Previous studies using cysteine modification agents to probe the solution structure and 

metal binding properties of MTs have focused on one modifier at a time, leading us to 

question whether there was a bias based on the size and relative solvation properties of 

the modifying molecule.  

In this chapter, we use three cysteine modification agents of varying size and 

hydrophobicity, p-benzoquinone (Bq), N-ethylmalemide (NEM) and iodoacetamide 

(IAM), to probe MT solution structure as a function of the accessibility of its cysteine 
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residues. We carried out the reactions of the full-length human MT1a and its isolated α- 

and β-domains under native and denaturing conditions. By analyzing the characteristic 

modification profiles of folded and unfolded MTs (obtained at neutral and low pH) as 

well as changes in charge state distribution, we describe the modification properties of 

the folded, globular apo-metallothionein structure under native conditions and compare it 

under denaturing conditions. The ESI-mass spectral data provide modification profiles 

and charge state distributions that we use to determine the relative accessibility of the 

cysteinyl thiols to the modifiers, which leads to conclusions about the overall 

compactness of the proteins. 

5.2 Methods 

5.2.1 Protein preparation 

Recombinant human metallothionein 1a (βα: MGKAAAACSC ATGGSCTCTG 

SCKCKECKCN SCKKCC SCCPMSCAKC AQGCVCKGAS EKCSCCK KA, α: 

GSMGKCCSC CPMSCAKCAQGCVC KGASEKCSCCKKAAAA, β: GSMGKAAAA 

CSCATGGSCTCTGSC KCKECKCNSCKKAAAA) was expressed with an S-tag in 

BL21 E. coli cells which has been described in detail elsewhere.42 In brief, cells 

containing the plasmid constructs for the full protein (βα-MT1a) and for the isolated 

domains (β-MT1a and α-MT1a) were plated on to growth media containing kanamycin 

from a stock culture stored at -80oC and grown for 16 hours at 37oC. The cells were then 

transferred into 1L broth cultures enriched with 50 μL of 1 M cadmium and incubated in 

a shaker for 4 hours until OD 600 absorbance was between 0.6-0.8. Isopropyl β-D-1-

thiogalactopyranoside (IPTG) was then added to induce expression of MT and 30 

minutes later 150 uL of 1 M cadmium sulfate was added. The cells were collected 3.5 

hours after induction, centrifuged and stored at -80oC. 

The recombinant cells were lysed using a cell disruptor (Constant Systems, UK) at 20K 

psi. The cell lysate was centrifuged for 1h to remove cellular debris. The supernatant was 

filtered and loaded on to an SP ion exchange column (GE Healthcare) with a total volume 

of 10 mL. The columns were washed with pH 7.4 10 mM Tris (tris-

hydroxymethylaminomethane) buffer for approximately 2h to remove loosely bound 
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proteins and other organic materials. MT was eluted using an increasing gradient of 1 M 

NaCl + 10 mM Tris buffer at pH 7.4. The eluted MT was concentrated down to <20 mL 

and the S-tag cleaved using a Thrombin Clean-Cleave kit as per the manufacturers’ 

instructions (Sigma-Aldrich). The S-tag was separated using an ion-exchange column 

since the S-tag does not bind as strongly as MT and thus elutes at lower salt 

concentrations. The eluted, cut Cd-MT was concentrated to approximately 120 µM and 

stored at -20oC. In this chapter, we refer to the recombinant human liver MT1a isoform as 

“MT”, but all other isoforms are referred to with their complete isoform and subisoform 

descriptors. 

To prepare MT for the modification experiments, aliquots were first demetalated and 

desalted using centrifugal filter tubes with a 3 kDa membrane (Millipore) and a 10 mM 

pH 2.8 ammonium formate buffer. The low pH solutions contained 1 mM dithiothreitol 

(DTT) to prevent oxidation of the free thiols in MT. The pH was raised by buffer 

exchange with argon saturated, pH 7.0 10 mM ammonium formate solutions that did not 

contain reductant. The final concentration of the protein solutions were determined by 

remetalation of a small aliquot with cadmium using the metal-to-ligand charge transfer 

band at 250 nm (ε250 = 89,000 Lmol-1 cm-1). The solutions were also monitored for 

oxidation using UV-visible absorption spectroscopy to monitor absorption corresponding 

to 280 nm from oxidized disulfide. Once demetalated and desalted, the MT concentration 

was determined, all concentrations were between 40-90 µM to ensure good signal to 

noise ratios In the ESI-MS experiment. 

In addition to demetalating MT in the presence of DTT, the solutions were vacuum 

degassed and bubbled with Argon to displace any dissolved oxygen. This was also 

carried out for the 10 mM 1,4-benzoquinone (Bq), N-ethylmalemide (NEM) and 

iodoacetamide (IAM) solutions and the 0.5% NH4OH and 0.5% formic acid solutions as 

well to ensure no oxygen was introduced into the system during the modification reaction 

or pH adjustment. Great care was taken to reduce the possibility of oxidation of the 

protein especially at neutral pH. All modification agents were obtained from Sigma-

Alrich (USA). 
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5.2.2 ESI-mass spectra collection 

Mass spectra were measured with a micrOTOF II electrospray-ionization time-of-flight 

mass spectrometer (Bruker Daltonics) in the positive ion mode. NaI was used as the mass 

calibrant. The scan conditions for the spectrometer were: end plate offset, −500 V; 

capillary, +4200 V; nebulizer, 2.0 bar; dry gas flow, 8.0 L min−1; dry temperature, 30 °C; 

capillary exit, 180 V; skimmer 1, 22.0 V; hexapole 1, 22.5 V; hexapole RF, 600 Vpp; 

skimmer 2, 22 V; lens 1 transfer, 88 μs; lens 1 pre-pulse storage, 23 μs. The mass range 

was 500.0–3000.0 m/z. Spectra were assembled and deconvoluted using the Bruker 

Compass data analysis software package. ESI-mass spectrometry was used to monitor all 

stages of the modification reaction. Approximately 1 molar equivalent of the modifying 

agent (Bq, NEM or IAM) was added stepwise and a spectrum recorded after each 

addition. The ESI-mass spectra were recorded and averaged over 2 minutes. 

5.2.3 Molecular models 

MM3/MD calculations were carried out using Scigress Software (Fujitsu, Poland) and 

parametrized using the modified force field described by Chan et al.42 with the dielectric 

constant of 78 for water to obtain energy minimized structures of the Cu-bound protein. 

The original apo-MT1a structure was obtained from Rigby et al.19 A cycle of MM3 

minimizations followed by MD calculations gave energy-minimized apo-MT structures 

reported here. The structures were first energy minimized using the MM3 calculation 

followed by an MD simulation at 500 K for 10 ps and then another MD simulation at the 

same temperature for 1000 ps. Structures with closed, intermediate and open 

configurations were selected from energy minima as representations of the multiple 

conformations apo-MT adopts in solution. 

5.3 Results 

5.3.1 Modification of the isolated α- and β-domain fragments of 
metallothionein 

The isolated α- and β-domain fragments of MT were reacted with each of the three 

cysteine modifying agents to probe the compactness of their structures at neutral (native 

conditions) and low pH (denaturing conditions). The fragments were studied separately 
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from the full-length protein to test whether cysteinyl thiols would be buried to a different 

extent within the smaller volumes of the individual fragments, especially the small β-

domain. Figure 5-1 shows the reaction profile of the β-domain fragment (N-terminus 

fragment) with p-benzoquinone (Bq). The data show the distinct cysteine access 

differences between the unfolded state of the fragment at low pH, and the folded, native 

state at pH 6.8. At low pH the modifications follow a systematic and stochastic trend as 

the number of equivalents of Bq molecules added increases. At pH 6.8, the pattern is very 

different, with both the unmodified (0 Bq) apo-fragment and the fully modified (9 Bq) 

fragment coexisting. While some adducts are present in the low pH spectra, they did not 

add to the shielding and a Normal distribution of modifications is seen.  

 

Figure 5-1: Representative deconvoluted ESI-MS spectra from the modification of 

the β-domain fragment of MT1a with p-benzoqinone (Bq). The reaction at pH 2.8 (left 

panel) and 6.7 (right panel) gave markedly different reaction products labelled with 

vertical lines for the 1, 3, 5, and 9 Bq bound masses. Note that the apo-fragment is not 

indicated, its mass lies to the left of the “1” line. The fully modified fragment is indicated 
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by the “9” line.. The number of molar equivalents of Bq added in the stepwise titration is 

listed to the right of each panel up to 8.8. 

In the second test, the more hydrophobic and slightly larger modifier, NEM, was used. 

The reaction profile of the β-domain fragment with NEM is shown in Figure 5-2 under 

native and denaturing conditions. At low pH, the data show the incremental increase in 

modification as the mol. eq. of NEM are increased. At pH 7.4 NEM modified fragments 

from apo-(0) to fully modified (9) are present until the end; a stark departure from the 

pattern than observed at low pH and remarkably similar to the Bq modification pattern. 

At all points during the reaction either apo- or Bq9-βMT are the most abundant species. 

 

Figure 5-2: Representative deconvoluted ESI-MS spectra from the stepwise 

modification of the βMT fragment by NEM. The extent of the modification in terms of 

number of covalent NEM modifications on the MT is shown by the vertical lines for the 

1, 3, 5, and 9 NEM bound masses. Note that the apo-fragment is not indicated, its mass 

lies to the left of the “1” line. The fully modified fragment is indicated by the “9” line.. 
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The number of molar equivalents of NEM added in the stepwise titration is listed to the 

right of each panel up to 8.8. The NEM was added stepwise with the mol eq as shown to 

the right of each panel at pH 2.8 (left panel) and pH 7.4 (right panel). 

The reaction profiles for the NEM and Bq modification reactions of the β-domain 

fragment of MT1a (Figs 1 and 2) are strikingly similar at low pH. Both exhibit a 

stochastic, Normal distribution of intermediate species under these denaturing conditions. 

Under more native conditions for both modifiers the starting apo-βMT and end product, 

Mod9βMT are the two dominant species in solution with minor abundance of 

intermediate species. It appears that the modification of the β-domain fragment leads to 

the protein unfolding, promoting subsequent modification reactions due to the disruption 

of native structure and exposure of previously buried Cys residues to the solvent. The 

series of spectra show that throughout the stepwise addition, the native and the fully 

modified “9” species are the most abundant. The extent of the modifications is seen 

clearly near the 4.0 NEM mol. eq. point where the differences between neutral and low 

pH spectra are most dramatic. To further understand the properties of this metal-free, 

native, folded state of MT under these conditions, the charge state distributions were 

analyzed. 

The charge states of the isolated domain fragments were similar following complete 

modification with both Bq and NEM. The charge state distributions for the NEM 

modifications of the β-domain fragment are shown in Figure 5-2. In each of the 6 panels, 

the charge state average shifts higher following the Cys modification reaction, indicating 

an increase in surface area. The weighted average charge state shifts only slightly for the 

apo-proteins between native and denaturing conditions before modification reactions. For 

βαMT the native condition average charge state is 5.2 and increases marginally to 5.5 

when the pH is lowered (Left spectra 3A and B). There is a more dramatic shift in charge 

states upon modification in all cases. The largest differences in average charge state 

occurs under native conditions in the βα- and α-MT modification reactions (3A and E). 

While the appearance of new charge states indicates unfolding, the effect in the small 

MT-protein and the even smaller fragments is more subtle than in classic studies, such as 

that for myoglobin unfolding. Thus it is difficult to make conclusions about the folded 
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state of MT from charge states alone. However, when combined with the ESI-MS data 

for the modification reaction patterns the conformational picture of MT becomes clearer.  

 

Figure 5-3: Representative ESI-MS charge state manifolds measured during 

cysteine modification of βαMT1a and its isolated fragments. Spectra at approx. 1.6 

mol. eq. of NEM added are shown on the left side of each panel and those near the end of 

the titration on the right side. The weighted average charged state is shown above each 

spectrum in italics. 

The α-domain fragment reacted in a very similar manner when modified with both Bq 

and NEM. The data for the reaction of the α-domain fragment of MT1a with Bq has been 

published previously,25. The stepwise NEM modification reaction of the α-domain 

fragment under native and denaturing conditions is shown in Figure 5-4. 

The reaction at pH 2.8 follows the trend for the β-domain fragment and also the 

previously reported modification of the α-domain fragment by Bq.25 Under denaturing 

conditions, where the peptide is expected to be unfolded, modification follows a 
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stochastic, Normal distribution of modified intermediates. As above for the β-domain 

fragment, at neutral pH it can be seen that the α-domain fragment modification by NEM 

results in very low abundance of the partially-modified intermediates (NEM1-10αMT) 

when compared with the β-domain reaction. The series of spectra in Figure 5-4 (right) 

indicate that the initial modification of the apo-fragment is initially sterically unfavorable 

compared with the low pH reactions. However, once modification has begun, those 

peptides unfold allowing the subsequent modification to proceed rapidly, culminating in 

the growing presence of the fully modified NEM11α-fragment. The throttling effect of the 

initial steric hindrance to modification by NEM results in the very low abundances of the 

partial modified fragment. The implication is that for the α-domain fragment under native 

conditions, the folded native peptide is resistant to modification. 
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Figure 5-4: Representative deconvoluted ESI-MS spectra of the modification of 

αMT fragment with NEM. The extent of the covalent NEM modification (0 -11) is 

shown by vertical lines (apo (0), 2, 4, 6, 8, and 11). NEM was added stepwise, with the 

molar equivalents added shown to the right of each panel, at ph 7.4 (left panel) and 2.8 

(right panel). *-+60 Da adduct, #-unknown contaminant at 5183 Da not corresponding to 

MT or any modified species. 
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5.3.2 Modification of the full-length protein (βαMT) 

The full length protein, βαMT, consists of the two isolated domain fragments discussed in 

the previous sections, joined by a short linker sequence. The protein is much larger with 

20 cys in the sequence. Much like the isolated domain fragments, the full protein exhibits 

a stochastic, Normal distribution of modification intermediates (NEM/Bq1-19 βαMT) 

under denaturing conditions as can be seen in Figure 5-5. Both NEM and Bq modifiers 

exhibit nearly identical patterns and this is consistent across all three peptides studied. 

Despite the differences in size and hydrophobicity, both NEM and Bq reactions cause 

similar changes to the structure of the proteins under native conditions.  

The results of the modification reactions at pH 7.4 are substantially different when 

compared with the isolated domains fragments. In particular, the charge state distribution 

significantly changes during the modification reaction at pH 7.4, which can be seen in 

Figure 5-3 (left panel). Two new charge states (+9 and +8) emerge for the fully modified 

protein (NEM20βαMT) compared with only a slight shift in charge state abundance for 

the modified isolated α- and β-domain fragments. This can be explained by a larger 

number of covalent modifications, resulting in a much larger peptide that also has a very 

different electrostatic surface and by the more drastic surface area difference between the 

folded and unfolded states. 

Despite having different properties, it is clear that in the case of the full MT protein at 

denaturing pH (2.8), cysteine modification with Bq and NEM follows a similar pathway, 

resulting in largely the same type of reaction profile. In order to contrast the reactions of 

these hydrophobic molecules, we also used iodoacetamide (IAM) to covalently modify 

the cysteine residues of the full MT protein. The full length protein was chosen for IAM 

modification because of the more dramatic changes in charge state and reaction pattern 

expected. IAM is much smaller, more hydrophilic and reacts via a different mechanism 

than the NEM and Bq cysteine modifiers described above. 
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Figure 5-5: Deconvoluted mass spectra of NEM modifications of βαMT under native 

(pH 7.4, right) and denaturing (pH 2.8, left) conditions. The masses and numbers of 

the covalent modifications are shown by the vertical lines 0 (apo)-20. The mol. eq. of 

NEM reacted are shown to the right of each spectrum. *-indicates the presence of 

partially oxidized MT species #-+60 Da adduct. 
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Figure 5-6 shows the results of the IAM modification experiment. Under both denaturing 

(7, left panel) and native (7, right panel) conditions, IAM results in a Normal distribution 

of modified MT species, although the distribution is wider under the native, pH 7.4 

conditions. At low pH, the modification reaction is much slower than for the other two 

modifiers tested and excess IAM was reacted with the apo-MT solution overnight. 

However, even with a large excess of IAM, after 24 h only 5.8 molar equivalents of IAM 

had reacted but the general pattern of modification is apparent and matches that of the 

other modifiers. It is also similar to the neutral pH reaction in terms of modification 

profile and distribution of modified species, although a smaller range of modified species 

are present at any given time. The IAM modification did not result in the cooperative 

modification patterns indicative of structure disruption in the full length protein. 
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Figure 5-6: Deconvoluted mass spectra of the βαMT modification with IAM under 

denaturing conditions at pH 3.0 (A) and native conditions at pH 7.4 (B). At low pH, 

the kinetics of the reaction is very slow so only the spectrum at 1 h (top) and the 

incompletely modified spectrum at 24 h (bottom) are shown in (A). 
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5.4 Discussion 

The challenges of investigating the structure of apo-metallothioneins are numerous. The 

fluxional nature of a disorganized peptide and the lack of good chromophores make 

traditional methods of structure determination difficult or impossible. Proton NMR 

showed a disordered structure for apo-human, horse and bovine MT2a, however, the 

chemical shifts were similar to the zinc and cadmium analogues.43 FRET studies have 

shown that the overall volumes of the full protein, as well as its isolated domains, are 

largely unchanged between the metal-free and metal-saturated states.21, 44-45 Ion-mobility 

mass-spectrometry has confirmed the presence of a range of conformations in the apo-

protein and the fluxionality inherent before metal binding occurs.22 In previous reports, 

we have begun to probe the structure via global reactivity towards cysteine modifying 

agents.24-25, 27, 31 Other groups have also probed the reactivity of the fully metalated 

protein towards NEM to investigate properties of demetalation and stability of cadmium-

MT clusters.33 

In this study we sought to probe the metal-free solution structures of βαMT and its 

isolated domain fragments using three different commonly used cysteine modifiers and 

analyze the reaction profiles using ESI-MS. Our report here includes the reaction profiles 

for modification of the isolated domain fragments and contrasts those differential 

modification data with the reactivity of the full length protein. The isolated domains 

being smaller, having less overall volume and a smaller surface area than the full protein 

were predicted to exhibit a smaller change in average charge state and this is observed in 

Figure 5-3. Although the charge states only changed slightly in the isolated domain 

fragments (α increased 1.0 and 0.6 and β 0.4 and 0.9 at high and low pH respectively), 

reaction profiles for NEM and Bq followed a cooperative pathway under native 

conditions at neutral pH (Figures 5-1, 5-2 and 5-4).  

We have previously described the cooperative pattern arising from unequal solvent 

access of the cysteines in apo-MTs.25 The modification proceeds rapidly once the 

compact conformation initially proposed many years ago from early molecular dynamics 

calculations19 is unfolded by the initial modifications. This indicates that both isolated 
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fragments are capable of adopting a more folded conformation to shield cysteine residues 

from the solvent despite their small size (3.7 and 4.08 kDa).  

In Figures 5-1, 5-2 and 5-4, it is clear that during the reaction of both apo-α and apo-β, 

the unmodified apo-fragments coexist with the fully modified protein during the step-

wise addition of the modifier. This is counter-intuitive for a protein with 9 or 11 cysteinyl 

thiols that remain unreacted while other individual MT molecules, with only a few free 

cysteines, react to become fully modified. This can be explained by the compact 

conformers adopted by the full length protein at neutral pH (6.8 – 7.4) making the 

cysteines sterically inaccessible. Conceptually, it can be understood that modifiers of any 

size or of hydrophobicity should be at least somewhat hindered in their reaction. The data 

we have measured are essentially “snapshots” of the reaction, the progress reports that 

would be observed if excess modifier were added and ultra-high speed spectra recorded. 

Instead we use a step-wise addition where we run out of modifier and the distribution of 

modified species is recorded at each point. The modification status is governed by the 

relative kinetics of the reaction to modify each cysteine. The reaction kinetics are 

governed by two major factors: the intrinsic rate of the chemical modification of the 

cysteine and the inhibition effect of the steric hindrance of the surrounding protein 

structure. Since the reactions are irreversible, the reverse equilibrium reaction has no 

effect on the distribution of the products. 

Under denaturing conditions at low pH, all three modifiers (NEM, Bq and IAM) followed 

pathways that resulted in a stochastic, Normal distribution of species that summed to the 

mol. eq. of modifier added. Under these conditions the protein adopts a more extended 

conformation and it is reasonable to conclude that all cysteines are essentially equally 

exposed to the solvent and incoming modifier molecules. This results in a purely 

statistical reaction pathway where individual MT molecules with more unreacted 

cysteinyl thiols are more likely to be modified than those with more modifications 

already present. 
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Figure 5-7: Comparison of the reaction profiles shown by the relative abundances of 

each modified βαMT-species at approximately the half way point, for the three 

cysteine modifiers used. (A) Relative abundances under denaturing conditions at pH 

2.8-3.0 and (B) relative abundances under native conditions at pH 6.8-7.4. The relative 

abundances shown in this Figure were extracted from raw deconvoluted ESI-MS data at 

approximately 10 mol. eq. of each modifier. 

A very different picture emerges during modification under native conditions at neutral 

pH. The larger, more hydrophobic modifiers (NEM and Bq) give rise to a cooperative-

like pattern. Under native conditions, the more compact conformations shield most of the 

cysteinyl thiols, allowing only a fraction of the apo-protein to react, becoming 

increasingly unfolded as modifications proceed. Russell and co-workers showed a small 

fraction of apo-MT2a exists as a more disordered and open conformer, at least in the gas 

phase for the +5 charge state.22 These conformers are likely more accessible for 

modification and are the ones that fully react, leaving the more compact conformers of 

apo-MT  with unmodified thiols. To visualize the equilibrium between apo-MT 

conformers, molecular dynamics simulations were used to generate a range of possible 

structures (Figure 5-8). Because the reaction with the modifiers is controlled by access to 

the cysteinyl thiols, the thiols in the more compact conformers remain less reactive than 

those species whose structure has been disrupted by modification. This results in a large 

fraction of unreacted apo-MT, small amounts of partially modified protein and the 

accumulation of the fully modified protein as seen in Fig 8B for NEM and Bq 

modifications.  
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Figure 5-8: Molecular dynamics simulated structures of apoMT under native 

conditions. The "closed" structure is one where the Cys residues are more buried within 

the interior of a bundled protein, "intermediate" where there is more access to the Cys 

residues and "open" where there is the most unhindered access. 

It is interesting that this cooperative-like pattern is not observed in the mass spectral data 

from the reaction of the smaller and more hydrophilic IAM modifier. Instead, a wider 

stochastic distribution is observed and the width of the distribution of the IAM reaction 

profile is compared in Figure 5-9C. The wider distribution is likely due to the unequal 

solvent accessibility of the cysteinyl thiols in the folded configuration. IAM is less 

disruptive to the compact conformers of MT than the larger and more hydrophobic Bq 

and NEM modifiers. This has implications for the choice of modifier when examining 



121 

 

properties of cysteine-rich proteins like MTs. IAM may be more suitable if native 

structure needs to remain largely intact, whereas Bq and NEM are better in producing a 

more dramatic change in reaction profile depending on the protein conformation. In 

addition, NEM is able to be used over a wide range of pH, 2.8-7.4 tested here, where 

IAM is unreliable at low pH (<4) and Bq unreliable at basic pH (>7) ranges. 

Figure 5-9 compares the reaction profiles at the halfway point (10 mol. eq.) under native 

(neutral pH) and denaturing (acidic pH) conditions. The Bq and NEM reaction profiles 

show how the reactivity of apo-MT has been dramatically changed by the switch between 

compact and extended conformers at neutral and low pH respectively. However, these 

profiles are contrasted by the reaction profile of the IAM species, Fig 10C, where the 

profiles follow stochastic distributions under both denaturing and native conditions, 

although the low pH distribution is much narrower. This may be a function of slow 

kinetics of the reaction under these conditions or may speak toward the equal 

accessibility of the cysteines and even less interference by the surrounding peptide due to 

the small size of the IAM molecule. 
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Figure 5-9: Extracted ESI-MS reaction profiles for all three cysteine modifiers used. 

In this Figure, the relative abundances of each of the βαMT-species are compared after 10 

mol. eq. of each modifier has been reacted under native (neutral pH) and denaturing (low 

pH) conditions. (A) Comparison of the BQ, (B) NEM and (C) IAM reaction at low (grey 

bars) and neutral pH (black bars). 
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Our systematic approach in probing the structures of βαMT and its isolated domains have 

provided further evidence for the adoption of a bundled or compact structure by the 

metal-free protein. These data summarized in Table 5-1, indicate that even the smaller, 

isolated fragments behave in the same fashion. To completely understand the metalation 

mechanisms of MT, a starting point must be established which up until recently was a 

poorly defined apo-structure. 

The biological significance of apo-metallothioneins remains a source of controversy 

within the community. Some have indicated that apo-MT comprises a significant portion 

of the cellular MT pool46. Regardless, upon ribosomal translation the nascent MT will be 

in its apo-form and it remains a mystery how specificity and quantity of MT metalation 

occurs. The redox properties of MT have also been a source of controversy. While it is 

clear gluathione is the major source of reducing thiols in the cell,47-48 it is unclear to what 

extent MTs also play a role.49-51 The "hidden" nature of most of the thiols in MT 

demonstrated in this chapter may cast doubt on how integral a role MT1a plays in cellular 

redox chemistry. 
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Table 5-1: Summary of reaction profiles following reaction of three cysteine 

modifiers with the full protein and the two isolated fragments under native and 

denaturing conditions 

Protein construct Modifier Native reaction 

profile 

Denatured reaction profile 

βαMT1a NEM Cooperative Non-cooperative, stochastic 

Bq31 Cooperative Non-cooperative, stochastic 

IAM Non-cooperative, 

stochastic, wide 

distribution 

Non-cooperative, stochastic, 

narrow distribution 

αMT1a NEM Cooperative Non-cooperative, stochastic 

Bq25 Cooperative Non-cooperative, stochastic 

IAM Non-cooperative, 

stochastic 

Non-cooperative stochastic 

βMT1a NEM 

 

Cooperative Non-cooperative, stochastic 

Bq Cooperative Non-cooperative, stochastic 

IAM Non-cooperative, 

stochastic 

Non-cooperative, stochastic 
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5.5 Conclusion 

In this chapter we describe the cysteine modification reactions of metallothionein and its 

isolated domain fragments with well known modification reagents (Table 5-1). All three 

peptides (α- and β-domain as well as the full βαMT) gave similar reaction profiles under 

native and denaturing conditions, indicating all three fold into a tightly wrapped structure, 

buring selective cysteine residues. The larger modifiers, Bq and NEM, showed the most 

drastic difference between conditions, going from a stochastic non-cooperative pattern 

when denatured to a cooperative one under native conditions. The smaller IAM only 

showed a broader distribution of modified cysteine residues under native conditions but 

the overall pattern was similar to the denatured conditions. The larger modifiers were 

better able to probe the ill-defined structure of apo-MT as they caused larger disruptions 

to the native fold. This highlights a new way probe intrinsically disordered, or "less 

ordered", protein structure by monitoring residue modification by ESI-MS. 
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Chapter 6  

6 Metalation kinetics of the human α-metallothionein 1a 

Fragment is dependent on the fluxional structure of the 
apo-protein5 

6.1 Introduction 

One-third of all proteins require a metal cofactor in a functional or structural capacity to 

perform their respective function.52  These cofactors are commonly d-block metal ions 

such as Fe, Cu, Zn or Mo, termed essential metals, which have been selected 

evolutionarily for their physicochemical properties and environmental availability53.  

Despite this efficient use of metal ions by biological machinery, other metal ions present 

in the surrounding environment can be highly toxic, even at very low levels of 

exposure.54-56  These toxic metals, which include As, Cd, Hg, and Pb, often replace 

essential metals in key metalloproteins, resulting in inactivation of enzymatic function 

and inhibition of critical cellular processes.57  Fortunately, the cell has natural defences to 

protect against inevitable toxic metal exposure by sustaining significant quantities of 

biological ligands that act to sequester the metal ions.58-59 Examples of these molecules 

include the tri-peptide glutathione and the small, two-domain protein, metallothionein.60-

61 

Metallothionein (MT) is a small, cysteine-rich, metal-binding protein.  The mammalian 

forms adopt a two-domain structure when saturated with divalent metals62.  In the fully 

metalated, two-domain protein, metal binding is organized into two metal-thiolate 

clusters with stoichiometries of: M4S11 ( domain) and M3S9 ( domain) where these 

divalent, d10 metals are tetrahedrally coordinated by a combination of terminal and 

                                                 

5
 A version of this chapter has been published 

Reproduced with permission from: Irvine, Gordon W., et al. "Metalation Kinetics of the Human 

α‐ Metallothionein 1a Fragment Is Dependent on the Fluxional Structure of the apo‐ Protein." Chemistry–

A European Journal 21.3 (2015): 1269-1279. 

Copyright Wiley 2014 
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bridging thiolate ligands of the 20 cysteines.63 Under normal cellular conditions, in the 

absence of toxic metal exposure, MT coordinates Zn2+ and Cu+ ions 64.  In this state, MT 

is considered to act as a metallochaperone or storage protein, able to shuttle essential 

metals to apometalloenzymes65-67.  This homeostatic or metal buffering role is a critical 

role for metallothioneins, especially for Zn2+ and Cu+ 68-69, however, following exposure 

to toxic metals, such as Cd2+, MT adopts a more protective role by actively sequestering 

these metal ions63, 70. Because of the central role of MT in cellular metal regulation, 

dysfunction in gene coding for metallothioneins or modifications to their native structures 

can lead to serious disease and increased toxic metal sensitivity71-75.  Previous studies 

have shown that de novo transcription of MT mRNA can be induced by both Cd2+ and 

Zn2+76-78.  Consequently, two potential mechanisms are possible by which MT can act to 

sequester the toxic Cd2+ ions: (1) metal substitution in which Cd2+ replaces Zn2+ in pre-

existing Zn-MT, or (2) coordination of Cd2+ to de novo-synthesized apo-MT.  

While MT is ubiquitous across all kingdoms and in all organs in mammals, the actual 

metalation mechanism of the apo-MT is poorly understood. The mechanism leads to 

selectivity between different metals in the metal-saturated proteins 79-80.  Although many 

studies have investigated metal substitution reactions of Zn-MT with Cd2+ or exchange 

between Zn-MT and Cd-MT81-88, few studies have investigated the details of the 

metalation reaction of the metal-free or apo-MT.  This is due to the technical difficulties 

working with a sulfhydryl-rich protein that is highly sensitive to oxidation, lacks a formal 

20 or 30 structure which precludes CD spectroscopic analysis, and is chromophorically 

silent due to the d10 metals typically bound in vivo.  The structure of a metal-free protein 

can usually be used to provide detailed information about metalation pathways from the 

changes that take place as metalation proceeds89.  But for metallothioneins, it has been 

generally considered that apo-MT has no formal structure90 and only after metalation 

does MT gain a more organized structure79, 90-92.  The topology of the partially-metalated-

Asx-MT species have recently been probed experimentally24, 27 and it was shown that the 

differential rate of the covalent modification of cysteine residues on MT is an effective 

probe of solution structures.  
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The question then arises whether these conformations, which can be identified by 

modification with Bq, influence the metalation mechanism. Biologically, this is important 

because tumors are known to have a much lower pH (5.8≤) than normal cells as a result 

of the anoxic environment in which they are found93.  In this context, apo-MT may adopt 

an altered conformation and, therefore, might interact with metal-based drugs differently 

due to the structural changes induced by the lower pH.  Thus, understanding the 

conformational dependence of metalation of apo-MT is of great importance in 

determining the poorly known but vitally important mechanistic details of metalation. 

The lack of an intrinsic probe in apo-MT makes it difficult to monitor structural changes 

due to metalation or change in environment. Previous studies have overcome this 

limitation using FRET-labeled-MT to monitor changes in overall dimensions of the 

protein94. These studies have shown that FRET emissions only change slightly when MT 

was demetalated, suggesting that the apo-MT fragment dimensions remains somewhat 

compact94-95. This retention of compact dimensions in the α- and β-domains may indicate 

that despite the lack of formal structural features, the globular structure of the apo-MT 

may be important to its metal binding properties. 

In this study, we investigated the dependence of the rate of the metalation reaction with 

Cd2+ on the extremes of the folded state of apo-MT1a.  To reduce the complexity of the 

two-domain, 7-metal binding protein we chose to study the  fragment that contains only 

the four-metal  domain.   

Figure 6-1 shows the -fragment's four-metal-binding domain structure of the Cd4-

MT1a and the arrangement of the metals both within the peptide folded structure and 

with the thiolates of the Cd4-S(Cys)11 cluster96. Since high concentrations of denaturant 

are not compatible with ESI-MS studies, we used low pH to model the denaturing effects 

of the guanadinium hydrochloride denaturant and used the modification reaction profiles 

of the 11 cysteines by benzoquinone as a way of probing the solution structure of the apo-

MT under two extremes of conformation: folded and unfolded.  Our objective was to 

determine whether the conformation of the apo-MT affected the metalation reaction. 



132 

 

 

Figure 6-1: The structure of the α-fragment of hMT1a. (Left) The Cd4SCYS-11 cluster 

structure showing the wrapping of the peptide chain.  (Right) The connectivity between 

the 11 Cys and the 4 Cd2+ in the -binding domain showing the mixture of terminal and 

bridging S from the 11 Cys.  Structures adapted from the model of Chan et al.24 . The 

NMR structure of Cd4-MT2 was originally reported by Messerle et al.97 The sequence of 

α-rhMT1a is provided in the Experimental Procedures section. 

The molecular probe chosen was benzoquinone (Bq) due to its reactivity towards cysteine 

residues.  Previously, MT cysteines have been modified by iodoacetamide to determine 

the extent of free cysteine and the extent of disulfide bridge formation98.  Bq is a larger 

molecule than modifiers like iodoacetamide and, therefore, is likely more affected by 

steric hindrance in the vicinity of the thiol reaction site. This provides a more sensitive 

marker of the steric hindrance of the cysteines introduced by the conformational changes 

introduced by folding.  Therefore, the differential accessibility of each of the cysteinyl 

thiols is a probe of the extent of shielding of the cysteines.  Bq also reacts more quickly 

than alkylating reagents at the pH range used in this study99. The chemistry of Bq with 

respect to thiols is attractive because the reaction with quinones is fast and quantitative at 

pH below 7.5100.   

Our results clearly show that there are structural differences in the conformational 

families of apo-MT under native and denaturing conditions and that there is a significant 

metalation rate dependence on those conformations. 
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6.2 Methods 

6.2.1 Metallothionein preparation 

The recombinant  domain of human metallothionein 1a 

(MGKAAAACCSCCPMSCAKCA QGCVCKGASE KCSCCKKAAA) was produced by 

over-expression in E. coli BL21(DE3) cells as described in detail elsewhere101.  Briefly, 

the cells were grown in the presence of CdSO4 and the Cd-containing -domain was 

isolated and purified as an S-tag fusion protein using an SP ion exchange column and 

superfine G-25 Sephadex size exclusion column equilibrated with 10 mM Tris-HCl (pH 

7.4).  The N-terminal S-tag (MKETAAAKFE RQHMDSPDLG TLVPRGS) was 

subsequently cleaved from the concentrated protein fraction using a Thrombin 

CleanCleaveTM Kit (Sigma) as per the manufacturer’s instructions. 

Metal-free or apo-MT was prepared by eluting the thrombin-cleaved Cd-bound protein 

from a G-25 size exclusion column equilibrated with 10 mM Tris-HCl pH 2.7.  Elution of 

the protein with a low pH eluent effectively removes the metal ions from the protein, 

which separate from the protein band on the G25 size-exclusion column.  Since MT is 

devoid of aromatic amino acids, the metal-free protein fractions were detected by the UV 

absorption at 220 nm, which corresponds to the electronic transitions generated by the 

polypeptide backbone.  Protein concentrations were determined by remetalation with 

Cd2+ and examination of the UV absorption spectrum at 250 nm, which corresponds to 

the ligand-to-metal charge transfer transition generated by the metal-thiolate bond (εα250= 

45,000 M-1cm-1;)102.  For ESI-MS studies the pH of the protein solutions was adjusted 

using NH4OH (Caledon Laboratory Chemicals) and HCOOH (Caledon Laboratory 

Chemicals). 

Solutions of 500 mM parabenzoquinone (Bq; Fisher Scientific) were prepared in 100% 

methanol (Caledon Laboratory Chemicals) and diluted to 50 mM in >16 MΩ·cm 

deionized water (Barnstead Nanopure Infinity).  Bq solutions were bubbled extensively 

with argon.  The reaction of benzoquinone with thiols has been previously described103.  

Reactions were carried out in 10 mM ammonium formate buffer at pH 2.8 and 6.7 with 
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MT concentrations ranging between 20-40 μM.  The neutral pH data set was collected at 

pH 6.7 and the low pH data set at pH 2.8.   

6.2.2 ESI-MS of proteins with modified cysteines 

Mass spectra were collected on a micrOTOF II electrospray-ionization time-of-flight 

mass spectrometer (Bruker Daltonics, Toronto, Ontario, Canada) in the positive ion 

mode.  NaI was used as the mass calibrant.  The scan conditions for the spectrometer 

were: end plate offset, -500V; capillary, +4200 V; nebulizer, 2.0 bar; dry gas flow, 8.0 

L/min; dry temperature, 30oC; capillary exit, 180 V; skimmer 1, 22.0 V; hexapole 1, 22.5 

V; hexapole RF, 600 Vpp; skimmer 2, 22 V; lens 1 transfer, 88 µs; lens 1 pre puls storage 

23µs. The mass range was 500.0–3000.0 m/z.  Spectra were constructed and 

deconvoluted using the Bruker Compass DataAnalysis software package. 

6.2.3 ESI-MS data analysis and reaction modeling 

The relative rate constant values (kn) of each of the 11 reactions of apo-α-MT with Bq 

were estimated using ReactLab software (Jplus Consulting Pty Ltd, Australia) and those 

values were used in the simulation program HYSS (Hyperquad, UK).  The set of 11 kn’s 

were slightly modified in HYSS to fit the mass spectral data points measured for 

reactions at both neutral and low pH (6.7 and 2.8). The relative rate constants were 

determined using an integrated second-order bimolecular reaction expression: 

ln[Bt/At]=ln[B0/A0]+k[B0-A0]t 

Where B is in excess relative to A, ie in this equation B would represent Bq and A the 

MT species. It is solved as a series of 11 consecutive reactions where the k is the rate 

constant and the reactions are coupled to each other. HYSS allows coupling of multiple 

expressions in a single model and tuning of the k-values to minimize the difference 

between model and experimental results. In this way 11 k-values were obtained. 

6.2.4 Molecular modeling of apo-αMT and cysteine modifications 

Molecular modeling calculations for Figure 6-6 were carried out using Scigress Version 

3.0.0 (Fujitsu Poland Ltd.).  The calculations for Figure 6-1 was carried out using Cache 
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Version 6.1 (Fujitsu, America).  Allinger's MM3 Force Field augmented for metals was 

used with the modified force field from Chan et al.96.  Modeling parameters and sequence 

information have been previously described by Rigby and Stillman19. 

6.2.5 Kinetic measurements of cadmium binding to αMT 

Separate solutions of apo-α-rhMT 1a at pH 2.0 were prepared for the kinetic study 

containing 237.5 mM KCl and 2.0, 3.0, 4.0, 5.0, 6.0, or 7.0 M guanidinium chloride 

(GdmCl).  The concentrations of the apo-αMT 1a ranged from 9.5-17.2 μM. Cadmium 

solutions were prepared as the sulfate salt at a concentration of 52 mM in 10 mM 

Tris/HCl buffer (pH 7.4) with 200 mM KCl.  The metalation kinetics of apo-α-MT1a in 

the presence of GdmCl were measured under stoichiometric Cd2+ conditions equating to 

4.0 molar equivalents of Cd2+ per mole of apo-αMT 1a.  The metalation reaction was 

carried out at 10°C using a BioLogic SFM-300 stopped-flow instrument (BioLogic 

Science Instruments, Claix, France) powered by a MPS-52 unit (BioLogic) and coupled 

to a MOS-250 light source (BioLogic).  The low pH protein solution of apo-αMT1a was 

neutralized by mixing with 1% NH4OH in the mixing chamber of the stopped-flow 

instrument immediately prior to mixing with Cd2+.  Metalation was monitored by 

detecting the change in UV absorbance at 250 nm corresponding to Cd-thiolate bond 

formation.  The dead time for this mixing sequence was 2 ms.  Data points were collected 

every 2 ms for 8 s, every 1 ms for 6 s, or every 500 s for 0.5 s followed by every 2 ms 

for 7 s depending on the rate of the reaction.  The reported kinetic data are an average of 

at least four independent kinetic traces.  The kinetic traces of the metalation reaction of 

MT with Cd2+ were fit using the Gepasi v. 3.0 (Virginia Polytechnic Institute, 

Blacksburg, VA (6-7)) simulation program as a single bimolecular reaction such as that 

shown in Equation 4, Scheme 1. 
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Scheme 6-1: The four, sequential, bimolecular reaction steps that lead to complete 

metalation of the apo-αMT1a 

To check that the reaction rate was not dependent on the increasing viscosity of the 

solution, apo-αMT1a was prepared with 237.5 mM KCl and 0.34 M sucrose.  The 

sucrose was prepared by adding 0.582 g of sucrose to 5 mL of protein in 10 mM Tris-HCl 

pH 7.4.  A solution of Cd4-αMT1a in the presence of 5 M Cl- was also prepared.  The 

kinetic analyses (not shown) were then carried out in the presence of high sucrose and 

high salt concentrations. In neither case were the kinetic results were changed. 

6.3 Results 

6.3.1 Metallothionein cysteine modification using p-benzoquinone 
(Bq) 

We have previously described the reaction of Bq with the cysteines of apo-MT and the 

successful use of this method to probe for changes in surface topography as a function of 

As3+ metalation27.  We further demonstrated that a single Bq molecule reacts 

stoichiometrically with each cysteine residue in MT for a total of 11 Bq reacting with the 

11 cysteine residues in -rhMT1a104. In the current study, aliquots of the Bq solution 

were added to the solution of apo-αMT.  ESI-MS was used to determine the extent of Bq 

modification of cysteine side chain residues upon sequential addition of Bq to the MT 

solution (Figure 6-2).  The reactivity of Bq towards free cysteine residues is determined 

by two main factors: (1) the intrinsic nature of the chemistry of covalent bond formation 

between Bq and the thiol and (2) the steric hindrance of the access to the cysteinyl thiol 

introduced by the folding of the protein structure surrounding the thiol 27, 104.  Therefore, 

the differential rate of the reaction between the 11 cysteines of the apo-MT1a  is will 
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depend of the relative accessibility of the thiol and presence or absence of surrounding 

structure. 

 

Figure 6-2: ESI mass spectral data recorded for the stepwise modification of the 11 

Cys in apo-αMT1a with para-benzoquinone (Bq).  The number of Bq bound to the 

protein is shown by the vertical lines from 0 to 11.  The Bq was added stepwise with mol 

eq as shown. 

Figure 6-2 shows a partial set of the experimental ESI mass spectral data for titrations of 

apo-MT under denaturing (i) and native(ii) conditions: (i) at pH 2.8 and (ii) at pH 6.7.  
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Many more steps were recorded than shown here.  Of importance in these two data sets is 

the difference in the distribution of the Bq modified species.  The denatured or unfolded 

(pH 2.8) peptide was modified in the expected manner; that is, a Normal distribution of 

modifications was observed as a function of the mol eqs of Bq added.  The maxima of the 

Normal distribution progresses in an approximately linear fashion as a function of 

increasing Bq addition.  

Under native or folded conditions (at pH 6.7) the data show an important and significant 

change to this trend: the additions of Bq do not result in a linear and progressive increase 

in the Normal distribution maximum.  Rather the relative abundance of modified species 

lags behind the profile of the low pH traces and exhibits a tailing pattern that dips 

significantly, then the relative abundance sharply increases for the fully modified species, 

Bq11 (Figure 6-2, right).  The reaction profile at pH 6.7 becomes so irregular that a 

significant fraction of the completely modified apo-MT, with 11 Bq, is clearly present 

even with just 3.6 eq Bq added, in complete contrast to the profile of the reaction carried 

out at pH 2.8.  By the 7.4-Bq-added point, the 11-Bq species dominates. This nonlinear 

behaviour contrasts sharply the stochastic pattern of the low pH reaction.   

The variance in range of modified species is due to residues in the unfolded protein 

having similar accessibilities. In the folded protein the accessibilities vary and broaden 

the range of species present at any given point. The presence of a folded apo-MT under 

native conditions also introduces another process: the unfolding of the native structure 

due to Bq modification, further explored in the Discussion section. 

6.3.2 Determination of relative rate constants 

The key to the interpretation of the difference in the reaction profiles of the Bq 

modification reactions at low and neutral pH is found in the differences in the 11 relative 

rate constants for the two conditions.  The 11 kn’s of the reaction of Bq with each of the 

cysteines at both neutral and low pH were determined by modeling the 11 sequential 

bimolecular reactions using the computer program HYSS.  HYSS allows for the tuning of 

each of the 11 separate kn’s involved in the complete modification reaction of apo-αMT.  

As a result of the large number of sequential reactions involved in the complete 



139 

 

modification of the cysteines in apo-MT it is unlikely that selection of a series of 

incorrect kn values could give a reaction profile that fits the observed ESI mass spectral 

data as closely as here.  In Figure 6-3A, the reaction profile of all 11 species at low pH is 

plotted with insets that show the predicted mass spectral relative abundance data at two 

stages in the reaction: namely at 3 and 7 equivalents of Bq reacted.  The distribution of 

modified species closely matches the experimental ESI mass spectral data shown in 

Figure 6-2 at the same point in the Bq additions (Figure 5). 

Figure 6-3B shows the modeled reaction profile for the Bq titration at neutral pH.  This 

profile clearly differs from that in Figure 6-3A in that the MT(Bq10) and MT(Bq11) 

species appear much earlier in the titration at pH 6.7.  The green line in Figure 6-3B 

(which represents the relative abundance of MT(Bq11) is the most prominent of the 11 

species by the 6-Bq point compared with only dominating at the 10-Bq point at pH 2.8.  

The insets show the relative abundance of MT species at the stages where 3 and 7 

equivalents of Bq have reacted with the apo-MT illustrating the same tailing pattern at the 

beginning of the titration as seen in the ESI mass spectral data.  At 7 Bq equivalents the 

MT(Bq11) species is the most abundant in solution which mirrors the experimental mass 

spectral data, Figure 6-2.  The modeled data show that the differences in the experimental 

plots are due largely to the differential kn values of each of the 11 separate MT-Bq 

reactions.  

 



140 

 

 

Figure 6-3: Simulations of the protein speciation when 11 mol eq Bq react over time 

with apo-αMT at (A) pH 2.8 and (B) pH 6.7.  Each species of (Bq)n-αMT (n=0-11) is 

shown as it forms then is replaced by the n+1 Bq modified species: apo (black), Bq1 

(red), Bq2 (green), Bq3 (blue), Bq4 (teal), Bq5 (pink), Bq6 (orange), Bq7 (purple), Bq8 

(dark blue), Bq9 (fuchsia), Bq10 (brown) and Bq11 (dark green).  In both simulations, the 

relative abundance of each species, as would be observed in ESI-MS data, is shown at 3 

and 7 molar equivalents of Bq reacted in bar graph format.  The insets model the ESI-MS 

data actually measured and shown in detail in Figure 6-2. The * indicates where the 

abundance of particular species differs between conformations. kn's used: pH 2.8: 3.76, 

3.59, 3.46, 3.40, 3.38, 3.37, 3.29, 3.26, 3.13, 3.01, 2.87 and for the neutral pH: 4.14, 4.04, 

3.98, 3.92, 3.89, 3.85, 3.84, 3.79, 3.80, 3.78, 3.99. It is estimated that the error in these 

values is ±10% the same as from the original ESI-MS data. 

Figure 6-4 assembles the experimental data (black) and simulated data (red) as a function 

of the relative abundance of the Bq-modified species for the titrations carried out at pH 

2.8 (left) and 6.7 (right).  The simulated ESI-MS relative abundance data were obtained 

by extracting slices at each Bq-addition point based on the 11 kn values used in Figure 6-

3.  This Figure provides a direct comparison between the experimental data and the 

model with its simulated spectra.  The model matches the experimental data remarkably 

well, particularly reproducing all the specific features of the experimental data at both 

low and neutral pH closely. 
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Figure 6-4: Comparison between the experimental data (black) and the simulated 

model data (red) for stepwise modification of apo-αMT by Bq at low pH (Left) and 

neutral pH (Right).  The black bars show the experimental ESI-MS spectra recorded at 

the specified Bq addition point.  The simulated model data at each pH are taken from a 

single calculation that requires all 11 kn's to be used. 
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6.3.3 Comparison of the kn Values Used in Generating the Model 
Reaction Profile 

The values of the 22 kn’s (11 for each pH) were compared by normalizing the kn’s of the 

first 10 reactions to the final reaction kn (MT(Bq10) + Bq  MT(Bq11)) for both data sets. 

Our argument for this approach is that it is likely that once 10 cysteine residues have been 

modified by Bq, any specific structure present prior to the reaction will have been 

disrupted. Because we consider that the MT(Bq10) structure is similar under both 

conditions, we consider that the reaction rates of this final modification step, 

MT(Bq10)+BqMT(Bq11), at both neutral and low pH will be similar.  In Figure 6-5 it 

can be readily seen that the normalized ratios of each kn are much higher in the low pH 

data set (black) than the neutral pH data set (red); also, the range of the values are very 

different, ~5% variance at neutral pH versus ~33% variance at low pH. 

 

Figure 6-5: Normalized relative rate constants (kn) for each of the 11 cysteine 

modification reactions at each pH (2.8 and 6.7).  The ratios for the low pH kns are 

shown in black and the high pH kn ratios are shown in red.  The kn were determined 

through simulation of the data in the program HYSS.  The kns are normalized to the kn for 

the last modification reaction: apo‐ αMT(Bq)10 + Bq  apo‐ αMT(Bq)11. 
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The accuracy of the simulation using the HYSS-determined kn values can be seen in 

Figure 6-4 where the simulation and the actual data points from the ESI-MS are plotted 

on adjacent axes.  It can be seen that the simulation tracks the data points remarkably 

closely.  The errors in the ESI-MS data are estimated to be 10%105.  The simulation 

models 11 separate reactions in one calculation; any error in an individual kn value will 

affect the distribution of all species in the simulation.  The close alignment of the 

simulation and the experimental data for the 11 simultaneous bimolecular reactions is 

challenging and the fact that the alignment is so close points to the reasonableness of the 

analytical approach. 

6.3.4 Molecular dynamics models 

Molecular dynamics calculations were used to obtain representative structures of the apo-

MT and the cysteine modified apo-MT for the native and denatured protein (Figure 6-

6).  To mimic the effects of denaturation, the temperature setting was increased from 200 

K to 500 K, a nominal temperature, that results in a much more open structre in the MD 

calculaitons.  In Figure 6-6A, the native protein model, results in a structure that is 

globular making it possible for the cysteine residues to be shielded from the solvent in the 

interior of the globular structure.  This structure closely resembles that reported 

previously by Rigby, et al.19.  The denatured model, in Figure 6-6C, shows a structure 

that is much more string-like where the cysteine residues are not shielded and, therefore, 

will be far more accessible to both the solvent and the incoming Bq molecules. The 

native and denatured models of apo-αMT agree with previous experiments by Liu et al.106 

that showed a decrease in effective diameter of the protein when folding.   The effects of 

the Bq modification of all 11 cysteine residues on the native and denatured structures are 

shown in Figure 6-6B and D.  The Bq modifications have the effect of disrupting the 

globular structure in the native model opening the structure so that it resembles the 

denatured structure.  This provides some support for our proposal that the effect of the 

protein structure on the MT(Bq10) + Bq MT(Bq11) reaction is practically the same at 

high and low pH.  

This is the origin of the reaction profile of the native structure. The modification provides 

a continuum of increasingly unfolded structures when starting with a folded protein. 
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When the initial structure is already unfolded, there is no such continuum and the tailing 

reaction profile is not observed, but rather a profile that exhibits a stochastic pattern 

mirroring a Normal distribution.   

 

Figure 6-6: Molecular dynamics (MM3/MD) calculated structures at the energy 

minima for each of the key structures.  Representations of (A) native apo‐ αMT at 

neutral pH with H‐ bonding properties intact and (C) denatured apo‐ αMT.  The 

structure of apo-αMT with 11 Bq modified cysteine residues in native conditions (B) and 

under denaturing conditions (D). 

6.3.5 Cadmium metalation kinetics of αMT in the presence of a 
chemical denaturant 

The ESI-MS Bq modification data indicated the presence of two families of conformers: 

open at low pH and closed or folded at neutral pH.  However, while metalation at neutral 

pH is possible with both Zn2+ and Cd2+ it is not possible to use low pH to study the 

metalation of the unfolded structure.  To obtain the unfolded conformers we used an 

increasing concentration of a protein denaturant.  Specifically, guanidinium chloride 

(GdmCl) was used as the chemical denaturant as it disrupts hydrogen bonds that may be 
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stabilizing the protein backbone as predicted from the previous modeling studies19.  The 

binding of four divalent metals to the α-domain has been proposed to occur as four 

sequential bimolecular reactions107 corresponding to the addition of each of the four 

metal ions to the protein to form the fully metallated Cd4 species in much the same way 

as the three As3+ ions bind sequentially to apo-MT108. 

CD spectra were recorded at increasing GdmCl concentrations to ensure that the presence 

of GdmCl did not interfere directly with the metalation reaction causing the product of 

the reaction to be altered. Figure 6-7A shows that the effect of increasing [GdmCl] added 

to already folded Cd4- αMT is a slight blue shift of approximately 1-2 nm. This is likely a 

solvent effect to due with the interaction of increasing amounts of GdmCl with the 

exterior of the protein, it did not  effect the overall envelope shape. From this we can 

conclude that the metal core remains intact because we still see the exciton effect from 

the Cd4S11 cluster. The UV-Vis spectrum remained essentially unchanged (S. Fig 13).  To 

ensure the GdmCl did not directly interfere with the metal-induced folding in the 

presence of 6M GdmCl, Cd4-αMT. was demetalated by reduction of pH and remetalated 

by bringing the pH back to 7. The demetalation causes a loss of CD intensity in the S to 

Cd2+ charge transfer region (Figure 6-7B, blue line), which is regained when the pH is 

returned to neutral (Figure 6-7B, green line). The spectra of Cd4-αMT metalated in the 

presence of GdmCl matched that of the already folded Cd4-αMT. 
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Figure 6-7: Circular dichroism spectra of Cd4α-MT in 10mM ammonium formate 

(black lines). (A) Effect on the CD spectrum of the presence of increasing GdmCl 

concentrations. (B) Effect on the CD spectrum of demetalation, followed by re-

metalation in the presence of increasing GdmCl concentrations. (B) Effect on the CD 

spectrum of demetalation, followed by re-metalation in the presence of 6M GdmCl. 

Figure 6-8 shows representative kinetic traces (in black) obtained for the metalation 

reaction in the presence of 2.0, 4.0 and 7.0 M GdmCl at 10 0C.  A slowing of the 

metalation kinetics is apparent by visual inspection of the kinetic traces where the time 

required to reach an absorption plateau, thus signaling the end of the metalation reaction, 

increases from less than 0.2 s in the presences of 2 M GdmCl to greater than 4 s in the 
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presence of 7 M GdmCl.  The kinetic data were fit using the Gepasi simulation program 

as a single bimolecular reaction (red traces) to obtain the observed rate constants (kobs).  

A single bimolecular reaction was used because it resulted in the best fit of the kinetic 

data suggesting that the final bimolecular reaction in the series of four bimolecular 

reactions (one for each addition of the four metal ions) is the rate-limiting step and thus 

the only observable reaction at 250 nm.  This final reaction results in formation of the 

cluster structure and is, therefore, expected to be the slowest step of the 4-step reaction. 
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Figure 6-8: Time dependence of the metalation reaction of apo‐ αMT with Cd2+ as a 

function of an increasing concentration of GdmCl.  The red line indicates the fit 

generated by the program Gepasi.  Each trace has a different X‐ axis range for (A) 0 ‐  

0.8 s; (B) 0 ‐ ‐  2.0 s; (C) 0 ‐  7.0 s). A line marks 0.5 s in each trace to illustrate the 

reduction in the rate as a function of increased GdmCl concentration. The absorbance was 

monitored at 250 nm. 
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The observed k values plotted in Figure 6-9 were fit with a sigmoidal curve emphasizing 

the significant reduction in the second-order rate constant over the narrow range of 3 – 5 

M GdmCl.  From these data, it can be reported that > 4 M GdmCl results in complete 

denaturation of the metal-free protein and no further rate reduction is observed.  The 

noise varies in the plots shown due to the faster reactions being completed close to the 

dead time of the stopped flow mixer, requiring a much shorter integration time. The final 

concentrations of protein differ from the initial due to dilution when mixing with the Cd2+ 

and basic buffer solution but the rate constants have been normalized for concentration. 

 

Figure 6-9: The observed rate constant (kobs) for the metalation of apo‐ α-MT with 

Cd2+ as a function of GdmCl concentration. kobs sharply decreases between 3 and 5 M 

GdmCl as a result of loss of protein structure.  The error in the measurement is higher 

with higher kobs due to the limitations of the stopped flow device and dead time.  The 

mean kobs values are:  60.4±10.3, 57.8±10.1, 50.7±9.8, 39.7±4.8, 27.0±5.3, 3.80±2.9, 

3.74±1.8, 3.32±1.9 106 M-1 s-1. 

6.4 Discussion 

The metal-saturated structure of mammalian metallothioneins is dominated by cysteine-

metal bond formation.  These structures have been studied extensively by NMR, EXAFS 
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and XANES methods96, 101, 109-112.  Despite this extensive literature, the details of the 

stepwise metalation mechanism by which the 7 Zn2+ or Cd2+ ions bind to the apo-MT is 

very poorly understood.  However, it is clear that the metalation reaction follows a 

distinct pathway because in the case of both Cu+ 64, 113and As3+105, 108 kinetic data have 

been reported that are metal-status dependent.  By this we mean that the time dependent 

data recorded during these metalation reactions are sensitive to the metal loading between 

0 metals bound and being fully saturated.   

So, stepping back from the structures of the fully metalated MT previously reported, 

takes us to the question of the dependence of metalation on the structure or conformation 

of the metal-free, apo-MT.  There are few techniques that can give information about this 

hard-to-characterize protein.  Particularly, the conformation of the metal-free, apo-MT, 

because of its fluxional nature110 has not been described extensively. FRET experiments 

provided evidence that at neutral pH both α and βMT fragments retained their compact 

structure upon demetalation94-95 and molecular models114 and ESI-MS data115 support this 

conclusion.  However, it is important to understand the dependence of metalation on the 

conformation of the apo-MT in order to determine metalation mechanism and the 

directors for metal specificity. Moving forward through the metalation process brings us 

to the important role of the partially metalated protein.  This role is directly related to the 

buffering or homeostatic role of MTs.  In that role, the bound metals will shuttle in and 

out of the MT's binding sites.  The conformation of the partially metalated protein then 

becomes the launching point for delivery of a metal to a metal-dependent enzyme or the 

receiving point for uptake of metals from metal-chaperones.  This process has been 

recently discussed for Zn-MT116¸  The structural determinants for this process are 

unknown.  However, elucidation of the metalation and folding mechanisms is critical for 

characterizing the functional role or roles of MT in vivo.  The challenge is in 

understanding the conformational dependences of the stepwise metalation of apo-MT.  

The metal-induced folding of apo-MT is driven by the stepwise formation of the metal-

thiolate cluster within the core of the domain117.  To study the structural properties of the 

apo-MT starting point we used cysteine modification with Bq, and exploited the 

observed differential reaction rate of the Bq with the cysteinyl thiols to provide 
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information on the ease of the modification of the cysteine thiols and, therefore, the 

relative exposure of the thiols to the reactive Bq. 

The Bq reaction profiles with apo-MT are interpreted as being due to random binding at 

low pH giving a Normal distribution of Bq modifications with an increasing manifold 

maximum. At neutral pH a highly selective modification profile was observed and can be 

explained by the differential shielding of the cysteinyl thiols by the globular structure.  It 

is the reaction profile showing all 11 modification reactions that is the key result of this 

experiment: at neutral pH, the MT(Bq11) species is observed after the reaction of only 2-3 

equivalents of Bq.  If the reaction were solely due to probability of the 11 free thiols of 

the apo-MT reacting with the Bq then only a relatively narrow band of cysteine 

modifications should be present at any given point in the reaction.  The observation of the 

MT(Bq11) species with only a small amount of Bq reacted indicates very unusual reaction 

properties that are uniquely present at neutral pH but not at low pH (Figure 6-2).  This 

unusual reactivity at neutral pH can be explained by the cysteinyl thiols in apo-MT 

being shielded by the compact, folded structure of the apoprotein.  However, as 

increasing numbers of Bq molecules react with the cysteine residues in the protein, the 

protein becomes more and more unfolded, exposing the remaining free thiols to the 

solvent and to the incoming Bq. In other words, as the protein is modified, it adopts more 

open sets of conformations which promote Cys-Bq reactivity. 

In Figure 6-5, at neutral pH, we can understand the trend in kn's as a function of Bq added 

is a composite of two opposing trends: (i) the kn's decline as in the low pH reaction and in 

keeping with the statistical loss of reaction sites as a function of increasing Bq and (ii) the 

kn's increase as the peptide unfolds due to structural changes induced by Bq modification, 

exposing remaining free thiols to the solvent.  The starting kn is depressed significantly 

due to the effects of steric shielding, so the span in k1 to k11 is essentially zero. The claim 

that the protein is being unwound by cysteine modifications is supported by molecular 

dynamics models where the native protein under the same conditions but having been 

modified by Bq appears as a string-like structure instead of having a globular structure 

(Figure 6-6).  
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In contrast, during the low pH reaction, there is no structure to shield the cysteinyl thiols 

and this unusual reaction pattern does not occur. At low pH the first kn is much higher 

than in the final reaction because there are 11 thiols that are all equally accessible.  These 

kn values follow the trend reported by Ngu et al.105 for the rate constants for 6 As3+ 

binding to apo--MT in which the rate constants diminished linearly as a function of 

remaining sites for the As3+ to bind to the apoprotein. However, even at low pH we 

observe a pause in the reduction of kn that we interpret as being due to an unfolding of 

any residual structure as a result of the Bq loading at the 5-Bq point.  So, the values of the 

kn for Bq 5, 6 and 7 do not diminish, but then the statistical dependence of the remaining 

Cys dominates the kn value to the last reaction that forms apo-αMT(Bq11)  

6.4.1 Metalation of the α-domain with Cd2+: Testing the Two 
Conformational Classes 

Only one report has been published on the kinetics of the metal binding reaction of metal-

free MT with Cd2+. This report showed that the metalation of the two-domain rabbit liver 

MT2a proceeded at a rate that was immeasurable by stopped-flow techniques at room 

temperature in that the reaction was complete within the 4 ms dead time of the 

instrument.91  Indeed, that report was somewhat surprising in that the reaction was found 

to proceed at a rate much faster than what might be predicted but this fast rate is 

confirmed in this present study. 

A more recent study on the metalation of the individual domains of human MT1a with 

As3+ showed a metalation reaction that proceeded several orders of magnitude slower 

than that observed for Cd2+, with observed rate constants in the range of 0.8 –6.3 M-1s-

1.108  The slow metal binding kinetics permitted the use of selective mass spectrometric 

techniques to monitor the relative formation of the individual domain intermediates in the 

metalation pathway.  This report showed that the metal binding mechanism of As3+ to 

MT followed a series of sequential bimolecular reactions, in which the observed second-

order rate constants decreased for the successive steps in the reaction scheme.  This is 

consistent with a non-cooperative mechanism of metal binding to the each of the domains 

of human MT1a. 107   In the experiments described here, the Bq modification data 

pointed to the presence of different conformational families, a native form at neutral pH 
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and a denatured form at low pH.  This terminology is not really useful for 

metallothioneins because the conformation of the metal-free, apo-MT does not appear to 

be rigid at either pH; rather at neutral pH the structure is more globular and bundled 

whereas at low pH it is more linear. It is the metalation of the protein that introduces the 

rigid structure117-118.  However, it is clear from the experimental and computational data 

that the neutral pH apo-MT structure is more folded and certainly the data described here 

show that it exists in a form that shields the cysteines far more than the conformations 

adopted at low pH do.   

The metalation experiment could not use acidity to change the conformation because that 

would alter the metalation reaction itself, rather we used a reversible chemical denaturant 

added in increasing concentrations to the metal-free protein solution to provide a 

gradually unfolded structure.  A significant result of this work is that the more compact, 

globular conformation metalated significantly faster than the denatured protein.  The fit 

of the data to a single bimolecular reaction suggests that the rate-limiting step is the final 

addition of the 4th Cd2+ to form the metal-thiolate cluster.  This folding step requires the 

rearrangement of the partially metalated Cd3-αMT peptide backbone to allow for 

formation of the Cd4-αMT cluster. This rearrangement of the coordinating cysteinyl 

thiols involves the movement of the bridging and terminal cysteine ligands to the correct 

orientation (Figure 6-1). It is likely that in the globular conformation, the cysteine 

residues are pre-arranged to have to the correct orientation for cluster formation and 

therefore, this final rearrangement step is fast.  The denatured protein may be able to bind 

the first two metals more quickly in a bead-like structure previously reported116, but once 

bridging cysteines are required for the cluster structure, the necessary structural 

rearrangement is much slower.  Although one might expect the open, string-like 

conformation to metalate more rapidly due to the increased accessibility of cysteine 

residues compared to the globular state, the results of the metalation experiment with 

Cd2+ show unambiguously that the opposite is true. These data suggest that the cluster 

formation must be the rate limiting step and that the globular structure of apo-α-MT 

allows for a more rapid formation of this clustered core. 
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The presence of the two-conformational families as descriptions of the structure of apo-α-

MT accounts for both the metalation kinetics and the Bq reactivity data.  A template-

structured apo-αMT retains a globular structure upon demetalation and this globular 

structure accounts for the increased rate of metalation when compared to the unfolded 

protein.  The randomly structured protein is thought to resemble the nascent apo-α-MT at 

a post-translational state prior to initial metalation.  This structure, although present for 

only a short period of time in the cell, may play a relevant role in the redox status, 

signalling and metal homeostasis of the cellular environment119.  Our final consideration 

concerns the metalation mechanism of apo-MT for Zn2+, Cd2+ and Cu+.  The 

conformation of the apo-MT is pH dependent and the pH of the cellular environment 

would be able to confer structural effectors that may favour binding of a specific metal 

species or change the way in which MT interacts with other metal chaperones and 

metalloenzymes.  

6.5 Conclusions 

The conformation of apo-MT has been shown to have a direct bearing on the 

rate of the metalation reaction with Cd2+.  The cysteine modifier benzoquinone was used 

to probe the surface structure of the apo-MT in globular (neutral pH) and unwound (low 

pH) conformations.  The rate constants of the metalation reactions were directly related to 

the folded state of the apo-MT.  The conformation of the protein was assessed by using 

low pH conditions to unfold the protein and then by comparing the modification reaction 

profiles as up to 11 Bq molecules modified the cysteinyl thiols.  The significant 

difference in reaction profiles for the modification of the 11 cysteines at neutral and low 

pH was interpreted in terms of a globular conformation with restricted access to the thiols 

at neutral pH compared with a much more open structure with essentially unimpeded 

access to the thiols at low pH.  Molecular modeling provided structures that illustrated 

the two extremes.  The arrangement of coordinating cysteine residues is a main driver of 

the metalation kinetic rates and the close proximity of the cysteines in the folded, or 

native conformation allows for rapid formation of the Cd-thiol core. This may be 

important in mechanisms of MT-mediated metal detoxification by de novo synthesized 

MT and displacement of other bound metals. 
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Chapter 7  

7 A Simple Metallothionein-Based Biosensor for 
Enhanced Detection of Arsenic and Mercury6 

7.1 Introduction 

Many toxic metals are found naturally in the earth's crust at a very wide range of 

concentrations and are present in many environments. The inherent toxicity of these 

metals and their bioavailability influence the extent to which they pose problems for 

human health as well as to plant and animal life. Two species with significant effects on 

human health are As3+ and Hg2+.1-2 Mercury contamination, which has been well 

documented in Japan, as well as in other countries including Canada, has caused 

thousands of cases of Minamata disease.3 Clearly, contamination from industry, 

agriculture and natural deposition must be monitored in a cost-effective and rapid method 

to prevent future cases.4  Hg2+ is the most common speciation of mercury in aquatic 

systems owing to its solubility and interaction with organic species.5 MT has been shown 

to bind Hg with a high affinity and form stable complexes with a variety of Hg species.6-9 

However, MT does not bind specifically to any one metal due to its fluxional nature and 

lack of defined binding sites that would discriminate against certain metal co-factors.10-11 

Arsenic, in particular As3+, is present at chronic as well as acute levels in drinking water 

in many parts of the world but is not evenly distributed among sources.12 Therefore 

detection and quantification of arsenic in potable water and even water used for irrigation 

that can bioaccumulate in crops, is vital in assessing the safety of various water sources. 

13-14 

                                                 

6
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Reproduced with permission from: Irvine, G.W.; Tan, S.N.; Stillman, M.J. A Simple Metallothionein-
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Areas that are affected by significant arsenic contamination tend to be poor and have 

limited access to expensive and centrally located testing facilities.15-16 A cheap, portable, 

reliable and easy-to-use method to detect arsenic would help in monitoring contamination 

levels in poor, rural areas of South and Southeast Asia. The method must have a low 

detection limit due to the high toxicity of arsenic and mercury. Even small concentrations 

(<50ppb) of arsenic can have serious chronic effects.17-18 Biosensors are a broad category 

of sensors based on biological materials that may meet these criteria.  

Biosensors containing DNA, enzymes and metal-binding proteins offer promising tools 

with which to obtain real-time, in-situ data for heavy metal contamination.19-20 

Metallothioneins (MTs) are a family of cysteine-rich, metal-binding proteins that bind 

soft metals like mercury with particularly high affinity.21-23 Hg2+ has been shown to have 

higher affinity for MTs than other Hg-species.24-25  

At low pH, MTs are able to bind strongly to As3+ although the reaction is slower than 

with native metals (zinc or copper) at neutral pH.7, 26-27 Cd and ZnMT demetalate below 

pH 3.528 leaving the metal-free apo-MT available for the coordination of arsenic 

species.29 The unique properties of MT make it an excellent candidate for increasing the 

sensitivity of electrochemical sensor and efforts have been made to create MT-modified 

electrodes for metal sensing.30-33 The success of many of these devices is limited due to 

the time consuming preparation and expense required for other essential components, 

such as MT-specific antibodies34 or reducing agents.35 In this study our goal was to 

develop a low-cost, environmentally friendly biosensor using MT adsorbed onto paper 

discs and placed on screen printed carbon electrodes (SPCEs) for the detection of arsenic 

and mercury.   

7.2 Methods 

7.2.1 Reagents and instrumentation 

All reagents used were of analytical grade. Electrochemical characterizations and 

measurements were performed using a four-channel system (eDAQ QuadStat, e-Corder 8 

and Echem software, eDAQ Europe, Warsaw, Poland). SPCEs (DRP-110) and the boxed 

connector for SPEs (DRP-DSC) were purchased from DropSens (Asturias, Spain). The 
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working electrode was carbon while the reference and counter electrodes were Ag/AgCl 

and a carbon ring, respectively. Circular paper discs were cut from Grade 1 filter paper 

(Whatman Asia Pacific Pte Ltd., Singapore, Singapore). Standard solutions of 1000 ppm 

As3+ and Hg2+ were diluted with 18 MΩ ultrapure water obtained from a Millipore 

Alpha-Q water system (Bedford, MA, USA) to final concentrations ranging from 1 ppm 

to 5 ppb. Data were plotted on Microsoft Excel and refined using ORIGIN 

(Northhampton, MA, USA). 

7.2.2 Recombinant protein preparation 

Recombinant human metallothionein 1a (MGKAAAACSC ATGGSCTCTG 

SCKCKECKCN SCKKCC SCCPMSCAKC AQGCVCKGAS EKCSCCK KAA AA) 

was expressed with an S-tag in BL21 E. coli cells, as described in detail elsewhere [36]. 

In brief, cells containing the plasmid for the full protein (βα-MT1a) were plated on to 

growth media containing kanamycin from a stock culture stored at −80 °C and grown for 

16 h at 37 °C. The grown cells were then inoculated into 4 × 1 L broth cultures enriched 

with 50 μL of 1 M cadmium sulfate and incubated in a shaker for 4 h until the OD600 

absorbance was 0.8. Isopropyl β-D-1-thiogalactopyranoside (IPTG) was then added to 

induce expression of MT and 30 min later 150 μL of 1 M cadmium sulfate solution was 

added to the broth. The cells were collected 3.5 h after induction, centrifuged and stored 

at −80 °C. 

The recombinant cells were lysed using a cell disruptor (Constant Systems,Daventry, 

UK) shot at 20 k psi. From there, the cell lysate was centrifuged for 1 h to pellet out 

cellular debris. The supernatant was filtered and loaded on to a GE healthcare SP ion 

exchange column with a total volume of 10 mL. The columns were washed with pH 7.4 

10 mM Tris(tris-hydroxymethyl-aminomethane) buffer for approximately 2 h to remove 

loosely bound proteins and other organic compounds. MT was eluted using an increasing 

gradient of 1 M NaCl + 10 mM Tris buffer at pH 7.4. The eluted MT was concentrated 

down to <20 mL and the S-tag cleaved using a Thrombin Clean-Cleave kit as per the 

manufacturers’ instructions (Sigma-Aldrich). The mixture was then diluted, desalted and 

placed on another SP ion exchange column. The S-tag does not bind as strongly as MT 

and thus elutes at low salt concentrations. The protein and S-tag were separated in this 
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fashion. The eluted MT was concentrated to a total volume of 10 mL and lyophilized for 

storage and transport.  

The lyophilized MT was reconstituted in 10 mM ammonium formate buffer and buffer 

exchanged to remove excess salt. The MT solution was checked for oxidation using UV-

Vis spectroscopy and ESI mass spectrometry to ensure the lyophilisation process did not 

cause oxidation of the MT thiols or loss of bound metals. 

7.2.3 Disc preparation and electrochemical measurements 

Filter paper was cut into discs of approximately 8 mm using a hole puncher and 20 μL of 

40 μM reconstituted MT solution was added to the discs. The discs were kept in the 

fridge and allowed to dry under nitrogen to prevent oxidation. Once dry, the discs were 

placed on a DropSens electrode. The integration of the protein laden disc and SPCE has 

been described in detail elsewhere.36 For the Hg2+ experiments measurements were taken 

with an incubation time of 2 minutes to allow for equilibration. 

For the As3+ experiments, HCl was added to the metal solutions to adjust the pH to 2.0. 

This was done to remove and Zn2+ or Cd2+ still bound to MT adsorbed onto the paper 

disc. The equilibration time was longer, up to 30 minutes to allow for complete reaction 

as the kinetics of As3+-MT binding is known to be slow at room temperature.26 

Anodic stripping voltammetry (ASV) measurement parameters for both metal detection 

experiments were as follows: deposition potential -350 mV; deposition time 150 s; 

scanning range between -0.2 and +0.3 V; scanning rate 100 mV/s; step W 20 ms; step H 

2 mV; eChem stripping linear mode. 

7.3 Results 

7.3.1 Biosensor preparation 

The quality of the MT protein adsorbed on to the paper discs was checked first by ESI-

MS prior to and after lyophilization to ensure purity. The protein was examined again 

prior to disc preparation by far UV absorption spectroscopy to monitor for oxidation of 

the thiols. UV spectroscopy is a fast, non-destructive technique for determining MT 
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quality and concentration. The ligand-to-metal charge transfer (LMCT) absorption at 250 

nm was used to calculate protein concentration. For use in the biosensor, it was crucial 

that there was little (<0.15 abs) absorbance at 280 nm which would indicate the presence 

of oxidized thiols (Figure 7-1).  

In the preparation of the MT-loaded discs, it was determined that solutions of 40 μM 

gave the best signal response (Figure 7-2). Adsorption of additional aliquots of MT 

solution did not increase the signal response significantly, nor did the addition of higher 

concentrations of MT. This addition of 40 μM concentration of MT to the paper discs 

results in approximately 8 μg of protein being loaded in total. It should be noted that MT 

contains 20 cysteiene residues and is stored bound to Cd2+ so the thiol and Cd2+ 

concentration loaded on to the disc is 20 and 7 times larger, respectively. 

 

Figure 7-1: Far UV spectra of metallothionein (MT) used to monitor oxidation of 

thiols. Apo-MT (solid black line), Cd-MT (dashed black line) are both fully reduced with 

no thiol oxidation. Aerated MT solutions are shown to illustrate the oxidation: minimal 

oxidation (dashed pink line) and significant oxidation (dotted red line). The ligand-to-

metal charge transfer (LMCT) band and the oxidized thiol absorbance are highlighted 

with arrows. 
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Figure 7-2: Influence of paper disc MT-loading on the peak heights of the SCys 

responses at +0.22 V in the electrochemical scans. The MT concentrations of each of 

the 20 μL aliquots added to the paper discs are plotted on the x-axis (n= 3). 

The blanks discs on the SPCEs did not show any signals in the scans performed. The 

MT-adsorbed discs gave signals slightly above +200mV in both ASV and CV scans, 

likely due to the presence of free thiols in the protein. There was also a reduction peak 

around -50mV in the CV scan which corresponds to the cysteinyl thiols in MT. The 

heights of the peaks are relatively small and this is due to the presence of Zn/Cd2+ in the 

isolated, lyophilized protein masking the thiol signal.  The presence of these bound 

metals is essential to the stability of the protein for longer periods of storage, as apo-MT 

degrades more rapidly and is prone to oxidation.37 Compared to apo-MT, Cd/Zn-MT can 

be stored as a frozen solution or lyophilized and reconstituted after 2-4 years of storage 

without significant degradation. 
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Figure 7-3: Representative electrochemical measurements of MT-loaded and blank-

paper discs on SPCEs with 25 μL of deionized water added. (A) Cyclic voltammetry 

(CV) scan of MT-adsorbed disc; (B) anodic stripping voltammetry (ASV) scan on MT-

adsorbed disc; and (C) ASV scan of blank paper disc. The ASV and CV scans of the 

blank paper disc were similar and showed no distinct peaks. 

7.3.2 Arsenic detection using anodic stripping voltammetry (ASV) 

The paper discs on the SPCE connected to the DropSens device, coupled with the eChem 

software was able to detect As3+ reasonably well in the control experiments, achieving a 

strong signal down to a concentration of 100 ppb. The limit of detection (LOD) (3S/N) 

calculated for the control paper disc on the SPCE was 69 ppb. For reference, the WHO 

recommended limit for arsenic in drinking water is 10 ppb. When the MT was physically 

adsorbed on to the paper discs placed over the SPCEs, the sensitivity was increased and 

the signal intensity amplified greatly. This can be seen in Figures 7-4 and 7-5, where the 

MT disc achieved a three-fold signal enhancement, which results in a detection limit 
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below 20 ppb As3+. LOD (3S/N) was calculated to be 13 ppb for the MT-adsorbed discs 

on the SPCEs. 

 

Figure 7-4: Typical ASV scans using blank paper discs on screen-printed carbon 

electrodes (SPCEs) with 25 μL of arsenic solutions of varying concentration added. 

The arsenic concentrations are indicated above their respective trace. Inset in the top left 

is the linear response curve for the blank disc set-up. 

While this is still higher than the recommended limit for drinking water, it is low enough 

to potentially be useful in screening for arsenic contamination in high risk areas. For 

example, the Cambodian recommended limit is 50 ppb with some wells having 

concentrations as high as 3.5 ppm (to emphasize the danger, 3500 ppb).38 In Bangladesh, 

43% of wells have concentrations exceeding 50 ppb.17 The incorporation of the cysteine-

rich metallothionein pushed the LOD to concentrations below that typically found in 

areas of concern. 
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In addition to an increase in signal intensity, the interactions between the arsenic and 

MT-disc shifted the peak intensity to a more negative potential. The control disc with no 

MT adsorbed showed As(III)-dependent peaks at approximately +160 mV (Figure 7-3) 

which is very similar to that reported in the literature with more sensitive electrodes.39-41 

The potential of As3+-stripping in the MT-modified disc scans was shifted to 

approximately -60 mV and this type of shift is consistent with coordination by thiol42 and 

protein modified electrodes.43 

 

Figure 7-5: Representative ASV scans of MT-adsorbed paper discs with 25 μL 

droplets of varying arsenic concentrations added. The concentrations are labeled 

above their respective traces. Inset in the top right is the linear response curve for the 

MT-disc set-up. 

7.3.3 Mercury detection using ASV 

In addition to As3+ which selectively binds to MT at low pH, we sought to leverage the 

higher affinity that MT generally has for Hg2+ over Zn2+ and Cd2+, as similar strategies 
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have been previously tested for MT-based metal detection 44. Since the affinity for Hg2+ 

is higher than that of the native metals bound to MT, Hg2+ will displace these metals 45. 

In addition, both zinc and cadmium require more negative plating potentials than were 

applied during this experiment, limiting their interference in this device. Upon lowering 

the pH for arsenic detection or the displacement by mercury, the interferent (Cd/Zn) 

concentration is approximately 280 μM. 

 

Figure 7-6: Representative ASV scans of blank paper discs on SPCEs with 25 μL 

aliquots of Hg2+ solutions of concentrations 20, 50 and 200 ppb. The concentration 

corresponding to each trace is labeled near the peaks at +0.1 V. Inset in the top left corner 

is the linear fit of the control data (n=3). 

Below 20 ppb detection of Hg2+ became impossible even with the enhancement from the 

MT-adsorbed discs. A comparison of Figures 7-6 and 7-7 show the approximately three-

fold enhancement of the peak current achieved by the MT-disc. The WHO guideline 

upper limit for mercury in drinking water is six parts per billion, meaning the device is 
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not achieving the sensitivity required to detect such low concentrations, especially in 

more natural samples with organic interferents. However, it may be more useful in 

monitoring area suspected of contamination which typically have higher concentrations 

that the recommended limit 46. The LOD (3S/N) for the MT-modified paper disc was 45 

ppb and 120 ppb for the blank paper disc. 

The peak current for the Hg2+ signals was shifted to a more negative potential (Figure 7-

7) similar to the shift in the As3+ signal seen in Figures 7-4 and 7-5. The peak seen 

around +200 mV in the experimental trace is from the thiols in the protein and was also 

observed in the control tests where deionized water was added to the MT-discs (Figure 7-

3). 

 

Figure 7-7: Representative ASV scans for MT-loaded discs with 25 μL drops of 

diluted Hg2+ standards with concentrations of 20, 50 and 200 ppb. The concentration 

is indicated on the graph near the Hg2+ peaks around −0.02 V. The peaks near +0.2 V 

correspond to the thiols of metallothionein. Inset in the top right corner is the linear fit of 

the data (n = 3). 
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The linearity over the range of mercury concentrations typically found in water 

contaminated by industry is adequate since even polluted waters have concentrations up 

to 200 ppb 46-48. While the sensitivity of the device is not ideal for sensing lower 

concentrations of Hg2+ typical of non-industrially polluted waters, we have demonstrated 

the versatility in our approach in incorporating a protein known to interact with many soft 

metals and metalloids that cause environmental health problems. MT is able to enhance 

the signal of both metals tested due to its promiscuity of metal binding and lack of 

discriminatory metal binding sites. 

7.4 Discussion 

7.4.1 MT biosensors 

The potential of MT-incorporated devices for sensing a wide range of metals is 

summarized in Table 2, which lists examples of various metallothioneins being used to 

enhance detection methods. The advantage of this strategy is that MT can enhance 

methods with specific advantages such as specificity, low detection limit, portability or 

low-cost. In our paper disc/SPCE sensor, we enhance a ‘green’ paper matrix with MT to 

produce a more sensitive As3+/Hg2+ sensor. The low-cost and environmentally friendly 

design of the sensor is greatly enhanced with the protein modification because the 

detection limit pre-MT adsorption is much higher than what would be considered 

acceptable. 

By modifying the conditions under which the ASV scans are run, we can use MT as an 

effective and selective pre-concentration agent for both As3+ and Hg2+. Thus, the same 

device could be used for different assays depending on the type of contamination 

suspected in the given area. Table 2 shows a summary of the different metals sensed by a 

number of MT-based biosensors. It is likely a simple MT biosensor would be able to 

measure all the metals listed in Table 2, but slightly different strategies or configurations 

might have to be used. By using different MT isoforms 49 or a rational design approach 50-

51 to increase the binding affinity for certain metals, a device could be customized for any 

soft metal. 
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Table 7-1: Summary of MT incorporated biosensors 

Metal 
Method/Electrode 

Type 

Modifiers and Extra 

Components 

Detection 

Limit 

Refer

ence 

Cd, Zn, 

Ni 
SPR 

MT on carboxymethlyated 

chips 

1–2.25 

ppm 
[21] 

Cd, Zn HDME TCEP 5.6 ppb [41] 

Cd Fluorescence 
Zn-Chelex resin, Rh-labelled 

MT 
50 ppb [36] 

Pt 

(cisplatin) 
HDME TCEP 10 ppb [23] 

Ag Carbon paste anti MT-antibodies 0.05 ppb [25] 

Pd HDME TCEP 10 ppb [42] 

As Paper disc/SPCE MT-adsorption 13 ppb 
This 

work 

Hg Paper disc/SPCE MT-adsorption 45 ppb 
This 

work 

Hg, Cu, 

Zn, Cd 

Modified gold 

electrode 

Coupling agents, bacterial MT, 

continuous flow set-up 

1 × 10−15 

M 
[43] 

Another strategy would be to incorporate apo-MT to eliminate the need for the sensed 

metal to have a much higher affinity than the endogenous metals (Cd/Zn). This would 

pose additional engineering constraints due to the high oxygen sensitivity of metal-free 

metallothionein and would require more extensive sample preparation to remove 

dissolved oxygen 52-54. 
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7.5 Conclusions 

Adsorbing the cysteine-rich protein metallothionein on to paper discs provided a simple, 

specific, sensitive and inexpensive sensor for the toxic metals As3+ and Hg2+. 

Metallothionein incorporation allowed the SPCE/paper disc system to sense As3+ at low 

enough concentrations to be potentially useful in environmental monitoring. This signal 

enhancement is likely due to pre-concentration effects of the MT-metal coordination. Our 

work shows that even simple physical adsorption of the protein onto an inexpensive 

SPCE/paper disc can dramatically increase the signal associated with a metal of interest 

without the need for costly coupling reagents or expensive and complicated set-ups. 
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Chapter 8  

8 Conclusion7 

 

8.1 Metal binding mechanisms of MT 

Metallothioneins (MTs) were initially isolated through repeated enrichment of cadmium-

containing fractions of horse kidney cortex.1 As a result the main function of MTs was 

originally thought to be heavy metal detoxification. While this remains true, a number of 

other functions have since been proposed for MTs including maintenance of zinc and 

copper homeostasis and significant contribution to cellular redox chemistry due to its 

abundance thiols which are easily oxidized.2 The capacity to bind up to 7 zinc or 

cadmium ions and up to 20 monovalent metals, such as copper and silver has confounded 

the determination of the metalation mechanisms. The number of structural conformations, 

coordination modes and isoforms of MTs has prevented agreement on an overarching 

binding mechanism. This diversity of metalated structures and coordination geometries 

does not even begin to include the ambiguities introduced by mixed metal species. 

There has been considerable debate surrounding the nature of the zinc and cadmium 

binding mechanism of MT, specifically the long studied cadmium mechanism. Cadmium 

was historically used as a proxy for the more biologically relevant zinc due to its 

amenability to investigation by absorption and CD spectroscopy, as well as 111,113Cd 

NMR.3-6 With the advent of ESI-MS, more detailed metalation studies could be 

performed but conflicting results only appeared to add to the confusion surrounding the 

true mechanism.7-9 

                                                 

7 A version of this chapter has been published: 

Irvine, G.W. and Stillman, M.J. (2017) Residue modification and mass spectrometry for the investigation 

of structural and metalation properties of metallothionein and cysteine-rich proteins. Int. J. Mol. 

Sci. 2017, 18(5), 913 doi:10.3390/ijms18050913 

Copyright 2017 MDPI 
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One of the main focuses of this thesis was to investigate the binding mechanisms of zinc, 

cadmium and arsenic using ESI-MS techniques to determine the binding mechanisms 

associated with their coordination and more importantly establish the binding constants 

that govern the reaction. 

8.1.1 A non-cooperative mechanism? 

The non-cooperative mechanism for Cd2+ determined via ESI-MS was first reported in 

200710 and then confirmed by Sutherland and coworkers one year later for MT1a.7 but 

subsequent studies using the same method with MT2a showed a more cooperative 

binding mechanism.9 Although the authors described the mechanism as cooperative, 

significant amounts of intermediate species were formed making this description only 

partially accurate. The mechanism for MT2a clearly favoured the formation of Cd4- and 

Cd7-MT clusters which could be accurately described as a mixed mechanism. These 

studies highlighted potential isoform specific differences in binding mechanism. 

A single NMR study from 1988 indicated a pH dependence in the cadmium cluster 

formation of rabbit liver metallothionein.11 The stability of the cluster allowed for sharp 

NMR signals from the α-domain below neutral pH, whereas a broad indistinguishable 

signal was observed at higher pH.11 While cluster formation refers more to the structure 

formed by MT and not the mechanism, the two are inexorably linked and this was 

demonstrated in Chapters 2 and 3. The data presented in these two Chapters show that 

both cooperative and non-cooperative binding mechanisms are possible for MT1a 

binding of zinc and cadmium. This is likely true for all mammalian isoforms as their 

sequence and binding properties are very similar. 

Chapter 2 highlighted the differences between cadmium and zinc binding, while both 

were pH dependent, zinc binding was only semi-cooperative at low pH around 5.0 

whereas cadmium binding was fully cooperative at that pH and remained at least semi-

cooperative until neutral pH. We were able to specifically measure the pH at which the 

binding mechanism changed, and this switch occurred rapidly. 
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The lack of information with regard to location of the metals within the protein was a 

limitation of the experiments chronicled in Chapter 2. In Chapter 3, the isolated domains 

were investigated for pH dependence of cadmium binding and it was found that the α-

domain followed the pH dependence of the full-length protein closely although the 

binding mechanism of the isolated β-domain was also pH dependent. The specific 

crossover point which we termed the "pKcluster" was 7.0 for the α-domain and 5.8 for the 

β-domain. Chapters 2 and 3 were able to reconcile years of conflicting reports on the 

binding mechanism and showed that both can be correct depending on pH conditions. 

 

Figure 8-1: Potential metalation pathways and subsequent deconvoluted mass 

spectra. 

Significant progress had been made in determining the arsenic binding mechanism prior 

to the work reported in this thesis, with the establishment of kinetic and thermodynamic 

parameters associated with As3+ binding to MT.12 New information regarding the binding 

mechanism was presented in Chapter 4 which reinforced the strong evidence of only non-
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cooperative binding modes for As3+ binding. We are not aware of any reports indicating 

the opposite. More specifically, at all points in the step-wise metalation 3 cysteine 

residues are involved in the coordination of each arsenic ion, allowing the 

accommodation of 3 As3+ per domain. In the α-domain 2 cysteine residues are not 

involved in As3+ coordination and remain free under arsenic saturation conditions. 

8.2 Cysteine alkylation 

In Chapter 4 we introduced the method of cysteine modification through reaction with the 

alkylating reagent p-benzoquinone (Bq) for structural studies of MTs. First investigated 

for the ability to "count cysteines", this method proved to be useful for more than just 

detecting the presence of uncoordinated, free thiols.   

First of all any oxidation of the thiols in MT can be detected upon complete reaction 

since the end point of the reaction will be 2 modifiers less or more depending on the 

extent of the oxidation. Extent of Cys-Cys bridges formed in the peptides in solution can 

be measured directly. More interesting is the reaction profiles of cysteine modifiers that 

can inform on the solution structure of MTs due to reaction differences between 

conformers. Both of these applications are explored in Chapter 4, with surprising results 

concerning the non-Normal distribution of modified species under denaturing conditions. 

As3+ is able to bind to MT under low pH conditions and causes considerable metal-

induced folding, indicating metal binding anchors the structure of partially metalated 

MTs and is a more important factor than H-bonding.  

Due to concerns over these patterns being specific to the Bq modifier, other cysteine 

alkylating reagents were tested in Chapter 5, N-ethylmalemide (NEM) and iodoacetamide 

(IAM). These three modifiers have different sizes, hydrophobicities and reaction 

mechanisms that are well characterized.13-15 

 From these tests it was clear that larger and more hydrophobic modifiers like Bq and 

NEM resulted in cooperative-like modification profiles, whereas the smaller, more 

hydrophilic IAM resulted in Normal distributions of varying width. This is explained by 

the more disturbing nature of Bq and NEM to the compact, native conformers of apo-
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MTs. These studies underscore the importance in choice of alkylating reagent depending 

on the experiment. To probe structure, a noticeable change must occur and for these 

studies larger modifiers are more suited. For studies where protein conformations must be 

preserved, IAM is more suited, provided the studies are being done within the effective 

pH range of the reagent. The pH ranges were also reported, with NEM being the most 

robust, effective over the entire range tested (2.8-7.4) whereas IAM binding kinetics were 

prohibitively slow below a pH of 5 and Bq ineffective above neutral pH. 

 

Figure 8-2: Cysteine alkylating reagent accessibility to the compact and open 

conformers of apo-MT 

8.3 Importance of the structure of apo-MT 

The conformation adopted by MT is one that is fluxional and ill-defined but we have 

shown in Chapter 6 it is essential for metalation kinetics. This is somewhat counter-
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intuitive, since a more open conformer where the cysteine residues are most exposed to 

the solvent and incoming metal ions might be expected to metalate faster. However, key 

to the metalation mechanism of MTs, especially when binding cadmium, is the formation 

of cadmium-thiolate clusters which involve both bridging and terminal cysteine residues.5 

The more compact conformer(s) found under native conditions, while it may not 

represent all conformers found under these conditions,16 likely orients the cysteine 

residues in a way that is "primed" for metal binding and cluster formation. That is, the 

cysteine residues are aligned so that the bridging cysteines are in, or close to, the optimal 

position to form a bridging bond between two cadmium ions. Once formed, the 

cadmium-thiolate cluster is known for its stability and amenability to determination by 

113Cd NMR and other methods.4, 17-19 

To better understand the origin of these differential modification patterns, the reaction 

was modeled using a series of sequential, bi-molecular reactions which gave simulated 

mass spectral data that included species abundances at different points in the reaction. 

When the modeled Ks of the reaction reproduce the experimental mass spectra to a high 

degree of similarity, the relative values of the Ks can be compared and conclusions 

drawn. In the data presented in Chapter 6, the Ks revealed a series of declining values 

under denaturing conditions which is expected as the loss of binding sites as the reaction 

proceeds results in the statistical decrease of binding constants. Under native conditions, 

the relative constants do not decrease but increase slightly. This can be explained by the 

opening or denaturation of the compact conformers by the modification of cysteinyl 

thiols by the bulky Bq molecule. There are two major factors in addition to the intrinsic 

chemical nature of the reaction that govern the rate at which cysteine residues are 

modified: 

(1) The statistical availability of free thiols 

During the early stages of the modification of a peptide, the abundance of free thiols 

makes a reaction more likely since there are more "binding sites" for the modification 

reagents. Since there are more places on the protein that are capable of reaction, a 

successful collision between a free cysteine and a alkylation reagent is more likely. As 
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the cysteine residues are modified, the likelihood of a successful collision decreases due 

to the increasingly rare potential reaction sites on the protein. 

(2) The steric accessibility of free thiols 

It is well-know that the semi-hydrophobic nature of cysteine allows for marked 

differences in solvent accessibility depending on the folded state of the protein.20-23 The 

more solvent accessible of these residues react at a much faster rate.20 During the 

modification reaction of MTs, the compact conformer extends, exposing previously 

buried residues and increasing their solvent accessibility and therefore, the rate of 

modification. This is likely the origin of the semi-cooperative nature of the modification 

reaction of MTs under native conditions. 

8.4 Insight into potential metal sensing applications 

The intimate knowledge of the arsenic binding properties of MT allowed us to design a 

simple, "green", electrochemical MT-biosensor. The adsorption onto paper discs 

provided a simple and "green" platform for electrochemical detection using anodic 

stripping voltammetry and carbon paste electrodes. This was achieved without the need 

for complicated and expensive coupling reagents or electrodes.  

The set-up leveraged the unique binding properties of both arsenic and mercury to MT. 

As3+ is one of only a few ions that can strongly bind to MT at low pH (<4) so by adding 

HCl to the sample, the device was rendered selective for As3+ and removed interference 

from Cd2+/Zn2+  that the MT is co-purified with. Mercury has a much higher binding 

affinity to MT than most other metals and is able to displace bound Cd2+/Zn2+.   

Signal enhancement of arsenic and mercury was 3-fold for each metal and was likely due 

to the preconcentration effects of MT. This signal amplification allowed the limit of 

detection to be pushed down to a level where the simple device could potentially be used 

for arsenic contamination monitoring. We also demonstrated that with slight changes in 

protocol the MT-based biosensor was able to detect and amplify the signal of multiple 

metals of concern. This application could likely be extended to other metals that have 

been successfully tested with other, more complicated MT-biosensors.24 
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Figure 8-3: Schematic of the MT-biosensor preparation 

8.5 Biological relevance of MT structure and metalation 

With the data presented in the preceding Chapters, it is worthwhile to put all of it into 

context. How do these findings impact our understanding of MT's role in a biological 

context? 

With respect to the pH dependence of the metal binding mechanism, it is clear that zinc 

binding is a non-cooperative process in a biological environment. This makes sense in the 

context of MT's role as a homeostatic zinc buffer, requiring constant metal coordination 

and release. Also the propensity to form terminally coordinated structures as opposed to 

metal-thiolate clusters allows for more precise control of metal release with the lability of 

individual metal ions disconnected from the others coordinated within the protein. 
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For cadmium binding, only slightly acidic conditions are required for cluster formation 

and these are found in many sub-cellular compartments, including those involved in 

facilitating protein folding and the breakdown of wastes and toxic products.25 It is also 

known that clustered Cd-MTs are resistant to degradation and MTs partially-metalated 

with cadmium will be digested until the metals are shuffled into one domain and form a 

resistant cluster. The high toxicity of Cd-MTs in the renal proximal tubules is a major 

problem in kidney disease and these species are very long lived.26-27 Cells in the renal 

proximal tubules are known to vary widely and but have intracellular pH well below 7.4 

due to the constant transport oh HCO3
-/H+.28-29 Clustering in the α-domain of Cd-MTs 

may be the source of the longevity of these toxic species. 

Accessibility of cysteinyl thiols is also biologically relevant due to the major role MT is 

thought to play in cellular redox chemistry.2, 30-31 The potential shielding of these thiols 

may lessen the potential impact that apo-MTs have on the redox chemistry of the cell, 

especially when in competition with smaller reducing agents such as glutathione. 

8.6 Final remarks 

The data presented in this thesis provide reconciliation of previously conflicting reports 

on the metal binding mechanisms of MT. Both cooperative and non-cooperative 

mechanisms can accurately describe the binding of cadmium to MTs, depending on pH 

conditions. This is also true for zinc binding, but in a biologically relevant range above 

pH 5.5, the most truthful description is that of a non-cooperative mechanism. The power 

of ESI-MS for resolving a multitude of species in solution was essential in the 

determination of the true binding mechanism and in the insights gained into apo- and 

partially metalated MT structure. 

The novel method of covalent modification of cysteine residues applied to MTs proved to 

be useful in probing many aspects of the structure/function of the protein. Not only were 

we able to "count" the free cysteines to propose an unambiguous binding mechanism for 

As3+ but also we were able to visualize conformational preferences and protein-protein 

interactions through the reaction profiles of the cysteine modifiers. The lack of 

description of apo-MT structure over the many years of study of this protein emphasizes 
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the difficultly and lack of techniques with which to probe the structures of hard-to- 

characterize proteins. The powerful resolution of ESI-MS coupled with the lower 

resolution cysteine probe allowed a reasonable description of conformational preferences 

of apo-MT and highlighted the necessity of even loosely defined structure in the kinetics 

of metal binding. The work in this thesis highlights the need for multi-method analysis in 

the description and characterization of disordered proteins. 
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