
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-10-2017 12:00 AM 

Multi-objective Optimization of Industrial Ammonia Synthesis Multi-objective Optimization of Industrial Ammonia Synthesis 

Stanislav Ivanov 
The University of Western Ontario 

Supervisor 

Ajay Kumar Ray 

The University of Western Ontario 

Graduate Program in Chemical and Biochemical Engineering 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Stanislav Ivanov 2017 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Catalysis and Reaction Engineering Commons 

Recommended Citation Recommended Citation 
Ivanov, Stanislav, "Multi-objective Optimization of Industrial Ammonia Synthesis" (2017). Electronic Thesis 
and Dissertation Repository. 4489. 
https://ir.lib.uwo.ca/etd/4489 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4489&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/242?utm_source=ir.lib.uwo.ca%2Fetd%2F4489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4489?utm_source=ir.lib.uwo.ca%2Fetd%2F4489&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

Ammonia is widely used in different applications - as an intermediate product in produc-

tion of agricultural fertilizers, inorganic salts and explosives, or used directly as a solvent

or refrigerant. The broad domain of applications, especially its importance for agricul-

ture, puts ammonia synthesis in the basis of chemical industry. However, the process is

mature and well developed, the improvements to be made towards it are still significant

due to growing demand.

The use of mathematical models in chemical engineering has been extensively applied

towards optimization of industrial process and proven itself to be an efficient technique.

If done properly, it allows for finding best process conditions avoiding timely and costly

experiments.

The objective of this thesis work is to perform optimization study of industrial am-

monia synthesis and discover operational and/or design modifications to be done in order

to improve performance of the process. Two parts of industrial ammonia synthesis have

been considered - the converter carbon dioxide removal from process gas.

Firstly, the mathematical model for simulation of the industrial converter was de-

veloped. In order to fit main model parameters, the large array of industrial data was

studied by means of cluster analysis. It allowed to extract the smaller subset of data to

perform model fitting followed by validation. The simulations showed a good consistency

between model and observed instrumentation reading from the ammonia plant. Further,

few case studies were performed in order to find optimal set of process parameters allow-

ing for improved performance. The main controlling parameters are temperature of feed,

converter pressure, ratio of quenching stream to primary feed and catalyst distribution

of among beds.

Secondly, an optimization of carbon dioxide removal stage from process gas was per-

formed. The aim was to improve solvent recovery and boost carbon dioxide liberation.

Ranking of major process controlling parameters was performed with random forest al-
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gorithm and Boruta. It allowed to narrow down the number of model parameters from

more than 10 to 4. Further optimization search allowed for finding the best combination

of these parameters to achieve better solvent regeneration.

Keywords: Ammonia synthesis, Modelling, Multi-objective optimization
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”...where was no one who knew for certain what happiness is and what exactly is the
meaning of life. And they had accepted as a working hypothesis that happiness lies in
the constant cognition of the unknown, which is also the meaning of life.”

”Monday Begins on Saturday”, Arkady and Boris Strugatsky
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Chapter 1

Introduction
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2 Nomenclature

Nomenclature

DM decision maker

g inequality constraint

G goal in goal programming method

GA genetic algorithm

h equality constraint

I objective function

J number of equality constraints

K number of inequality constraints

lstr length of binary string

MOO multi-objective optimization

n number of objectives

R penalty parameter

S decision domain

SA simulated annealing

SGA simple genetic algorithm

SOO single-objective optimization

x decision vector
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Greek letters

δ deviation

ǫi constraint

Ω penalty term

1.1 Preface

Ammonia is one of major chemicals produced in the industry. It has a variety of appli-

cations: for manufacturing of inorganic salts, polymer fibers, explosives, etc. (Fig. 1.1)

Especially, it is essential chemical in production of agricultural fertilizers: as an interme-

diate in urea synthesis or used directly as liquid. It is hard to diminish the importance of

ammonia for agricultural sector all over the world, and in North America in particular.

Figure 1.1: Applications of ammonia1

Ammonia is produced all over the world. Largest gross producers are Asian countries

and former Soviet Union. Middle East and North America are not far behind. However,
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not all the regions are self-sustainable supply-wise. North America, even having a large

production, is still net importer of ammonia.

Moreover, ammonia market is continuously growing. Total world ammonia demand

has been steadily increasing over last decade at rate of 2.2 % per annum.2 In order to

satisfy for the demand of an already deficit market it is imperative to go both ways

simultaneously - build new facilities as well as intensify production at existing ones.

We put planning, design and development of new production facilities outside of the

scope of this work, while focusing on enhancements in ammonia synthesis. As with any

chemical engineering process, there is a vast number of ways to improve performance of

an industrial process. Regardless of the objectives for improvement, this may be done

through, among others, physical modelling, data analysis and data-based modelling, first-

principle mathematical modelling and numerical optimization.

One can not neglect the power of process modelling and numerical optimization for

chemical engineering processes. Developing robust models allows for accurate process

simulation. Therefore, one can perform a comprehensive study of a process without

expensive physical modelling and/or use the model for the numerical optimization to

boost up process performance.

Moreover, since major chemical engineering plants introduced digital process control

for continuous operation a large amount of data has become available. It is wise to take

advantage of the fact to assist for development of more accurate and relevant models or

improve existing ones.

1.2 Overview of Industrial Ammonia Synthesis

1.2.1 Ammonia properties and synthesis reaction

Ammonia is a chemical compound formed by one nitrogen and three hydrogen atoms.

Geometrically, ammonia molecule is a tetrahedron with atoms in its apices (Fig. 1.2).
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Figure 1.2: Ammonia molecule configuration

Table 1.1: Equilibrium fraction (% mol.) of ammonia in stoichiometric mixture H2:N2

t, °C
Pabs, MPa

5 10 20 30

300 39.38 52.79 66.43 74.20
350 25.12 37.60 52.17 61.31
400 15.23 25.15 38.53 47.86
450 9.12 16.23 27.15 35.57
500 5.56 10.39 18.61 25.54

The angle between nitrogen and hydrogen atoms is 107 °. This along with nitrogen’s

electronegativity makes molecule highly polarized with dipole moment 1.5D. In many

aspects ammonia behaves similarly to water in chemical reactions, both are diamagnetic

and able to dissolve many materials.1

At standard conditions (15 °C and 101.3kPa) ammonia is transparent gas with pun-

gent odor. It is a highly volatile chemical compound with vapour pressure 728.3 kPa at

standard temperature. Ammonia is synthesized through the following reaction:

N2 + 3H2 2NH3, ∆H0
298 = 46.22 kJ/mol (1.1)

The reaction 1.1 is limited by equilibrium, therefore does not go all the way to the

product. Ammonia synthesis reaction equilibrium has been extensively studied and data

on equilibrium is available for use.1,3 As one can see from Table1.1, lower temperatures

and higher pressures are much in favour of ammonia equilibrium.
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However, the reaction is kinetically slow. Therefore, elevated temperatures are nec-

essary to provide significant yield and make synthesis process somehow efficient. So

equilibrium-wise, Eq.1.1 is carried out in such conditions that compromise between high

thermodynamic equilibrium ammonia concentration and fast reaction rate. Also, the

reaction’s exothermicity plays a role as liberated heat slows it down at any process con-

ditions.

Even though, the reaction is exothermic and supposed to react spontaneously, it

does not happening due to high energy input required to overcome activation barrier.

One of major reason is that nitrogen as a molecule is highly inert and does not easily

involved into chemical interactions. Energy of its dissociation is around 941 kJ/mol. The

activation energy itself for homogeneous reaction of nitrogen and hydrogen is reported

in the range 230-420 kJ/mol. In order to overcome this barrier the temperatures of

650-1000 °C are necessary.1 However at this conditions, yield of ammonia is low due to

reaction equilibrium. Therefore, in order to make process feasible at reasonable industrial

condition the presence of catalyst is necessary to reduce energy barrier of reaction4.

Activation energy of ammonia synthesis over heterogeneous catalysts is fairly lower -

around 100-160 kJ/mol. This drastically reduces reaction temperature down to 250-400

°C. Historically, the synthesis catalysts used for industrial scale production have predomi-

nantly been iron-based with promoters from non-reducible oxides (i.e. CaO,Al2O3,MgO,SiO2).

Iron is used in forms of Fe(II)-Fe(III) oxides mixtures in about even ratio. Later genera-

tions of catalysts have been based on ruthenium as an active metal. Ru-based catalysts

appeared to be more active and able to reduce process temperature and pressure even

further. However, majority of ammonia plants nowadays are still utilizing Fe-based cat-

alysts.

Ammonia synthesis is a mature process and extends back over decades, but theres

still no consensus about reaction mechanism on the surface of catalyst. There have been

many studies conducted to investigate mechanism of reaction 1.1 on heterogeneous solid
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catalyst.5 According to the most common theory found in literature, it is a surface based-

reaction where nitrogen dissociation is considered as a rate-limiting step. Hydrogen and

nitrogen molecules are both adsorbed on catalyst surface and then dissociate to atomic

state. It can be summarized as a number of following steps1:

H2 + ∗ ⇄ 2Hadsorbed

N2 + ∗ ⇄ N2,adsorbed

N2,adsorbed ⇄ 2Nadsorbed

Nadsorbed +Hadsorbed ⇄ NHadsorbed

NHadsorbed +Hadsorbed ⇄ NH2,adsorbed

NH2,adsorbed +Hadsorbed ⇄ NH3,adsorbed

NH3,adsorbed ⇄ NH3 + ∗

(1.2)

A number of kinetic rate expressions were proposed in the literature to describe synthesis

reaction.6–10 The Temkin equation (Eq.1.3) is found to be most accurate and applicable,

therefore used for the model. The equation is able to reflect equilibrium limitations as

well as the reaction’s mechanism.

RNH3
= k2

[

K2
afN2

(

f 3
H2

f 2
NH3

)α

−

(

f 2
NH3

f 3
H2

)1−α
]

(1.3)

1.2.2 Ammonia synthesis technology

Within industrially feasible operation range, production of ammonia is limited by un-

favourable equilibrium of the reaction, so only around 15-30 % mol. NH3 is possible to

obtain per converter pass. Therefore, use of recycle stream is necessary to separate am-

monia from unconverted gas. Then the stream is combined with a make up and returned

to a converter. Secondly, due to presence of inerts with a loop (mostly CH4 and Ar),

part of recycled stream is withdrawn to purge stream. Moreover, due to large amount

of generated heat, synthesis loop is equipped with heat recovery system. However, the

actual loop arrangements varies for different technologies and depends on feed purity,

make up gas flow rate and energy requirements, etc. General ammonia synthesis loop it
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Figure 1.3: Ammonia synthesis loop
A: make up gas compressor, B: ammonia synthesis converter with heat recovery network, C:

ammonia separation and refrigeration.

arranged as shown on Fig.1.3.1

Converter is a heart of the system, as it mainly defines operating conditions and

provides yield of ammonia. Converter-wise, a number of different designs have been

developed. They can be divided into two groups - with internal bed cooling (Fig. 1.4(a))

and adiabatic bed (Fig. 1.4(b)) converters with external heat exchange.1 In former, a cold

medium - usually make up gas - is running through the tubes to remove excess heat from

the bed as well as to pre-heat feed and bring it up to the reaction temperature. Converters

of these design have been widely used decades ago and more suitable for smaller scale

production. Converters with multiple adiabatic beds are more wide spread in industry.

Mainly, they can be divided into two groups based on method of heat removal. First is

quench cooling, where hot gas effluent from each bed is cooled down by direct injection

of colder stream. Second, indirect cooling of hot stream in separate waste heat boilers in

order to generate steam needed for operation at ammonia plant or in heat exchanger to

preheat converter feed. They are usually comprised of 2-4 beds and utilize axial or radial

flow pattern. Beds with axial flow are more widely found, but on a number of modern

plants converters have been redesigned into radial gas flow. It allows to reduce pressure

drop across a bed and increase converter throughput within the same unit geometry.11
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(a) Internal bed cooling (b) Adiabatic bed

Figure 1.4: Two principle designs of industrial ammonia converters

1.3 Overview of optimization methods

Optimization in engineering is aimed for the search of the “best” solution for a specific

problem. Criteria to determine whether the solution is the “best” or not are varied widely

and defined by an engineer (researcher) based on their experience, problems objectives,

common sense, etc. For example, while optimizing performance of synthesis reactor its

often desired to maximize possible yield of final product; or in the case of equipment

design, it is common to reduce the total cost while keeping units performance at the

desired level.

Engineering optimization can be classified by the number of objectives into single ob-

jective optimization (SOO) and multi-objective optimization (MOO). SOO approach has

longer history. Essentially, it is based on formulation of unified function which represents

the overall effect. Most of objective functions in SOO are related to economic efficiency

of the process or unit. A classical example is optimization of insulation thickness. In-

sulation saves money through reduced heat losses but insulation can be highly costly at

the same time. One has to compare total cost of insulation with savings from energy

losses to find optimal thickness; the ratio between these two factors can be an objective
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Figure 1.5: Overall economic effect of heat insulation
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Figure 1.6: Parallel reaction scheme

function to be minimized (Fig. 1.5 ). It can be said that SOO methods are mainly aimed

for search of an extreme point (minimum or maximum) in a search space.

However it is not always possible to formulate single objective for a particular problem

which can adequately represent a meaningful optimal solution. MOO methods arise to

overcome this drawback. One can deal with more than one objective and these objectives

are not necessarily economic-related parameters. For example, consider a very common

reaction engineering problem simultaneous yield maximization of goal (desired) product

and minimization of undesirable side product. Such case is quite common for oil refining,

petrochemical and polymer industry, organic synthesis, etc. Consider a simple parallel

reaction, where we are targeting species B (desired) while species C is a side product

(undesired) (Fig. 1.6):

Operating conditions might have similar effect on yield of both products, e.g. in-

crease in process temperature increase percentage of both, desired and side, products in

outflow. Plotting this trend (concentration vs. temperature) (see Fig. 1.7), it is possible

to visualize conflictive nature of our objectives, that is one cannot increase concentration

of B (desired) and decrease concentration of C (undesired) simultaneously. If we apply
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Figure 1.7: Effect of temperature on concentration of species in parallel reaction scheme

a classical single-objective approach, we would probably formulate objective function in

some way relating price of production to concentrations of species. But, this type of

objective function (cost minimization or profit maximization) usually is time- and/or

site- specific. The cost of raw material or revenue generated from selling a product is site

dependent (price varies from one region to another around the globe) and time dependent

(price varies from year to year).

Application of MOOmethods allows for solving such problem wherein one can directly

treat product concentrations as objectives instead of single objective function expressed

in terms of economic effect (cost minimization or profit maximization). This is why

multi-objective approach is superior to classical Single objective approach.

Below, we will briefly consider the general ideas and concepts in use for MOO, de-

scribe methods, especially more recent and state-of art ones and make a review of their

applications in chemical reactor engineering.

1.3.1 Multi-objective optimization

Concept of Multi-objective optimization

Multi-objective optimization (MOO) concept originates from economics and was de-

veloped by Italian economist, engineer and philosopher Vilfredo Pareto. At first let us

consider the definition of multi-objective optimization of minimization problem (here
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and throughout the chapter we will discuss minimization MOO problems, since any

maximization problem can be converted into minimization one easily):

minimize
x∈S

I(x) = [I1(x), I2(x), ..., In(x)]

subject to

gk(x) ≤ 0, i = 1, 2...K

hj(x) = 0, j = 1, 2...J

(1.4)

General solution for such optimization problem is set of points, not a single one unlike

in SOO problem. However, in some special cases, single point solution is also possible,

this is a trivial case and is not considered. The set of points is called Pareto set (front

or distribution).

Definition of Pareto Optimal Point: A point x is called Pareto optimal point if and

only if there does not exist such point x∗ in a search space that Ii(x*) is better than

Ii(x) for all objectives simultaneously. By better it is necessary to assume mathematical

operators or depending on particular problem formulation.

Pareto set can be presented in terms of decision variables (set of x) or objectives (set of

I (x)). For better understanding lets illustrate Pareto concept on two objective function

problem. (Fig. 1.8) If the problem requires simultaneous maximization of both objectives

A and B, Fig. 1.8 describes Pareto set obtained with respect to decision variable limits

and equality and inequality constraints. If we move from point 1 to point 2, objective A

is increasing (desired) while objective B is decreasing (undesired). It is said that these

two points like any other points on the curve are non-inferior (non-superior or equally

good) to each other. If we move from point 3 in the direction of Pareto, one can see that

both objectives A and B are improving, thus point 3 is not a Pareto point.
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Figure 1.8: Pareto set for two conflicting objectives

1.3.2 MOO methods

Once solution for MOO problem in the form of Pareto set is defined, let turn one’s

attention to methods utilized for its search. There are number of different techniques;

later the accepted classification will be provided for better understanding.12–14 The clas-

sification is based on decision makers (DM) role in optimization search. Here DM is a

person familiar with formulated problem; he/she can impact on preference of objectives

or solutions. Therefore, methods are divided into:

• no-preference

• a priori

• a posteriori

• interactive

The first group excludes any influence of DM on search of Pareto points while next

two take it into account. The latter case is a group of currently developing methods

where DM is directly involved in optimization search and able to alter preferences until

the best solution is found. Just note here as a remark that the classification is not strict

because the same methods can be referred to by more than one group, this will be shown

later. From here we provide further a concise review of introduced methods.
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No-preference methods

If preferences are hard or impossible to define by DM, no-preference methods can be ap-

plied. They allow finding average solution regardless of any preference; no extra knowl-

edge has to be provided by DM to solve such MOO problem.

Neutral compromised solution

Neutral compromised solution method allows finding optimal solution somewhere in

the middle of Pareto set. To apply this technique it is required to define the norm

in objective domain, which will be a measure of distance for middle solution, select

a reference point from which the distance shall be minimized.15 However we can say

that DM expresses preferences by choosing the norm and reference point, but he/she

is not doing it in explicit way. For MOO problems it is necessary for all objectives to

be of the same dimension or dimensionless. The commonly used norms are p-norm,

Chebyshev norm or augmented Chebyshev norm. The following problems are to be

minimized respectively:

minimize
x∈S

[

n
∑

i=1

|Ii,up − Ii|
p

|Ii,up − Ii,low|
p

]1/p

, 1 < p < inf

minimize
x∈S

max1≤i≤n
|Ii,up − Ii|

|Ii,up − Ii,low|

minimize
x∈S

max1≤i≤n
|Ii,up − Ii|

|Ii,up − Ii,low|
+ ǫ

n
∑

i=1

|Ii,up − Ii|

|Ii,up − Ii,low|

(1.5)

Also, the Method of global criterion is one of such methods but will be considered in

section of a priori methods below with some remarks.

A priori methods

A priori methods require DM to state his preference in MOO problem. This has to be

done prior to determining the Pareto set. One can specify the priority of objectives (or

aims) to be achieved. Since a DM is a person familiar with particular problem sometimes
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it becomes possible to single out more important objectives or put them in preference

order.

Method of Weighted global criterion

This method with some variations is the most popular technique for MOO. The idea

is to transform objective functions into a single one thereby scalarizing the search space.

In the most general form this method can be written as:

minimize
x∈S

n
∑

j=1

F (Ij(x), wj) (1.6)

A scalarized function represents the sum of composite functions of objective Ii(x) and

weighting factor wi. The latter itself is a measure of DMs preferences on a particular

objective. Usually weighting factors are assigned in such a way that
∑

wj = 1 and

wj > 0. In a simplest form expression 1.6 can be written as weighted exponential sum14:

minimize
x∈S

n
∑

j=1

wj [Ij(x)]
p , Ij(x) > 0

minimize
x∈S

n
∑

j=1

[wjIj(x)]
p , Ij(x) > 0

(1.7)

Note that in the case of p = 1, it is called method of weighted sum and widely used in

applied chemical engineering problems.16

Lexicographic method

Lexicographic methods require DM to sequentially organize objectives from 1 to N in

terms of preferences.17 The following problem has to be solved14:

minimize
x∈S

Ii(x)

subject to

Ik(x) < Ik(x
∗)

k = 1, 2...i− 1, i = 1, 2...n

(1.8)
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where k is a function order in preference list, Ik(x
∗
k) is constraints limit received at kth

step. First objective in the list should be minimized with the original constraints. If the

DM obtains single solution one can accept it as an optimum. If not, the new constraint

Ik(x
∗
k) has to be accepted to keep the kth objectives optimal values. The procedure

continues with next objective function (e.g. second function in a list, third function in a

list, etc.), until the optimum is reached.

In reality it is often difficult for DM to distinctly organize objectives in order of im-

portance on account of MOO problem complexity. Another drawback with this technique

is that in unique solution is often found before the best optimal solution is reached. It

means that some of objectives are not taken into consideration at all.13

Goal programming

This method was developed by Charnes and Cooper.18 The DM defines a set of

goals G which should be achieved for each objective, Ii(x). Even if all these goals are

unattainable simultaneously, it is still desired to approximate as close as possible. It is

proposed to minimize the distance between vectors I(x) and G. Weighted GP problem

formulation is written as:

minimize
x∈S

n
∑

i=1

wiδi

δi = Ii(x)− gi, i = 1, 2...n

(1.9)

The formulation of goal programming problem doesnt necessary require the solution to

be Pareto optimal. The solution obtained can be referred to (a) efficient, (b) inefficient

or (c) unbounded solution. Efficient solution belongs to Pareto front while inefficient

solution can be improved for two or more objectives simultaneously. The latter case is a

solution located too far from Pareto front.19

Setting goals to attain is clear approach for DM (unlike, for example, use of utopia

point in global criterion method). However, the further procedure for optimum search is

not necessarily easy, e.g., weights assignment can be more difficult. Some GP methods

are combined with lexicographic method, where deviations are structured in preference
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order and then minimized. The DM has to be aware of all drawbacks of GP methods

and choose proper technique for finding optimal solution.

A posteriori methods

In contrast to other methods discussed so far, a posteriori method generates Pareto set

first, when the DM is given the opportunity to choose acceptable ones. It is reasonable if

the DM is unsure about his/her preferences or problem definition is vague about relative

importance of objectives.

ǫ-Constraint Method

The ǫ-constraint method is a non-scalarizing approach. Original idea was reported

by Yacov Haimes.20 The more comprehensive explanation is provided at Chankong and

Haimes.21 It is proposed to solve the following n-objective problem 1.4 to define Pareto

set:

minimize
x∈S

Ii(x)

subject to :

Im(x) ≤ ǫm, i = 1, 2...n m 6= i

gk(x) ≤ 0, i = 1, 2...K

hj(x) = 0, j = 1, 2...J

(1.10)

Note that any of the objective functions can be chosen to be minimized. Varying ǫm the

Pareto set can be reached. It is reported by authors that current method can deal with

non-convex problems. However, drawbacks still exist. The choice of ǫm is not easy for

DM as well as the technique significantly increases computation time if total number of

equations (objectives and constraints) is relatively high.

Interactive methods

As it follows from the name interactive methods require some sort of interaction be-

tween the DM and MOO algorithm. Initially, no a priori information is required, and

the DM specifies some objective-related preference information during a search process.



18 Greek letters

Solutions in interactive methods move iteratively providing the DM with some new so-

lution(s) and allowing re-specifying his/her preferences, if needed. Interactive methods

outcome is one or more Pareto optimal solutions, but not the entire Pareto set. Generally,

many other variations exist, which are kind of extension of classical methods described

here with the way how DM should interact with algorithm. There is variety of such meth-

ods and we will not discuss it here providing only references on some original sources and

reviews.

• Interactive Surrogate Worth Trade-off (ISWT)21

• Reference point methods22

• Non-differentiable Interactive Multi-objective Bundle-based Optimization System

(NIMBUS)23

• Step method (STEM)24

1.3.3 Genetic algorithms

Genetic algorithms (GAs) are currently one of the most developing groups of methods

in MOO. They are based on the mechanics of natural selection and natural genetics.25

Here we would like to emphasize the power of GA and discuss it in more details. While

genetic algorithms belong to a posteriori methods; we discuss GA in an individual sub

chapter on account of its fundamental difference from methods discussed above.

Original idea was proposed by Holland26 as an adaptation concept. Thereafter, Gold-

berg evolved this theory and formulated general regulations of GAs.25 GAs has been de-

veloped intensively in recent years, but the main principles remain the same. As indicated

by Goldberg, main distinctions from classical methods are:

• GA works with number of points (population) instead of a single one
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Figure 1.9: Mapping continuous variable into binary

• GA treats objective functions directly; there is no need for derivatives, utility func-

tions, or any other auxiliary knowledge

• GA operators are probabilistic in nature in contrast to deterministic one used in

all classical methods

GA is notable for its robustness. It is a superior search procedure in many aspects. Unlike

many derivative-based methods that can be trapped around local optima, GA is a global

optimum search procedure. It can also treat discontinuous or discrete functions. It

overcomes issues with convexity of Pareto set as well as deals with multi-modal objective

functions.27

About binary-coded variables

Preceding the explanation of GA working principles one have to know about binary-

coded variables. The most common representation of a variable utilized by GA is a

binary string. That variable simply is a certain length sequence of 1s and 0s (e.g. 1001).

If user deals with continuous variable (e.g. length, product yield, time, etc.) it is required

to discretize the variable. The procedure is quite simple. For example, decision variable

x ∈ [Xmin, Xmax] has to be mapped into binary string. User decides to use 4 bits for

each variable, in other words, length of binary string lstr is set to 4 digits. Thereby, we

have 24 = 16 possible combinations of strings. Lower and upper bounds are assigned

with values Xmin → 0000 and Xmax → 1111. All the other values are mapped in

between these two values. (Fig. 1.9) The precision of discretization of variable is directly
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Figure 1.10: Genetic algorithm operator: crossover

dependent on the string length; more the length is, more binary variables can be mapped

between lower and upper limit. Precision may be calculated as25:

π =
xmax − xmin

2lstr − 1
(1.11)

Simple Genetic Algorithm

For better understanding GAs principle lets consider simple genetic algorithm (SGA)

first. The main components of SGA include a) reproduction, b) crossover and c) mutation

genetic operators. At the beginning, initial population is generated randomly. The

population is a set of individuals either of which represents a single decision variable (or

a vector). The reproduction operator is applied on the population to create a mating

pool. Individuals with higher objective function value have higher chance to be copied

into a matting pool. Classical and simple way to perform reproduction operator is a

roulette wheel25.

Once the mating pool is formed, crossover and mutation operations are executed. In a

single point crossover, two individuals (called parent chromosomes) are chosen randomly

to exchange information with each other. They swap binary sequences after arbitrary

position p (which is randomly selected) and generate daughter chromosomes. (Fig. 1.10)

Mutation is also aimed for altering the daughter chromosomes binaries but in a differ-

ent manner. Like mutation in nature, it occurs with a very small probability. Mathemat-

ically it alters one cell in a sequence each time from 0 to 1 or vice versa. It is absolutely
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Figure 1.11: Genetic algorithm

necessary to keep diversity in population.28 For example, lets assume a case where all

individuals in population have 0 at kth position, under this conditions crossover operator

cannot create 1 there. Mutation allows overcoming this issue.

The best n daughter individuals are taken to form a new mating pool where crossover

and mutation are carried out again. This procedure repeats until termination criterion

is satisfied. Below we provide generalized scheme of SGA. (Fig. 1.11)

Use of GA in MOO

If one have SOO problem, it is easy to choose best solutions from the population by

comparing single objective values of individuals. When one deals with multiple objectives,

it becomes not clear how to compare them. To deal with this Goldberg introduces the

concept of non-dominated vectors.25 Vector a is said to be less than vector b if and only

if these two conditions are satisfied simultaneously:

• all components of a are less or equal to corresponding components of b

• at least one component of a is strictly less than corresponding element of b

or in other words (for a minimization MOO problem) - a dominates a . If for the vector

a theres no such vector c that dominates it, vector a is called non-dominated. From this

point of view a Pareto set is a non-dominated set.
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I would like to emphasize one of the state-of-the-art algorithms non-dominated sorting

genetic algorithm II (NSGA-II). Reader can note that this algorithm was used in majority

of MOO problems solved in literature (Tab. 1). After development by Deb29, it has been

widely propagated in optimization problems for chemical engineering as well as for many

other fields. NSGA-II is notable for its characteristics, especially ability to find diverse

solutions close to real Pareto set and speed of convergence29. Here are elements which

contribute to its high performance.

1. This algorithm uses concept of elitism. After mating pool formation, N parents

and N daughters chromosomes are united into a single group of 2N. Selection is

carried out over this pool and not only from the original mating pool. If parents

are better than their daughters, it permits not to exclude them from population,

but carry on in the next generation. This allows diversity.

2. Non-dominated Sorting Approach is used as a selection procedure. It divides entire

population into groups of non-dominated individuals (non-dominated fronts). Any

solution in front 1 is superior to any solution in front 2, and so on.

3. To maintain diversity of population, authors introduced crowding distance. If some

region in objective domain is too populated with individuals it is reasonable to ex-

clude some of them from population. Crowding distance of point i represents an

average side length of n-dimensional cuboid in objective space, drawn out around

point i where two neighbouring points are taken as vertices. The higher the crowd-

ing distance the less crowded a region. Points from the same front but with less

values of this parameter have less chance to carry on into next generation. Step-

by-step guide to execute NSGA-II, performance of algorithm in test problems or

other characteristics can be found in elsewhere27,29



1.3. Overview of optimization methods 23

Constraint handling in GA

There are different techniques aimed for constraint handling in GAs. Constraints impose

extra conditions onto MOO problem, thereby limiting the search space. Based on this,

solutions are divided into feasible and infeasible regions. Infeasible solution cannot be

neglected in GAs in order to maintain diversity. Even if particular solution violates

constraints, it should have a chance to remain in population in order to have a chance

to move to a feasible region.27 To do this many techniques evaluate extent of violation

from feasible region. Below two noteworthy techniques are discussed, which have been

utilized more frequently while solving applied MOO problems in chemical engineering.

Penalty function approach Penalty function approach modifies original objective func-

tions by adding a constraint violation to them as follows28:

minimize
x∈S

P (x) = Ii(x) + Ω(R, g(x), h(x)) (1.12)

Penalty term represents sum of constraint violations vi(x) from feasible region:

Ω = R
∑

vi(x) (1.13)

Constraint violations vi(x) are defined as:

vi(x) =















|gk(x)|, gk(x) ≤ 0

0, otherwise

or

vi(x) = |hi(x)|
2

(1.14)

Penalty parameter R is used to have values Ii(x) and Ω of similar magnitude. Hence, if

particular solution overruns feasible region, value of penalty function P (x) increases even
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if the value of original objective function Ii(x) is small. The solution becomes inferior

and has higher chance to be excluded from population. One of the main drawbacks of

this method is that penalty function distorts Pareto front of original function which cause

difficulties finding true Pareto set.

Constrained Tournament Method

Constrained tournament method is a methods developed for use with GAs only. The

approach can treat constraints directly instead of using any objective function transfor-

mation. It modifies the tournament selection of individuals for formation of mating pool.

Now solutions are checked for constraint violation in addition to dominance. Between

two infeasible solutions the one chosen is the one with less constraint violation. When

two individuals are picked for tournament selection, the following constraint-domination

rules have to be kept:

• Feasible individual is always superior to infeasible

• Between two infeasible individuals the one with smaller constraint violation should

be given priority

• If both individuals are feasible the regular (non-constraint) approach should be

applied

The generic constraint-domination principle can be used with any GA and does not

require extra computational time27.

1.3.4 Simulated annealing

Simulated annealing (SA) is another stochastic-based method of search and, like GAs,

belongs to a posteriori methods. The procedure mimics the behaviour of molten metals

cooling. At high temperatures, metals behave like a liquid where atoms are in chaotic

motion. When the cooling is started, atoms lose mobility and begin to form crystalline

lattice of solid metal. The rate of cooling strongly affects the structure of crystal, the
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slower the rate, the more uniformed the structure. Uniformed mono-crystalline structure

has more stable (i.e. has minimum energy).

SA for optimization was first considered in Kirkpatrick et al. 30 . They applied prin-

ciples of statistical mechanics of systems in thermal equilibrium to solve optimization

problem. The main principle is based on Boltzmann probability distribution function.

At given temperature T the probability of system to have energy E1 is proportional

to exp(−E1/kT ), where k is the Boltzmann constant. In this context probability for a

system to move from state 1 to state 2 is given as:

state1

state2
= exp(

−(E2 − E1)

kT
) (1.15)

Hence if E2 is lower than E1 when system definitely turns to state 2. At the same

time, if E2 − E1 ≥ 0 finite probability for transition from 1 to 2 still exists. The higher

temperatures T correspond to higher probabilities of state 2 to exist. For energies in

Boltzmann distribution equations, the reader has to consider objective values. SA in the

simplest form can be described in the following way: the algorithm starts with an initial

point x0 (usually random). The random point x1 is generated in the neighbourhood of

x 0 and the objective values are compared at these points. If a new point improves our

objectives, it is accepted instead of x0. If not, the point x1 is accepted with the probability

exp((E2 − E1)/kT ). During the search, the temperature T is slowly decreased (cooling)

which reduces the probability of a new point with worse objective being accepted. The

search continues until some termination criteria are reached, for example, it can be an

error between points in subsequent iteration or minimal temperature. One run of SA

yields one Pareto optimal solution. Thus multiple simulations are required to obtain a

Pareto set.

The same principle with some modifications can be applied for MOO problems.31? –33

Algorithms could differ in probability functions or stopping criteria, or they have some
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operators for a better Pareto distribution. The current technique is less popular than

GAs but still has a significant interest in modern MOO applications.
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Nomenclature

α constant parameter for reaction equation

αi convection heat transfer coefficient for interchanger [W/m2K]

νi stoichiometric coefficient in Eq. 2.1 for component i

χ nitrogen conversion

ω dimensionless distance from pellet center to interior point

∆HR enthalpy of reaction [kJ/kmoleK]

ǫ bed voidage

φi fugacity coefficient of component i

η effectiveness factor

C total concentration of components [kmol/m3]

Cp specific heat capacity [kJ/kgK]

Die effective diffusivity of component i [m2/s]

fi fugacity of ith component

FN2
molar flow rate [mol/s]

K overall heat transfer coefficient [W/m2K]

k2 kinetic constant of reverse reaction [kmol/m3 · h]

Ka equilibrium constant

L interchanger length [m2]

l length coordinate for interchanger [m2]

ṁi mass flow rate [kg/s]

P pressure [Pa]



32 Nomenclature

Qi volumetric rate [m3/s]

ri tube radius [m]

RNH3
rate of ammonia formation [kmol/m3 · h]

Rp radius of catalyst particle [m2]

T temperature [K]

V bed volume [m3]

Xi molar fraction of component i

2.1 Introduction

Ammonia is one of major chemicals produced in the industry. It has a variety of appli-

cations: for manufacturing of inorganic salts, polymer fibers, explosives, etc. Its biggest

role it plays for agricultural fertilizers: as an intermediate in urea production or used

directly as liquid. It is hard to diminish the importance of ammonia for agricultural

sector all over the world.1

Moreover, ammonia market is continuously growing. Total world ammonia demand

has been steadily increasing over last decade at rate of 2.2 % per annum. One of the

ways to satisfy for the demand is to boost up the performance of existing units through

the comprehensive optimization.

One possible way this to be done is through first-principle mathematical modelling and

numerical optimization. Developing robust models allows for accurate process simulation.

Therefore, one can perform a comprehensive study of a process without expensive physical

modelling and/or use the model for the numerical optimization to boost up process

performance.

Modelling of ammonia synthesis has been drawing attention over the years and a

number of attempts has been made. Baddour et al. 2 developed a simple one-dimensional

plug-flow model for autothermal ammonia converter. They studied effect of process
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parameters such (i.e. feed temperature and composition) on ammonia production rate

and temperature profile along catalyst bed. Shah 3 discussed two-bed adiabatic model

with recovery heat exchange for the process control. He found best stable operating point

as balance between heat generation and consumption. Gaines 4 used mathematical model

for adiabatic bed with empirical correlation for effectiveness factor to perform analysis on

model parameters. Singh and Saraf 5 modelled converters with both types - adiabatic and

non-adiabatic - catalytic beds. They used pseudo homogeneous model with effectiveness

factor based on reactants diffusion. Mansson and Andresen 6 did an optimization study

for tubular ammonia converter with one-dimensional pug low model aiming to maximize

ammonia content in the effluent and obtain optimal temperature profile. Elnashaie et al. 7

compared the performance of homogeneous and heterogeneous models for auto-thermal

converter showing advantages and better accuracy for the latter. In the consequent works

of Elnashaie et al.8–10 they incorporated rigorous model for intraparticle diffusion and

obtained more accurate solution for the effectiveness factor. They validated the model

with data of Singh and Saraf 5 . Later, Upreti and Deb 11 performed a design optimization

study with genetic algorithm by maximizing overall economic return of the synthesis

having total converter length as a major decision variable. Babu and Angira 12 performed

a similar study but could obtain more stable model solution in wider temperature range.

Summarizing, one can say that, firstly, it is evident that the topic still bears its

value and importance. Models vary in complexity: some works consider broader range

of units (as converters and product separators) in a model while others mainly consider

converter itself. Secondly, models for different converter designs have been done (auto-

thermal or adiabatic catalyst beds with different type of heat exchange). Each of studies

shows that converters of different design distinct in optimal operating parameters, thus

each particular converter arrangement bears different behaviour and requires independent

investigation for the best results. Thirdly, some works focus on modelling for investiga-

tion of the process parameters effect on process performance while others perform more
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comprehensive optimization studies striving for higher ammonia production or least cost.

However, none of the works, to the best of the author’s knowledge, utilizes multi-objective

optimization principles and performs optimization search for more than one objective.

Hence, it could be beneficial for the complex system as industrial converter.

In this work we develop a first-principle mathematical model of an industrial ammonia

synthesis converter with design not reported before. The model incorporates heteroge-

neous reaction kinetics with intra-particle diffusion resistances. As process being highly

exothermic, the heat recovery model is also embedded into the overall converter model.

The model is able to predict gas temperature and concentration profiles along con-

verter’s bed, and the amount of heat which is recovered from a gas stream and recycled

to supply for the pre-heat.

2.2 Overview of industrial ammonia synthesis and

converter internals

Industrial ammonia synthesis is done through Haber process (see more detailed descrip-

tion below). There are a number of different technologies available for commercial ap-

plication (i.e. Kellog, Haldor Topsoe, etc.). Regardless of any particular one, ammonia

is produced through stoichiometric reaction of hydrogen and nitrogen (Eq.2.1). The re-

action is slow at ambient conditions as well as limited by equilibrium, thus to achieve

significant yields is carried out in a presence of catalyst under elevated temperatures (350

- 500 °C) and pressure (100-250 atm.)

Typical ammonia synthesis loop is presented on Fig. 2.1. Makeup gas coming from

upstream units passes through loop compressor and forward to a synthesis converter. As

hydrogen usually being produced upstream by steam conversion of methane, the makeup

gas contains inert components (as methane, argon). Along with others, minor part of

ammonia is also present among reactants. An ammonia-rich converter effluent (15-20 %
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Figure 2.1: Ammonia synthesis loop

vol. ammonia) is sent to a separator where ammonia is separated into product stream

while unconverted gases are recycled back to the compressor.

An ammonia converter is comprised of multiple (usually, three) fixed catalytic beds.

Pre-heated gas stream enters a catalyst bed (Fig. 2.2). The synthesis reaction occurs

on a surface and inside the pores of catalyst. While gas mixture heats up while passing

along a bed. To prevent catalyst from exposure to high temperatures and shift reaction

equilibrium the excess heat is removed. It is done in many ways: quenching, indirect

heat exchange with cooling water or product stream, etc. Therefore, it is necessary to

consider all those steps in order to develop an accurate mathematical model.

Figure 2.2: Schematic representation of a catalytic bed in ammonia converter
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The ammonia converter to be modelled in this work is a three bed converter with

heat interchanger and quenching. The converter’s layout is provided in Fig. 2.3. Pre-

heated and compressed synthesis gas is split into two flows - for main inlet and quench

- in ratio tentatively 60/40.1 The main feed enters from the bottom of reactor into

annular space between outer shell and inner bed casing. It flows upwards to shell-side

inlet of interchanger where the gas heats up to the reaction temperature by indirect heat

exchange with effluent from second bed. The heated gas travels through the gap between

interchanger and catalyst baskets up and enters first bed. The converter has the ability

to quench prior to the first bed, but usually is done at start up only. At steady-state

operation first bed quenching is relatively low or completely off. After first bed the main

stream is quenched and enters next bed. The effluent from second bed passes through

the tube-side of the interchanger into the third bed and out of the converter.

Figure 2.3: Internals of the ammonia converter



2.3. Converter modelling 37

2.3 Converter modelling

Considering the process description and converter layout, the following assumption are

made for converter modelling:

1. Steady state operation

2. Adiabatic catalyst bed The converter and catalyst basket are well insulated,

therefore the heat transfer from reaction zone towards the gas flow is negligible.

3. Negligible heat and mass transfer resistance at boundary of bulk and

catalyst pellet due to high gas velocities and bulk thermal conductivity.

4. Significant diffusion resistances inside catalyst pellet

5. Constant temperature inside catalyst pellet Due to high heat conductivity

of catalyst support, the temperature profile inside a pellet can be assumed flat.

6. One-dimensional plug flow model Radial dispersion of mass and heat can be

neglected for the well-insulated beds as well. Moreover, since we are not aiming

to rigorously study gas flow patterns inside catalyst bed, it is reasonable to use

one-dimensional model for global optimization of converter performance3.

7. No axial dispersion term Ammonia converter bed is a gas solid system. Gas

velocities are quite high and bulk viscosity is relatively low resulting in high Peclet

number. Therefore, dispersion term can be neglected as well13.

8. Converter pressure is constant along converter As reported in literature and

observed by author from industrial data, the actual pressure drop along one bed

is approximately 0.2 atm. Considering high loop pressures (100-250 atm.) this

difference is negligible.
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2.3.1 Ammonia synthesis reaction

Industrially ammonia is synthesized through the exothermic reaction of nitrogen and

hydrogen in presence of catalyst (most often, iron-based) as shown by reaction:

N2 + 3H2 2NH3, ∆H0
298 = −46.22 kJ/mol (2.1)

Even though the process has a long history and been extensively studied, there is

still no consensus regarding the mechanism of the reaction over the catalyst. Therefore,

a number of mechanisms as well as kinetic equations are found in the literature.14–18

The Temkin equation (Eq.2.2) is found to be most widely used due to its accuracy and

applicability:

RNH3
= k2

[

K2
afN2

(

f 3
H2

f 2
NH3

)α

−

(

f 2
NH3

f 3
H2

)1−α
]

(2.2)

where RNH3
- rate of ammonia formation [kmol/m3·h], k2 - kinetic constant of reverse

reaction [kmol/m3 · h], Ka - equilibrium constant, fi - fugacity of ith component, α -

constant number. The respective value for α = 0.559 while k2 is estimated with industrial

data. The expression for equilibrium constant Ka is taken from19 (Eq. 2.3):

logKa = −2.691122logT − 5.519265× 10−5T+

1.848863× 10−7T 2 + 2001.6/T + 2.6899 (2.3)

where T - process temperature [K].

Fugacity of i th component is found as:

fi = φiXiP (2.4)

where φi - fugacity coefficient of i th component, Xi - molar fraction of i th component in

gas stream, P - loop pressure [Pa].
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2.3.2 Intraparticle diffusion

Industrially ammonia is synthesized over a variety of catalysts. Historically, first catalysts

have been iron based and constitute majority of catalysts in use until now1, however

Ru-based catalysts have been commercialized in past decades, being more active yet

expensive20. Whichever catalyst type is loaded in converter, it is usually in a form

of pellets 4-10 mm in diameter. In order to provide larger surface, active component

is immobilized on Al2O3 support. Due to porous structure of the support, diffusional

resistances inside pores play significant role in integral synthesis reaction rate, therefore

it has to be accounted for21.

Assuming Fick-type diffusion, the mass balance for species i in spherical catalytic

particle can be written as:

d2Xi

dω2
−

(

2

νi + 2Xi

)(

dXi

dω

)2

+
2

ω

dXi

dω
=

−

[

R2
p

CDie

(νi + 2Xi)

]

RNH3
(X, T, P )

1− ǫ
(2.5)

subject to boundary conditions:

ω = 0 :
dXi

dω
= 0

ω = 1 : Xi = Xi(bulk)

where νi - corresponding stoichiometric coefficient in synthesis reaction (Eq. 2.1), ω -

dimensionless distance from pellet center to interior point, Rp - pellet radius [m2], C -

total concentration [kmol/m3], Die - effecitive diffusivity [m2/s], ǫ - bed voidage.

The Eq. 2.5 is solved using orthogonal collocation method22 using 4 collocation points.

The solution yields a concentration profile for the reactants. Therefore, one can calculate



40 Nomenclature

the reaction rate at different radial positions and obtain effectiveness factor η as:

η =

∫ 1

0

ω2RNH3
(ω,X, T, P )dω

RNH3bulk
(Xbulk, Tbulk, Pbulk)

(2.6)

2.3.3 Mass and energy balance of catalyst bed

For catalyst bed hydrodynamics model we adopt one-dimensional plug flow model. There-

fore, differential mass and energy balance equations are written as:

dχ

dV
=

ηRNH3
(X, T, P )

2F 0
N2

(2.7)

dT

dV
=

(−∆HR)ηRNH3
(X, T, P )

ṁgasCp,gas

(2.8)

where ∆HR - enthalpy of reaction at current temperature [kJ/kmoleK], χ - fractional

conversion of nitrogen, V - catalyst bed volume [m3], FN2
- molar flow rate at bed inlet,

ṁi - mass flow rate of gas [kg/h].

2.3.4 Interchanger model

Interchanger located in the middle of converter is a shell-and-tube heat exchanger with

axial flow(Fig. 2.4). It transfers heat effluent from second bed’s hot effluent to the “cold”

inlet synthesis gas stream. The synthesis gas is fed into shell, while effluent - into tube

side.

By means of interchanger second bed effluent cools down while synthesis gas is bought

up to the temperature just enough to start the reaction. The governing heat transfer
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Figure 2.4: Heat transfer along tube wall

equation for the interchanger is:

Shell side : (2.9)

dTshell

dl
=

2πK(Ttube − Tshell)

ṁshellCpshell

(2.10)

Tube side : (2.11)

dTtube

dl
= −

2πK(Ttube − Tshell)

ṁtubeCptube

(2.12)

K =

[

1

αtuberinner
+

1

λ

1

αshellrouter

]−1

(2.13)

subject to boundary conditions:

l = 0 : Tshell = T inlet
bed1

l = L : Ttube = T outlet
bed2

where K - overall heat transfer coefficient [W/m2K], αi - convective heat transfer coeffi-

cient towards tube wall from shell or tube side [W/m2K], ri - inner or outer interchanger

tube radius [m], λ - thermal conductivity of interchanger material [W/mK], l - length

coordinate for interchanger integration [m], L - interchanger length [m]. Detailed model

derivation for interchanger for a given geometry can be found in appendix A.
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Figure 2.5: Simulation procedure for the ammonia converter

2.3.5 Model overview

The intraparticle diffusion is boundary-valuer problem and solved through transformation

of equation into set of non-linear equation by orthogonal collocation with 4 collocation

points. Then the system is solved by the Newton method. The catalyst bed mass and

heat balance equations are solved as initial value problem using Runge-Kutta 5th order

method. The interchanger model is a boundary-value problem and solved using mono-

implicit Runge-Kutta method (based on subroutine “bvptwpc”23). The simulation is

carried out as shown on Fig. 2.5. The initial guess is set on inlet temperature for first

bed, then the model is run in series for two quenching and beds followed by interchanger

and checked whether shell side temperature at interchanger outlet matches initial guess.

If error is below 10−5 then simulation follows to calculate the outcome of the third bed.

Thus, the model yields temperature and gas composition profile along the converter

length.



2.4. Results and Discussion 43

2.4 Results and Discussion

2.4.1 Model validation

As kinetic parameters of catalyst remain unknown, they were estimated using industrial

data. In reality, the catalyst in each bed is a layered mixture of few catalyst brands of dif-

ferent activity and size in certain ratio. Therefore, the kinetic parameters in each bed are

averaging the individual kinetic parameters of each of the catalysts. The sum of squared

distances between observed and simulated temperatures for each bed is minimized in

order to do model fitting:

min
3

∑

i=1

(T simulated
bedi

− T observed
bedi

)2 (2.14)

To assess validity, one can compare temperatures between simulated profile and on bed

boundaries, measured by thermocouples. One can find that the model proved a good

overall match. The error for the most cases lies within few °C. Especially notable that

simulated temperature for the first bed inlet is very close to measured one. Considering

that the model of interchanger was excluded from fitting stage (see 2.14), but validation

was carried out with interchanger on, it, first of all, validates assumption that heat losses

from catalyst basket towards gas stream inside converter are negligible. Secondly, it en-

sures the validity of interchanger model as well, since we are unable to validate it directly

and independently from the whole converter. The only largest observed error is for inlet

into the third bed. This discrepancy might result from the fact that this temperature

is not measured directly in a gas flow but taken as an average of three thermocouples

located inside the third bed (Fig. ??). Moreover, one can look into comparison of gas

compositions in Table 2.1. Even though components concentrations were not included

into fitting, but along with temperatures they have a close match.
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Figure 2.6: Comparison between simulated and observed temperatures along reactor

Gas stream composition [% mol.]
N2 H2 NH3 CH4 Ar

simulated 23.53 56.38 13.31 5.08 1.70
experimental 23.10 56.50 13.56 5.08 1.71

Table 2.1: Comparison between simulated and experimented gas composition

2.4.2 Sensitivity analysis

The sensitivity analysis of the model was performed in order to a) check that model

performs “as expected” (i.e. with agreement of thermodynamics, reaction kinetics, engi-

neering sense) and b) evaluate effect of parameters onto process performance (Table 2.2).

The analysis performed as follows: the most important process parameters were chosen

and fixed at reference value (denoted by “-” sign). Then, parameter varies one at a time

around reference in order to quantify its effect on performance indicators. The chosen

process control parameters are: feed temperature Tfeed, volumetric flow rate for converter

inlet and quenches Qi, loop pressure P , second bed’s quench-to-feed ratio Qquench2/Qfeed.

As performance indicators the following are used: outlet temperature from each bed T out
i ,

conversion per bed χi, ammonia content in converter outlet XNH3
, temperature change

across interchanger from tube side ∆Ttube. The latter is chosen as a measure of heat

recovery in the system, since it is proportional to the value. Thus, it is indirect measure

of heat recovery efficiency.

The increase in feed temperature shows an increase in total ammonia production
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Table 2.2: Sensitivity analysis

Parameter Value T out
bed1 T out

bed2 T out
bed3 ∆Ttube χbed1 χbed2 χbed3 XNH3

+10% 266.26 457.03 ↑ 468.44 ↑ 411.81 ↑ 98.60 ↓ 5.53 ↑ 9.04 ↓ 5.41 ↑ 13.40 ↑
Tfeed - 242.06 443.38 463.58 393.57 107.80 5.22 9.58 4.89 13.31

-10% 217.85 247.31 ↓ 456.77 ↓ 372.82 ↓ 116.03 ↑ 4.79 ↓ 10.08 ↑ 4.16 ↓ 13.04 ↓
+10% 65.56 434.52 ↓ 461.72 ↓ 389.30 ↓ 107.96 ↑ 4.67 ↓ 9.62 ↑ 4.59 ↓ 13.01 ↓

Qfeed - 59.6 443.38 463.58 393.57 107.80 5.22 9.58 4.89 13.31
-10% 53.64 452.62 ↑ 464.60 ↑ 397.89 ↑ 106.91 ↓ 5.82 ↑ 9.52 ↓ 5.21 ↑ 13.61 ↑
+10% 96.83 457.99 ↑ 473.27 ↑ 405.22 ↑ 112.31 ↑ 6.12 ↑ 9.55 ↓ 5.75 ↑ 14.12 ↑

P - 88.03 443.38 463.58 393.57 107.80 5.22 9.58 4.89 13.31
-10% 79.22 423.61 ↓ 447.82 ↓ 378.86 ↓ 100.37 ↓ 4.21 ↓ 9.32 ↓ 4.03 ↓ 12.29 ↓
+10% 38.49 442.41 ↓ 460.17 ↓ 392.78 ↓ 104.10 ↓ 5.19 ↓ 9.73 ↑ 4.75 ↓ 13.25 ↓

Qquench2 - 34.99 443.38 463.58 393.56 107.80 5.22 9.58 4.89 13.31
-10% 31.49 443.64 ↑ 466.37 ↑ 393.98 ↑ 111.34 ↑ 5.22 9.38 ↓ 5.04 ↑ 13.34 ↑
+10% 3.4987 431.95 ↓ 459.67 ↓ 392.51 ↓ 103.87 ↓ 4.77 ↓ 9.84 ↑ 4.75 ↓ 13.24 ↓

Qquench1 - 0 443.38 463.58 393.56 107.80 5.22 9.58 4.89 13.31
more 1.31 450.45 ↑ 457.04 ↓ 396.12 ↑ 98.51 ↓ 5.77 ↑ 9.90 ↑ 4.88 ↓ 13.48 ↑

Qquench2/Qfeed - 1.70 443.38 463.58 393.56 107.80 5.22 9.58 4.89 13.31
less 2.86 432.69 ↓ 469.72 ↑ 389.25 ↓ 118.41 ↑ 4.53 ↓ 9.13 ↓ 4.89 ↓ 13.01 ↓

(XNH3
) as a result of higher reaction rate on average, however individual conversions over

bed does not simultaneously follow the increase. The second bed has lower conversion,

but total increase is reached by means of first and third beds. At the same time, it

lowers the efficiency of interchanger shown by lower ∆Ttube due to lower temperature

gradient between tube and shell sides. Higher feed flow rates on opposite reduce space

time hence reducing XNH3
. But as in case with T , it is not reflected identically in all

beds’ conversion. On contrary, second bed gives boost in conversion while other two

drop while counter effect is done on ∆Ttube. Higher pressure like feed temperature boosts

up reaction rate yielding higher ammonia in reactor effluent. Higher quench like higher

feed flow rate - either to first or second bed - both have similar effect on every process

indicator due to reduction of space time. Notable, that heat recovery efficiency ∆Ttube

and XNH3
are showing different trends - if one increases other decreases and vice versa.

2.4.3 Effect of process parameters

One can note that among considered process parameters, the largest effect on process

indicators is delivered by three process parameters: Tinlet, P and Qquench,bed2/Qfeed, while

others have smaller impact. Although Qfeed also has large effect, but engineering-wise
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it is not easy to vary feed flow rate since it involves complicated alteration of operation

mode on preceding series of units. Thus we had been mainly focused on these three

to estimated their effect on process performance. Firstly, to carry out simulations have

established decision domain in accordance with industrial practice. To set the range we

have studied the process history for over 10 years and extended the range by 40 °C for

feed temperature, by 10 % for quench-to-feed ratio, for pressure - we chose one value to

represent lower and upper range(Table 2.3).

Table 2.3: Simulation range

Variable Lower Upper
Tinlet 220 300

Qquench,bed2/Qfeed 0.3 0.5
P 85 91

Simulation results for effect on ammonia production and heat recovery are shown

in Fig. 2.7 and Fig. 2.8 respectively. Firstly, one can see that for a given loop pressure

variation of Tinlet and Qquench,bed2/Qfeed allow for wide range production rate - 12 to 13.8%

and 13 to 14.2 % for 85 and 91 atm. respectively. Usually, acceptable production lies

above 13% of ammonia in converter effluent, thus improper control might significantly

drop XNH3
below acceptable significantly reducing process efficiency. Secondly, Tinlet has

a pronounced maximum for ammonia production (i.e. convex surface). More, at higher

pressure (Fig. 2.7b) the convex peak is steeper. So, if higher production is needed a

careful attention has to be taken for adjusting feed temperature. The effect of quench

is mostly monotonous, favouring higher ammonia production at higher quench-to-feed

ratios.

There is a different picture if one to take a look onto effect on heat recovery within

the converter. Firstly, variation of these parameters allows for ∆Ttube change in range

70 to 120 °C. It is a significant variation of 40 %. Especially, considering the large scale

of production this results in high absolute values for heat recovery. However, there’s

no engineering requirements for heat recovery during production, this is important to
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(a) P=85 atm. (b) P=91 atm.

Figure 2.7: Effect of process parameters on ammonia production

consider because it is able to reduce overall heat duty for the converter. Secondly, heat

recovery is more sensitive to quench-to-feed ratio than ammonia production. Although,

there’s an also convex maximum with respect to Tfeed at higher ratio, but the heat

recovery is more monotonous at lower quench and higher pressure. Moreover, in contrast

to ammonia production, higher heat recovery is favoured by lower quench.

(a) P=85 atm. (b) P=91 atm.

Figure 2.8: Effect of process parameters on heat recovery
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Therefore, a better process performance for ammonia production can be done by

controlling three main parameters: Tinlet, P and Qquench,bed2/Qfeed. They can cover

a wide range of process operation and it is possible to improve performance by their

proper adjustment. If one needs to increase ammonia content in converter effluent XNH3
,

then it is needed to find a “sweet spot” in controlling feed temperature. It is possible to

significantly improve XNH3
even without changing a loop pressure if for an engineering

purpose it has to be kept constant. Quenching can also help to improve production,

however its most effect it can influence on heat recovery. Unfortunately, higher heat

recovery corresponds to lower ammonia production, thus it is necessary to decide on

which mode is acceptable and efficient to properly set process control parameters for

best outcome.

2.5 Summary and conclusion

Firstly, in this work we considered a model development for simulation of an industrial

ammonia converter. Model includes four major parts: reaction kinetics, diffusion of

reactants inside solid catalytic particle, model for fixed hydrodynamics and model for

heat interchanger. The model was tested on a large scale industrial ammonia converter:

model fitting and validation were performed using design parameters and operation data.

The model found to have a good agreement with industrial data. From model sensitivity

analysis we were able to conclude the most important parameters for process performance

improvement. They are: feed temperature Tinlet, loop pressure P and quench-to-feed ratio

Qquench,bed2/Qfeed. We evaluated their effect on ammonia production XNH3
and heat

recovery within interchanger ∆Ttube. It was found that variation of these three allows

for wide range of performance solutions. By their proper adjustment it is possible to

achieve improved production rate or heat recovery. However, both performance indicators

are in conflict - one cannot improve them simultaneously, hence needs to compromise.
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Therefore, engineering judgment and/or additional performance priorities are needed to

make a final decision about operational conditions.
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Nomenclature

∆HR enthalpy of reaction [kJ/kmoleK]

AIC Akaike information criterion

bed refers to catalyst bed

C total concentration of components [kmol/m3]

Die effective diffusivity of component i [m2/s]

fi fugacity of ith component

FN2
molar flow rate [mol/s]

feed refers to process gas feed into the converter

HR heat recovered through heat recovery system

k2 kinetic constant of reverse reaction [kmol/m3 · h]

Ka equilibrium constant

ṁi mass flow rate [kg/s]

out refers to a catalyst bed out

P converter pressure [atm.]

Q volumetric rate [m3/s]

QFR quench-to-feed ratio

quench refers to converter quench

RNH3
rate of ammonia formation [kmol/m3 · h]

Rp radius of catalyst particle [m2]

T gas temperature [°C]

V bed volume [m3]
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Xi molar fraction of component i

Greek letters

α constant parameter for reaction equation

νi stoichiometric coefficient in Eq. 3.1 for component i

χ nitrogen conversion

ω dimensionless distance from pellet center to interior point

ǫ bed voidage

φi fugacity coefficient of component i

3.1 Introduction

Ammonia is one of major chemicals produced in the industry. It has a variety of appli-

cations: for manufacturing of inorganic salts, polymer fibers, explosives, etc. Its biggest

role it plays for agricultural fertilizers: as an intermediate in urea production or used

directly as liquid. It is hard to diminish the importance of ammonia for agricultural

sector all over the world1.

The use of rigorous mathematical models in process design and optimization has

been extensively used for a large-scale chemical engineering processes. Model simula-

tions allows for fast and accurate investigation of the decision domain providing an engi-

neer/researcher with valuable knowledge on a process behaviour while avoiding expensive

and time consuming lab scale or industrial experiments. Therefore, one can perform a

comprehensive study of a process for the numerical optimization to boost up process

performance.

Conceptually, there are two approaches in optimization - single and multi-objective

(SOO and MOO respectively). The former formulates a sole objective function to be

optimized into a single point solution, while latter treats two or more objective objective
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functions to find (likely) a set of equally good solutions.

However, SOO approach is still extensively used, but MOO has gained its popularity

in chemical engineering. Large-scale industrial processes are very complex system, so

often it is troublesome to single out the only objective. Thus, it is especially beneficial

to use multi-objective approach for optimization of industrial processes.

Multi-objective optimization has been successfully performed in a number of works,

especially in oil refining processes2–7, steam reforming8–13, polymer manufacturing14–19

and hydrogen production20–23. All these works evidently showed advantages of multi-

objective approach applied to industrial problems. The most common objectives are

related to: a) production of the desired product, b) production of side or undesired prod-

ucts and c) utilities. Constraint-wise, problems usually have a few (mostly one to three)

additional requirements for process conditions (i.e. upper or lower cap for stream tem-

perature or composition). Problems are solved predominantly with multi-objective opti-

mization methods, such as multi-objective genetic algorithms (e.g. NSGA-II24), multi-

objective simulated annealing25, however, some other problems are formulated through,

for example, ǫ-constraint or objective sum method and solved as single-objective prob-

lem. The main outcome of the problem solution is obtained set (known as Pareto set)

of non-dominating points, which resemble best solution with respect to all objectives.

Additionally, they reflect the trade-off between objectives, thus illustrating whether one

can significantly improve one objective while not worsening other beyond reasonable.

However, theoretically one can handle infinitely many objectives and constraints, the

problems solved in the literature are mostly two and sometimes three objective. Firstly,

it is worthwhile in terms of results interpretation as easier to visualize and analyze. Sec-

ondly, definition of overly complicated multi-objective optimization problem is excessive

as one usually willing to find practically feasible solution. In industrial processes it is

quite often not possible to adjust some parameters or measure process performance with

high accuracy. Thus two or three objective problems are sufficiently enough in major-
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ity of cases in order to obtain a good set of solutions. If required to account for more

objectives, they can be included as constraints.

Few attempts has been made to perform optimization study for an industrial ammonia

synthesis by a number of authors(Mansson and Andresen 26 , Elnashaie and Alhabdan 27 ,

Upreti and Deb 28 , Babu and Angira 29). They aimed towards maximization of ammonia

production or overall economic profit. To the best of authors knowledge, none of the

works available in open literature treats the problem in multi-objective manner.

There is one more major problem related to process optimization. In order to perform

numerical optimization one requires to run a number (and often quite large) of model

simulations. Sometimes even a single simulation is computationally expensive, thus total

optimization search will result in a large time. Imagine one uses NSGA-II with 100

individuals and 100 generations (however, in real search much larger number generations

is needed). In case if a single simulations takes 1 minute, the most conservative estimate

will be around 166 CPU-hours, and that excluding algorithm itself, taking into account

simulations only. One of the possible ways would be a code optimization either for model

or optimization algorithm. Firstly, the optimization is time consuming itself, and time

spent may not be payed off by results of the search. As famous saying declare “premature

optimization is a root of all evil”, thus one shall not strive for it without dire need.

Secondly, one can run model or optimization search in parallel thus decreasing elapsed

time. It is efficient way, however, like in previous case, development-wise is also time con-

suming. One may need to find places within a model which can be efficiently parallelized.

Also, parellelizing optimization search can boost up time while keeping the model’s code

untouched. For example, any genetic algorithm requires a number of independent model

evaluations at each generations. Thus, one can parallelize a model up to the number

of available cores. In case of derivative-based optimization, one will be limited by the

number of derivatives regardless of cores available. This all making an improvements in

code performance non-trivial task, therefore one shall carefully decide if it is a worthwhile
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to do.

An alternative solution is to use surrogate model instead of original one for the op-

timization. Surrogate is a regression model obtained from a simulation data of original

model30,31. With required accuracy it is resembled in behaviour but computationally

much cheaper. Therefore, it can be used with existing optimization codes without any

alteration, thereby saving development time. An optimization run even on a single-core

will be much more faster. Optimization with surrogates have been successfully applied

for chemical engineering problems. A number of works available in open literature solv-

ing optimization problems for chemical engineering tasks, e.g. optimization of distillation

columns32, design and optimization of chemical engineering units under uncertainty33,

flow sheet optimization34, etc. It was shown that with use of proper surrogate it is pos-

sible to substitute original with proper regression model without loss of accuracy and

obtain effective and feasible solution.

In this work, we utilize a developed first-principle model for an industrial ammonia

converter. The model was validated with industrial data and showed a satisfactory accu-

racy. After, we trained a surrogate model with Eureqa® 35,36. Then obtained regression

model was coupled with optimization algorithm and few two-objective optimization cases

have been solved. One can find a broad range of optimal solutions with a trade of between

objectives.

3.2 Ammonia synthesis and model summary

Regardless of particular technology, industrial ammonia synthesis is done through Haber

process. The ammonia is produced through the reaction of hydrogen and nitrogen:

N2 + 3H2 2NH3, ∆H0
298 = 46.22 kJ/mol (3.1)

The reaction is carried out under elevated temperature and pressure to suffice significant

yield. The Eq. 3.1 is a gas-solid reaction occurring in presence of iron or ruthenium
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Figure 3.1: Ammonia converter schematic

catalyst. The catalytic ammonia converter is made of few packed beds. The reaction

mixture is sequentially fed into beds to produced ammonia in steps. The intermediate

cooling is essential as the reaction 3.1 is exothermic. To prevent catalyst from exposure

to high temperatures and shift reaction equilibrium the excess heat is removed between

beds.

The object of study is a three bed ammonia converter. The simplified layout is

provided at Fig. 3.1. The synthesis gas is split into two flows - for main feed and quench.

The main feed enters prior the first bed, while quenching is done in between. The process

gas passes though a bed and experiences a temperature rise. This is where quenching

and heat recovery is used - to remove the excess heat from the gas stream.

The main steps of ammonia synthesis in this reactor include:

1. Reaction kinetics

2. Intraparticle diffusion

3. Fixed bed hydrodynamics model

4. Heat recovery model

The four following steps were implemented in the model. The reaction rate is modelled
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by a Temkin equation:

RNH3
= k2

[

K2
afN2

(

f 3
H2

f 2
NH3

)α

−

(

f 2
NH3

f 3
H2

)1−α
]

(3.2)

where RNH3
- rate of ammonia formation [kmol/m3·h], k2 - kinetic constant of reverse

reaction [kmol/m3 · h], Ka - equilibrium constant, fi - fugacity of ith component, α -

constant number. Intraparticle diffusion is derived through mass balance assuming Fick

diffusion37:
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RNH3
(X, T, P )

1− ǫ
(3.3)

subject to boundary conditions:

ω = 0 :
dXi

dω
= 0

ω = 1 : Xi = Xi(bulk)

where νi - corresponding stoichiometric coefficient in synthesis reaction (Eq. 3.1), ω -

dimensionless distance from pellet center to interior point, Rp - pellet radius [m2], C -

total concentration [kmol/m3], Die - effective diffusivity [m2/s], ǫ - bed voidage. The

catalyst bed hydrodynamics is assumed to be a one-dimensional plug flow with no axial

dispersion:

dχ

dV
=

ηRNH3
(X, T, P )

2F 0
N2

(3.4)

dT

dV
=

(−∆HR)ηRNH3
(X, T, P )

ṁgasCp,gas

(3.5)

where ∆HR - enthalpy of reaction at current temperature [kJ/kmoleK], χ - fractional

conversion of nitrogen, V - catalyst bed volume [m3], FN2
- molar flow rate at bed inlet,

ṁi - mass flow rate of gas [kg/h].

Due to proprietary reasons authors cannot provide a layout for the heat recovery

system in the converter, thus making it impossible to disclose details of the heat recovery
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model as well. So this part will remain unknown for the reader, however one will not

experience any unclarity of the work flow or loose generality of this work.

The model was validated with industrial data of the converter operation. Authors

performed a comparison between simulated and measured temperatures (Fig. 3.2) and

feed compositions (Table 3.1). One can see a close match between simulated temperature

profile within catalyst beds and measured by thermocouples at beds’ edges. The error

lies with range of few °C. Moreover, prediction of stream composition are also very close

to the experimental results. Thus, the model has a good accuracy to be further used for

converter simulation and optimization.

Figure 3.2: Comparison between simulated and observed temperatures along reactor

Gas stream composition [% mol.]
N2 H2 NH3 CH4 Ar

simulated 23.53 56.38 13.31 5.08 1.70
experimental 23.10 56.50 13.56 5.08 1.71

Table 3.1: Comparison between simulated and experimented gas composition

3.3 Multi-objective optimization of converter oper-

ation

The converter’s operation is a complex process. It has a number of control and perfor-

mance parameters which has to be taken in to account in order to operate the unit or
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perform multi-objective optimization. Proper study of the converter’s layout, consul-

tation with process engineers and preliminary model simulations allowed us to narrow

down process control parameters for operation to three major: feed gas temperature

Tfeed, quench-to-feed ratio QFR and process pressure P .

The most important industrial criteria of the ammonia converter efficiency is ammonia

production. Other objective of engineering importance is the amount of heat recovered

within the system. The more heat can recovered the less is needed to provide into the syn-

thesis gas. Firstly, we performed few model simulation to visualize the objective domain

for up mentioned process parameters (shown at Fig. 3.3 (a) and (b)). Both objective

spaces are convex surfaces with individual maximums located within box-constrained

region leading to non-linear optimization problem.

Secondly, the developed model is inconveniently expensive computation-wise taking

around 5 minutes of CPU time for a sole simulation. Therefore, an optimization search

requiring a large number of model evaluations will result in lengthy runs. So we performed

60 model simulations and used this data to train surrogate models with Eureqa®. A

surrogate model was obtained minimizing AIC as goodness-of-fit measure as more robust

metrics38. As Eureqa® yields a set of models compromising accuracy vs. complexity,

we choose one model for each objective which we found to have satisfactory accuracy for

MOO.

The obtained models are shown on Fig. 3.3 (c) and (d) for Xout
NH3

and HR respectively.

One can find some discrepancy between figures a) and c) in the area of low Tfeed and

QFR, while the other regions show good consistency. However, as it will be shown in

Results and Discussion, the obtained optimum lies far from the discrepancy region. Thus,

the regression models by Eureqa® can adequately represent original objective functions.

Case 1 : The two objective discussed above were included into two-objective opti-

mization problem. The optimization problem is constrained by maximum bed tempera-

ture as it is limited by catalyst manufacturer in order to prevent damaging the catalyst
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a) b)

c) d)

Figure 3.3: Response surfaces for process objectives
Figures a), b) are obtained by simulation of original model, figures c), d) - by surrogate

simulation.
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Table 3.2: Single objective maximums

Objective Optimum Other objective Tfeed Qquench

Xout
NH3

0.1354 85.06 249.98 0.45
HR 105.31 0.1310 230.04 0.33

and loss of activity. Industrially feasible domain for process parameters is a subject to

minimum and maximum bounds as decided in accordance with industrial practice. The

MOO problem is summarized as:

maximize I1(x) = Xout
NH3

maximize I2(x) = HR

subject to:

T out
bed ≤ Tmax for each bed

x = Tfeed, Qquench, P ∈ [min;max]

Prior to MOO, corresponding SOO problem was solved with only one objective

to be maximized. Individual maximums of the objectives were found with COBYLA

method39(Table 3.2). Firstly, one can find individual maximums of both objectives.

Secondly, it is evident that both objectives cannot be satisfied simultaneously. In case

of conflicting objectives, the optimal solution should be a Pareto optimal set of points.

Therefore, the MOO problem was solved with NSGA-II24 which allows to treat the prob-

lem directly as formulated.

3.4 Multi-objective optimization of converter design

Case 2 : Also, we considered MOO problem involving converter’s design parameters.

Beside ammonia production, another important process parameters is a total catalyst

loading within converter and it distribution among beds. Therefore, another multi-
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objective optimization problem to to investigate possibility to lower total catalyst volume

in reactor while keeping ammonia production high to be solved as follows:

maximize I1(x) = Xout
NH3

minimize I2(x) =
3

∑

i=1

Vi i = 1− 3

subject to:

T out
bed ≤ Tmax for each bed

x = Tfeed, Qquench, Vi ∈ [min;max]

3.5 Results and discussion

Case 1. Pareto set of optimal solution for Case 1 was obtained for two different con-

verter pressures. As the converter pressure being the parameter not easily changeable

in industry (contrary to feed temperature and quench-to-feed ratio), we solved Case 1

for 85 and 91 atm. independently. Former pressure is found to be most common for the

converter, while latter is intended to show the potential changer in converter operation

and possible to achieve within the unit. The results are shown in Fig. 3.4. Overall, higher

temperatures and QFR favour higher ammonia production. If this is the objective one

is striving for, it is necessary to control both parameters simultaneously to stay near

optima. However, at higher pressure the impact of quenching is becoming less important

thus more attention has to be paid for feed temperature.

One can note that higher pressure is much in favour of higher ammonia production.

Any point of 91 atm. set is providing higher molar fraction of ammonia in product.

On contrary, lower pressure on average allows for higher heat recovery within converter.

Moreover, it also provides a wider range of Pareto optimal solutions for both objectives.

If one willing to come from low to high heat recovery (i.e. from most right to most

left point at 85 atm.), it will allow for 8% in heat saving. Considering large scale of
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a) b) c)

Figure 3.4: Pareto optimal set of solutions for Case 1
Figure a) shows both objectives. Figures b), c) shares the same Y-axis with figure a) and

shows relation of process parameters to Pareto-optimal set of objectives.

production it will result in significant heat duty reduction. The range is narrower at

higher pressure due to faster reaction rate and heat generation, thus, consequently, more

bounded by upper limit on catalyst bed temperature.

If one willing to account for total heat recovery, adding up both ways of heat recoveries

- by quenching and through heat recovery systems - the obtained optimal operating

conditions are the same. One can see that the most contribution into overall heat recovery

is done by means of HR. About 60-70 % is contribution of HR, while remaining part is

done through quenching. Thus, main focus in optimization has indeed to be done on

efficiency of HR-system rather making it equivalent problem to maximization of total

heat recovery.

Case 2. The solution for Case 2 is given at Fig. 3.5. As for Case 1, Fig. 3.5 a) provides

a range of objectives. One can find that a range of Xout
NH3

is much wider than in case

1 (1.2% vs 0.6%). Also, for every point on the figure ammonia content in the product

stream is higher than for any point in Case 1. Therefore, catalyst distribution is another

important parameter to consider when designing a converter or loading fresh catalyst at

maintenance. As for process parameters, QFR and V1 hit their upper and lower bound
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a) b) c)

A

B

C

Figure 3.5: Pareto optimal set of solutions for Case 2
Figure a) shows both objectives. Figures b) shares the same Y-axis with figure a) and shows
relation of feed temperature to Pareto-optimal set of objectives. QFR is at upper bound, V1 is

at lower bound.

respectively. The relation of other process parameters to Pareto optimal points is given

on Fig. 3.5 b) and c). Feed temperature and two other bed volumes are experiencing more

complex relations in order to stay Pareto optimal. Firstly, higher total catalyst volume

will allow for lower inlet temperature due to higher space times. Secondly, the major

decrease in feed temperature ( 20 °C) and rise in ammonia (0.8 %) is achieved through

the increase in third bed catalyst loading. The further boost in ammonia ( 0.4%) is

through increase of the loading in second bed, while keeping Tfeed and V3 constant.

To take a closer look into importance of catalyst distribution on converter perfor-

mance, one can consider three cases from Fig. 3.6 a) highlighted as. A and C correspond

to marginal cases with minimum and maximum loading while B depicts solution “in the

middle”. In fact, total loading of catalyst at point B is the same as in the converter

studied but with different distribution. The existing catalyst distribution is labelled as

“original” at Fig. 3.6. Firstly, one can note a major contribution of the first and second

beds into overall ammonia production. While first bed loading remains constant, the

change in other two can drastically improve ammonia production. Secondly, even lowest

catalyst loading provides higher ammonia production by far (“original” vs. A). Needless

to say that if one can properly redistribute existing amount of catalyst among beds, it
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Figure 3.6: Comparison of catalyst loading distributions
Distribution of catalyst among beds at points A, B and C from Fig. 3.5 are compared.

“Original” denotes current catalyst distribution in the object of study. Case B in total gives
the same amount of catalyst as in “original” case.

can bring even better ammonia production (“original” vs. B).

For all considered cases operating parameters remain in the same range, while pressure

is kept at 85 atm. One can recall from optimization of Case 1 that at higher pressure

ammonia production increases. Thus, if ammonia production is the first priority, there’s

even more room for improvement at higher pressures if engineers are willing to increase

compression duties and/or if there’s no other restrictions to do so.

3.6 Conclusions

A multiobjective study of the industrial ammonia converter was performed. The MOO

study was done with use of surrogates trained on simulated data from first-principle

model. The surrogate models obtained with Eureqa® have a good accuracy to be used

as substitute for original model. Two MOO cases - operation and design optimization

- were solved and analyzed with NSGA-II. The most important parameters on the unit

operation are found to be feed temperature, quench-to-feed ratio and pressure. Thus,
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former case yielded a Pareto set of solutions compromising between ammonia production

and heat recovery depending on these parameters. The latter case showed that for any

point in Pareto set for design MOO ammonia production is higher that in operation MOO.

Therefore one can benefit even more with change of total catalyst loading in the converter

and/or proper distribution of catalyst among beds. The total ammonia production at

any point of Pareto set for design optimization was higher that for operation case even

for lower total catalyst loading in converter.
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Nomenclature

A− 1 absorption tower

abs absorbent

C− 1 cooler

D− 1 desorber

L liquid level

Nclust number of clusters

ni number of points in ith cluster

P pressure

p refers to point in cluster

P− 1 solvent pump

Q volumetric flow rate

RMSE root mean squared error

S− 1 separator

SOM self-organizing maps

T temperature

X molar fraction

4.1 Introduction

Carbon dioxide occurs as an undesired flow component in a number of chemical engineer-

ing processes, such as industrially mature natural gas treatment ammonia production1

or power generation, or more modern as biogas production2, etc. The purpose of CO2

removal may vary, from gas pre-treatment to its further conversion. Depending on the

required extent of carbon dioxide removal, scale of production or other process features
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there are a number of technologies available nowadays. Carbon dioxide is removed by

chemical or physical absorption using selective solvents or solids3,4, pressure swing ad-

sorption5or membrane separation.6 Some of these ways have long history and wide spread

among industries, while others are more modern.

In the large scale processes, the use of physical and chemical solvents is more common.

Conventionally, the process undergoes through two stages. Firstly, carbon dioxide cap-

ture occurs in a contact unit through direct gas-liquid contact. Later, captured carbon

dioxide is released in a solvent-regeneration unit. This absorption-desorption loop allows

carbon dioxide removal unit to operate in a continuous mode.

There is significant number of works published in the literature dedicated to the

modelling of industrial carbon dioxide removal units. Robinson and Luyben 7 performed

a modelling of carbon dioxide removal unit as a part of a large scheme of integrated

gasification combined cycle (IGCC). CO2 along with other contaminants occur there as

a result of fuel combustion. They developed a dynamic model using Aspen Dynamics.

Optimal equipment design was selected based on desired product purity; and dynamic

simulation was performed to evaluate performance of the IGCC plant under disturbing

conditions.

Similarly to previous work, Bhattacharyya et al. 8 performed a steady-state simulation

of IGCC plant with Aspen Plus. Conceptual way was illustrated in how to optimize IGCC

plant, what parameters should be accounted for and how to utilize them while solving

optimization problem. However, it was not applied to any existing plant. They used the

model for overall three-phase plant optimization while targeting CO2 capture as one of

objective functions. They came up with various scenarios for best plant design decisions.

Kapetaki et al. 9 authors are striving to achieve higher carbon dioxide removal effi-

ciency than the authors of two previous researches. They used Honeywell UniSim for

steady state modelling of carbon dioxide removal unit. They investigated two differ-

ent process operating modes under different operating conditions (e.g. unit pressure,
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absorbent flow rate) onto process performance (i.e. carbon dioxide capture, power con-

sumption).

Mores et al. 10 performed modelling and optimization study of carbon dioxide removal

with monoethanol amine solvent. Their model was implemented with General Algebraic

Modeling System. The model underlies complex heat and mass transfer equations with

a significant number of process parameters and technological constraints. This work is

mainly focused on improvement to be made in solvent regeneration from CO2. To do so

two objective functions were proposed: to minimize heat duty in reboiler and to minimize

ratio (heat duty in reboiler/CO2 removal).

The object of this study is an industrial solvent-based carbon dioxide absorber. In

this work authors intend to utilize different approach for modelling of the latter. Firstly,

we are performing the study of real operating unit aimed for synthesis gas purification

in the ammonia production chain. Carbon dioxide has to be removed there up to certain

percentage in order to avoid catalyst poisoning downstream. While carbon dioxide re-

moval itself on this unit is efficient enough and practically does not raise any optimization

problem, but solvent regeneration bears a room for improvement. Therefore, authors are

focusing on quality of solvent regeneration. The requirements which constitute qual-

ity will be addressed below in process description. Thirdly, we are willing to utilize vast

amount of available industrial data. It covers a quite long time span of the unit operating

history. This work is done in collaboration with plant engineers, thus their engineering

judgment is taken into high consideration. Overall, they are quite satisfied with the

mode of the unit operation and quality of treated gas. However, throughout this work

we intend to determine most important parameters to be used in process performance

improvements having minor interference with the current operation mode. Note: due to

proprietary reasons all the data used throughout this paper related to the real operating

conditions of the industrial unit is provided in dimensionless form.
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Treated gas

Lean
absorbent

Recycle gas Recovered CO2

A-1 D-1

S-1
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2

CO  rich gas2

Figure 4.1: Process flow diagram for carbon dioxide removal

4.2 Process description

One of the most conventional technologies for ammonia synthesis uses natural gas as

a feedstock. Overall description of ammonia synthesis from natural gas can be found

elsewhere.1 Briefly, the process gas is mainly (80-90 % mol.) made of hydrogen and

nitrogen in the ration close to stoichiometric (3:1). The remaining gases are unconverted

methane, argon, carbon dioxide and carbon monoxide. Remaining carbon oxides in the

gas originate from steam reforming reaction followed by gas shift reaction. A gas stream

contains 10-15% mol. of carbon dioxide at the inlet of the treatment unit. If not removed,

carbon dioxide will act as a catalyst poison downstream in the ammonia converter.

Thus, carbon dioxide removal unit serves for process gas purification. Untreated gas

from shift conversion enters to the bottom of to the packed bed absorber A− 1 (Fig. 4.1).

Lean absorbent is supplied through the top of A-1 where CO2 removal occurs through

gas-liquid absorption in a counter-current fashion. However, absorbent is selective to

CO2, but all of the process gasses are getting captured but in a lesser amount. A second

most captured gas is hydrogen. The treated gas leaving from the top of A-1 contains

10-1000 ppm. of carbon dioxide. The actual concentration highly depends on solvent

and process operating conditions.
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Further, the solvent is freed from captured gases through two stages desorption.

Firstly, CO2-rich solvent leaves from the bottom of A− 1 to the cooler C− 1 where

its temperature drops down. When cooled, it flows into separator S− 1. Prior to en-

tering S− 1 flow pressure is dropped and absorbed gases are partially released from top

(Recycle gas). Recycle gas is mainly carbon dioxide and hydrogen with minor part of

other gases from the gas stream. Then, half-rich CO2 solvent flows to the desorber D− 1.

Similarly to A− 1, the desorber D− 1 is a packed bed contact unit there remaining gases

are stripped away fully regenerating lean solvent. Remaining gases are stripped from the

top of a column. Lean absorbent is compressed in the pump P− 1 up to operating

pressure and recycled back to the absorber.

4.3 Process modelling

The instrumentation and chromatography analysis data obtained from industrial carbon

dioxide recovery unit was used for the modelling. The data covers a time span for several

years of the unit operation. It includes process instrumentation readings such as from

pressure or temperature indicators, flow meters, etc., as well as chromatography analysis

of gas flows at the unit. The entire set of original data was pre-treated to remove irrelevant

information which could occur due to indicators failure and malfunction, a human error

or errors of any kind.

Firstly, data inspection was done visually appealing to common sense and engineering

judgment of the authors and plant engineers. Then, it was clustered using self-organizing

maps (SOM) (described below) in order to determine outlying groups of data. After pre-

screening was accomplished, the post-treated data set contained around 350 points.

Operating range of real industrial unit is quite narrow, i.e. process parameters cannot

vary in wide range due to some engineering restrictions. Hence, the correlations between

inputs and outputs can assumed to be linear, therefore linear regression to be used.
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As with majority of data-based models, during training one may face over-fitting

problem. To resolve the faced problem with models training, one may take a closer look

into the operation of a large scale industrial unit and, particularly, the instrumentation

readings. The carbon dioxide removal unit is a continuously operating unit serving for

the only purpose to provide treated gas of a certain quality for its further downstream

conversion. This quality has to be maintained all the time for stable plant operation.

As with many large scale continuous units, the object of this study is operating in the

steady state most of the time. It is worth to admit that in reality the instrumentation

readings and analysis during a steady state operation are obviously not constant, they are

subject to random noise, fluctuations in feedstock quality and feed rate, malfunctioning,

etc. Transition between the states occurs when engineers decide to change operating

conditions and shift unit into a new state.

At the same time, the instrumentation readings and gas analysis occur on the regular

basis and are almost evenly distributed in time. Thus, the longer the unit was in state

a the more data points are retrieved from the system. When the unit changed its state

into state b for a shorter time, we end up with fewer points for the new state. However,

this points deliver for us useful information about units performance. This is happening

several times during the entire unit operation (state c, etc.). Lets consider a generic

uni-variate case of such unit operation (Fig. 4.2).

Imagine we have three real states a unit have been into over observed period of time.

They are marked in solid black circles. If we were able to measure these values, applying

least square method we would get an ideal regression model (black line). No doubt it is

impossible to achieve it with real data because all the measurements are subject of noise

and uncertainty.

Lets compare two independent cases. In the case 1 measurements are done rarely,

so we have just a few points representing each true state (green dots). In the case 2,

measurements were more frequent and more observation points were gathered (red dots).
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Figure 4.2: Single variable generic case for linear regression of industrial data

Since time spans of true states are differ time, we have more points representing state

2 and less for states 1 and 3. If we apply least square regression to both cases, we

can conclude that if we have bigger data cloud for state 2 (i.e. case 2), it causes more

significant deviation from ideal case than having less points (i.e. case 1). So we obtain

distortion of results if we dont account for that. Thus, it is necessary to diminish impact

of data clouds onto regression model.

If we apply least square regression to both cases, we can conclude that if we have

bigger data cloud for state 2 (i.e. case 2), it causes more significant deviation from ideal

case than having less points (i.e. case 1). So we obtain distortion of results if we dont

account for that. Thus, it is necessary to diminish impact of data clouds onto regression

model.

If we take a closer look onto industrial data, we can find that there are some denser

regions, while some other are scattered or even few points at all (Fig. 4.3). Lets do

not forget that real problem is multivariate and similar effects can be observed in other

dimensions. If we disregard this phenomena we obtain regression model which tends

to deviate more from real units performance. Authors understand that perception of
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Figure 4.3: Example of real industrial data

whether the model underestimates or overestimates the real performance is unclear and

subjective. Thus, the criteria to decide about models ability to describe units performance

was based on common sense and long-time experience of plant engineers who were able

to provide us with a reliable feedback on model performance.

To diminish impact of dense regions we are going to incorporate least square regression

with clustering algorithm. Clustering will allow for aggregation points within dense

regions and diminish effect of large clusters. To clarify, by this means we do not intend

to explicitly divide data into the exact number of steady states in which unit has been

operated. We just willing to account for the impact of big data clouds, thus mitigating

their distortion effect and cutting through the clusters.

4.4 About clustering

Clustering is a general word to describe a number of methods aimed for grouping data.

The criteria for grouping as well as techniques vary widely.11 For the sake of clarity, one

can say that points within a particular cluster bear more resemblance to each other than
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to points belonging to another cluster. For example, similarity between data points can

be expressed as metric distance, e.g. Euclidean distance in K-means clustering12 or some

other cases of Minkowski distance is used in hierarchical clustering13.

In the purpose of this work, authors used a self-organizing maps also known as Ko-

honen maps (SOM).14 SOMs provide mapping of multi-dimensional variables into two-

dimensional space. One pre-defines SOM topology first (i.e. type of grid). Each node in

the grid is referred as a codebook vector. Then SOM learning algorithm maps original

data into discrete locations around codebooks. Thus to be said that each codebook vec-

tor is representation of group of data points (cluster) gathered around it. The entire set

of them in the SOM grid depicts structure of entire data set. More detailed description

of learning algorithm can be found elsewhere.14,15

Fig. 4.4 shows the example of codebook vectors obtained with SOM while clustering

industrial data. Values of data points within each cluster are in the close proximity with

values of codebook vectors. Coloured leaves with each sub diagram illustrate relative

values of each process parameter. For example, counting row-wise from top left corner,

one can say cluster three has larger values of QA−1 and XA−1
H2

or cluster seven has higher

values of Qabs than others, etc. Thus, SOM mapping provides one, firstly, with intuitive

sense of the data structure. It is worth to note that from a practical point of view it

a convenient way for outlier screening in the raw data. One can cluster data first and

then check out clusters with outstanding values. Secondly, SOM mapping provides one

directly with clusters of data assigning each point to a particular coding vector.

4.5 Model training and validation

The following assumptions have been made prior to the modelling. Firstly, absorber

A− 1 operates in steady state under the same conditions, i.e. feedstock flow conditions

and unit operating conditions are constant. Thus, flows leaving A− 1 from top and
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Figure 4.4: SOM coding vectors

bottom are also have constant conditions, i.e. composition, temperature, pressure, etc.

We find it a reasonable assumption, because the plant operates at constant production

rate and it is crucial to maintain the quality of treated gas over time to provide stable

operation of ammonia synthesis reactor. As it was confirmed by distribution of operating

conditions over considered time span.

Secondly, we assume a feed rate of stripping agent constant since no flow meter is

installed on the line to retrieve this data. Thirdly, as we mainly interested in two most

absorbed components CO2 and H2 we dont consider remaining components separately,

but as lump of. Summarizing, to perform modelling and evaluate performance of carbon

dioxide removal unit authors selected to predict 3 response properties (Table 4.1) based

on the defined set of variables. Any other needed flow properties within the unit can be

calculated from mass balance of the process.

Original data set was divided into training and validation sets. The former was

used for model fitting and the latter for evaluating model performance. The training

procedure was as follows. The training data was clustered into Nclust clusters with each



4.6. Variable selection and ranking 87

Table 4.1: Performance criteria of carbon dioxide removal unit used in the modelling

Response Description

Qtop
S−1 Volumetric feed rate of recycle gases from S− 1

XD−1
CO2

Mole fraction of CO2 in top gas from D− 1

XD−1
H2

Mole fraction of H2 in top gas from D− 1

Table 4.2: Performance criteria of carbon dioxide removal unit used in the modelling

Variable Description

LS−1 Liquid level in separator S− 1
PA−1 Pressure in absorber A− 1
PD−1 Pressure in desorber D− 1
PS−1 Pressure in separator S− 1
TC−1 Temperature of CO2 reach absorbent after cooler C− 1
TP−1 Temperature of lean absorbent after pump P− 1
Qin

A−1 Volumetric feed rate of gas into absorber A− 1
Qabs Volumetric feed rate of absorbent in CO2 removal loop
XA−1

CO2

Mole fraction of CO2 in feed gas to A− 1

XA−1
H2

Mole fraction of h2 in feed gas to A− 1

cluster having ni points. Point pji is given weight of 1/ni. Thus points within bigger

clusters are assigned smaller individual weights and clusters have even impact on the

regression. Then least square linear regression model is fitted over weighted data, and

models performance is evaluated with validation data. For validation score root mean

squared error (RMSE) is used. The procedure is repeated for different Nclust and the one

with least RMSE score is chosen.

4.6 Variable selection and ranking

Prior to modelling, one needs to be explained with procedure of variable selection for

modelling. We selected all process parameters which are a) aimed for control of process

performance, b) parameters which affect process performance thermodynamic-wise and

c) which are stored in the industrial data base in a sufficient amount. List of selected

variables is given in Table 4.2.
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a)

b)

c)

Figure 4.5: Variable importance test with Boruta: a) XD−1
H2

, b) XD−1
CO2

, c) Qtop
S−1

Then variables were tested and ranked for relative importance onto each of the re-

sponse parameters. Boruta method16 was used for feature selection. The method ranks

variables based on the Z-score of Random Forest.17 In addition, it creates a number of

random attributes and compares their Z-cores with scores ones of real attributes. Real

attributes only with Z-scores higher than maximum the Z-core of random attributes are

considered as relevant for prediction of the response. Fig. 4.5(a-c) shows the ranking of

accepted variable for each of three responses.
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4.7 Results and discussion

Carbon dioxide unit model is developed in R language.18 Additional R packages caret19,20

are used for data pre-processing and clustering respectively, package Boruta21 is used for

variable ranking.

4.8 Model validation

Self-organizing maps of rectangular topology are used for clustering, since they have

shown good performance in clustering industrial data on the data pre-processing stage.

However, authors believe that the use of other clustering methods will not change the

approach significantly.

Firstly, one can conclude from Fig. 4.6 that fewer number of clusters allows for RMSE

reduction better than more clusters. Maximum SOM topology 6 by 6 SOM was chosen

since mapping 350 points into larger number of clusters is not reasonable.

Secondly, one can admit that in some cases the proposed method works better than

in others. Thus, in case of XD−1
CO2

and Qtop
S−1 and XD−1

H2

(Fig. 4.6a,c) we obtain evident

solution for the SOM size depending on RMSE values. In case XD−1
CO2

it was not clear

which SOM topology to choose, thus for consistency with two other cases we selected 3

by 3. Table 3 shows RMSE obtained on validation data set. Fig. 4.7 depicts validation

plots for property prediction.

On the next step, we attempted to reduce a number of variables used for regression.

Since not all of them are possible to include into optimization problem due to technolog-

ical constraints, we intend to limit their number only to the most industrially important

ones. We took Z-score of Boruta test as a measure of relative importance and fitted the

model removing less important variables one by one (i.e. from left to right on Fig. 4.5.

Fig. 4.8 shows the effect of number of variables on RMSE. It is observed that by use of
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a)

b)

c)

Figure 4.6: Cluster size vs. RMSE: a) XD−1
H2

, b) XD−1
CO2

, c) Qtop
S−1

less number of variables (comparing to the original ones, i.e. number of removed variables

= 0) it is possible to further reduce cross validation error.

While selecting the finalized number of variables for regression, authors compromised

between the minimum RMSE score and practical importance of the variables. The final-

ized variables are given in Table 4.3.

Here it is worth to notice one fact about chosen process variables. Liquid level in sep-

arator LS−1 has the highest Z-score among other variables for all responses, thus having

significant effect towards process performance. Industrially-wise, it is relatively simple

to control liquid level in the vessel rather any other parameters, such as temperature

or pressure. The variations in the latter might be restricted due to design, safety or
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a)

b)

c)

Figure 4.7: Validation plot: a) XD−1
H2

, b) XD−1
CO2

, c) Qtop
S−1

other engineering reasons. Should we apply conventional first principle modelling for

carbon dioxide removal in the unit, it would be problematic to account for that process

parameter as a decision variable for modelling and optimization. Authors believe that

this phenomenon might happen due to change in the residence time of absorbent in the

vessel. The hypothesis makes sense, since higher residents time favour separation of ab-

sorbed gases. However, the exact reason for this fact has to be established in the further

research, which might involve CFD modelling and simulation.
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Figure 4.8: Effect of number of variables on RMSE: a) XD−1
H2

, b) XD−1
CO2

, c) Qtop
S−1

4.9 Operation optimization

Out of 5 process parameters used for modelling (Table), two were selected to be used as

decision variables (Qabs and LS−1), while others are keep constant at their industrially

feasible values. Values of TC−1 and PS−1 are taken at the designed values. TP−1 cannot be

controlled directly, thus the average value for the observed period of time is taken. Upper

and lower bounds for Qabs and LS−1 are chosen in accordance with industrial values.

Objectives for optimization were established as 1) to achieve carbon dioxide flow from
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Table 4.3: Performance criteria of carbon dioxide removal unit used in the modelling

Response Number of removed variables Variables RMSE

XD−1
H2

4

TC−1

0.6200
PS−1

Qabs

LS−1

XD−1
CO2

4

TC−1

0.0673
PS−1

Qabs

LS−1

Qtop
S−1 4

Qabs

2.4635
TP−1

PS−1

LS−1

desorber D− 1 of a given purity and 2) to recover more hydrogen from S− 1. One can

summarize optimization problem as follows:

I1 : X
D−1
CO2

= X target
CO2

I2 : maximizeQS−1
h2

subject to :

min ≤ Qabs, LS−1 ≤ max

TC−1, PS−1, TP−1 = constant

(4.1)

Fig. 4.9 depicts the response surface between decision variables and either of objec-

tives. Firstly, one can note that two objectives are not in conflict. Either of decision

parameters favouring one of objectives favours another one as well. Industrial-wise, it is

an advantageous phenomenon. It is possible to satisfy both objective at the same time,

thus avoiding any compromising solution. Thus it is needed to increase the liquid level

LS−1 in S− 1 and lower absorbent circulation rate in the system to improve gas recovery.

Secondly, there is a vast possibility for process performance improvement. The yellow

line shows the current operating values for XD−1
CO2

and QS−1
H2

. One the one hand, it is

possible to reach the goal of I1, because the point lies within the plane. However, at that
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a) b)

Figure 4.9: Process parameters vs. objectives. a) XD−1
CO2

, b) Qtop
S−1

Yellow lines are representing intersection of current operation plane with the response surface.
Green dot indicates the goal value for XD−1

CO2

point decision variables both hit its bounds (LS−1 reach upper while Qabs reach lower).

Even though it is not always possible to completely minimize absorbent circulation rate

(e.g. due to unexpected overflow of synthesis gas to A− 1), but the unit still has capacity

to operate with improved performance. Operation-wise, it is relatively easy to change

liquid level in the vessel with regard to other process conditions. Increase in the level

alone provides significant performance boost even when QS−1
H2

is not at the minimum.

4.10 Conclusions

In this work data-based modelling approach is utilized in order to optimize the recovery

of valuable gases of carbon dioxide removal unit. Carbon dioxide removal technology in-

formation, process flow diagram and description as well as data for several years of plant

operation are used for modelling. Linear relations between process and performance pa-

rameters are assumed due to narrow operation range and engineering limitations. Data-

based model was built as conjunction of self-organizing maps with least square linear
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model. Model validation was done with industrial data. It has achieved satisfactory

performance in order to solve the proposed optimization task. The number of relevant

process parameters were narrowed down with Boruta algorithm (i.e. liquid level in sep-

arator and absorbent circulation rate). The model revealed significant room for process

performance improvements. It is possible to reach the goal of optimization task within

the process bounds.
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Nomenclature

A− 1 absorption tower

abs absorbent

C− 1 cooler

D− 1 desorber

L liquid level

Nclust number of clusters

ni number of points in ith cluster

P pressure

p refers to point in cluster

P− 1 solvent pump

Q volumetric flow rate

RMSE root mean squared error

S− 1 separator

SOM self-organizing maps

T temperature

X molar fraction

Bibliography

[1] M. Appl. Ammonia : principles and industrial practice. Wiley-VCH, Weinheim ;

New York, 1999.

[2] A. Arya, S. Divekar, R. Rawat, P. Gupta, M. O. Garg, S. Dasgupta, A. Nan-

oti, R. Singh, P. Xiao, and P. A. Webley. Upgrading Biogas at Low Pres-



BIBLIOGRAPHY 97

sure by Vacuum Swing Adsorption. Industrial & Engineering Chemistry Re-

search, 54(1):404–413, 2015. ISSN 0888-5885. doi: 10.1021/ie503243f. URL

http://pubs.acs.org/doi/abs/10.1021/ie503243f.

[3] C.-H. Yu. A Review of CO2 Capture by Absorption and Ad-

sorption. Aerosol and Air Quality Research, pages 745–769,

2012. ISSN 16808584. doi: 10.4209/aaqr.2012.05.0132. URL

http://www.aaqr.org/Doi.php?id=7 AAQR-12-05-IR-0132&v=12&i=5&m=10&y=2012.

[4] Y. E. Kim, J. A. Lim, S. K. Jeong, Y. I. Yoon, S. T. Bae, and S. C. Nam. Comparison

of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions.

Bulletin of the Korean Chemical Society, 34(3):783–787, 2013. ISSN 02532964. doi:

10.5012/bkcs.2013.34.3.783.

[5] S. Cavenati, C. A. Grande, and A. E. Rodrigues. Removal of carbon dioxide from

natural gas by vacuum pressure swing adsorption. Energy and Fuels, 20(6):2648–

2659, 2006. ISSN 08870624. doi: 10.1021/ef060119e.
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5.1 Introduction

Ammonia synthesis has a major importance for chemical industry. It has been one of

the first processes commercialized at industrial scale. Ammonia has been used widely in

different areas - from direct application and manufacturing of agricultural fertilizers (e.g.

urea, ammonium nitrate) to production of polymer fibers and explosives.1

The way to improve performance of ammonia synthesis in the existing units is pro-

cess simulation using comprehensive mathematical models followed by numerical opti-

mization. Having a valid model is essential for accurate representation of an industrial

system. The subject has been continuously drawing attention over the years as a num-

ber of works are present in the literature. Models have been developed for converters

of different designs, e.g. for autothermal converters2–4, with multiple adiabatic catalyst

beds5–7. Models differ in their complexity, from simple plug flow to more comprehensive

heterogeneous ones accounting for species transport in catalyst pores. Application of

heterogeneous models to industrial converter modelling showed a very good consistency

with industrial data and to be more robust.6,8

Also, attempts have been made towards optimization of converter performance. Most

of works have maximization of ammonia production as the main objective6,9, while other

maximize overall economic return of the process.4,10 However, none of the works to

the best of authors knowledge, use multi-objective approach for converter optimization

(MOO). As the industrial ammonia converter being a complex system, it is beneficial

to include more than one objective into consideration. MOO has been successfully ap-

plied for a number of industrial processes. Many works have been reported for MOO of

oil refining processes11–16, polymer manufacturing17–22, hydrogen plants23–26, and many

others. Therefore, there’s no doubt that applying MOO is beneficial and able to provide

better operating conditions for ammonia converter.

Another side of converter optimization that has not been addressed is account for cat-
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alyst deactivation. It is the case with many solid catalysts that their performance drops

with time.27 Therefore, it is important to optimize converter performance with respect to

changing activity of catalyst.28 Ammonia catalyst deactivation can be happening due to

absorption of oxygen compounds (i.e. CO, CO2, H2O) and non-metallic compounds(i.e.

sulphur or arsenic) if any present in the process gas stream. However, absorption of poi-

sonous compounds on catalyst surface is reversible, but poisoning is stable and activity

does not return to it original state.29 Even though short-term operation-wise catalyst

deactivation is not the most crucial issue as catalyst lifetime is quite long (reaching up to

several years1), but in a long run optimal operating conditions are still different. There-

fore, it is necessary to adjust them with respect to catalyst deactivation at real process

conditions.

In this work, we perform multi-objective optimization study of industrial ammonia

converter. We use first principle mathematical model of catalytic converter. It accounts

for heterogeneous gas-solid reaction over catalyst and utilizes model for heat recovery sys-

tem used in the object of study. The model was used to estimate catalyst deactivation

rate and kinetic parameters of catalyst at different lifetimes. In order to do estimation,

we propose a method to treat industrial data and extract valuable information from it.

Finally, the MOO of converter performance was done with respect to catalyst deactiva-

tion.

5.2 Overview of converter model

In the Haber process ammonia is produced through the reaction of hydrogen and nitrogen

(Eq. 5.1). The reaction is carried out under elevated temperature and pressure to suffice

significant yield. The Eq. 5.1 is a gas-solid reaction occurring in presence of iron or

ruthenium catalyst. The catalytic ammonia converter is made of few packed beds. The

reaction mixture is sequentially fed into beds to produced ammonia in a number of
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Figure 5.1: Ammonia converter schematic

steps. The intermediate cooling is essential as the reaction 5.1 is exothermic. To prevent

catalyst from exposure to high temperatures and shift reaction equilibrium the excess

heat is removed between beds.

The object of study is a three bed ammonia converter. The simplified layout is

provided at Fig. 5.1. The synthesis gas is split into two flows - for main feed and quench.

The main feed enters prior the first bed, while quenching is done in between. The process

gas passes through a bed and experiences a temperature rise. This is where quenching

and heat recovery is used - to remove the excess heat from the gas stream.

The model mainly consist of four parts covering phenomena occurring during am-

monia synthesis. They are reaction kinetic, intraparticle species diffusion, catalyst bed

hydrodynamics and model of heat recovery system. The detailed description can be

found below.

Note. This work was done on existing ammonia converter and real industrial data

was used. Due to proprietary reasons authors cannot disclose full layout of converter and

model details. Therefore, heat transfer system and catalyst bed arrangement will remain

unknown for the reader. Also, all numbers related to process operating conditions are

given in dimensionless form. However, reader will not loose generality of the work flow

as we are mainly focusing on process optimization and relative trends in variables.
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5.2.1 Reaction kinetics

Ammonia synthesis is done according to the reaction:

N2 + 3H2 2NH3, ∆H0
298 = −46.22 kJ/mol (5.1)

Ammonia synthesis is a mature process and extends back over decades, but there’s still

no single opinion about reaction mechanism on the surface of catalyst. So, a number

of them are proposed in the literature along with different kinetic expressions.30–34 The

Temkin equation (Eq.5.2) is found to be most accurate and applicable, therefore used for

the model:

RNH3
= k2

[

K2
afN2

(

f 3
H2

f 2
NH3

)α

−

(

f 2
NH3

f 3
H2

)1−α
]

(5.2)

The expression for equilibrium constantKa is taken from Gillespie and Beattie 35 (Eq. 5.3):

logKa = −2.691122logT − 5.519265× 10−5T+

1.848863× 10−7T 2 + 2001.6/T + 2.6899 (5.3)

Fugacity of i th component found as:

fi = φiXiP (5.4)

5.2.2 Intraparticle dissuion

Governing mass balance equation used as in Elnashaie et al. 8 . The Eq. 5.5 assumes Fick

diffusion of species with catalyst pores:

d2Xi

dω2
−

(

2

νi + 2Xi

)(

dXi

dω

)2

+
2

ω

dXi

dω
=

−

[

R2
p

CDie

(νi + 2Xi)

]

RNH3
(X, T, P )

1− ǫ
(5.5)
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subject to boundary conditions:

ω = 0 :
dXi

dω
= 0

ω = 1 : Xi = Xi(bulk)

Solving the following equation one can find concentration profile in radial direction of

catalyst particle and then incorporate it as effectiveness factor η:

η =

∫ 1

0

ω2RNH3
(ω,X, T, P )dω

RNH3bulk
(Xbulk, Tbulk, Pbulk)

(5.6)

5.2.3 Mass and energy balance

For catalyst bed hydrodynamics model we adopt one-dimensional plug flow model. There-

fore, differential mass and energy balance equations are written as:















dχ

dV
=

ηRNH3
(X, T, P )

2F 0
N2

dT

dV
=

(−∆HR)ηRNH3
(X, T, P )

ṁgasCp,gas

(5.7)

5.3 Industrial data analysis

Industrial process control has been broadly upgraded over last decades. It has turned

digital with all the sensors connected into a sole database. This allows for continuous

monitoring of the system and non-stop gathering of process history. With hundreds of

sensors serving a single unit and sending readings a number times per second, this fact

made large arrays of data for researchers and engineers to analyze and benefit from.

Ammonia synthesis is a continuous large scale process. As with majority of industrial

units, most of the time on line operation is in (pseudo) steady state, i.e. control and

performance parameters are time-independent. But considering long time run, these

process parameters do no remain constant entire time. Usually, the unit changes its
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steady states through operation. Quite often, transition from one steady state to another

is controlled by process operators. When needed, they change one or more process control

parameters thus affecting the performance. For example, this might be necessary when

feed stock is changed in terms of quality or rate, some auxiliary equipment experienced

failure and immediate reaction is needed, etc. The list of reasons is limitless due to

different complexity of processes.

The time needed for transition from one steady state to another is usually quite

smaller than the time unit spends in either of steady states. Therefore, the majority of

instrumental reading will be reflecting the steady states of unit operation rather then

transition information. Also, those reading do not genuinely depict true states due to

short term fluctuations of process parameters, sensor noise, failures and misreading.

Thus, any data entry at time t is an approximation of corresponding unit state. More

important, a data entry might be a bad approximation if signal at the moment was

subject to large deviation for any up mentioned reason. And not least important, since

data arrays are large and sometimes cover time span of few years, it is impossible to

genuinely recover time points when did steady state transitions happen. Quite often

other non-numeric details of unit operation are lost, since process operators and engineers

are rotating, forget things, thus unable to provide all auxiliary information. Thus the

one willing to analyze this data is faced with problem of approximation of steady state

history and recovery of information from raw data. The specific features of data is as

follows:

• Data is a time series, i.e. sensor readings vs. time

• Data covers a time span of several years

• Data is multidimensional, as reading from a number of control sensors are consid-
ered

• Data is taken as it is, covering everything that has been recorded, i.e. cold and hot
start-ups, urgent and scheduled shutdown, sensors failures and other uncertainties

• Time location for state shifts, unit shutdowns, etc. is unknown
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Figure 5.2: Industrial data processing sequence

So below we are proposing a way to recover information about steady states of in-

dustrial ammonia converter operation from data for several years. In order to clean it

from uncertainties, it is treated both ways - with respect to the process history (as time-

series), and regardless of it. So, in order to single out the steady state from the data of

a given quality, we have done the procedure shown on Fig. 5.2. The data is sequentially

fed through the following step in order to get cleaner process data.

Min-max cutoff. It constitutes the most basic preliminary data cleaning. For some

sensors one can define a “feasible” range of measurements as minimum and maximum

values. Beyond this range the readings no doubt will be irrelevant to normal unit op-

eration. For example, if unit pressure is around atmospheric, it means that likely unit

has been shutdown and depressurized for maintenance thus any reading at that time has

can be safely neglected. The same can be defined for temperature, as catalyst operation

range is define by manufacturer and know.

MAD. Median absolute deviation (MAD) filter is a technique widely used in signal

processing to deal with burst signal disturbances. In given time series data set x, for

point xt at time t one can define a window of width k and find corresponding median

µ (Fig. 5.3). Then an absolute deviation for each point within a window from median

is calculated (MAD). If point xt deviates from median of median further than some

threshold value, then it is treated as outlier and shall be removed36. The moving window

is applied to entire time series data for each sensor independently. This way allows for

removal of data points which were unable to be detected by min-max cutoff.

PCA. Principal component analysis (PCA) is a method of data transformation based

on variance in original data. PCA projects original data set Dm×n (m data entries of
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Figure 5.3: MAD filter

dimensionality n) onto new set of orthogonal basis vectors ui, often called as principal

components, such that the variance of projected data is maximized37. Therefore, each

original data point can be exactly given as linear combination of principal components.

The detailed description can be found elsewhere38. Thus, each original data point can

be approximated as a linear combination of first d principle components ((5.8)). By

doing this, one is able to reduce dimensionality of data while preserving the most of its

information. Also, it help to reduce noise and correlations in original data.

xi ≈ x̃i =
d

∑

i=1

βniui, d < n (5.8)

For example, let us have a data set of two variables (Fig. 5.4). The original axis are given

in black. Applying PCA, one can rotate original axis such that new axis PC1 will be

directed along with maximal variance in data, PC2 will be orthogonal to PC1 and with

second largest variance (in green). Knowing the transformation rule it is always possible

to restore original data from principal components. Therefore, after moving to a new

basis, one can just use PC1 to approximate a point in 2D space. For higher dimensional

case, one can select first d principal components based that cover required variation in

data space.

Clustering. Clustering is a process of splitting a data set into number of groups based
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Figure 5.4: PCA transformation

on their proximity to each other39. The measure of “proximity” can be defined differently

depending on data domain using different metrics38. Therefore, one can say that points

with a particular cluster are more resemble to each other than to any point in other clus-

ter. Thus, after data was cleaned from outliers and correlated noises over three previous

steps, this approach can be applied towards splitting a process history data points based

on their affiliation with different steady states. As process conditions belonging to the

same state will be closer to each other, one can use Euclidean distance to define proximity

of points ((5.9)). A vast number of clustering methods The number of clusters k can be

found by minimization of within cluster sum of squares (wcss ) - sum of distances from

each point in cluster xk
i to its center among all clusters xk

center ((5.10)).

dx1−x2
=

√

√

√

√

n
∑

i=1

(x1
i − x2

i )
2 (5.9)

wcss =
k

∑

j=1

pj
∑

i=1

dxj
i−xj

center
(5.10)

where n - dimensionality of data point, pj - number of points in ith cluster. Obviously,

the minimum for (5.10) will be when number of cluster is equal to number of data
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point (k = m) and is exactly equals to zero. So the number of clusters is found when

incremental reduction of wcss is becoming negligible with increasing number of clusters.

Thus, one can calculate wcss for k = 1 to m, and stop search when reduction in wcss

is less than 10%. In this work we used and compared two clustering methods - kmeans

and kmedoids. Detailed description can be found elsewhere.

Cluster drop off. As we are striving to find major distinction and isolate steady

states from cluster data, the intention of this is to find some “middle ground” in cluster

structure. This is done by removing points located “far away” from cluster center. Thus,

for each point in cluster i one can calculate Euclidean distance to the center and drop off

the upper quantile q from consideration as being the most ouliering points in the group

((5.11)). Authors used a = 0.5, thus removing upper half of points.

D = {dxj
i−xj

center
} for i = 1− pj

q(a) = {d | Pr[D ≤ d] = a}

(5.11)

5.4 Data and methods

In this work we used industrial data collected from the ammonia plant for the period of 14

years. All instrumentation data is taken as daily average yielding the raw data set with

5000 observations. Catalyst bed temperature originally was measured by three termocou-

ples located radially either at bed’s entrance or exit, but average of three measurements

was used in the model fitting. Gas chromatography (GC) analysis were performed every

3-4 days. At model fitting stage, entire processed data set was used, but on validation

stage - only those days with GC analysis were selected.

The converter model is implemented using R language40. The diffusion equation (2.5)

is solved using orthogonal collocation method for spherical geometry41. Mass and energy

balance equations ((5.7)) soled with Runge-Kutta 5th order. Industrial data analysis

procedure is also developed in R. MAD filter is taken from pracma package as function
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hampel 42.From stats package: PCA as function prcomp, kmeans clustering as function

kmeans, partitioning around medoids are function pam.

5.5 Results and discussion

5.5.1 Data cleaning

In order to analyze process performance authors chose five main converter control pa-

rameters - feed temperature, process pressure, volumetric feed rate, volumetric flow rate

for quenches - having 5 in total. Using examples from few sensors we are willing to

illustrate the contribution of each stage to data cleaning. Fig. 5.5(a) shows untreated

industrial data over years for the three control parameters - Tfeed, P , quench. Fig.5.5(b)

shows results of data cleaning from all stages. One can see that points are less scattered

and grouped in accordance with proximity to each other, thereby resembling a steady

state modes of operation. It is evident that data in Fig. 5.5(b) is cleaner and more clear.

Moving from (a) to (b) one can easily distinguish operation modes at which the unit was

operating over a period of time.

Now we provide more in-depth explanation of each step and its contribution into data

cleaning. Fig. 5.6(a) shows untreated industrial data. Min-max cut off allow for points

remove which are obviously does not correspond with process conditions at steady states.

Fig. 5.6(b) show removing lower portion of data corresponding with non-operational

times. However, some singleton points are still presented in the graph. Then, applying

MAD filter one can remove those points as well, which correspond to short-time changes

in sensor signal due to failure, unexpected start up and so on. Fig. 5.6(c) depicts data

after MAD cleaning where those points are removed.

Notably, that if one does not use either of two step, the effect would be unreachable.

For example, if one excludes min-max cut off, it would be impossible to remove portion of

data, which corresponds to the long time sensor failure and shown in red rectangle at the
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Figure 5.5: Process data
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Figure 5.6: Effect of Min-max cut off and MAD filter on process data

top of Fig. 5.5(a) for Tfeed, by MAD filter only. On opposite, if one only uses min-max

cut off, one will not be able to remove data in blue rectangle on the same figure. Since

those points have higher values than group of points in green rectangle and belonging to

feasible operation range. Thus, they will remain untreated.

Once data was treated from outliers, we applied PCA to the remaining data points,

and performed clustering of first two principal components. We used two popular clus-

tering algorithms - kmeans 36 and partitioning around medoids or kmedoids43. In order

to find the number of clusters, we evaluated reduction in wcss with increasing k. Firstly,

we used kmeans algorithm for number of clusters 1 to 100 (Fig. 5.7 (a)). However, it did

not perform well enough to determine number of clusters. One can see that reduction

in wcss is uneven and non-monotonous with increasing k. From Fig. 5.7(b) one can see
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Figure 5.7: WCCS reduction with number of clusters

that kmedoids converges better than kmeans. Reduction in wcss is more distinct and

monotonous, and approximately after k ≈ 20 is becoming negligible. The final number

of clusters 21 is chosen for further analysis.

The data for quench before and after clustering is shown at Fig.5.8(a) and (b) respec-

tively. The effect of clustering is especially notable with process parameters which has

been changing more frequently and data points look scattered, as shown in the figure.

One can see that quenching values has been widely fluctuating with time, so any lengthy

steady periods are barely distinguishable. One can see data points grouped by colouring

after clustering was applied. Further, Fig.5.8(c) shows only points left after removal of

the upper 0.5 quantile. One can see that data became less scattered with distinguishable

operating modes. This drop off within a cluster allows for removal of outliering points,

therefore determining points “around the center” as the best representation of steady

state.

5.5.2 Model fitting and validation

The clean industrial data was further used for model fitting and validation. In order to

do it, authors minimized the sum of squared distances between measured and simulated

temperatures for each bed ((5.12)) as function of kinetic constant. The model fitting
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(a) Before clustering
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(b) After clustering
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Figure 5.8: Effect of clustering on data cleaning

was done for a groups of point taken over distant time periods. As loaded catalyst is a

mixture of several different sub brands in certain ratio, we obtain three kinetic constant

being a representation of each bed independently.

min f(k1, k2, k3) =
3

∑

i=1

(T simulated
bedi

− T observed
bedi

)2 (5.12)

Results of model fitting vs. catalyst life time are shown in Fig. 5.9. One can see that

catalyst activity is gradually decreasing over time. The most of deactivation is occurring

within first few years of operation. Unfortunately, due to unavailability of the data with

that time span (years 0 to 6), we cannot specifically determine the rate of deactivation.
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Figure 5.9: Ammonia catalyst deactivation over time

However, it is evident that apparent value of kinetic constant in the beginning of catalyst

cycle is higher than the ones closer to an end. Comparing catalyst deactivation among

different beds we can say that deactivation rate is decreasing with increasing bed number.

After first few years of reduction in catalytic activity, it reaches plateau and remain

constant. If for beds 1 and 2 it takes more than a half of total cycle length to reach it,

but for catalyst in bed 3 it is happening sooner. Results show no significant changes in

kinetic constant k3 over latter time span (years 6 to 12). However, actual deactivation

might still be happening, it is hardly unnoticeable within industrial unit and the data

does not reflect those changes.
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The model validity was asses by comparing experimental and simulated temperature

profiles at catalyst bed inlet and outlet. It was found that model is in good agreement

with industrial data (Fig. 5.10). The error for temperature is around 4%. Moreover, one

can compare between simulated and experimental feed compositions (Table 5.1). The

model gives a good match in stream composition as well. The product gas composition

was not used in the fitting, but it showed a very good consistency with experimental

data. It provides enough assurance in model quality and its applicability to process

optimization.

Figure 5.10: Simulated and experimental temperatures within ammonia converter

Gas stream composition
N2 H2 NH3 CH4 Ar

simulated 3.77 9.02 2.13 - -
experimental 3.70 9.04 2.17 - -

Table 5.1: Comparison between simulated and experimental gas compositions
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5.6 Multi-objective optimization of ammonia con-

verter with catalyst deactivation

In order to conduct a multi-objective optimization one needs to identify a) industrially

important objectives, b) select key process control parameters and c) define a search

domain, i.e. box-constraints for controls (upper and lower bounds) or other constraints

on process performance parameters if any.

Definitely, one of the most important criteria of converter operation is ammonia pro-

duction. The efficiency of ammonia production is expressed in its molar fraction if con-

verter effluent XNH3
. Ammonia synthesis reaction (2.1) is highly exothermic, generating

large amounts of heat per bed pass. Depending on converter design and unit layout, the

heat can be removed through feed pre-heat, quenching, stream generation, etc. As actual

process scheme remains unknown to the reader, we are introducing another performance

criterion of converter operation as amount of regenerated heat HR - heat which was re-

covered within the unit. This performance criterion is a measure of heat efficiency, as

more heat is not wasted and used elsewhere on a plant.

Control-wise, through model sensitivity analysis and engineering consultations we

chose three parameters with largest contribution into process performance. They are:

feed temperature Tfeed and quench-to-feed ratio QFR, also converter pressure P has a

great impact on XNH3
, but it is not as easily changeable as other two. Minimum and

maximum bounds for control parameters are set in accordance with industrial practice.

Pursuantly with catalyst specification, we also add constraints for each bed maximum

temperature in order to prevent catalyst from damaging.

Thus, we will consider two MOO cases to investigate possibilities for process perfor-

mance improvement. Especially, we will consider effect of catalyst activity. As has been

shown above, the deactivation occurs more rapidly within first few years, while staying

relative constant in second half of lifetime. Thus, we will consider two catalyst stages -
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fresh and old. Former being a representation of fresh catalyst, just loaded into converter,

while latter - being close to the end of cycle.

The formulation of MOO problem is the same for both cases as show in (5.13). The

difference is in control parameters. For case fresh we use Tfeed and QFR as main variables

and solve MOO at two different pressures. The pressures are chosen that lower one is

a representation of the most common loop pressure obtained from process history and

more specific for operation with fresh catalyst. The higher one is chosen to illustrate an

opportunity to alter loop pressure to boost up ammonia but still remains within feasible

range.

MOO formulation: In summary, one can formulate multi-objective optimization

problem for up mentioned cases as follows:

maximize I1(x) = Xout
NH3

maximize I2(x) = HR

(5.13)

subject to:

T out
bed ≤ Tmax for each bed

x = Tfeed, QFR ∈ [min;max]

5.6.1 MOO results

The Pareto optimal set for fresh case is shown in Fig.5.11. One can see the wide range of

compromising solution to select the best operating conditions to serve his/her purpose.

Relative variation in heat recovery is around 7, while ammonia production ranges at 0.08.

Generally, high temperatures and QFR are favourable for ammonia production. A

proper control of both parameters at the same time will allow the unit to operate at

the optimal state. Moreover, the same conditions at higher pressures are able to provide

more ammonia. The entire Pareto set for higher pressure is on the right from lower

having any point in it with better XNH3
.
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Figure 5.11: Pareto optimal set of solutions for case fresh
Figure a) shows both objectives. Figures b), c) shares the same Y-axis with figure a) and

shows relation of process parameters to Pareto-optimal set of objectives.

However, higher pressure provide much lower range of optimal solutions. Contrary to

ammonia production, higher pressure on average provide lower heat recovery possibilities.

The is due to faster reaction rates at higher pressure, when more heat is produced and

temperature constraints come in greater effect. Also, quenching effect is becoming less

noticeable and major adjustments in converter operation has to be done with Tfeed.

Further one can look into Pareto set of solutions for case with old catalyst (Fig. 5.12).

Evidently, one can note that on average converter performance decreases by the end of

catalyst life - both production and heat recovery wise. Ammonia production is between

1.88 - 1.97 and heat recovery - 21 - 30 (vs. 2.08 - 2.22 and 29 - 35 for fresh respectively).

However, if one consider only high pressure, the range increases comparing with case.

Firstly, pressure increase is essential for less active catalyst to boost up ammonia

production. Comparing tow cases at pressure 10, one can see that relative reduction is

over 10%. This is significant drop, thus in shall be compensated with not only Tfeed and

QFR, but with system pressure as well. Also, since XNH3
is decreasing with time, the

HR should be of a lesser concern as it is becoming more important to keep sufficient

ammonia.

Secondly, the optimal feed temperature increases drastically from 20.8 - 22.8 to 23.7 -
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Figure 5.12: Pareto optimal set of solutions for case old

26.1. Noticeably that ranges do not overlap, thus making it almost impossible to maintain

sufficient ammonia production or heat recovery at the same feed conditions.

Notably that at case old, shift from pressure 10 to 15 improves both objectives and

Pareto correspondingly shifts to the right. Contrary, the opposite effect can be seen

with fresh catalyst, when Pareto shift to the left. It can be explained as with less active

catalyst one still have room to increase reaction rate without violating constraint, while

with more active catalyst increase in converter pressure has to be compensated with lower

Tfeed.

QFR range is a wider for old catalyst (4.2-7.4 vs 4.8-7.0). However, optimal quench-

to-feed ratio is almost the same for two different pressure as difference is quite negligible.

Thus for old catalyst, temperature has to be adjusted with higher attention that quench

when increasing pressure loop.

Therefore, the main process operation features with respect to catalyst life are (Fig.5.13):

• Ammonia catalyst is slowly but steadily deactivating, reducing production by 10%

• One can compensate for reduction of activity by proper adjustment of P , Tfeed and

QFR

• Converter pressure has to be increase along with catalyst life
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Figure 5.13: Comparison for “middle” points in pareto sets

• Proper pressure for the fresh catalyst has to be adjusted carefully as one may face

excessively high temperatures inside bed

• Feed temperature increase is also essential with time as it is impossible to keep

sufficient ammonia production

5.7 Summary and conclusions

In this work authors performed a multi-objective optimization study of an industrial

ammonia converter. We used a developed first-principle mathematical model in order

to a) estimate apparent kinetic constant of the catalyst at industrial conditions and b)

perform simulations for MOO. Catalyst kinetics were estimated using industrial data for a

time span of several years. Since original industrial data is subject to noise, uncertainties,

etc., it cannot be used directly and has to be cleaned. We proposed a method of industrial

data treatment around steady states of converter operation. By doing this we were able

to estimated catalyst deactivation with respect to time.
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Results of MOO showed the necessity of both feed temperature and pressure increase

by the end of catalyst life. Without either it is impossible to keep sufficient ammonia

production, thus proper control of these two parameters is essential. For fresh catalyst,

it is possible to utilize lower unit pressure thus saving on compression and self-supplied

heat. Contrary for old catalyst ammonia production is of higher importance, therefore

optimal range of operation in Pareto has to be shifted towards it.
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Nomenclature

AIC Akaike information criterion

bed refers to catalyst bed

C total concentration of components [kmol/m3]

Cp specific heat capacity [kJ/kgK]

Die effective diffusivity of component i [m2/s]

feed refers to process gas feed into the converter

fi fugacity of ith component

FN2
molar flow rate [mol/s]

HR heat recovered through heat recovery system

K overall heat transfer coefficient [W/m2K]

k2 kinetic constant of reverse reaction [kmol/m3 · h]

Ka equilibrium constant

l length coordinate for interchanger [m2]

L interchanger length [m2]

MAD median absolute deviation

ṁi mass flow rate [kg/s]

out refers to a catalyst bed out

P converter pressure [atm.]

q quantile

Q volumetric rate [m3/s]

QFR quench-to-feed ratio
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quench refers to converter quench

ri tube radius [m]

RNH3
rate of ammonia formation [kmol/m3 · h]

Rp radius of catalyst particle [m2]

T gas temperature [°C]

t time

V bed volume [m3]

wcss within cluster sum of squares

Xi molar fraction of component i

Greek letters

α constant parameter for reaction equation

µ median value

νi stoichiometric coefficient in Eq. 2.1 for component i

χ nitrogen conversion

ω dimensionless distance from pellet center to interior point

∆HR enthalpy of reaction [kJ/kmoleK]

ǫ bed voidage

φi fugacity coefficient of component i

η effectiveness factor
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6.1 Conclusions

Multi-objective optimization approach is an effective tool for improvement of process

performance in chemical engineering. It is especially efficient in application towards

industrial processes as they usually bare more than one conflicting objective. Therefore,

it allows to account for a number of them often yielding a more efficient solution.

Throughout the thesis, multi-objective optimization study of industrial ammonia syn-

thesis converter is considered.The work was done in collaboration with plant engineers

and operators who provided me with valuable guidelines on plant operation. As a result,

accurate first-principle mathematical model for ammonia converter was developed and

used in multi-objective optimization context to investigate ways of the plant improve-

ment.

In chapter 1, the model development for converter is described. The converter of

this particular design has not been reported in the literature before. Thus a proper

investigation of plant and unit layout, process data was required to provide a valid model.

The model combines heterogeneous gas-solid diffusion reaction in porous catalyst with

one-dimensional plug flow. Also, heat transfer between process gas and converter feed

in interchanger is modelled as well. Important to note that the model and its part are

able to be used for different converters. The applicability range requires converters to be

with recycle and have some ammonia in the feed to avoid numerical errors in kinetic rate

equation. Also, if it happends that for some catalyst support has low heat conductivity,

isothermal effectiveness factor no longer apples and one has to add one more equation

for heat transfer within catalyst pellet. Lastly, model best work for beds with behavious

close to plug flow. Thus, they have to operate under high gas velocities and have greater

lenght than diameters.

The model was validated with industrial data and showed good consistency with

experimental results. The sensitivity analysis has followed to estimated effect of process
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parameters on process performance and find most important ones.

In chapter 2, two MOO case studies on the converter was performed. All results

were achieved using Eureqa® as surrogate model trainer paired with NSGA-II as on

optimization method. In first case, higher ammonia production and better heat recovery

in the unit was targeterd. Results yielded a Pareto set showing possible option to choose

operating conditions from. It was revealed that along with increased ammonia production

it is also possible to introduce some heat savings through better heat recovery and bring

converter’s inlet feed temperature down.

Chapter 3 considers an attempt to approach industrial process data and its use for

modelling. Carbon dioxide removal from ammonia synthesis gas within Selexol unit

wastudieds. Real industrial data was used to provide statistical model and use it for

process optimization. Process modelling was done based on weighted linear regression

in conjunction with data clustering. It was possible to select the most relevant feature

which affect performance of carbon dioxide removal unit and propose better operating

point for Selexol recovery. The method of data modelling showed itself efficient to some

extend, however, still suffers from outliers present in data.

In chapter 4, optimization study of ammonia converter under catalyst deactivation

is considered. The same model as in chapter 1 was utilized for simulation. Preceding

optimization study, the method of data analysis from chapter 3 was reconsidered and

improved to be used along with first principle model to estimated catalyst kinetics.

The method was significantly improved and allowed to provide good results. Catalyst

degradation was observed from industrial data and the model was fitted with it in order

to estimate catalyst kinetics at different time periods. The converter optimization with

respect to catalyst deactivation yielded Pareto optimal solution which indicated decay

in converter performance. Still it was possible to maximize losses due to deactivation

as well as provide ways to decrease heat duty of converter at earlier stages of catalyst

operation.
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6.2 Recommendations and future work

Considering promising outcome of the work, it is neccessary to do some more in depth

studies to justify feasibility as follows:

• Economic evaluation of Pareto optimal solutions to find better operational point

business-wise

• Modefy bed model from axila to radial flow and inestigate possibilities for improve-

ment through changing converer design

• Perform CFD modelling of flow pattern inside catalyst bed to have more accurate

knowledge about radial temperature distribution

• Modify model fitting procidure trough creating a feedback from the model to the

quality of data points selected by the cleaning algorithm

• Create automatic surrogate generation and exclude one from doing it manually
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Figure A.1: Heat transfer along tube wall

Th following boundary problem is solved:

Shell side :

dTshell

dl
=

2πK(Ttube − Tshell)

ṁshellCpshell

Tube side :

dTtube

dl
= −

2πK(Ttube − Tshell)

ṁtubeCptube

K =

[

1

αtuberinner
+

1

λ

1

αshellrouter

]−1

subject to boundary conditions:

l = 0 : Tshell = T inlet
bed1

l = L : Ttube = T outlet
bed2

where K - overall heat transfer coefficient [W/m2K], αi - convective heat transfer coeffi-

cient towards tube wall from shell or tube side [W/m2K], ri - inner or outer interchanger

tube radius [m], λ - thermal conductivity of interchanger material [W/mK], l - length

coordinate for interchanger integration [m], L - interchanger length [m].
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With αi for either side found as:

αi =
Nu× k

dpipe

where, Nu - Nusselt number, k - thermal conductivity for fluid [W/mK], d - corresponding

pipe diameter [m]. Nusselt number:

αi =
Nu · k

dpipe

Heating :Nu = 0.0243Re0.8Pr0.4

Cooling :Nu = 0.0265Re0.8Pr0.3

Re =
vdeρ

µ

Pr =
Cpµ

k

where Re - Reynolds number, Pr - Prandtl number, Cp - heat capacity of fluid [J/molK],

µ - dynamic viscosity [Pa · s], v - linear flow velocity, de - equivalent diameter of tubes,

ρ - flow density [kg/m3].



139 
 

Curriculum Vitae 

Stanislav Ivanov 

______________________________________________________________________ 

HIGHLIGHTS 

▪ Overall 6 years of experience in developing models for chemical processes and plants, performing 

simulations and conducting operation and design optimization 

▪ Experience in model development using commercial simulators as well as creation of custom modelling 

tools with programming languages 

▪ Extensive practical skills and knowledge in mathematical methods used in process modelling and 

numerical optimization along with their applications towards chemical processes 

▪ Experience in dealing with large multidimensional data, performing analysis, data mining and various 

statistical methods, data visualization 

▪ Strong analytical and troubleshooting thinking 

▪ Outstanding track record in communication with academic and engineering audience 

▪ Excellent team player with demonstrated leadership skills 

 

EDUCATION AND RELATED EXPERIENCE 

▪ PhD in Chemical Engineering, Western University, London, Canada   

Supervisor: Dr. Ajay K. Ray, Professor and Department Chair 

January 2013 – April 2017 

Thesis: Multi-objective optimization of an industrial ammonia synthesis 

• Developed first principle model for a gas phase catalytic industrial converter in collaboration with CF 

Industries (Sarnia, ON). Model encompasses gas-solid reaction with diffusional resistances, heat transfer 

model for converter design and catalyst deactivation 

• Developed statistical method for study of catalyst deactivation from industrial data 

• Implemented software package for the converter simulation and optimization 

• Performed several optimization studies aiming to increase converter performance 

• Used methods of statistics and machine learning to model operation of packed bed absorber and 

troubleshoot its performance 

 

▪ Visiting graduate student, University of Waterloo, Waterloo, Canada 

May – June 2015, Dr. Ali Elkamel’s research group 

• Received a training in machine learning methods and chemometrics 

• Worked on a project for biodegradability prediction of chemical compounds 

 

▪ Teaching Assistant in Chemical Plant Design course 

September 2014 – PRESENT 

• Supervised groups of undergraduate students 

• Assisted in process flow diagram, P&ID development 

• Consulted students for equipment design, i.e. catalytic reactors, distillation columns, heat-exchangers, 

etc. 



140 

• Assisted in process simulation and optimization with Aspen HYSYS and VMGSim 

 

▪ MSc in Chemical Engineering, Tomsk Polytechnic University, Tomsk, Russia 

September 2010 – June 2012 

Thesis: Process modelling for regeneration of Pt-catalysts for naphtha reforming and alkanes 

dehydrogenation 

• Developed thermodynamic model of oxidative chlorination of Pt-catalyst 

• Implemented software for regeneration monitoring, control and optimization 

• Troubleshot catalyst regeneration at naphtha reforming unit resulted in successful star up and long 

catalyst life 

• Participated in kinetic model development for catalytic reactors at linear alkylbenzene plants - Pacol, 

DeFine processes 

• Registered software patent for water supply optimization program 

 

▪ Engineering Intern, HF Alkylation Unit, PO Kirishinefteorgsintez Ltd., Kirishi, Russia 

July – August 2011 

• Collected data and analyzed unit operation for development of mathematical model 

• Performed unit simulation and optimization studies 

 

▪ Engineering Intern, Platforming Unit, Gazpromneft, Omsk, Russia 

June – July 2009 

 

▪ BSc in Chemical Engineering, Tomsk Polytechnic University, Tomsk, Russia 

September 2006 – 2010 

Field of study: Petroleum refining and petrochemistry 

 

PUBLICATIONS 

1. Stanislav Y. Ivanov and Ajay K. Ray Multi-objective optimization of industrial ammonia converter under 

catalyst deactivation. Ready for submission 

2. Stanislav Y. Ivanov and Ajay K. Ray Modelling and multi-objective optimization of industrial ammonia 

converter. Ready for submission 

3. Stanislav Y. Ivanov, Irena O. Dolganova, Evgeniya V. Frantsina, Elena N. Ivashkina, Emiliya D. 

Ivanchina Increasing the Selectivity of Synthesis Stages for Linear Alkyl Benzenes, Current Organic 

Synthesis, vol. 14 (3), pp. 353-364, 2017 

4. Stanislav Ivanov, Natalia Belinskaya, Emilia Ivanchina, Galina Nazarova, Elena Ivashkina The Increase 

in the Yield of Light Fractions During the Catalytic Cracking of C13-C40 Hydrocarbons, Current Organic 

Synthesis, vol. 14 (3), pp. 342-352, 2017 

5. Matthew J. Palys, Stanislav Y. Ivanov, Ajay K. Ray Conceptual Approach in Multi-Objective 

Optimization of Packed Bed Membrane Reactor for Ethylene Epoxidation Using Real-coded Non-

Dominating Sorting Genetic Algorithm NSGA-II International Journal of Chemical Reactor Engineering, 

2016 

6. Zhefu Liu, Linzhou Zhang, Ali Elkamel, Dong Liang, Suoqi Zhao, Chunming Xu, Stanislav Y. Ivanov 

and AjayY K. Ray Multiobjective Feature Selection Approach to Quantitative Structure Property 

Relationship (QSPR) for Predicting the Octane Number of Compounds Found in Gasoline. Under review 



141 
 

7. Zhe F. Liu, Hedia Fgaier, Stanislav Y. Ivanov, Ali Elkamel, Xiang H. Meng, and Suo Q. Zhao A Novel 

Hybrid Feature Selection Methods and Prediction for Ready Biodegradibility of Chemicals Using Random 

Forests and Boruta International Journal of Technical Research and Applications, 2015 

8. Stanislav Y. Ivanov, Ajay K. Ray Application of multi-objective optimization in the design of industrial 

catalytic reactors. Chapter in Catalytic Reactors. Edited by B. Saha. DeGruyter, 2016 

9. Stanislav Y. Ivanov, Ajay K. Ray Multiobjective Optimization of Industrial Petroleum Processing Units 

Using Genetic Algorithms, Procedia Chemistry, 2014, Vol. 10, p.7-14 

10. Stanislav Y. Ivanov, Igor K. Zanin, Elena N. Ivashkina, Emilia D. Ivanchina, Anatoly V. Kravtsov 

Regeneration process modeling of Pt-catalysts for naphtha reforming and dehydrogenation of higher 

paraffins, Bulletin of Tomsk Polytechnic University, 2010, Issue 319, Vol. 3, p. 96-99 

 

HONORS, AWARDS AND CERTIFICATES 

Excellence in teaching Western University 2016 

Runner up Research Bridges Conference 2016 

Finalist, 3rd award All-Russian Exhibition of Students Research Projects  2011 

Scholarship Government of Russian Federation 2011 

Software licence certificate  2011 

 

TECHNICAL SKILLS 

▪ Proficient in programming. Languages: R, C/C++, LaTeX 

▪ Experienced in using various engineering software such as Aspen HYSYS and VMGSim, AutoCAD, 

ChemOffice, SigmaPlot 

▪ Advanced user of MS Office and Corel Draw 

▪ Highly proficient in spoken and written English and Russian 

 

COMMUNICATION 

▪ Drafted and revised research manuscripts in a team effort. Prepared and published a book chapter covering 

mathematical methods for optimization of catalytic reactors 

▪ Prepared and delivered 5 oral and 1 poster presentations for academic and engineering audiences, 

including talks at AIChE 2016 and CSChE 2016 

▪ Wrote several technical reports and presented results to plant engineers and management 

▪ Experienced in communicating effectively and professionally with individuals from a wide variety of 

disciplines and career levels 

▪ Maintained confidentiality, and worked with proprietary information and documentation such as PFDs, 

P&ID, equipment drafts, etc. 


	Multi-objective Optimization of Industrial Ammonia Synthesis
	Recommended Citation

	Untitled

