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Abstract 

 

 The manganese(II)-palladium(II)-sulfide complex [MnCl2(µ3-S)2Pd2(dppp)2] 2 has been 

isolated from the reaction of [(dppp)PdCl2] with [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 in a 2:1 ratio 

under mild conditions. The trimethylsilyl thiolate complex [(dppp)Pd(SSiMe3)2] 3 has been 

synthesized from the reaction of [(dppp)PdCl2] with Li[SSiMe3] as well as the reaction of 

[(dppp)Pd(OAc)2] with Li[SSiMe3] under mild conditions. The newly synthesized complex 

[(dppp)Pd(SSiMe3)2] 3 was used in reaction with the manganese(II) salt [(CH3CN)2Mn(OTf)2] to 

form the manganese(II)-palladium(II)-sulfide complex [Mn(OTf)(thf)2(µ-S)2Pd2(dppp)2]OTf 4. 

 The reaction of the trimethylsilyl thiolate complex [PPh3AuSSiMe3] 5 with the manganese(II) 

salt [(CH3CN)2Mn(OTf)2] was explored and it was found that the previously characterized gold(I) 

sulfide complex [S(AuPPh3)3]Cl 6 was formed as the major product. The reaction of [Li(N,N’-

tmeda)]2[Mn(SSiMe3)4] 1 with ferrocenoyl chloride was explored, however a ferrocene containing 

manganese(II) sulfide cluster could not be isolated. MS ESI studies revealed the molecular ion 

[Mn(Fc(C{O}S))3]- to be present in the reaction medium.  

 Single crystal X-ray crystallography, elemental analysis, NMR spectroscopy, EPR 

spectroscopy, mass spectrometry, UV-Vis absorption spectroscopy and photoluminescence 

emission spectroscopy were used as characterization techniques to analyze these complexes. 
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Chapter One 
 

Introduction: Synthetic Technique toward Metal Chalcogen 
Containing Complexes 

 

1.1 General Introduction 

In order to produce complexes and materials with new and interesting properties, 

scientists are continually developing different methodologies and synthetic techniques to 

overcome seemingly impossible feats. In the world of semiconducting clusters and mixed metal 

coordination complexes, differences in size, elemental composition and coordination about metal 

centers can produce vast differences in the physical properties of the resulting material. Control 

over these parameters can prove to be extremely valuable for producing molecules with finely 

tuned characteristics. In this field, an area of burgeoning materials research involves the chemistry 

of the Group 16 elements and their interactions with transition metals.1-4 

The elements oxygen, sulfur, selenium, tellurium, and polonium of Group 16 in the periodic 

table are generally referred to as “chalcogens”.5 Although oxygen is included in this definition, it is 

often removed from chemical and technological discussions of chalcogen containing materials due 

to the great differences between the chemical properties of it from that of sulfur and the other, 

heavier elements. Polonium is of course typically omitted due to its radioactivity and thus less 

developed chemistry. The chalcogens provide a promising avenue towards diverse and specialized 

materials due to their ability to both catenate as well as bind to multiple metal centers. When 

combined with main group and transition metals, metal chalcogenide materials can be produced 

as precisely defined structures ranging in size from molecular to nanometer scale assemblies. 

Semiconductor nanomaterials are desirable due to their tunable electronic and photophysical 

properties which arise from the quantum confinement effect.6 Because of the vast range in 

materials and structures of metal chalcogenides, applications of their properties are found in 
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various areas including electronics and optics, ion-sensitive electrodes, solar energy harvesting 

and fuel cells to name a few.7-16 

The extensive synthetic and structural diversity of metal chalcogenide materials arises due 

to the ability of chalcogen species to adopt several bridging coordination modes.17 Though this 

property provides benefit by allowing diverse structure formation, it also allows for compounds to 

form bulk solids through numerous reactions of molecular sub-units. Since the electronic and 

photophysical properties of nanoscale semiconductor systems are dependent on their size and 

structure, control over both the size and structure of the product through synthetic technique is 

imperative. The formation of bulk product formation is circumvented by using ancillary ligands 

such as organochalcogenolate anions, tertiary phosphines or amines to kinetically stabilize both 

molecular and nanoscale metal-chalcogen assemblies.18 Modifications in the synthetic approach 

as well as the precursors involved helps to fine tune the exact composition and structure of the 

product.  

 

1.2 Synthesis of Metal Chalcogen Containing Complexes 

 Molecular metal chalcogenides can be synthesized using a number of different methods. 

Alkali-metal-stabilized chalcogenide anions M*2E (E = S, Se, Te) have been used to synthesize metal 

chalcogenides by addition to a ligand-stabilized metal salt LnM—X.19  

 

2 LnM—X + M*
2E              (LnM)2—E + 2 M*X 

(Eqn 1.1) 

The production of a thermodynamically favourable alkali metal halide M*X drives these reactions 

forward. The poor solubility of the M*2E salt hinders the widespread use of this technique. A similar 

technique involves the use of chalcogenide anions which are generated in situ from H2E by 

deprotonation in a basic solution. This methodology, however, can lead to a multitude of products 
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and the high toxicity of reagents makes them undesirable to work with.20 

 Another method involves the use of chalcogenolate anions (RE-). These anions can be 

introduced as either a chalcogenol REH or a diorganodichalcogenide REER (R = alkyl, aryl) (Eqn 

1.2 and 1.3). Thermal and photosensitivity of chalcogenol reagents introduce difficulty when using 

this method with the heavier congeners.21 When using a chalcogenol reagent, base is used to 

neutralize the acid byproduct and increase the yield of the metal chalcogenolate. 

Diorganochalcogenide reagents don’t require base, but do require heat to progress the reaction. 

Bulky “R” groups also suffer from slow reaction rates. 

 

LnM—X + REH             LnM—ER + HX 

(Eqn 1.2) 

LnM + RE—ER             LnM—(ER)2 

(Eqn 1.3) 

Elemental chalcogen inserts directly into a metal-carbon bond, however these reactions normally 

require high temperatures due to the insolubility of the chalcogen precursor.22 

Both chalcogenide and chalcogenolate ligands are often employed together during the 

synthesis of metal chalcogenide clusters to simultaneously provide structure to the core (eg. 

sulfide ligands) and stabilize the surface (eg. thiolate ligands) from further reaction.23 

Chalcogenide ligands have the ability to adopt µ2-, µ3-, µ4- and higher coordination modes allowing 

multiple metal atoms to be bridged through a single ligand, and when working with larger 

molecules and/or clusters, serve to provide structure to the core of the complex. The diversity of 

chalcogenide coordination modes increases with increasing polarizability moving down the 

periodic table.  

 

Base 

Δ 
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Figure 1.1. Common coordination modes of chalcogenide (E2-) ligands.19 

Chalcogenolate ligands (RE-) tend to bridge metal centers as well, however they do not 

exhibit the same diverse coordination ability of the electron rich chalcogenide ligands (E2-). 

Chalcogenolate ligands provide benefit, in that they maintain their organo-substituent in the 

product and occupy surface sites of the compound. This provides size stabilization by inhibiting 

bulk material production through condensation reactions and allows for modification of the target 

complex by altering the electronics and sterics of these “R” substituents. Specific functionality can 

be employed with the “R” substituent which can be especially useful when synthesizing larger 

nanometer sized molecules with semiconductor like properties. The techniques described above 

are useful for the synthesis of metal chalcogenide materials, however they also exhibit drawbacks 

and leave room for improvement in this chemistry. 

 

1.3      Silylated Precursors 

 The use of trimethylsilyl (TMS) groups to deliver chalcogen anions to a metal center has 

been well developed by Fenske and colleagues.23-25 Analogous to the above methodologies, 

silylated reagents allow for the synthesis of metal chalcogenide systems with structurally diverse 

architectures. These reagents are ideal because they provide a soluble source of chalcogen for use 

under mild reaction conditions. 

µ2 µ3 

µ4 µ4 
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M—Xn + n RESiMe3              (1/m) [M(ER)n]m + n XSiMe3 

(Eqn 1.4) 

M—Xn + (n/2) E(SiMe3)2             (1/m) [MEn/2]m + n XSiMe3 

(Eqn 1.5) 

The silylated chalcogen reagent E(SiMe3)2 (E = S, Se, Te) can be formed from the reaction of alkali-

metal chalcogenide anions M*2E with a trimethylsilylhalide such as ClSiMe3.26 After reduction of 

the disulfide RSSR to M*[SR], the reaction of ClSiMe3 with M*[SR] can produce the RESiMe3 

compound.27 These complexes react readily with various transition metal and main group metal 

salts to form the corresponding metal chalcogenide (M-E-M) or metal chalcogenolate (M-ER) 

products (Eqn 1.4 and 1.5).19 These  reactions are driven by the thermodynamically favourable 

formation of XSiMe3 (X=halide, acetate, alkyl, etc.).28 The high solubility of these precursors as well 

as the silane by-product allows for great control over the formation and crystallization of 

coordination complexes and nanocluster frameworks.24 These compounds exhibit a long shelf lives 

and are handled easily, however they do undergo rapid oxidation/hydrolysis with air/moisture to 

produce toxic H2S and must be handled and stored under inert conditions. 

This method has been utilized to produce binary nanoclusters with sulfur, selenium and 

tellurium bridging various metal centers including silver, gold, copper, and cadmium to name a 

few.23, 29-32 To synthesize the cluster, a metal salt is generally solubilized in an organic solvent 

followed by the addition of the chalcogen source at low temperatures. Low temperatures are used 

to avoid the formation of undesirable polydisperse bulk material. The temperature is then raised, 

allowing the progression of the reaction to be monitored (qualitatively) through the colour change 

that accompanies cluster formation, most notably for the group 11 metals.19 

 For example, MacDonald and Corrigan have found that a number of polyferrocene 

functionalized metal chalcogenide structures are accessible through reaction of ferrocenoyl 
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chalcogenolates with a metal salt.33 Binary cluster complexes containing ferrocene ligands as the 

“R” substituent of a chalcogenolate have potential applications in molecular electronics and 

chemical sensors, causing it to be the focus of much research.34-36 

 

 

 

Scheme 1.1. General route for synthesis of various clusters from FcC(O)ESiMe3 (E = S, Se).33 

 

Although the ratio of reactants is constant among these reactions, a multitude of structures are 

observed as products. By altering the chalcogen species and the metal species, different cluster 

structures form under similar reaction conditions. During the synthesis of the copper(I) selenide 

complex, it was found that low temperatures were required to produce the dinuclear compound, 

while room temperature reaction conditions afforded the tetranuclear compound. These reactions 

display how different structures can be created through a controlled route when utilizing 

trimethylsilyl chalcogenide precursors. 

 Recently, Azizpoor Fard and Corrigan have exploited trimethylsilyl organochalcogenolate 

precursors for the assembly of binary palladium cluster systems.37 Two dinuclear palladium 

complexes were synthesized, one dithiolate bridged complex {(dppp)2Pd2-μ-κ2S-[1,2-

(SCH2)2C6H4]}2+, and one diselenolate bridged complex {(dppp)2Pd2-μ-κ2Se-[1,2-(SeCH2)2C6H4]}2+  

(dppp = Ph2P(CH2)3PPh2) (Scheme 1.5). The structural rigidity of the chalcogenolate ligands in 

these complexes were observed through various types of nuclear magnetic resonance 

spectroscopy and described in great detail. A third tetranuclear palladium complex [(dppp)4Pd4-

+ (Ph3P)2MOAc 

[Cu(S{O}CFc)(PPh3)2] 
[Cu2(Se{O}CFc)2(PPh3)3] 
[Cu4(Se{O}CFc)4(PPh3)4] 
[Ag4(Se{O}CFc)4(PPh3)4] 
[Ag4(S{O}CFc)4(PPh3)4] 

THF 

M = Ag, Cu 
E = S, Se 
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μ-κ4 S-{1,2,4,5-(SCH2)4C6H2}]4+ was also synthesized, consisting of an interesting double-butterfly 

metal-thiolate framework. Since palladium(II) prefers to adopt a trans configuration, the chelating 

dppp ligand is used to force cis conformation around the palladium centre which allows the 

disulfide ligands to bridge the two palladium(II) atoms. This work illustrates that palladium 

dithiolate bridged butterfly structures are formed through the use of these silylated chalcogenolate 

precursors, and leaves potential for other related structures to be developed in a similar manner. 

 

 

 

 

 

 

 

Scheme 1.2. Synthetic route for {(dppp)2Pd2-μ-κ2E-[1,2-(ECH2)2C6H4]}2+ (E = S, Se).37 

 

 

1.4 Metal Precursors containing –ESiMe3 

 Metal chalcogenolate complexes with TMS functional groups on the chalcogen ligands (M—

ESiMe3) have recently been used to produce ternary metal chalcogenide systems.38, 39 These 

compounds are typically prepared by selectively eliminating a TMS group from E(SiMe3)2 by a 

reaction with a metal salt to form the silyl-functionalized metal chalcogenolate complex. Due to the 

tendency of chalcogenide (E2-) and chalcogenolate (RE-) ligands to adopt bridging coordination 

modes, polynuclear ME systems are often formed under these conditions. Terminal coordination 

of trimethylsilyl chalcogenolate ligands is especially difficult for late d-block metals (i.e. group XI 

+ 
 

2 [PdCl2(dppp)] 
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and XII). The formation of polynuclear species is circumvented by ensuring all available 

coordination sites around the metal are occupied. This is achieved by the introduction of either 

chelating phosphine ligands (dppe, dppp) or stronger N-donor ligands. The ligand (L) is 

introduced in excess prior to reaction with E(SiMe3)2.24 Modification of these ligands can affect the 

reactivity and stability of the metal trimethylsilylchalcogenolate compounds, and different ligands 

(L’) can be used on the secondary metal salt complex L’M’X. Depending on the strength of the metal 

halide bond M-X, a more nucleophilic reagent may be required—like an alkali metal trimethylsilyl 

chalcogenide reagent (M*[ESiMe3], M* = alkali metal)—to facilitate the displace of X- to form the 

alkali metal salt M*X as the side product. Lithiated trimethylsilyl chalcogenide compounds can be 

synthesized by reaction of E(SiMe3)2 with nBuLi to form Li[ESiMe3].26  

 

LxM—ESiMe3 + L’yM’—Xn             LxM—E—M’L’y + n XSiMe3 

(Eqn 1.6) 

Chalcogenolate functionalized metals can react with other metal salts to produce ternary MM’E 

systems, as opposed to the extensively studied binary ME systems (Eqn 1.6). The TMS moieties of 

these complexes react with secondary metal salt precursors to provide the subsequent ternary 

cluster and XSiMe3 by-product.40, 41 

 

 

Scheme 1.3. Route for preparation of trans-[Pd(ESiMe3)2(PnBu3)2] complexes.42 
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The Corrigan group has developed this area greatly, and has revealed a wide range of silyl-

functionalized metal chalcogenolate complexes in the process.42, 43 The  square planar silyl-

functionalized palladium complex, shown as the product to the reaction in Scheme 1.3, has been 

produced using this general synthetic route using both sulfur and selenium lithiated precursors 

(Scheme 1.1).42 It is marked as the first trimethylsilyl palladium chalcogenolate  complex, and it’s 

reactivity with halide precursors was proven with an organic acyl chloride to yield the complex 

trans-[Pd(SeC{O}CH2CH3)2(PnBu3)2]. Trimethylsilylchalcogenolate functionalization of cobalt and 

manganese have also been recently explored, with applications in the production of ternary 

paramagnetic metal chalcogenide systems.44  

 

 

 

 

 

  

MnCl2 + 4 Li(SSiMe3) + 2.5 tmeda                                                                        + 2 LiCl + 0.5 tmeda      

 

       

    

Scheme 1.4. Reaction for the synthesis of [Li(N,N’-tmeda)]2[Mn(SSiMe3)4].44 

 

 In the reaction of MnCl2 with LiSSiMe3, it was found that the tetrakistrimethylsilylthiolate 

manganese complex [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] could be synthesized, having four of its 

coordination sites occupied by trimethylsilylthiolate ligands. The reagent tmeda was used to allow 

solvation of manganese(II) dichloride in common solvents. Having coordination sites occupied by 

–SSiMe3 opens up the possibility for manganese to be incorporated into the core of a metal 

chalcogenide cluster for doping applications. These reactions illustrate the ability for the 

development of reactive trimethylsilylchalcogenolate metal precursors, and their products allow 



10 

 

for the controlled assembly of ternary metal chalcogenide complexes.  

 

1.5 Ternary Systems 

 Ternary metal chalcogenide systems have not been explored to the extent of their binary 

counterparts, however some ternary structures have been synthesized using trimethylsilyl 

functionalized chalcogenide precursors. Depending on the reaction conditions, these materials can 

range in size from small molecules to large nanoclusters and this allows for the size dependent 

properties of these materials to be studied.45, 46  

 Due to their rich photophysical and photochemical properties, gold(I) chalcogenide 

complexes have received considerable attention in cluster synthesis.47-49 The vast majority of the 

gold chalcogenide complexes explored have been binary systems due to constraints in 

conventional synthetic approach.50 Through the use of sylilated chalcogenide precursors, ternary 

clusters can also be developed. These heterometallic systems allow for broader control over 

properties and as such have potential for more applications over binary cluster systems.51 

 

[(AuCl)2Ph2P(CH2)5PPh2] + Se(SiMe3)2 + 2 InCl3                               [Au4(SeInCl3)2(Ph2P(CH2)5PPh2)2] 

 

[(AuCl)2Ph2P(CH2)2PPh2] + Se(SiMe3)2 + InCl3                             [Au8Se4In(Ph2P(CH2)2PPh2)4](InCl4)3 

 

Scheme 1.5. Reaction for synthesis of ternary gold indium selenide cluster [Au2(SeInCl3)dpppe]2 
(top) and [Au8Se4In(dppe)4](InCl4)3 (bottom).52 

 

 

 In an attempt to expand the field of gold chalcogenide cluster synthesis, Fenske and 

coworkers have shown that ternary gold chalcogenide clusters are accessible by reaction of 

E(SiMe3)2 with a combination of metal salts.52 In addition to gold-indium-selenide clusters, a gold-
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gallium-telluride was also prepared using this methodology. The phosphine ligands provide 

stabilization to the cluster and prevent the formation of binary gold chalcogenides. Two very 

different gold indium selenide structures (Figure 1.2) are found to be accessible using this 

technique through simple modification of the reaction (Scheme 1.5). When the gold precursor is 

bridged by the phosphine ligand dpppe (Ph2P(CH2)5PPh2), reaction with InCl3 results in a four 

centered gold cluster with two InCl3 units located on the surface, bonded directly to the bridging 

µ3-Se2- ligands. However, when the gold precursor is bridged by the phosphine ligand dppe 

(Ph2P(CH2)2PPh2) as shown in Scheme 1.5 (bottom), reaction with InCl3 results in a larger gold 

selenide structure templated around a central indium atom.  

 

 

 

 

 

 

 

 

Figure 1.2. Crystal structure of [Au2(SeInCl3)dpppe]2 (left) and [Au8Se4In(dppe)4](InCl4)3 (right). 
C (grey), Cl (green), In (pink), P (orange), and Se (purple).52 

 

 These reactions illustrate the large number of possibilities of metal chalcogenide structures 

attainable when using trimethylsilyl functionalized precursors. Although some ternary clusters 

have been accessed through chalcogenide and organochalcogenolate precursors, silylated metals 

as precursors have not been explored to the same extent and utilization of these complexes will 

allow for a more controlled introduction of the different metal species.  
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 Another area of metal chalcogenide chemistry that has received a considerable amount of 

research focus is the platinum group metal chalcogenide clusters. The Lewis basicity of the 

chalcogen centers of M2(µ-E)2(P-P)2 (M = Pd, Pt; E = S, Se; P-P = diphosphine or monophosphine) 

have allowed ternary clusters to be formed through this precursor.53 The platinum containing 

adduct has been explored greatly, and many ternary metal chalcogenide clusters have been 

synthesized from this precursor.54 The palladium adduct, however, has not seen nearly the same 

amount of progress toward ternary metal chalcogenide systems, likely due to difficulties in 

solubility, lability, polymerization and dissociation of palladium units.55 

Palladium precursors such as [Pd2(µ-S)2(PPh3)4] are, relatively, poorly characterized, and 

their chemistry left unexplored, due to the lability of the phosphine ligands. This problem can be 

circumvented through the use of chelating phosphine ligands. By restricting coordination to the cis 

configuration, bridged dinuclear palladium(II) sulfide complexes are made more accessible.53, 54, 56  

Another interesting methodology that allows access to ternary palladium sulfide bridged 

clusters involves the use of the dimethylsilanedithiolato complex [Pd(S2SiMe2)(PEt3)2], shown in 

Scheme 1.6. This disulfide ligand restricts the coordination geometry to cis.57 The reactivity of this 

dimethylsilanedithiolato precursor was illustrated with two titanium chloride precursors, 

revealing that ternary palladium sulfide bridged clusters are conveniently accessible in this fashion 

under mild conditions. By utilizing silylchalcogen metal precursors in conjunction with phosphine 

bridged palladium salts, other ternary palladium sulfide bridged structures can be obtained. 
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Scheme 1.6. Reaction of [Pd(S2SiMe2)(PEt3)2] to yield  heterometallic palladium-titanium-sulfide 
complexes.57 

 

1.6  Applications in Semiconductor Doping 

 Semiconductor materials can benefit in a number of ways by having an impurity doped into 

the semiconductor structure. Some examples include modification of catalytic processes in 

electrocatalysis as well as fine tuning emission wavelengths of quantum dots. The emission of 

quantum dots, or semiconductor nanostructures, can be controlled through size modifications due 

to the quantum confinement effect. Introducing an impurity into the structure in a controlled 

manner can vary the energy of possible emission, providing further functionality. For example, 

manganese(II) doping of quantum dots results in a significant red shift in the emission properties 

of the material. This change in emission arises due to the acceptance of an excited electron from 

the conduction band of the semiconductor to the Mn2+.58 Different elements bring different 

properties, and as such, doping the semiconductor with different species brings rise to vast 

possibilities in applications. 
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 When introduced into a quantum dot, paramagnetic species such as Mn2+, Co2+ and Ni2+ can 

bring new functionality, such as magneto-optical effects. These materials are referred to as dilute 

magnetic semiconductors (DMS).59-63 Manganese doped III-V compounds such as (Ga, Mn)As 

semiconductors have gained attention due to their magneto-optical properties, which allows 

semiconductor properties of the material to be manipulated through an external magnetic field. 

An unpaired paramagnetic electron can exist in one of two different spin states: spin up or spin 

down. This unique property can enhance semiconductor systems to allow for applications in areas 

ranging from solar cells to spintronics.29, 64-69 Conventional electronics make use of silicon based 

semiconductor material, where changes of the materials conductivity is used to communicate 

electrical information. Spintronic devices are based on the theory that the spin state of an unpaired 

electron, as opposed to the conductivity of the material, may be used to communicate electrical 

information.67, 70 Typically these DMS contain between %1–%10 manganese content relative to the 

amount of the primary metal content.71 These semiconductor systems require precise control over 

structure and site specific coordination in order to maintain their desirable properties. This has 

prompted the investigation of trimethylsilyl chalcogenolate precursors for use in the synthesis of 

ternary metal chalcogenide clusters containing manganese. 

 Previous work by C. B. Khadka has shown that it is possible to dope silver sulfide 

nanoclusters with manganese by method of TMS functionalized metal chalcogenolate complexes.72 

The manganese containing compounds [Li(N,N´-tmeda)]2[Mn(SSiMe3)4] and [Li(N,N´-

tmeda)]2[(N,N´-tmeda)Mn5(SSiMe3)6(S)3] have been used to produce the clusters 

[Mn19/20Ag150/148S94(PnPr3)30] and [Mn35/36Ag118/116S94(PnPr3)30] respectively.72 The presence of 

manganese was initially determined through the use of EDX analysis of single crystals, while the 

molecular formula was determined by elemental analysis. Although difficult to do, single crystals 

of both clusters were produced and evaluated using X-ray diffraction analysis. A complete 

crystallographic data set was collected for [Mn19/20Ag150/148S94(PnPr3)30] although localization of 

the manganese(II) sites was not possible due to extensive site disorder within the cluster (Figure 

1.3). 
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Figure 1.3. Molecular structure of [Mn19/20Ag150/148S94(PnPr3)30]. C (grey), P (green), S (yellow) 
and Ag (blue).72 

 

1.7 Project Summary 

Recently, ternary zinc manganese chalcogenide structures have been obtained through the 

use of metal trimethylsilylchalcogenolate complexes. By employing the zinc(II) chalcogenolate 

precursor (N,N’-tmeda)[Zn(ESiMe3)2] (E = S, Se), multiple ternary clusters of the formula (N,N’-

tmeda)6[Zn14-xMnxE13Cl2] were prepared, where x ranges from ~2 to ~8.73 This methodology 

allows strict control over structure and elemental composition of the products, which made 
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possible the observation that the replacement of manganese with zinc prefers specific sites 

depending on how many manganese atoms are introduced into the cluster. Attempts to impart 

manganese within the cluster core of quantum dots has proven very difficult, often resulting in 

manganese diffusing toward the surface or being expelled completely.74 This ability to observe the 

mechanisms behind manganese doping, as well as the mechanisms involved with incorporation of 

manganese into ternary cluster systems could prove to be very useful for determining what 

favourable conditions may be needed to promote manganese doping into larger semiconductor 

clusters. 

The focus of this thesis is to explore ternary metal chalcogenide cluster synthesis, 

particularly ternary manganese metal chalcogenide clusters. Chapter 2 describes the reaction of 

[Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 with [(dppp)PdCl2] and [(dppp)Pd(OAc)2]. Both reactions yield 

the novel ternary complex [MnCl2(µ-S)2Pd2(dppp)2] 2. The synthesis of the new palladium 

dithiolate complex [(dppp)Pd(SSiMe3)2] 3 from both [(dppp)PdCl2] and [(dppp)Pd(OAc)2] is also 

described. The reactivity of this complex is tested through a reaction with [(CH3CN)2Mn(OTf)2], 

yielding the new complex [Mn(OTf)(thf)2(µ-S)2Pd2(dppp)2]OTf 4. Chapter 3 describes reactions of 

[Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 with various phosphine gold  chlorides, gold triflate, as well as 

ferrocenoyl chloride. Reactions of [(CH3CN)2Mn(OTf)2] with [PPh3AuSSiMe3] 5  are also described. 

Synthesized compounds were characterized using multiple methods including melting point, 

elemental analysis, single crystal X-ray crystallography, NMR spectroscopy, EPR spectroscopy, EDX 

spectroscopy, mass spectrometry, SEM, UV-Vis absorption and photoluminescence spectroscopy.  
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Chapter Two 
 

Metal Trimethylsilyl Thiolate Precursors for the  

Synthesis of Ternary Metal Sulfide Complexes 

 

2.1 Introduction 

  Metal chalcogenide clusters are of increasing interest due to the wide array of properties 

attainable, and the subsequent applications of these materials.1, 2 Within this field, it is well known 

that sulfide (S2–) bridges support the formation of clusters varying in size, nuclearity, and 

coordination making them a very useful ligand type.3-8 These possibilities arise due to a sulfide 

ligands ability to coordinate both in a terminal, bridging and encapsulated fashion, catenate into 

polysulfido ligand chains, and stabilize a variety of cluster species.7 In order to explore this field to 

the fullest extent, great efforts have been made to achieve controlled construction of chalcogenide 

clusters, which has led to the development of a wide range of methods and subsequently the 

development of complex metal sulfide clusters of defined structure and elemental composition.6  

 Platinum group metals have been shown to have a high affinity for chalcogen based ligands, 

giving rise to a variety of platinum and palladium based chalcogenide (E2–) and chalcogenolate 

(RE–) complexes. Unlike some other metal chalcogenides, platinum(II) and palladium(II) based 

complexes do not develop metal-metal bonding interactions to support the complex framework.1 

The structural complexity of these systems depends entirely on the metal-chalcogen bridging 

interactions, as well as additional ligand-metal bonding to provide stability to the structure. 

The main building block for many of these complexes is the dinuclear complex [(R3P)2M(µ-

E)2M(R3P)2] (M = Ni, Pd, Pt; E = S, Se, Te).9 The metal centres of these dinuclear complexes maintain 

a distorted square planar geometry with the ligands in a cis configuration. Although it is possible 

to synthesize a dinuclear complex of this fashion with monodentate phosphine ligands, there is a 
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tendency for the metal centre to adopt a trans configuration.10 The lability of the phosphine ligands 

is especially problematic in palladium based compounds, and adoption of the trans configuration 

inhibits the formation of the dinuclear dichalcogenide bridged compound.  The diversity of 

palladium sulfide compounds thus accessible has suffered due to this; however, it has been found 

that the use of chelating phosphines restricts coordination to the cis configuration and facilitates 

bridging between metals to ultimately produce larger, more complex systems.  

 

 

 

 

 

 

                             P2 = dppf 

 

Scheme 2.1. Reaction of [(dppf)2Pd2(µ-S)2] with AgCl to form [Pd2(dppf)2(µ3-S)2Ag2Cl2]. 

 

Dinuclear chalcogenide-bridged palladium(II) complexes have been used as a precursor to 

easily produce larger complexes containing a variety of metals. In one reaction, Hor and co-

workers showed that the precursor complex [(dppf)2Pd2(µ-S)2] (dppf = 1,1’-

bis(diphenylphosphino)ferrocene) could be used to produce [Pd2(dppf)2(µ3-S)2Ag2Cl2] through 

reaction with AgCl (Scheme 2.1).10, 11 The core of this molecule maintains a planar {Pd2S2} 

structure, while openly bridging two AgCl moieties through the nucleophilic sulfur ligands. This 

precursor framework has also proven useful in the production of complexes with a triangular 

{Pd3S2} core, such as that seen in [Pd3Cl(dppf)2(PPh3)(µ3-S)2]Cl. In this case, introduction of 

PdCl2(PPh3)2 leads to the dissociation of a PPh3 ligand and Cl- to afford the trinuclear complex. 

2 AgCl 
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Since monodentate phosphine ligands are known to be more labile in palladium systems, ligand 

migrations can lead to the formation of positional isomers in this complex although the 

characteristic shape of the core is maintained.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Structure of (clockwise): [(Ph2P)4Pd2(µ3-S)2Cu(PPh3)]+, [Cptt2Zr(µ3-S)2{Pd(η3-
C3H5)}2], [(dppp)2Pd2(µ3-S)2(SnB11H11)] and [PtPd2(µ3-S)2(dppe)(dppmS-κ2S,P4)2]2+.13-15 

 

The same triangular structure is seen in heterometallic adducts with a {Pd2MS2} core, even 

when not prepared from a palladium precursor containing the {Pd2S2} unit. For example, 

[(Ph2P)4Pd2(µ3-S)2Cu(PPh3)]+ was synthesized from a mixture of [Pd(PPh3)4] and [Cu2-(PPh3)3(µ-

OS3)].12 Some other structures with a similar {Pd2MS2} include [Cptt2Zr(µ3-S)2{Pd(η3-C3H5)}2] (Cptt 

= η5-1,3-di-tert-butylcyclopentadienyl), [PtPd2(µ3-S)2(dppe)(dppmS-κ2S,P4)2][PF6]2 (dppe = 

bis(diphenylphosphino)ethane), and more recently, [(dppp)2Pd2(µ3-S)2(SnB11H11)] (dppp = 
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bis(diphenylphosphino)propane).13-15 This triangular system is the resulting structure of many 

different reaction routes, likely due to the thermodynamic stability of the framework.  

 The use of silylated chalcogen reagents has been proven to be a convenient approach 

towards the synthesis of a range of metal chalcogenide coordination complexes as well as metal 

chalcogenide cluster systems. The reactivity of the –ESiMe3 group of the chalcogenolate precursor 

allows for convenient reaction with metal salt precursors to facilitate the formation of metal-

chalcogen bonds. The thermodynamically favourable formation of XSiMe3 (X = Cl, OAc, OTf) drives 

the formation of the M–E bond (E = S, Se). This method has previously been used to synthesize 

palladium sulfide complexes of varying structure.  

 

 

 

 

 

Scheme 2.2. Reaction of cis[Pd(S2SiMe2)(PEt3)2] with TiCl4(thf)2 to form TiCl2(S)(µ3-
S)2Pd2(PEt3)4.16 

 

The use of silylated-chalcogen precursors to access these palladium(II) chalcogenide 

complexes has only recently been employed. One of the first methods used the silanedithiolato 

complex cis-[Pd(S2SiMe2)(PEt3)2] as a precursor along with TiCl4(thf)2 to form TiCl2(S)(µ3-

S)2Pd2(PEt3)4 (Scheme 2.2).16 This complex allowed controlled reactivity with the titanium 

chloride reactant while maintaining cis configuration about palladium. In a different fashion, 

Azizpoor Fard and Corrigan have utilized chelating diphosphine ligands to control geometry about 

the palladium metal, and trimethylsilyl functionalized organochalcogenolate reagents as the 

source of the bridging chalcogen ligand to form palladium(II) thiolate complexes.17 The palladium 

salt [(dppp)PdCl2] was reacted with 1,2-(Me3SiECH2)2C6H4 (E = S, Se) to produce the dinuclear 
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palladium(II) complexes  {(dppp)2Pd2-μ-κ2S-[1,2(SCH2)2C6H4]}2+, and {(dppp)2Pd2-μ-κ2Se-[1,2-

(SeCH2)2C6H4]}2+ and with 1,2,4,5-(Me3SiSCH2)4C6H2 to produce  the tetranuclear complex 

[(dppp)4Pd4-μ-κ4S-{1,2,4,5-(SCH2)4C6H2}]4+. These reactions show that the palladium(II) 

dithiolate bridged butterfly structures can be achieved through the use of silylated chalcogen 

precursors, and can allow for the production of unique dinuclear {Pd2R2S2} and trinuclear 

{Pd2MS2} complexes. 

In order to expand this area, we set out to develop new heterometallic palladium(II) 

chalcogenide complexes by using silylated metal precursor reagents. To date, there have been no 

palladium chalcogenide complexes synthesized that contain paramagnetic heteroatoms. Previous 

work performed by Khadka led to the development of the convenient complex [Li(N,N’-

tmeda)]2[Mn(SSiMe3)4] 1 which allows reaction with other metal salts to produce ternary metal 

chalcogenide clusters.18, 19 This, combined with the paramagnetic properties of manganese in its 

common Mn2+ state make this complex an ideal reagent for the introduction of a paramagnetic 

species into butterfly palladium(II) disulfide complexes. This complex and the newly synthesized 

trimethylsilyl palladium(II) dithiolate complex [(dppp)Pd(SSiMe3)2] 3 were combined with 

palladium and manganese salt reagents respectively to afford the new triangular MnCl2(µ3-

S)2Pd2(dppp)2] 2 and [MnOTf(thf)2(µ3-S)2Pd2(dppp)2]OTf 4 (OTf = CF3SO3-). 

 

2.2 Experimental 

 All experimental procedures were performed using standard double manifold Schlenk line 

techniques under an atmosphere of dried nitrogen gas or in nitrogen filled glove boxes. The non-

chlorinated solvents (pentane, hexanes, THF, toluene), purchased from Caledon (HPLC grade), 

were dried and collected using an MBraun MB-SP Series solvent purification system with tandem 

activated alumina (THF, toluene) and activated alumina/copper redox catalyst (hydrocarbons)20. 

Dicholoromethane (CH2Cl2), purchased from Caledon, was dried and distilled over P2O5. N,N,N′,N′-

tetramethylethylenediamine (TMEDA), purchased from Sigma Aldrich, was dried and distilled 
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over CaH2. Spectral grade solvent chloroform CDCl3, purchased from Cambridge Isotope 

Laboratories, was dried and distilled over P2O5. Celite® was dried by heating at 120 oC under 

vacuum for 48 hours. Chemicals were used as received from Alfa Aesar and/or Sigma Aldrich 

without further purification. Starting reagents S(SiMe3)2,21 Li[SSiMe3],21 [Li(N,N’-

tmeda)]2[Mn(SSiMe3)4],18 and [Mn(OTf)2(CH3CN)2]22 were synthesized using literature procedure. 

For precursor materials, 1H and 31P{1H} NMR spectra were recorded on a Varian Mercury 

400 MHz spectrometer with an operating frequency of 400.08 MHz and the chemical shifts were 

referenced internally to signals from residual H relative to SiMe4 (1H) or 85% H3PO4 (31P). For the 

rest of the materials, 1H and 31P{1H} NMR spectra were recorded on an Inova 400 MHz with an 

operating frequency of 399.76 MHz and internally referenced to the residual proton peak in CDCl3 

relative to SiMe4 (1H) or 85% H3PO4 (31P). Electron paramagnetic resonance (EPR) experiments 

were run on a JEOL JES-FA200 EPR spectrometer. Complex [4]+ was dissolved in THF and 

measurements were taken at 20 oC using 0.4 mm quartz tubes. 

 X-ray data were collected on either a Bruker APEXII (2, 4) or a Nonius KappaCCD (3) 

diffractometer. Single crystals were mounted on a Mitegen polyimide micromount with a small 

amount of Paratone N oil. The structures were solved using direct methods and refined by the full-

matrix least-squares procedure of SHELXTL.23, 24 All non-hydrogen atoms were refined with 

anisotropic thermal parameters. Hydrogen atoms were introduced at idealized positions and were 

allowed to ride on the parent atom. 

Elemental analysis of 2 and 4 was performed by Laboratoire d’Analyse Élémentaire de 

l’Université de Montréal (Quebec, Canada). A uniform sample of 3 could not be prepared and 

elemental analysis experiments were not performed. UV-Vis absorption studies were performed 

at room temperature on a Varian Cary 300 spectrometer.  
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2.2.1 [MnCl2(µ3-S)2Pd2(dppp)2] - 2 

[(dppp)PdCl2] (0.1500 g, 0.254 mmol) was dissolved in 12 mL CH2Cl2. A solution of [Li(N,N’-

tmeda)]2[Mn(SSiMe3)4] 1 (0.0918 g, 0.127 mmol) in 12 mL CH2Cl2 was added at room temperature 

to immediately create a transparent bright orange mixture with a small amount of precipitate. The 

reaction was left to stir for three hours at this temperature to produce a clear red-brown coloured 

mixture with a small amount of light beige precipitate. The solution was filtered over dried Celite® 

through a glass frit, and the brown coloured solution was reduced in volume to ~12 mL under 

vacuum. The solution was cooled to -30 C and layered with 40 mL of pentane. Deep red prisms of 

2 deposited after 4 days. The mother liquor was removed via pipette and the crystals were washed 

with 5x20 mL of pentane and dried in vacuo. Yield 62 % (0.097 g); m.p. 228 C (dec).  

Anal. Calcd for C54H52Cl2MnP4Pd2S2·0.3CH2Cl2: C 52.04, H 4.23, S 5.12; found C 52.07, H 4.35, 

S 4.89%. 

UV-Vis λmax (ɛ /M-1cm-1): 268 (16700), 275 (17100), 283 (17500), 320 (9250), 410 (1130), 

531 (254) nm. 

Solid State PL: ~900 nm 

 

2.2.2 [(dppp)Pd(SSiMe3)2] - 3 

[(dppp)Pd(OAc)2] (0.1768 g, 0.278 mmol) and freshly prepared Li[SSiMe3] (0.556 mmol) were 

each dissolved in THF (5 mL each) to produce a yellow suspension and a colourless solution, 

respectively. The two solutions were mixed at room temperature and stirred to immediately 

produce a deep orange solution. The solvent was then removed in vacuo and 15 mL of toluene was 

added to solubilize product 3. This mixture was filtered over dried Celite® through a glass frit. The 

solvent was removed under vacuum to yield a bright orange oily solid. A concentrated solution of 

3 in pentane was prepared by evaporating pentane until the solution began to precipitate out, 

followed by a filtration of this mixture over dried Celite®. This solution was left in a glove box in a 

container with a small opening to allow slow evaporation. After 3 days approximately half of the 

solvent had evaporated, leaving amorphous non-crystalline material in the bottom of the vial. After 
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7 days the solvent had completely evaporated and a few deep orange prisms were present in the 

bottom of the vial, along with amorphous, greasy product.  Yield 84 % (0.170 g). 

1H NMR (399.76 MHz, CDCl3, 25 oC): δ 7.80 – 7.75 (m, 8 H, Ar-H), 7.47 – 7.37 (m, 12 H, Ar-

H), 2.35 (m, 4 H, PCH2), 2.02 (m, 2 H, PCH2CH2), 0.01 (s, 18H, SiCH3) ppm. 
13C{1H} NMR (150.74 MHz, CDCl3 25 oC): δ 134.3 (t, J = 4.5 Hz), 130.5 (s), 128.3 (t, J = 5.0 

Hz), 29.1 (t, PCH2, J = 15.1 Hz), 20.5 (PCH2CH2), 6.6 (Si-CH3) ppm. 
31P{1H} NMR (161.97 MHz, CDCl3, 25 oC): δ 3.4 ppm (s, PPh2). 

 

2.2.3 [MnOTf(thf)2(µ3-S)2Pd2(dppp)2]OTf – 4 

[(dppp)Pd(SSiMe3)2] 2 (0.0805 g, 0.110 mmol) was dissolved in 5 mL THF. A solution of freshly 

prepared Mn(OTf)2(CH3CN)2 (0.055 mmol) in 5 mL THF was then added at room temperature, 

resulting in no change to the solution colour. After 2 hours of stirring, a fine white precipitate 

formed along with a darkening of the liquid to a dark red colour. The mixture was filtered over 

dried Celite® through a glass frit to yield a dark red solution. The solution was cooled to -70 C, 

layered with 30 mL of pentane and stored at –25 C. Dark red prisms deposited after 2 days. The 

mother liquor was removed via pipette and the crystals were washed with 5x20 mL of pentane 

and dried in vacuo. Yield 45 % (0.040 g); m.p. (>260 C). 

Anal. Calcd. for C64H68F6MnO8P4Pd2S4: C 48.07, H 4.29, S 8.02; Found C 47.18, H 4.25, S 7.69. 

UV-Vis λmax (ɛ /M-1cm-1): 275 (72500), 350 (36700), 406 (16600) nm. 

Solid State PL: >1000 nm 

EPR: g = 1.9867, line width = 3.827, a = 9.496 mT 

 

2.3 Results and Discussion 

2.3.1 Synthesis of [MnCl2(µ3-S)2Pd2(dppp)2] (2) 

 The chalcogenolate precursor [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 was prepared according 

to a previously published methodology by Khadka.18 Treatment of this compound with other MX 

metal salts has been proven to yield heterometallic chalcogenolate compounds with varying 
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structure and properties, showing the potential for the manganese chalcogenolate complex to act 

as a convenient precursor to other heterometallic chalcogenolate precursors.18, 19 The reactivity of 

1 towards small cluster formation was tested with the palladium(II) complex [(dppp)PdCl2] (dppp 

= 1,3-bis(diphenylphosphino)propane). The reaction of the chalcogenolate coordination complex 

[Li(N,N´-tmeda)]2[Mn(SSiMe3)4] 1 with two equivalents of [(dppp)PdCl2] afforded the isolation of 

the ternary complex [MnCl2(µ-S)2Pd2(dppp)2] (62%) 2 (Scheme 2.3). The Pd—S bonds formed as 

a result of the production of ClSiMe3. The reaction completed after 3 hours at room temperature, 

with a colour change from light orange to deep red-brown taking place. Layering the solution with 

pentane as a counter solvent afforded the product in the form of deep red crystals. Complex 2 is 

highly soluble in CH2Cl2, and sparingly soluble in THF. In solid crystalline form, the compound is 

stable in air at room temperature; however, the complex exhibits some sensitivity to air in 

solution. 

 

 

 

 

 

 

 

 

Scheme 2.3. Synthesis of complex 2 ([MnCl2(µ3-S)2Pd2(dppp)2]). 

 

 

 

62% 

(2) 

- 2ClSiMe3  
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2.3.2 Structural Characterization of [MnCl2(µ3-S)2Pd2(dppp)2] (2) 

The molecular structure of 2 was determined through X-ray diffraction analysis (Figure 

2.2). The compound crystallizes in the monoclinic space group P21/m with Z = 2. Crystallographic 

parameters are reported in Appendix B. Each palladium is coordinated by one dppp and two 

sulfide ligands in a distorted square planar geometry. The 4-coordinate geometry index differs 

between the two Pd atoms, with τ4 = 0.062 for Pd1 and τ4 = 0.080 for Pd2. The S—Pd—S angles 

(84.45(7)o and 84.43(7)o) are statistically identical and smaller than that of the P—Pd—P angles 

(91.44(8)o and 95.26(8)o), which are quite different. The two palladium atoms of the structure are 

bridged by the two sulfide ligands forming a {Pd2S2} moiety which has been observed in many 

other {Pd2S2} and Pt2S2 containing compounds.10 This Pd2S2 ring folds along the two sulfur ligands 

to form the iconic butterfly shaped structure known for these compounds. The dihedral angle 

between the two  PdS2 moieties is 132.30(5)o for complex 2, which is comparable to measurements 

found in similar structures.10 

The manganese centre is also coordinated to the two bridging sulfides as well as two 

chloride ligands in a distorted tetrahedral geometry with τ4 = 0.899 (τ4’ = 0.896). The angles about 

the manganese centre vary significantly with an S—Mn—S angle of 79.69(7)o and an Cl—Mn—Cl 

of 108.68(10)o. The “pinching” of S—Mn—S is likely due to the square planar geometry about the 

two palladium centres which are also bonded to the two sulfides. The average manganese-sulfide 

bond length (2.4713(17) Å) is comparable to that of other similar manganese sulfide compounds.18 

The distances between manganese and palladium (2.9423(17) Å and 3.1983(17) Å) are too large 

for any metal-metal bonding interaction to be suggested as is the distance between the two 

palladium centres (3.1574(15) Å).  
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Table 2.1. Selected bond distances (Å) and angles (deg) for 2. 

 Distance (A )  Angle () 
Mn1-Pd1 2.9423(17) S1-Mn1-S1 79.69(7) 
Mn1-Pd2 3.1983(17) Cl1-Mn1-Cl2 108.68(10) 
Pd1-Pd2 3.1574(15) S1-Pd1-S1 84.45(7) 
Mn1-S1 2.4713(17) P1-Pd1-S1 91.99(6) 
Mn1-Cl1 2.337(3) P1-Pd1-P1 91.44(8) 
Mn1-Cl2 2.366(3) S1-Pd2-S1 84.43(7) 
Pd1-S1 2.3561(15) S1-Pd2-P2 90.14(5) 
Pd1-P1 2.2716(15) P2-Pd2-P2 95.26(8) 
Pd2-S1 2.3567(14) P1-S1-P2 132.30(5) 
Pd2-P2 2.2719(15)   

 

 

Since chlorine and sulfur have similar electron densities, it is difficult to distinguish them 

from one another from X-ray diffraction data. To prove that chlorine had replaced the sulfur 

ligands present on the manganese thiolate precursor, combustion elemental analysis of crystals of 

2 was performed. It was found that 2 contained 4.89% sulfur, correlating strongly with the 

theoretical value of 5.17%. Substitution of the sulfur ligands for chlorine results in a total charge 

of zero for the molecule; the observed Mn—Cl bond distances are shorter than those for Mn—S 

and thus closer to those previously reported for Mn—Cl.25 These data confirmed that the sulfide 

ligands were displaced, resulting in the presence of chloride ligands in the final product to form a 

neutral complex. 
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Figure 2.2. Molecular structure of complex 2 shown with two different perspectives. Grey spheres 
represent C, yellow: S , orange: P, blue: Pd, purple: Mn, and green: Cl. Ellipsoids are depicted at 
50% probability. Hydrogen atoms are omitted for clarity. The molecule resides on a mirror plane 
which contains the atoms Mn, Pd1, Pd2, Cl1 and Cl2. 
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 Since complex 1 ([Li(N,N´-tmeda)]2[Mn(SSiMe3)4]) initially contained, potentially, four 

reactive chalcogenolate sites, a reaction with a higher stoichiometric amount of [(dppp)PdCl2] was 

performed to probe the synthesis of a larger complex. The chalcogenolate coordination complex 1 

was reacted with [(dppp)PdCl2] in a 1:3 ratio at room temperature over a period of 2.5 h. A colour 

change from light orange to gold-brown was observed. Single crystals of deep red nature were 

obtained by layering the CH2Cl2 solution with heptane in a 2:1 ratio. The crystals were not suitable 

to collect a full data set with single X-ray diffraction, however the unit cell volume of 2739.10 Å3 is 

similar to that of complex 2 (2732.0(19) Å3) revealing that the change in ratio did not result in a 

cluster of higher nuclearity. A similar reaction was tested with the between 1 and 

[(dppp)Pd(OAc)2] with THF as a solvent to avoid the presence of chlorine. Here, too, the trinuclear 

complex 2 was identified through X-ray diffraction, likely due to traces of lithium chloride that 

remain present with complex 1.  

 

2.3.3 Synthesis and Characterization of [(dppp)Pd(SSiMe3)2] (3) 

 The complex [(dppp)Pd(SSiMe3)2] 3 was prepared by treatment of [(dppp)Pd(OAc)2] with 

lithio(trimethylsilyl)-thiolate [LiSSiMe3] in a 2:1 ratio, in THF at room temperature. The complex 

was then dissolved in toluene and solid LiOAc was removed through filtration. The solvent was 

removed and the product was dissolved in pentane. Evaporation of pentane resulted in the 

formation of a mixture of vibrant orange crystalline and amorphous material. The yield was found 

to be 84 % yield (Scheme 2.4). The complex can also be prepared from [(dppp)PdCl2] to produce 

LiCl, however the acetate adduct was used to avoid complications caused by the presence of Cl-, 

which have caused the repeated formation of complex 3. Complex 3 is highly soluble in common 

organic solvents, and stable in solution for several days if stored at low temperature and under 

inert atmosphere. The compound is stable for longer periods if stored in solid form under the same 

conditions. 
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Scheme 2.4. Synthesis of complex 3 [(dppp)Pd(SSiMe3)2].  

 

 Complex 3 was characterized through 1H NMR, 13C{1H} NMR and 31P{1H} NMR 

spectroscopy. The chemical shifts of the –Si(CH3)3 groups resonate at high field in both the 1H and 

13C{1H} NMR spectra at 0.01 ppm and 6.6 ppm respectively. The phenyl rings of the dppp ligand 

give rise to two multiplets in the 1H NMR spectrum at 7.78 and 7.41 ppm which agree with 

chemical shifts for similar compounds.26 There are likely three signals, with two of the signals 

overlapping which would give rise to two observable signals in the spectrum. The methylene 

groups in the ligand are observed as two signals due to the symmetry of the propyl chain. These 

signals appear at 2.35 and 2.02 ppm in the 1H NMR spectrum and 29.1 and 20.5 ppm in the 13C{1H} 

NMR spectrum. The 31P{1H} chemical shift displayed a singlet at 3.4 ppm, upfield from the chemical 

shift for the precursor [(dppp)Pd(OAc)2] (11.2 ppm) due to increased shielding at the phosphorus 

site.  

 

 

 

84% 

(3) 

- 2LiCl 
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Figure 2.3. Molecular structure of complex 3 (one of two crystallographically independent 
molecules). Grey spheres represent C, yellow: S, orange: P, blue: Pd, and beige: Si. Ellipsoids are 
depicted at 50% probability. Hydrogen atoms were omitted for clarity. 

 

 

Single crystals of 3 suitable for X-ray diffraction studies were obtained by slow evaporation 

of a pentane solution at room temperature under inert atmosphere. The structure of 3 is 

illustrated in Figure 2.3 and selected bond length and angles are summarized in Table 2.2. 

Crystallographic parameters are reported in the Appendix B. The complex crystallizes in the space 

group P 21/n with Z = 8, and the crystal contains two similar yet crystallographically independent 

molecules in the asymmetric unit. The two conformations have similar Pd—P distances (2.2735(7) 

– 2.293(1) Å), while the Pd—S distances for 3-A (2.3539(7) and 2.369(1) Å) are slightly shorter 
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S3 
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than the Pd—S distances for 3-B (2.3895(6) and 2.395(1) Å). In contrast, the S—Pd—S angles are 

quite similar (92.24(3) and 93.76(2)) while the P—Pd—P angles differ greatly (91.06(3) and 

96.38(3)). Both structures exhibit a distorted square planar geometry around the palladium(II) 

centre, however the angles of 3-B deviate from 90 to a greater extent than they do for 3-A. The 4-

coordinate geometry index of τ4 = 0.058 (τ4’ = 0.050) for 3-A is higher than the index of τ4 = 0.042 

(τ4’ = 0.032) for 3-B, indicating that the geometry around Pd in 3-B is closer to square planar. The 

propyl chain of the dppp ligand in 3-B is shown to be more symmetrical than the propyl chain in 

3-A (Figure 2.4). 

 

Table 2.2. Selected bond distances (Å) and angles () for conformation A (top) and B (bottom) of 
complex 3. 

 Distance (A )  Angle () 
Pd1-P1 2.293(1) S1-Pd1-S2 92.24(3) 
Pd1-P2 2.2735(7) S1-Pd1-P1 91.50(3) 
Pd1-S1 2.3539(7) S2-Pd1-P2 85.14(3) 
Pd1-S2 2.369(1) P1-Pd1-P2 91.06(3) 
Pd2-P3 2.283(1) S3-Pd2-S4 93.76(2) 
Pd2-P4 2.2827(6) S3-Pd2-P3 86.15(3) 
Pd2-S3 2.3895(6) S4-Pd2-P4 83.81(2) 
Pd2-S4 2.395(1) P3-Pd2-P4 96.38(3) 

 

 

Figure 2.4. View of molecular structure of 3 showing different geometry of dppp ligand for 
conformation A (left) and B (right). 

Pd2 Pd1 
P4 P2 P1 P3 
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2.3.4 Synthesis of [MnOTf(thf)2(µ-S)2Pd2(dppp)2]OTf (4) 

 A freshly prepared solution of [(dppp)Pd(SSiMe3)2] 3 was reacted with [Mn(OTf)2] in THF 

at room temperature. The reaction took place over a period of 2 hours to form a deep red mixture 

with a white precipitate. After filtration, the product was collected by layering the solution with a 

counter-solvent and letting the mixture settle at -25 oC for two days. The complex [MnOTf(thf)2(µ-

S)2Pd2(dppp)2]OTf 4 was obtained as deep red crystals in 45% yield (Scheme 2.5). Compared to 

complex 2, these crystals are very fragile and difficult to handle, making single crystal X-ray 

crystallography a challenge. It was found that the crystals of complex 4 degrade when left in the 

mother liquor for more than 1 day after formation. This complex is stable in air when in the solid 

state, however some decomposition in the form of black precipitate is noticeable when a solution 

of the complex is left exposed to air. This compound is soluble in THF and sparingly soluble in 

diethyl ether. It is also soluble in CH2Cl2, however it is unknown whether the presence of chlorine 

will affect the structure over time. Therefore, contact with chlorinated solvents was avoided. 

 

 

 

 

 

 

 

 

 

Scheme 2.5. Synthesis of complex 4 [MnOTf(thf)2(µ-S)2Pd2(dppp)2](OTf). 

  

45% 

(4) 

- 2OTfSiMe3 
  2 [(dppp)Pd(SSiMe3)2] + (CH3CN)2Mn(OTf)2 
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 The molecular structure of 4 was determined through X-ray diffraction analysis and is 

depicted in Figure 2.5. The compound crystallized in the monoclinic space group P-1 with Z = 2 

and no molecular symmetry. Crystallographic parameters are reported in Appendix B. As with 2, 

the complex contains two dppp containing palladium moieties that are bridged through two 

central sulfide ligands.  

 

 

Figure 2.5. Molecular structure of complex 4. Grey spheres represent C, yellow: S, orange: P, blue: 
Pd, purple: Mn, red: O, and green: F. Ellipsoids are depicted at 50% probability. Hydrogen atoms 
were omitted for clarity. 
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Table 2.3. Selected bond distances (Å) and angles (deg) for 4. 

 Distance (A )  Angle () 
Mn1-Pd1 3.0227(9) S1-Mn1-S2 79.55(3) 
Mn1-Pd2 3.093(1) S1-Mn1-O2 98.62(7) 
Pd1-Pd2 3.1818(8) S1-Mn1-O3 103.66(7) 
S1-S2 3.172(1) S1-Mn1-O1 169.46(6) 
Mn1-S1 2.506(1) O1-Mn1-S2 91.30(6) 
Mn1-S2 2.452(1) O1-Mn1-O2 83.51(9) 
Mn1-O1 2.203(2) O1-Mn1-O3 86.28(9) 
Mn1-O2 2.137(2) S2-Mn1-O2 131.70(7) 
Mn1-O3 2.113(3) S2-Mn1-O3 131.20(7) 
Pd1-S1 2.3427(9) O2-Mn1-O3 96.47(9) 
Pd1-S2 2.368(1) S1-Pd1-S2 84.66(3) 
Pd1-P1 2.2797(9) S1-Pd1-P1 91.40(3) 
Pd1-P2 2.2865(9) S2-Pd1-P2 93.59(3) 
Pd2-S1 2.336(1) P1-Pd1-P2 93.15(3) 
Pd2-S2 2.3737(9) Pd1-S1-Pd2 85.71(2) 
Pd2-P3 2.2775(9) Pd1-S2-Pd2 84.30(2) 
Pd2-P4 2.275(1) S1-Pd2-S2 84.68(3) 
  S1-Pd2-P3 86.44(3) 
  S2-Pd2-P4 91.59(3) 
  P3-Pd2-P4 97.30(3) 
  P1-S1-P3 120.83(3) 
  P2-S2-P4 141.59(3) 

 

Similar to 2, the manganese centre is also coordinated to the two bridging sulfur ligands. 

However, two THF ligands as well as a triflate ligand are bound to manganese as opposed to the 

two chloride ligands. The two THF are coordinated to manganese through oxygen with Mn—O 

distances (2.203(2) Å and 2.137(3) Å) that are short enough to confirm bonding interactions. The 

triflate ligand is bonded to manganese through oxygen as well with a Mn—O distance of 2.113(3) 

Å. The geometry around the manganese(II) centre forms a distorted trigonal bipyramidal 

structure where the S1 sulfide ligand and the O1 of THF define the axial ligands, while the 

remaining triflate, THF and sulfide represent the equatorial ligands. The 5-coordinate geometry 

index of τ5 = 0.629 for manganese(II) indicates that there is a significant amount of square planar 

character exhibited in the geometry. The S1—Mn—O1 angle deviates slightly from the expected 

angle of 180 by ~10 with an angle of 169.46(6). The S2—Mn—O2 and S2—Mn—O3 equitorial 
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angles (131.20(7) – 131.70(7)) are much larger than the O2—Mn—O3 angle of 96.47(9), both 

deviating from the expected value of 120.  

The geometry around the two palladium structures differs between each other, however 

both exhibit a distorted square planar structure. The 4-coordinate geometry index differs between 

the two Pd atoms, with τ4 = 0.191 (τ4’ = 0.188) for Pd1 and τ4 = 0.094 (τ4’ = 0.076) for Pd2. The 

S—Pd—S angles (84.66(3)o and 84.68(3)o) are statistically identical and very similar to the values 

found for complex 2 (84.45(7)o and 84.43(7)o). The P—Pd—P angles (93.15(3)o and 97.30(3)o) 

however, deviate to a larger extent than they do for 2 (91.44(8)o and 95.26(8)o). Although the P3—

Pd2—P4 angle (97.30(3)o) deviates from 90o more than the P1—Pd1—P2 angle (93.15(3)o), the 

P3 and P4 atoms remain in plane with the square planar geometry while the P1 and P2 atoms do 

not remain in plane (Figure 2.6). The twisted dppp ligated to Pd1 gives rise to differing P—S—P 

angles (120.83(3)o and 141.59(3)o), rather than the symmetrical P—S—P angles seen in 2. The 

phenyl groups of the dppp ligands are likely strained due to the bulk introduced by the large 

triflate ligand bound to the manganese(II) centre, which is supported by the space filling model. 

The {Pd2S2} moiety forms a similar ring structure that folds along the two sulfur ligands forming 

the butterfly shaped. The angle across the S···S vector for the Pd—S2—Pd arrangement is observed 

to be 132.09o for 4. The Pd—Pd (3.1818(8) Å) and Mn—Pd (3.0227(9) Å and 3.093(1) Å) distances 

are too large for any bonding interactions to be suggested. The S—S (3.172(1) Å) distance is 

similar to that seen for other {Pd2S2} butterfly structures, however the distance is too long for any 

bonding interactions to be described. The length of the bridging Pd—S bonds (2.336(1) - 

2.3737(9) Å) are within range of reported values for other palladium-sulfide bonding 

interactions.10, 27  
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Figure 2.6. View of molecular structure of 4 showing different P—S—P angles (top) and 
distortion of square planar geometry around Pd1 (bottom left) and Pd2 (bottom right). The 
bottom perspectives depict the thf and OTf ligands with spacefilling models to show the 
proximity of the Ph of dppp to these ligands. 
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Similar reactions were conducted as with complex 3 in an attempt to synthesize a 

compound with a larger and/or smaller number of dppp containing palladium(II) moieties. 

[(dppp)Pd(SSiMe3)2] was reacted with [Mn(OTf)2] in a 1:1 and 3:1 ration in a similar manner to 

that described for the preparation of 4. Crystallization attempts were made, however the mixture 

was unable to produce suitable crystals for X-ray diffraction studies.  

 

2.3.5 UV-Vis Absorption, Emission and EPR Spectroscopy 

Electronic spectroscopy studies for complexes 2 and 4 were performed in CH2Cl2 and THF 

respectively in various concentrations. Complex 2 was not completely soluble in THF so CH2Cl2 

was used, and complex 4 was run in THF to avoid any Cl- contamination that may occur from 

CH2Cl2. The data gathered from these spectra are summarized in Table 2.4 and the spectra 

themselves are displayed in Figure 2.7. The spectrum of 2 shows two peaks at 283 and 531 nm 

and two shoulders at 320 and 410 nm. The peak at 283 nm has two small but noticeable shoulders 

at 268 and 275 nm. The spectrum for 4 reveals 2 peaks at 350 and 275 nm and a shoulder at 406 

nm with the low energy absorbance above 500 nm not being present. The peak at 275 nm appears 

to contain a similar set of shoulder absorbances, however the overlap with the absorbance from 

THF makes it difficult to accurately describe.  

 

Table 2.4. Electronic transitions for complexes 2 and 4. 

   2   4 
 λmax/nm (ɛ /M-1cm-1) 268 (16700) 275 (72500) 
 275 (17100) 350 (36700) 
 283 (17500) 406 (16600) 
 320 (9250)  
 410 (1130)  
 531 (254)  
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Figure 2.7. UV-Vis absorption spectra of (a) 2 and (b) 4 at different concentrations. 
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The absorbances below 300 nm are due to the dppp ligands and have been observed for 

other diphosphine palladium(II) complexes.17 The shoulders at 320 and 410 nm for 3 and the peak 

at 350 and shoulder at 406 nm for 4 dominate the rest of the spectrum and trail out towards lower 

energy regions. Transitions observed between 300 and 400 nm have previously been assigned to 

sulfur-to-palladium LMCT transitions, which is likely the case for these four transitions.28 The 

higher wavelength band for 2 at 531 nm is of much weaker absorption, and can be attributed to 

manganese(II) d-d transition. Transitions of this nature have been described for other 

manganese(II) species and are typically observed above 400 nm as a very weak absorbance.29 

 Solid state emission studies were performed on 2 and 4 as well. The samples were mounted 

on a crystalline silicon wafer and irradiated with a 400 nm light source. The resulting spectra, 

displayed in Figure 2.8, reveal a weak emission in the infrared region below 700 nm. 

Unfortunately, the detector used is not sensitive enough to observe the details of the emission, 

however the emission for 2 appears to exhibit a peak at ~950 nm. A weak artifact emission at 

~450 nm is present in both spectra, likely due to preferential scattering from the sample plate. 

Solution emission spectra were attempted at room temperature, however there were no 

noticeable emissions in the infrared region. Previous reports have shown manganese(II) 

coordination complexes to emit at ~700 nm, however emission from these complexes is quite 

rare.30 Palladium(II) complexes typically do not exhibit photoluminescent properties at room 

temperature due to nonradiative deactivation of the low energy metal-centered excited state via 

molecular distortion.31 
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Figure 2.8. Solid state emission spectra of 2 and 4. 

2 

4 
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Figure 2.9. EPR spectrum of 4 in THF. Spectrum parameters: g = 1.9867, line width = 3.827, a = 
9.496 mT 

 

 1H, 13C{1H} and 31P{1H} NMR spectroscopy studies were performed on compounds 2 and 4 

however there were no clearly visible signals present in the spectra collected. Unpaired electrons 

around the manganese centre exhibit a magnetic moment due to their charge and spin, causing 

each unpaired electron to act as a miniature bar magnet. This perturbs the uniformity of the 

magnetic field induced by the NMR spectrometer and makes it very difficult to observe signals 

from nuclei in the vicinity of these unpaired electrons due to broadening of their signals.32 The 

analogous method of electron paramagnetic resonance (EPR) spectroscopy can be used instead to 

study the nature of the unpaired electrons about the manganese(II) metal. EPR spectroscopy was 
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performed on a solution of 4 in THF. The data were collected under a steady microwave radiation 

source of 9148 MHz while the magnetic field was varied from 280 to 380 mT with a hyperfine 

coupling constant of 9.496 mT. The spectrum, displayed in Figure 2.9, reveals a signal containing 

six peaks which spans ~ 60 mT. The signal exhibits a g value of 1.9867 which falls into the 

acceptable range of g values for other manganese(II) run at room temperature (~ 1.97 – 2.07).33-

36 Manganese(II) contains a nuclear spin of 5/2, and the interaction of one unpaired electron spins 

with the nucleus will result in six different aborbances, as the 1st derivative spectrum reveals. A 

high-spin manganese(II) d5 metal centre often results in a complex spectrum consisting of 

overlapping signals.37 The spectrum exhibits some weak shouldering on the primary signal, 

however due to the low intensity of the spectrum it could not be determined whether it was noise 

or an overlapping signal. Low-spin manganese(II) complexes are quite rare, and ligands with very 

strong ligand fields are typically present in high-spin manganese(II) complexes.38 Only high-spin 

complexes have been reported for trigonal bipyramidal manganese(II) systems, with one report 

exhibiting a similar six peak signal.39-41 It is likely that manganese(II) is high-spin here, though the 

resolution is too low to confirm. There is no visible coupling to the phosphorus nuclei which 

indicates they are too far to have any interaction. 
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 2.4 Conclusions 

 The reaction of [(dppp)PdCl2] with [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 was performed in a 

2:1 ratio, yielding the new manganese(II) containing metal sulfide complex  [MnCl2(µ-

S)2Pd2(dppp)2] 2 in relatively good yield and under mild reaction conditions. Similar reactions 

with an increased ratio of [(dppp)PdCl2]:[Mn(SSiMe3)4]2+ only produced 2, even if 

[(dppp)Pd(OAc)2] was used with non-chlorinated solvents. This is likely due to the presence of 

LiCl in the crystals of the complex [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1. In order to completely avoid 

contact with chlorine, the new trimethylsilyl chalcogenolate [(dppp)Pd(SSiMe3)2] 3 was 

synthesized by reaction of Li[SSiMe3] with [(dppp)Pd(OAc)2] in a 2:1 ratio. This compound 

exhibited relatively good temperature stability and surprisingly good solution stability compared 

to the analogous metal thiolates such as [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1. The reaction of 

[(dppp)Pd(SSiMe3)2] with [Mn(OTf)2] in a 2:1 ratio produced the new complex [MnOTf(thf)2(µ-

S)2Pd2(dppp)2]OTf 4 under mild conditions. Although the lack of chlorine led to the synthesis of a 

new coordination complex, differing Pd:Mn ratio complexes (1:1, 3:1) were still unattainable. 

Since complex 4 was shown to exhibit steric crowding between the phenyl groups of the dppp 

ligand and the triflate and thf ligands, it is possible that larger Pd:Mn ratios were inaccessible due 

to sterics preventing coordination of manganese to another palladium unit. Smaller chelating 

phosphine ligands may produce higher nuclearity complexes. Complexes were characterized 

through multiple techniques including NMR spectroscopy, EPR spectroscopy, elemental analysis, 

X-ray crystallography, UV-Vis absorption and solid state emission spectroscopy. These reactions 

illustrate the difficulties associated with the synthesis of large and diverse manganese(II) 

containing coordination complexes. 
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Chapter Three 
 

Metal Trimethylsilylthiolate Precursors for the Formation 
of Au—S—Mn and FcC{O}—S—Mn Bonding Interactions 

 

3.1 Introduction  

 The successful synthesis of ternary metal sulfide complexes [MnCl2(µ-S)2Pd2(dppp)2] 2 

and [MnOTf(thf)2(µ-S)2Pd2(dppp)2] 4 by reaction of the metal trimethylsilylthiolates [Li(N,N’-

tmeda)]2[Mn(SSiMe3)4] 1 and [(dppp)Pd(SSiMe3)2] 3 with metal salts [(dppp)PdCl2] and 

[Mn(OTf)2(CH3CN)2], respectively, illustrate the potential for these new metal complexes with 

reactive trimethylsilylchalcogenolate ligands to act as precursors for the synthesis of unique 

ternary MM’E (E = S, Se, Te) complexes. Continuing with the goal of developing manganese(II) 

sulfide coordination chemistry, this chapter employs metal trimethylsilylthiolate complexes as 

precursors toward the formation of Au—S—Mn and FcC{O}—S—Mn (Fc = Ferrocene) bonding 

interactions. 

 Manganese(II) has been utilized as a dopant in various ternary metal chalcogenide 

systems due to its desirable paramagnetic and luminescent properties.1, 2 Various methods have 

been employed to incorporate manganese(II) into these semiconductor systems, however the 

product often takes the form of bulk solid or polydisperse nanoscale solid.3 In an effort to control 

the structure and chemical composition of these ternary metal chalcogenide systems, Eichhofer 

and co-workers employed bis-trimethylsilylamide transition metal complexes Cd(N(SiMe3)2)2 

and Mn(N(SiMe3)2)2 with HSePh and E(SiMe3)2 (E = S, Se) to form [Cd4Mn6Se4(SePh)12(PnPr3)4] 

and [Cd4Mn4S(SePh)14(PnPr3)2].4 The synthesis of these ternary complexes marks the first 

examples of these systems in a size form that allows for proper structural characterization. 

Expanding on this development, Khadka and co-workers synthesized and structurally 

characterized the ternary nanoclusters [(N,N’-tmeda)6Zn14-xMnxS13Cl2] and [(N,N’-tmeda)6Zn14-
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xMnxSe13Cl2] (tmeda = (CH3)2NCH2CH2N(CH3)2) from the reaction of the metal chalcogenolate 

precursor [(tmeda)Zn(ESiMe3)2] (E = S, Se) with manganese(II) and zinc(II) salts.5 These metal 

chalcogenolate complexes are ideal precursors for the formation of ternary M—E—M’ bonding 

interactions due to the preformed metal-chalcogen bond, their high solubility in common organic 

solvents and the reactivity of the –ESiMe3 ligands towards ligand stabilized metal salts.6 

 Ligand stabilized gold(I) salts have previously been used along with 

trimethylsilylchalcogenolate functionalized precursors to produce metal chalcogenide clusters 

and coordination complexes.  Many of the gold compounds synthesized in this method have been 

binary systems, however ternary systems should theoretically be accessible by reaction of a 

metal trimethylsilylthiolate complex with a second type of metal salt. Mixed gold-indium-

selenide clusters have been prepared utilizing Se(SiMe3)2 as an Se2- source along with the 

subsequent metal chloride salts.7 This methodology, however, does not provide rigid control 

over the reaction products. The ternary clusters received through this method contain Au2Se and 

Au3Se subunits. This indicates that the Se2- source likely facilitates the formation of stable binary 

units which interact with the heterometal through the µ2-Se2- and µ3-Se2- ligands respectively to 

form the subsequent ternary clusters. Gold-silver-chalcogenide clusters containing similar Au3S 

subunits in its structure have also been reported.8 Although no manganese containing gold 

sulfide clusters have been synthesized, spin-polarized DFT computations have been performed 

to investigate the electronic and magnetic properties of various gold sulfide clusters.9-11 It has 

been observed that electronic and magnetic properties are affected by the quantity of 

paramagnetic atoms introduced into a cluster, as well as the location of these atoms within the 

framework. These data indicate that if these materials are to be used in molecular spintronics 

devices, strict site control over magnetic doping is essential. 

 Ferrocene has the potential to be employed in metal chalcogenide complexes to 

functionalize phosphido and chalcogenolate surface ligands. Ferrocene introduces 

electrochemical properties to cluster complexes, which allows for applications in redox-active 

and/or luminescent sensors as well as electrode materials.12, 13 Recently, a silver sulfide 
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nanocluster decorated with ferrocene-based dithiolate units 

[Ag74S19(dppp)6(Fc(C{O}OCH2CH2S)2)18] has been synthesized by treating a silver(I) thiolate 

coordination polymer [Fc(C{O}OCH2CH2SAg)2]n with the S2- source S(SiMe3)2.14 This method 

conveniently allows ferrocene to be incorporated into the cluster as a functional group. 

Ferrocene has been incorporated into the manganese(II) thiolate complex [(Mn(CO)3)2(µ-

SPh)2(µ-dppfe)] through phosphine ligation with the ferrocene containing diphosphine dppfe 

(dppfe = 1,1’-bis(diphenylphosphino)ferrocene).15 However, the redox properties of this 

compound were not observable due to decomposition during cyclic voltammetry (CV) 

measurements. The synthesis of a manganese(II) complex containing a ferrocene unit bonded 

through a thiolate ligand has yet to be reported, and a complex of this nature may exhibit 

interesting redox chemistry. 

 Successful implementation of metal trimethylsilylchalcogenolate complexes as a metal 

and chalcogen source can allow for the controlled synthesis of chemically unique and 

structurally diverse manganese(II) containing complexes. This chapter explores the reaction of 

metal trimethylsilylthiolate complexes [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 and [Ph3PAuSSiMe3] 5 

with the ligand stabilized metal salts [R3PAuX] (R = Et3, Ph3; X = Cl, OTf) and [(CH3CN)2Mn(OTf)2], 

respectively, as well the reaction of 1 with ferrocenoyl chloride in an effort to facilitate Au—S—

Mn and FcC{O}—S—Mn bonding interactions.  

  

3.2 Experimental 

 All experimental procedures were performed using standard double manifold Schlenk 

line techniques under an atmosphere of dried nitrogen gas or in nitrogen filled glove boxes. The 

nonchlorinated solvents (pentane, hexanes, THF, toluene), purchased from Caledon (HPLC 

grade), were dried and collected using an MBraun MB-SP Series solvent purification system with 

tandem activated alumina (THF, toluene) and activated alumina/copper redox catalyst 

(hydrocarbons) 16. Dicholoromethane (CH2Cl2), purchased from Caledon, was dried and distilled 
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over P2O5. N,N,N′,N′-tetramethylethylenediamine (TMEDA), purchased from Sigma Aldrich, was 

dried and distilled over CaH2. Spectral grade solvent chloroform CDCl3, purchased from 

Cambridge Isotope Laboratories, was dried and distilled over P2O5. Chemicals were used as 

received from Alfa Aesar and/or Sigma Aldrich without further purification. Starting reagents 

S(SiMe3)2,17 Li[SSiMe3],17 [Ph3PAuCl],18 [FcC{O}OH],19 [FcC{O}Cl],20 [Li(N,N´-

tmeda)]2[Mn(SSiMe3)4],6 and [(CH3CN)2Mn(OTf)2]21 were synthesized using literature procedure. 

Celite® was dried by heating at 120 oC under vacuum for 48 hours.  

For precursor materials, 1H and 31P{1H} NMR spectra were recorded on a Varian Mercury 

400 MHz spectrometer with an operating frequency of 400.08 MHz and the chemical shifts were 

referenced internally to signals from residual H relative to SiMe4 (1H) or 85% H3PO4 (31P). For 

the rest of the materials, 1H and 31P{1H} NMR spectra were recorded on an Inova 400 MHz with 

an operating frequency of 399.76 MHz and internally referenced to the residual proton peak in 

CDCl3 relative to SiMe4 (1H) or 85% H3PO4 (31P). Mass spectrometry and exact mass 

determinations were performed on a Bruker micrOTOF II instrument. Calculated patterns were 

produced using Scientific Instrument Services Inc. (SIS) Isotope Distribution Calculator and Mass 

Spec Plotter. 

Energy Dispersive X-ray (EDX) analysis on product mixture from gold manganese sulfide 

reactions were performed at Western Nanofabrication Facility, London, Ontario. A Quartz XOne 

EDX analysis system coupled to a Leo 440 SEM equipped with a Gresham light element detector 

was used to obtain semiquantitative analysis of gold and manganese. The single crystal X-ray 

measurement was made on a Bruker Kappa Axis Apex2 diffractometer at a temperature of 110 K. 

Crystals were mounted on a Mitegen polyimide micromount with a small amount of Paratone N 

oil. The molecular structure of [S(AuPPh3)3]Cl was solved via direct methods using the SHELX 

suite of crystallographic programs (Sheldrick, G. M., Madison, WI).22 
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3.2.1 Attempted Synthesis of [(NCCH3)2Mn(SAuPPh3)2] 

[Ph3PAuSSiMe3] (0.0600 g, 0.1057 mmol) was dissolved in 6 mL THF to form a clear and 

colourless solution. A colourless solution of [(CH3CN)2Mn(OTf)2] (0.023 g, 0.053 mmol) in 6 mL 

THF was added at room temperature to immediately yield a transparent, pale beige coloured 

solution. The reaction was left to stir for 2 hours at this temperature to produce a mixture of a 

pale beige liquid and a very fine, colourless precipitate. The mixture was filtered over dried 

Celite® through a glass frit. Crystallization was performed on the resulting solution by layering 

with 25 mL of pentane and cooling to -25 °C for storage. Clear, colourless, needle-shaped crystals 

were deposited after 2 days. X-ray diffraction studies on the crystals proved the compound to be 

the previously characterized complex [S(AuPPh3)3]Cl 6 as a new crystallographic polymorph.23 

EDX and mass spectrometry studies were also performed to confirm the identity of the complex.  

 

3.2.2 Attempted Synthesis of [Mn(SAuPPh3)4]2- 

1. [Ph3PAuCl] (0.095 g, 0.192 mmol) was dissolved in 10 mL THF to form a colourless solution. A 

light beige solution of [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 (0.035 g, 0.048 mmol) dissolved in 10 

mL THF was added at rt with no immediate change. After 2.5 h a small amount of colourless ppt 

was observed. The mixture was filtered over dried Celite® through a glass frit, and the solution 

was layered with 40 mL heptane. Amorphous white solid was collected. No crystals were 

successfully grown. An 1H NMR and 31P{1H} NMR spectra were run; however no signal was 

observed, likely due to sufficient broadening due to the presence of paramagnetic manganese(II).  

2. [PPh3AuOTf] (0.068 g, 0.112 mmol) was dissolved in 10 mL THF to give a colourless solution. 

A light beige solution of [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 (0.020 g, 0.028 mmol) dissolved in 10 

mL THF was added at rt to form a slight purple solution. After 2.5 h a purple precipitate had 

formed. The mixture was filtered over dried Celite® through a glass frit, and the solution was 

layered with 40 mL heptane. Amorphous white solid was collected. No crystals were successfully 
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grown. An 1H NMR and 31P{1H} NMR spectra were run, however no signal was observed, likely 

due to sufficient broadening due to the presence of paramagnetic manganese(II). 

 

3.2.3 Attempted Synthesis of [Mn(SAuPEt3)4]2- 

[PEt3AuCl] (0.097 g, 0.277 mmol) was dissolved in 10 mL THF to form a clear and colourless 

solution. A light beige solution of [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 (0.050 g, 0.069 mmol) 

dissolved in 10 mL THF was added at 0 °C with no immediate change. The mixture was left to 

warm to rt over 2 h, which produced a colourless ppt with a slight yellow solution. The solid was 

filtered over dried Celite® through a glass frit, and the solution was layered with 40 mL heptane. 

A pale yellow amorphous solid was formed and was shown to luminesce as yellow/green under 

UV light. No crystals were successfully grown. An 1H NMR and 31P{1H} NMR spectra were run, 

however no signal was observed, likely due to sufficient broadening due to the presence of 

paramagnetic manganese(II). 

 

3.2.4 Attempted Synthesis of [Mn(FcC{O}S)4]2- (7) 

[FcC{O}Cl] (0.0275 g, 0.1108 mmol) was dissolved in 10 mL THF to form a deep red solution. A 

light beige solution of [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 (0.020 g, 0.028 mmol) dissolved in 10 

mL THF was added at room temperature. A dark brown precipitate was immediately produced 

and the reaction was left to stir for 3 hours. The mixture was filtered over dried Celite® through a 

glass frit, and the solution was reduced until the mixture contained a very slight amount of 

precipitate. The mixture was filtered over dried Celite® once again to produce a concentrated 

deep red solution. Crystallization was performed by layering with 40 mL pentane, resulting in a 

mixture of small red crystals and a pale orange precipitate. The mixture was then stored at -25 °C, 

producing larger red crystals. X-ray diffraction studies on the crystals revealed the compound to 

be the previously characterized complex [(FcC{O}S)2] through unit cell comparison.24 1H NMR 
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studies support this conclusion, and reveal the formation of the related complexes [(FcC{O})2S] 

and [FcC{O}SSiMe3] as well.25, 26 

 

3.3 Results and Discussion 

3.3.1 Reaction of [Ph3PAuSSiMe3] (5) with [(CH3CN)2Mn(OTf)2] 

 Recently trimethylsilylchalcogenolate functionalized gold(I) phosphine complexes 

[Ph3PAuESiMe3] (E = S, Se) have been prepared from the reaction of nucleophilic Li[ESiMe3] with 

the gold(I) complex [Ph3PAuCl].27 The reaction is driven by the thermodynamic formation of LiCl 

salt which results in the generation of a Au—S bond. In some reactions, the presence of Cl- ions 

cause unpredictable interactions with metal salt precursors and intervenes with the formation of 

targeted products. This is avoided by filtering the LiCl salt before subsequent reactions. This 

method is commonly applied to metal salts to produce silyl functionalized metal 

chalcogenolates.6, 27 

 

 

 

 

 

 

 

 

 

Scheme 3.1. Proposed reaction of [Ph3PAuSSiMe3] 5 with [(CH3CN)2Mn(OTf)2]. 

(5) 

(6) 

+ 

 

(CH3CN)2Mn(OTf)2 
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The reaction of triphenylphosphinogold(I) trimethylsilylthiolate with diacetonitrile 

manganese(II) ditriflate was explored and the results are described here. (Scheme 3.1) 

Manganese(II) ditriflate is typically coordinated to a nitrogen containing species such as 

acetonitrile or N,N’-tmeda to facilitate its dissolution in common solvents.21 For this reaction, 

manganese(II) ditriflate was suspended in THF with excess acetonitrile to allow coordination. 

The mixture became a clear and colourless solution after one hour and the THF and excess 

acetonitrile was then removed in vacuo. This compound can be easily dissolved in THF to form a 

clear colourless solution which facilitated reaction with a clear colourless solution of gold(I) 

chalcogenolate [Ph3PAuSSiMe3] 5 precursor dissolved in THF. Upon mixing at room temperature, 

the solution became very pale beige in colour, and after 2 hours a small amount of very fine 

colourless precipitate had formed. The precipitate was filtered, and the reaction was 

subsequently layered with pentane in a 2:1 ratio. Unfortunately, there was very little precipitate 

and it was too fine to attempt characterization. 

 

 

 

Figure 3.1. Drawing based on the crystallographic data set for [S(AuPPh3)3]2Cl2. 

 

 

 

 

 

(6) 
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Figure 3.2: EDX analysis and SEM images of crystals acquired from reaction Scheme 3.1. 
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Crystallization of the filtered solution was performed at -25 oC. After two days, needle 

shaped crystals of sufficient quality for X-ray analysis were formed. A data set was collected for 

the crystal, which proved to be the known compound [S(AuPPh3)3]Cl 6 as a new crystallographic 

polymorph.23 The molecule is present as the dimer [S(AuPPh3)3]2Cl2 (Figure 3.1) in the solid 

state and crystallizes in the triclinic space group P-1 with Z = 2. The crystallographic data set 

clearly depicts the core {Au3S} structure and reveals the absence of manganese in the complex. 

Due to disorder amongst the phenyl rings of the PPh3 ligands, a drawing of the complex (Figure 

3.1) is displayed in place of the crystal structure. These compounds containing three gold centers 

coordinated to a single sulfide ligand have been extensively explored in gold sulfide cluster 

chemistry, and many different methodologies have been found to produce this structure due to 

the structural stability of the molecule.28 It is likely that the Cl- anion arises from LiCl that may be 

present in the crystalline material of complex 1, since there is no other source of Cl- present 

during the reaction methodology. 

In addition to the needle shaped crystals, there also appeared to be square plate crystals 

present within the reaction mixture. None of these square plate crystals were of sufficient quality 

for diffraction studies to be performed, however SEM/EDX studies were utilized to detect if there 

was any manganese present in the crystals. Two crystals of square/rhombus plate structures 

were imaged with SEM, and their elemental composition determined through EDX (Figure 3.2). 

One crystal showed the presence of manganese (0.31%) in the EDX spectrum (Figure 3.1 c) 

however the small amount may come from the amorphous material coating the surface of the 

crystal as seen in the SEM image (Figure 3.1 d). None of the other crystals showed any trace of 

manganese present in the material. What appeared to be needle shaped crystals under optical 

microscopy was determined to be clusters of square plate crystals, giving the appearance of a 

needle shaped star structure. 
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Figure 3.3. (a) Experimental mass spectrum for crystals obtained from reaction Scheme 3.1 (b) 
Calculated mass spectrum for [S(AuPPh3)3]+. 

 

 

 Mass spectrometry was also performed on crystals obtained from the reaction outlined in 

Scheme 3.1 in the positive ion polarity mode, which showed the presence of a major molecular 

fraction at 1409.3 m/z (Figure 3.3a). The m/z value of this signal closely matches the theoretical 

value of 1409.0 m/z for the molecular ion [S(AuPPh3)3]+. The experimental spectrum shows six 

isotopes corresponding to the molecular ion, with relative percentage abundances of 100.0%, 

59.38%, 21.29%, 5.65%, 1.21% and 0.34%. These isotopic abundances are very similar to those 

that were calculated for the theoretical model of the spectrum (Figure 3.3b). Other fractions of 

lower mass value can also be observed, however their identity remains unknown. The full 

spectrum for this sample can be found in the Appendix. Other anion complexes of the gold cluster 

may have been present, however the chloride adduct was the only complex observed through X-

ray crystallography. 
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Figure 3.4. 31P{1H} NMR spectrum of the reaction solution for Scheme 3.1. 

 

 The reaction mixture was also studied using NMR spectroscopy. Due to the 

paramagnetism of the manganese(II) containing species within the mixture, only 31P{1H} NMR 

studies produced an acceptable signal (Figure 3.4). The singlet at 33.0 ppm is assigned to the 

phosphorus center of the triphenylphosphine ligands for the complex [S(AuPPh3)3]+, which 

correlates closely with the literature reported value of ~33.4 ppm for the same cluster stabilized 

by different anions.29, 30 If there were any other compounds present in the reaction solution, they 

may not be visible due to sufficient broadening of their signals by manganese(II). The 31P{1H} 

NMR spectrum shows there is only one phosphorus environment present in the reaction mixture, 

indicating that manganese(II) ditriflate likely does not interact favourably with the thiolate 

ligand of the [Ph3PAuSSiMe3] precursor to produce the desired complex, at least not under the 

room temperature reactions conditions explored.  
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Scheme 3.2. Proposed reaction of [R3PAuCl] with [Li(N,N’-tmeda)]2[Mn(SSiMe3)4]. 

 

 The manganese thiolate precursor [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 was also used in an 

attempt to synthesize a heterometallic complex, namely [Mn(SAuPR3)4]2- from R3PAuX (R = Et3P, 

Ph3P; X = Cl, OTf) (Scheme 3.2). Aside from the formation of a small amount of colourless 

precipitate during these reactions, there were no observable colour change present. 

Unfortunately, crystals were not produced for any of these reactions, and paramagnetism within 

the reaction mixture inhibited the use of NMR spectroscopy studies to monitor reaction progress.  

 

3.3.2 Reaction of [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] with [FcC{O}Cl] 

 In general, silylated chalcogen reagents have proven to be very effective for the formation 

of metal-chalcogenolate and chalcogenide clusters and coordination complexes.5, 6, 31-33 Previous 

work has proven the ability to produce thioester linkages by the reaction of the silylated 

ferrocenoyl chalcogenide reagent [FcC{O}ESiMe3] (E = S, Se, Te) with the ligand stabilized salt 

[(PPh3)MOAc].26 The driving force of these reactions is the production of AcOSiMe3.  

Attempts were made to prepare the manganese(II) thiolate complex [Mn(Fc(C{O}S))4]2- 7 

by reaction of the metal chalcogenolate precursor [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 with the 

complex [FcC{O}Cl] (Scheme 3.3). The precursor ferrocenoyl chloride is prepared through the 

R = Et3P, Ph3P 
X = Cl, OTf 

+ 
- 4 XSiMe3 

(1) 
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addition of oxalyl chloride to a solution of ferrocene carboxylic acid in CH2Cl2 at 0 °C. The 

reaction proceeds upon increasing the temperature of the mixture to room temperature.20 A 

solution of the chalcogenolate complex [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 dissolved in THF was 

introduced to a solution of ferrocenoyl chloride in THF at room temperature. A dark brown 

precipitate was immediately produced and the reaction was left to progress for 3 hours. 

 

 

 

 

 

 

 

 

 

Scheme 3.3. Proposed reaction of ferrocenoyl chloride with [Li(N,N’-tmeda)]2[Mn(SSiMe3)4]. 

 

After filtering the brown precipitate, the reaction solvent was removed in vacuo until the 

product began to precipitate. Following an additional filtration, a crystallization was performed 

by addition of pentane in a 3:1 volume ratio to the remaining deep red solution. After the counter 

solvent was seen to disperse fully within the medium, only very small red crystals were observed, 

in addition to a pale orange non-crystalline solid. The reaction was placed in a -25 °C freezer to 

stimulate crystal growth. The pale red crystals obtained were studied by X-ray diffraction 

analysis, and found to match the unit cell of diferrocenoyl-disulfide [(FcC{O}S)2].24 The presence 

of this complex was also observed in the 1H NMR spectrum analysis of the reaction solution. 

(1) 

(7) 

- 4 ClSiMe3 + 



67 
 

 

 

Figure 3.5. Partial 1H NMR spectrum of the reaction solution outlined in Scheme 3.2. 

 

 The 1H NMR spectrum of the reaction solution shows the presence of three known 

ferrocene containing compounds (Figure 3.5). Four signals at 4.95, 4.51, 4.17 and 0.48 ppm are 

assigned to the compound [FcC{O}SSiMe3], with the signals at 4.95, 4.51 and 4.17 ppm assigned 

to the protons of the ferrocene cyclopentadienyl rings rings and the signal at 0.48 ppm assigned 

to the protons of the -SiMe3. These signals correlate closely with literature values of 4.95, 4.51, 

4.16 and 0.48 ppm respectively.26 This indicates that the chalcogenolate precursor [Li(N,N’-

tmeda)]2[Mn(SSiMe3)4] is acting as a delivery agent to transfer [SSiMe3]- to ferrocenoyl chloride, 
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similar to Li[SSiMe3], likely resulting in the formation of manganese(II) chloride and/or lithium 

chloride. 

Reaction of remaining ferrocenoyl chloride with the generated [FcC{O}SSiMe3] would 

produce [(FcC{O})2S] as well as ClSiMe3. Three signals at 4.91, 4.59 and 4.34 ppm are assigned to 

the protons of the cyclopentadienyl rings for this compound, which correspond closely to 

literature reported peaks of 4.92, 4.61 and 4.36 ppm respectively.25 There is no signal to assign 

to the ClSiMe3 byproduct because the sample was left under vacuum prior to running the 1H 

NMR experiment, which would remove this volatile compound. The third byproduct [(FcC{O}S)2] 

is also formed, with three signals at 4.99, 4.59 and 4.40 ppm assigned to the protons of the 

cyclopentadienyl rings, which correspond closely to literature reported peaks of 5.00, 4.60 and 

4.41 ppm respectively.24 The mechanism of formation of this molecule is less obvious, since there 

is no direct path by which it can be formed from the starting materials present in the mixture. 

However, the presence of these 1H NMR signals, in addition to the unit cell of the crystal formed 

provide unequivocal evidence for its formation.  

Additionally, there are also three strong signals at 4.80, 4.52 and 4.28 ppm which are not 

assigned. It is proposed that these peaks correspond to a manganese containing product 

expected, as shown in the reaction (Scheme 3.3). Mass spectroscopy was performed on the 

reaction mixture in the negative ion polarity mode, which showed the presence of a major 

molecular fraction at 789.9 m/z (Figure 3.6a). The m/z value of this signal closely matches the 

theoretical value of 790.0 m/z for the molecular ion [Mn(Fc(C{O}S))3]-. The experimental 

spectrum shows ten isotopes corresponding to the molecular ion, with relative percentage 

abundances of 1.25%, 0.65%, 19.38%, 9.13%, 100%, 46.19%, 25.52%, 8.12%, 2.33% and 0.80% 

(Figure 3.6b). These isotopic abundances are in close agreement to those that were calculated for 

the model of the spectrum. There is no signal in the 1035 m/z area that would correspond to the 

expected main ion [Mn(Fc(C{O}S))4]2-. The ion may be unstable, and thus incapable of remaining 

intact during the ESI experiment or else it is simply not formed.  
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Figure 3.6. (a) Experimental mass spectrum for reaction Scheme 3.3 (b) Calculated mass 
spectrum for [Mn(Fc(C{O}S))3]-. 

 

Unfortunately, although there is evidence for the presence of the target molecule, it was 

not further characterized as additional attempts at crystallization were not successful. The 

presence of the many side products likely interfered with the crystallization process, making it 

difficult to produce the single crystals necessary for use in X-ray crystallography to confirm its 

structure. Also, since the paramagnetism of manganese(II) makes it difficult to observe NMR 

signals from nuclei near the manganese centre, it is possible that there are species in solution 

that are not visible in the 1H NMR spectrum due to their proximity to unpaired electrons. No new 

complexes were observed through 1H NMR spectroscopy when the same experiment was run at 

0 °C. 
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3.4 Conclusion 

 The reaction of the gold(I) chalcogenolate [Ph3PAuSSiMe3] precursor with manganese(II) 

ditriflate was performed and found to produce the stable sulfide centered gold cluster 

[S(AuPPh3)3]Cl 6. The compound was analyzed through SEM, EDX and 31P{1H} NMR  which found 

this cluster to be the only major product of the reaction. MS ESI was performed on the compound 

and the resulting spectrum matched the calculated spectrum both in m/z units and isotopic 

distribution. The reaction of the manganese(II) chalcogenolate [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 

with ferrocenoyl chloride was performed and found to produce a ferrocene containing 

manganese sulfide cluster, however the exact structure of the product was not determined. MS 

ESI was performed on the material, and the experimental spectrum for [Mn(Fc(C{O}S))3]- was 

found to match the m/z value and isotopic distribution of the calculated spectrum. This ion was 

determined to be the major molecular ion in the sample. The structure of multiple side products 

from the reaction were characterized using 1H NMR spectroscopy and single crystal X-ray 

diffraction. 
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Chapter Four 
 

Conclusions and Future Work 

 

4.1. Conclusions 

 Trimethylsilyl functionalized chalcogenolate (RE-) and chalcogenide (E2-) reagents have 

been shown to be powerful precursors for the synthesis of binary (ME) and ternary (MM’E) 

metal chalcogenide clusters.1-3 It has also been shown that compounds of varying structure and 

elemental composition are achievable for metal chalcogenide systems, giving rise to a wide array 

of applications for these materials.4-6 For many of these applications, strict control over the 

structure and elemental composition is imperative. The research described in this thesis is 

focused around ternary metal chalcogenide cluster synthesis, particularly ternary manganese(II) 

metal sulfide structures. Trimethylsilyl functionalized metal thiolate reagents (M—ESiMe3) were 

used as a reactive precursor toward these ternary metal sulfide systems. 

 Chapter 2 describes the reaction of [(dppp)PdCl2] with [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 

in a 2:1 ratio to give [MnCl2(µ-S)2Pd2(dppp)2] 2 in relatively good yield and under mild reaction 

conditions. Similar reactions with an increased ratio of [(dppp)PdCl2]:[Mn(SSiMe3)4]2+ only 

produced 2, even if [(dppp)Pd(OAc)2] is used with non-chlorinated solvents. In order to 

completely avoid contact with chlorine, the new trimethylsilyl chalcogenolate 

[(dppp)Pd(SSiMe3)2] 3 was synthesized by reaction of Li[SSiMe3] with [(dppp)Pd(OAc)2] in a 2:1 

ratio. The reactivity of this complex is tested through a reaction with [(CH3CN)2Mn(OTf)2], 

yielding the new complex [Mn(OTf)(thf)2(µ-S)2Pd2(dppp)2]OTf 4. Although the lack of chlorine 

led to the synthesis of a new coordination complex, differing Pd:Mn ratio complexes (1:1, 3:1) 

were still unattainable. X-ray crystallographic characterization of these complexes reveals 
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differing coordination geometries around the manganese(II) centre for 2 (distorted tetrahedral) 

and 4 (distorted trigonal bipyramidal). Since steric crowding of the dppp ligand with the triflate 

and thf ligands were shown to distort geometry, it is possible that the phenyl groups of dppp 

restrict the growth of the complex from containing a higher Pd:Mn ratio. 

 Chapter 3 describes the reactivity of [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 with various 

phosphine gold  chlorides and gold triflates with no success. The reaction of the gold(I) 

chalcogenolate [Ph3PAuSSiMe3] with manganese(II) ditriflate was performed and found to 

produce the stable sulfide centered gold cluster [S(AuPPh3)3]Cl 6. The compound was analyzed 

through SEM, EDX, MS ESI and 31P{1H} NMR which found this cluster to be the only major 

product of the reaction. The reaction of the [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 with ferrocenoyl 

chloride was performed and the structure of multiple side products from the reaction were 

characterized using 1H NMR spectroscopy and single crystal X-ray diffraction. MS ESI was 

performed on the material, and a ferrocene containing manganese sulfide cluster was found to be 

produced. The experimental spectrum for [Mn(Fc(C{O}S))3]- was found to match the m/z value 

and isotopic distribution of the calculated spectrum. This ion was determined to be the major 

molecular ion in the sample. Unfortunately the complex was not able to be purified and 

characterized further. 

 

4.2 Future Work 

 The use of  [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 as a precursor towards the formation of 

ternary metal sulfide systems proved to be successful with the synthesis of [MnCl2(µ-

S)2Pd2(dppp)2] 3. However, the presence of chlorine as LiCl in crystals of 1 likely inhibits the 

formation of diverse palladium-manganese-sulfide systems. The synthesis of 1 from a different 

manganese(II) salt rather than manganese(II) chloride may inhibit the LiX salt from being 

carried over into the product. The lack of chlorine may allow all four reactive ligands of 
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[Mn(SSiMe3)4]2- to be utilized for the formation of structurally diverse manganese(II) metal 

sulfide systems.  

 The reaction of [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 with ferrocenoyl chloride likely 

produces a novel manganese(II) ferrocene containing manganese sulfide cluster, however the 

exact structure of the product was not determined. Further work should be done to explore this 

reaction and determine the structure of the product. It would be interesting if the manganese(II) 

centre maintains coordination to all four sulfide ligands in this reaction, while only maintaining 

coordination to two sulfide ligands in the palladium reactions as seen in 2 and 4. Ferrocene 

containing manganese chalcogenide systems have yet to be explored, and the combination of the 

redox properties of ferrocene with the paramagnetic properties of manganese(II) may be 

interesting and worth pursuing. 

 The formation of Au-S-Mn bonding interactions proved to be quite difficult for reactions 

with [Li(N,N’-tmeda)]2[Mn(SSiMe3)4] 1 as well as reactions with [Ph3PAuSSiMe3] 5 as precursors 

with various metal salts. Gold(I) sulfide systems are unique since they exhibit aurophillic Au-Au 

interactions which allow for greater structural diversity.7 Other members of the group 11 coinage 

metals also exhibit similar properties (argentophilic interactions for Ag and cuprophilic 

interactions for Cu).8 The reactivity of 1 with copper(I) and silver(I) salts (e.g. CuOAc and AgOAc) 

may prove to be more successful than the reactions with gold(I) salts, since the intermetallic M-M 

bonding in copper(I) and silver(I) systems will be weaker than the M-M bonding in gold(I) 

systems.9 The resulting complexes may exhibit interesting structures as a result of the weak M-M 

bonding interactions. Manganese(II) is often used as a paramagnetic dopant in larger metal 

chalcogenide systems and the success of these reactions with complex 1 may prove to be a useful 

synthetic alternative towards doped metal chalcogenide systems. 
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A. Supporting Information for Chapter 2 

 

Figure A.1. 1H NMR spectrum of 3 in CHCl3. 

 

Figure A.2. 13C{1H} NMR spectrum of 3 in CHCl3. 
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Figure A.3. 31P{1H} NMR spectrum of 3 in CHCl3. 
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B.  X-ray Crystallographic Data Parameters for Compounds 2, 3 

and 4 
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Table B.1. Summary of Crystal Data for 2 

 

Formula C55H52Cl4MnP4Pd2S2 

Formula Weight (g/mol) 1310.50 

Crystal Dimensions (mm ) 0.128 × 0.052 × 0.032 

Crystal Color and Habit orange needle 

Crystal System monoclinic 

Space Group P 21/m 

Temperature, K 110 

a, Å 9.759(4) 

b, Å  15.934(7) 

c, Å  17.569(7) 

,° 90 

,° 90.129(19) 

,° 90 

V, Å3 2732.0(19) 

Number of reflections to determine final unit cell 6869 

Min and Max 2 for cell determination, ° 5.42, 52.98 

Z 2 

F(000) 1318 

 (g/cm) 1.593 

, Å, (MoK) 0.71073 

, (cm-1) 1.305 

Diffractometer Type Bruker Kappa Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2 for data collection, ° 61.186 

Measured fraction of data 0.998 

Number of reflections measured 98505 

Unique reflections measured 8631 

Rmerge 0.1249 

Number of reflections included in refinement 8631 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F2 

Weighting Scheme w=1/[sigma2(Fo2)+(0.0683P)2+0.5841P

] where P=(Fo2+2Fc2)/3 

Number of parameters in least-squares 329 

R1 0.0532 

wR2 0.1138 

R1 (all data) 0.0886 

wR2 (all data) 0.1307 

GOF 1.049 

Maximum shift/error 0.000 

Min & Max peak heights on final F Map (e-/Å) -2.164, 1.087 
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Table B.2. Atomic Coordinates for 2 

 

Atom x y z Uiso/equiv 

Pd1 0.12576(6) 0.7500 0.19393(3) 0.01878(12) 

Pd2 0.23230(5) 0.7500 0.36376(3) 0.01592(12) 

Mn1 -0.08332(11) 0.7500 0.31433(7) 0.0239(3) 

Cl1 -0.1839(2) 0.7500 0.43493(13) 0.0328(4) 

Cl2 -0.2591(3) 0.7500 0.22139(15) 0.0493(6) 

S1 0.10707(13) 0.65063(7) 0.29267(7) 0.0191(2) 

P1 0.13239(16) 0.64793(8) 0.10375(8) 0.0230(3) 

P2 0.33767(13) 0.64466(8) 0.42846(7) 0.0189(3) 

C1 0.0808(6) 0.5432(3) 0.1340(3) 0.0247(11) 

C2 -0.0538(7) 0.5297(4) 0.1579(3) 0.0330(13) 

C3 -0.0929(7) 0.4516(4) 0.1834(4) 0.0376(14) 

C4 0.0000(7) 0.3872(3) 0.1868(3) 0.0349(13) 

C5 0.1318(8) 0.3997(4) 0.1642(4) 0.0397(15) 

C6 0.1741(6) 0.4784(3) 0.1382(4) 0.0319(12) 

C7 0.2997(6) 0.6339(3) 0.0616(3) 0.0283(12) 

C8 0.4146(7) 0.6477(4) 0.1063(4) 0.0391(15) 

C9 0.5454(7) 0.6383(4) 0.0771(4) 0.0472(18) 

C10 0.5612(8) 0.6157(5) 0.0032(4) 0.0492(18) 

C11 0.4507(9) 0.6006(5) -0.0423(4) 0.052(2) 

C12 0.3184(7) 0.6087(4) -0.0139(3) 0.0374(15) 

C13 0.0145(7) 0.6685(4) 0.0250(3) 0.0332(13) 

C14 0.0400(10) 0.7500 -0.0198(5) 0.035(2) 

C15 0.3935(5) 0.5600(3) 0.3668(3) 0.0233(10) 

C16 0.4908(6) 0.5779(4) 0.3119(3) 0.0333(13) 

C17 0.5330(8) 0.5157(5) 0.2617(4) 0.0451(17) 

C18 0.4796(9) 0.4357(5) 0.2666(4) 0.055(2) 

C19 0.3821(8) 0.4173(4) 0.3204(3) 0.0409(15) 

C20 0.3395(6) 0.4794(3) 0.3706(3) 0.0299(12) 

C21 0.2262(5) 0.5993(3) 0.5001(3) 0.0197(10) 

C22 0.2711(6) 0.5359(3) 0.5505(3) 0.0269(11) 

C23 0.1811(6) 0.5037(4) 0.6041(3) 0.0322(13) 

C24 0.0500(6) 0.5334(4) 0.6092(3) 0.0304(13) 

C25 0.0062(6) 0.5962(4) 0.5600(3) 0.0316(13) 

C26 0.0925(6) 0.6280(3) 0.5059(3) 0.0247(11) 

C27 0.4934(5) 0.6695(3) 0.4806(3) 0.0246(11) 

C28 0.4869(8) 0.7500 0.5283(4) 0.0265(16) 

Cl1S 0.6725(3) 0.2500 0.19049(17) 0.0788(10) 

Cl2S 0.8133(4) 0.2820(2) 0.3311(2) 0.0539(9) 

C1S 0.6974(16) 0.2096(10) 0.2857(8) 0.055(4) 

H2 -0.1183 0.5743 0.1565 0.040 

H3 -0.1849 0.4423 0.1988 0.045 
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H4 -0.0276 0.3337 0.2050 0.042 

H5 0.1953 0.3546 0.1660 0.048 

H6 0.2666 0.4872 0.1236 0.038 

H8 0.4034 0.6640 0.1579 0.047 

H9 0.6233 0.6475 0.1086 0.057 

H10 0.6508 0.6104 -0.0173 0.059 

H11 0.4641 0.5843 -0.0937 0.063 

H12 0.2415 0.5973 -0.0456 0.045 

H13A 0.0194 0.6207 -0.0110 0.040 

H13B -0.0799 0.6702 0.0455 0.040 

H14A 0.1361 0.7500 -0.0377 0.042 

H14B -0.0199 0.7500 -0.0653 0.042 

H16 0.5287 0.6327 0.3086 0.040 

H17 0.5989 0.5284 0.2237 0.054 

H18 0.5104 0.3933 0.2327 0.066 

H19 0.3440 0.3625 0.3232 0.049 

H20 0.2726 0.4666 0.4080 0.036 

H22 0.3624 0.5154 0.5478 0.032 

H23 0.2109 0.4605 0.6376 0.039 

H24 -0.0108 0.5113 0.6463 0.036 

H25 -0.0845 0.6173 0.5638 0.038 

H26 0.0605 0.6702 0.4721 0.030 

H27A 0.5151 0.6219 0.5149 0.030 

H27B 0.5696 0.6748 0.4439 0.030 

H28A 0.4007 0.7500 0.5579 0.032 

H28B 0.5640 0.7500 0.5650 0.032 
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Table B.3. Summary of Crystal Data for 3 

 

Formula C33H44P2PdS2Si2 

Formula Weight (g/mol) 729.32 

Crystal Dimensions (mm ) 0.640 × 0.500 × 0.374 

Crystal Color and Habit orange block 

Crystal System monoclinic 

Space Group P 21/n 

Temperature, K 110 

a, Å 16.012(3) 

b, Å 12.9746(19) 

c, Å 34.994(5) 

,° 90 

,° 102.538(7) 

,° 90 

V, Å3 7096.8(19) 

Number of reflections to determine final unit cell 9442 

Min and Max 2 for cell determination, ° 5.66, 133.22 

Z 8 

F(000) 3024 

 (g/cm) 1.365 

, Å, (CuK) 1.54178 

, (cm-1) 6.971 

Diffractometer Type Bruker Kappa Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2 for data collection, ° 133.614 

Measured fraction of data 0.980 

Number of reflections measured 84037 

Unique reflections measured 12362 

Rmerge 0.0364 

Number of reflections included in refinement 12362 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F2 

Weighting Scheme w=1/[sigma2(Fo2)+(0.0346P)2+7.61

44P] where P=(Fo2+2Fc2)/3 

Number of parameters in least-squares 721 

R1 0.0283 

wR2 0.0704 

R1 (all data) 0.0293 

wR2 (all data) 0.0710 

GOF 1.103 

Maximum shift/error 0.004 

Min & Max peak heights on final F Map (e-/Å) -0.675, 0.622 
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Table B.4. Atomic Coordinates for 3 

Atom x y z Uiso/equiv 

Pd2 0.30530(2) 0.11698(2) 0.60098(2) 0.01114(5) 

Pd1 0.80192(2) 0.60152(2) 0.64600(2) 0.01256(5) 

S4 0.35012(3) 0.09077(4) 0.67015(2) 0.01450(11) 

S3 0.20195(3) -0.01862(4) 0.59271(2) 0.01511(11) 

P4 0.39816(3) 0.25265(4) 0.61237(2) 0.01344(11) 

S1 0.66937(3) 0.52277(4) 0.64576(2) 0.01936(12) 

P2 0.92889(3) 0.67608(4) 0.64310(2) 0.01513(12) 

S2 0.76755(4) 0.62383(4) 0.57717(2) 0.01662(12) 

P3 0.26469(4) 0.13918(4) 0.53482(2) 0.01561(12) 

P1 0.84754(4) 0.57410(5) 0.71198(2) 0.01725(12) 

Si4 0.24030(4) 0.12744(5) 0.69213(2) 0.01610(13) 

Si3 0.27438(4) -0.15450(5) 0.60930(2) 0.01796(13) 

Si1 0.57604(4) 0.63812(5) 0.62674(2) 0.01966(14) 

Si2 0.75327(4) 0.47179(5) 0.55366(2) 0.01954(13) 

C22 0.98742(14) 0.60771(17) 0.61207(7) 0.0167(5) 

C60 0.57142(15) 0.28346(19) 0.64651(7) 0.0217(5) 

C59 0.65542(15) 0.2517(2) 0.65984(8) 0.0253(5) 

C35 0.39674(17) 0.2820(2) 0.53186(7) 0.0260(5) 

C53 0.38893(18) 0.4300(2) 0.70879(7) 0.0268(6) 

C23 1.02777(15) 0.5149(2) 0.62547(7) 0.0235(5) 

C38 0.09848(17) 0.10673(19) 0.48756(7) 0.0225(5) 

C17 0.99112(16) 0.8689(2) 0.62492(7) 0.0236(5) 

C49 0.37085(14) 0.34897(17) 0.64552(7) 0.0161(5) 

C58 0.67617(16) 0.1482(2) 0.65928(8) 0.0247(5) 

C18 0.98332(16) 0.9730(2) 0.61565(8) 0.0261(6) 

C37 0.14878(15) 0.15118(17) 0.52075(7) 0.0180(5) 

C20 0.83168(16) 0.9623(2) 0.61008(7) 0.0244(5) 

C57 0.61308(16) 0.07633(19) 0.64515(7) 0.0228(5) 

C54 0.41268(16) 0.35541(18) 0.68450(7) 0.0209(5) 

C64 0.17584(16) 0.0121(2) 0.69984(7) 0.0243(5) 

C10 0.76818(15) 0.5437(2) 0.74038(7) 0.0212(5) 

C43 0.29739(16) 0.04066(19) 0.50383(7) 0.0221(5) 

C39 0.00992(17) 0.1175(2) 0.47994(8) 0.0274(6) 

C16 0.91924(14) 0.81028(18) 0.62708(7) 0.0170(5) 

C50 0.30339(15) 0.41724(19) 0.63138(8) 0.0222(5) 

C4 0.91985(15) 0.46444(19) 0.72019(7) 0.0212(5) 

C19 0.90350(17) 1.01964(19) 0.60856(7) 0.0256(5) 

C27 0.98745(15) 0.63981(18) 0.57422(7) 0.0193(5) 

C21 0.83954(15) 0.85748(19) 0.61932(7) 0.0203(5) 

C25 1.06716(15) 0.48944(19) 0.56383(7) 0.0234(5) 

C55 0.50724(14) 0.21147(17) 0.63254(6) 0.0157(4) 

C62 0.26939(17) -0.2010(2) 0.65931(8) 0.0278(6) 
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C42 0.10972(17) 0.20846(19) 0.54571(7) 0.0249(5) 

C56 0.52900(15) 0.10752(18) 0.63196(7) 0.0188(5) 

C26 1.02779(16) 0.5816(2) 0.55045(7) 0.0238(5) 

C24 1.06715(16) 0.4564(2) 0.60132(8) 0.0257(5) 

C63 0.38807(16) -0.1354(2) 0.60655(9) 0.0306(6) 

C65 0.27866(17) 0.1905(2) 0.74106(7) 0.0288(6) 

C52 0.32289(17) 0.49723(19) 0.69444(8) 0.0268(6) 

C2 0.96891(18) 0.7414(2) 0.72093(8) 0.0320(6) 

C40 -0.02792(17) 0.1737(2) 0.50518(8) 0.0299(6) 

C11 0.70053(18) 0.6110(2) 0.73879(8) 0.0310(6) 

C36 0.41216(16) 0.33597(19) 0.57142(7) 0.0222(5) 

C31 0.81248(19) 0.3716(2) 0.58711(8) 0.0322(6) 

C51 0.27986(16) 0.49093(19) 0.65567(8) 0.0261(6) 

C1 0.90639(18) 0.6804(2) 0.74032(7) 0.0272(6) 

C13 0.64222(17) 0.5034(2) 0.78225(8) 0.0317(6) 

C41 0.02202(17) 0.2201(2) 0.53788(8) 0.0299(6) 

C15 0.77204(16) 0.4549(2) 0.76319(7) 0.0242(5) 

C3 1.00617(15) 0.6851(2) 0.68995(7) 0.0235(5) 

C44 0.3553(2) 0.0617(3) 0.48041(9) 0.0393(7) 

C48 0.26640(19) -0.0596(2) 0.50380(8) 0.0296(6) 

C12 0.63756(18) 0.5906(2) 0.75932(8) 0.0356(7) 

C66 0.16699(16) 0.2172(2) 0.65919(8) 0.0277(6) 

C28 0.48992(18) 0.6118(2) 0.65392(10) 0.0361(7) 

C32 0.64002(18) 0.4292(2) 0.53851(9) 0.0345(7) 

C14 0.70931(17) 0.4357(2) 0.78428(8) 0.0298(6) 

C34 0.30192(17) 0.25814(19) 0.51639(7) 0.0244(5) 

C30 0.61736(17) 0.7716(2) 0.63853(10) 0.0352(7) 

C61 0.22824(19) -0.2609(2) 0.57495(8) 0.0314(6) 

C5 0.90608(19) 0.3859(2) 0.69284(8) 0.0303(6) 

C9 0.9865(2) 0.4550(3) 0.75285(10) 0.0453(8) 

C7 1.0246(2) 0.2914(3) 0.73015(11) 0.0486(9) 

C46 0.3502(2) -0.1140(2) 0.45850(9) 0.0412(8) 

C29 0.5278(2) 0.6342(3) 0.57323(9) 0.0396(7) 

C6 0.9586(2) 0.2992(2) 0.69758(10) 0.0423(8) 

C45 0.3816(2) -0.0162(3) 0.45819(9) 0.0474(8) 

C33 0.7992(2) 0.4733(2) 0.50888(8) 0.0381(7) 

C47 0.2924(2) -0.1357(2) 0.48136(9) 0.0411(8) 

C8 1.0379(2) 0.3685(3) 0.75758(13) 0.0581(10) 

H60A 0.5578 0.3531 0.6469 0.026 

H59A 0.6979 0.3000 0.6692 0.030 

H35A 0.4292 0.2183 0.5344 0.031 

H35B 0.4169 0.3256 0.5132 0.031 

H53A 0.4178 0.4344 0.7348 0.032 

H23A 1.0282 0.4923 0.6507 0.028 
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H38A 0.1240 0.0697 0.4704 0.027 

H17A 1.0448 0.8379 0.6297 0.028 

H58A 0.7324 0.1269 0.6684 0.030 

H18A 1.0316 1.0114 0.6142 0.031 

H20A 0.7781 0.9934 0.6049 0.029 

H57A 0.6272 0.0069 0.6445 0.027 

H54A 0.4568 0.3098 0.6945 0.025 

H64A 0.2117 -0.0360 0.7167 0.036 

H64B 0.1298 0.0332 0.7116 0.036 

H64C 0.1529 -0.0202 0.6751 0.036 

H39A -0.0238 0.0868 0.4579 0.033 

H50A 0.2741 0.4130 0.6054 0.027 

H19A 0.8984 1.0896 0.6028 0.031 

H27A 0.9602 0.7009 0.5648 0.023 

H21A 0.7910 0.8190 0.6203 0.024 

H25A 1.0935 0.4500 0.5476 0.028 

H62A 0.2107 -0.2108 0.6607 0.042 

H62B 0.2996 -0.2651 0.6645 0.042 

H62C 0.2953 -0.1508 0.6784 0.042 

H42A 0.1431 0.2391 0.5678 0.030 

H56A 0.4868 0.0589 0.6227 0.023 

H26A 1.0285 0.6045 0.5253 0.029 

H24A 1.0937 0.3947 0.6104 0.031 

H63A 0.3907 -0.1116 0.5809 0.046 

H63B 0.4139 -0.0853 0.6257 0.046 

H63C 0.4183 -0.1996 0.6117 0.046 

H65A 0.3164 0.1444 0.7581 0.043 

H65B 0.3086 0.2528 0.7378 0.043 

H65C 0.2305 0.2063 0.7523 0.043 

H52A 0.3073 0.5467 0.7108 0.032 

H2A 0.9395 0.8024 0.7089 0.038 

H2B 1.0162 0.7644 0.7414 0.038 

H40A -0.0871 0.1804 0.5002 0.036 

H11A 0.6973 0.6706 0.7238 0.037 

H36A 0.3731 0.3938 0.5696 0.027 

H36B 0.4699 0.3633 0.5773 0.027 

H31A 0.8713 0.3917 0.5954 0.048 

H31B 0.7875 0.3647 0.6096 0.048 

H31C 0.8091 0.3069 0.5736 0.048 

H51A 0.2352 0.5361 0.6459 0.031 

H1A 0.8650 0.7285 0.7466 0.033 

H1B 0.9385 0.6525 0.7649 0.033 

H13A 0.6002 0.4903 0.7963 0.038 

H41A -0.0035 0.2590 0.5545 0.036 
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H15A 0.8167 0.4083 0.7643 0.029 

H3A 1.0235 0.6163 0.6992 0.028 

H3B 1.0567 0.7215 0.6861 0.028 

H44A 0.3765 0.1282 0.4796 0.047 

H48A 0.2275 -0.0755 0.5192 0.035 

H12A 0.5919 0.6359 0.7576 0.043 

H66A 0.1981 0.2775 0.6546 0.042 

H66B 0.1441 0.1835 0.6347 0.042 

H66C 0.1210 0.2368 0.6713 0.042 

H28A 0.5137 0.6135 0.6816 0.054 

H28B 0.4461 0.6633 0.6474 0.054 

H28C 0.4657 0.5450 0.6468 0.054 

H32A 0.6079 0.4795 0.5212 0.052 

H32B 0.6376 0.3641 0.5253 0.052 

H32C 0.6161 0.4220 0.5612 0.052 

H14A 0.7127 0.3770 0.7998 0.036 

H34A 0.2910 0.2543 0.4881 0.029 

H34B 0.2685 0.3150 0.5231 0.029 

H30A 0.6427 0.7763 0.6660 0.053 

H30B 0.6596 0.7872 0.6237 0.053 

H30C 0.5710 0.8198 0.6320 0.053 

H61A 0.1695 -0.2716 0.5761 0.047 

H61B 0.2316 -0.2425 0.5488 0.047 

H61C 0.2600 -0.3232 0.5824 0.047 

H5A 0.8612 0.3910 0.6710 0.036 

H9A 0.9965 0.5071 0.7716 0.054 

H7A 1.0600 0.2338 0.7335 0.058 

H46A 0.3676 -0.1654 0.4434 0.049 

H29A 0.5058 0.5664 0.5661 0.059 

H29B 0.4820 0.6834 0.5672 0.059 

H29C 0.5706 0.6508 0.5588 0.059 

H6A 0.9493 0.2470 0.6789 0.051 

H45A 0.4210 -0.0013 0.4430 0.057 

H33A 0.8578 0.4950 0.5158 0.057 

H33B 0.7961 0.4053 0.4978 0.057 

H33C 0.7672 0.5202 0.4900 0.057 

H47A 0.2707 -0.2021 0.4817 0.049 

H8A 1.0821 0.3625 0.7796 0.070 
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Table B.5. Summary of Crystal Data for 4 

 

Formula C72H84F6MnO10P4Pd2S4 

Formula Weight (g/mol) 1743.25 

Crystal Dimensions (mm ) 0.913 × 0.186 × 0.105 

Crystal Color and Habit red block 

Crystal System triclinic 

Space Group P -1 

Temperature, K 110 

a, Å 12.949(4) 

b, Å 14.113(4) 

c, Å 21.576(6) 

,° 99.293(10) 

,° 102.330(15) 

,° 100.494(12) 

V, Å3 3704(2) 

Number of reflections to determine final unit cell 9233 

Min and Max 2 for cell determination, ° 6.7, 69.98 

Z 2 

F(000) 1782 

 (g/cm) 1.563 

, Å, (MoK) 0.71073 

, (cm-1) 0.919 

Diffractometer Type Bruker Kappa Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2 for data collection, ° 70.292 

Measured fraction of data 0.996 

Number of reflections measured 121637 

Unique reflections measured 32403 

Rmerge 0.0410 

Number of reflections included in refinement 32403 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F2 

Weighting Scheme w=1/[sigma2(Fo2)+(0.0885P)2+2.16

83P] where P=(Fo2+2Fc2)/3 

Number of parameters in least-squares 887 

R1 0.0465 

wR2 0.1283 

R1 (all data) 0.0767 

wR2 (all data) 0.1537 

GOF 1.021 

Maximum shift/error 0.001 

Min & Max peak heights on final F Map (e-/Å) -1.323, 1.774 
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Table B.6. Atomic Coordinates for 4 

Atom x y z Uiso/equiv 

Pd1 0.61216(2) 0.37268(2) 0.32056(2) 0.01675(4) 

Pd2 0.70417(2) 0.22978(2) 0.22732(2) 0.01754(4) 

Mn1 0.65467(3) 0.18121(3) 0.35417(2) 0.02210(7) 

S1 0.53822(4) 0.21509(4) 0.25523(3) 0.01972(10) 

S2 0.77819(4) 0.32114(4) 0.33529(3) 0.01935(10) 

S3 0.44135(5) 0.18272(5) 0.41534(3) 0.02522(12) 

P1 0.45755(5) 0.42371(5) 0.28334(3) 0.01957(11) 

P2 0.67930(5) 0.50712(4) 0.40406(3) 0.01978(11) 

P3 0.60671(5) 0.14856(4) 0.12580(3) 0.01923(11) 

P4 0.87121(5) 0.24890(5) 0.20703(3) 0.02099(11) 

F1S 0.4182(2) 0.02831(18) 0.46662(14) 0.0618(7) 

F2S 0.31522(17) 0.12611(17) 0.48803(11) 0.0483(5) 

F3S 0.4859(2) 0.1656(2) 0.53646(11) 0.0673(8) 

O1S 0.78209(15) 0.16197(15) 0.43382(10) 0.0283(4) 

O2S 0.63302(16) 0.02575(14) 0.32265(10) 0.0300(4) 

O3S 0.55318(15) 0.17406(15) 0.41877(10) 0.0286(4) 

O4S 0.36293(18) 0.12242(18) 0.35865(11) 0.0378(5) 

O5S 0.4304(2) 0.28120(16) 0.43459(12) 0.0391(5) 

C1 0.3985(2) 0.4817(2) 0.34548(14) 0.0279(5) 

C1S 0.8975(2) 0.1916(3) 0.44064(16) 0.0353(6) 

C2 0.4785(2) 0.5697(2) 0.39315(14) 0.0302(5) 

C2S 0.9433(3) 0.1122(3) 0.47009(18) 0.0451(8) 

C3 0.5717(2) 0.54367(19) 0.43931(13) 0.0255(5) 

C3S 0.8721(3) 0.0919(3) 0.51566(18) 0.0436(8) 

C4 0.6823(2) 0.09876(19) 0.07032(12) 0.0240(4) 

C4S 0.7616(2) 0.0970(2) 0.47714(16) 0.0339(6) 

C5 0.7875(2) 0.1711(2) 0.07240(13) 0.0264(5) 

C5S 0.7083(2) -0.0170(2) 0.29181(17) 0.0352(6) 

C6 0.8800(2) 0.1741(2) 0.13121(13) 0.0253(5) 

C6S 0.6541(3) -0.1246(2) 0.26440(16) 0.0354(6) 

C7 0.34411(19) 0.33248(18) 0.22783(12) 0.0221(4) 

C7S 0.5620(3) -0.1421(2) 0.2977(2) 0.0486(9) 

C8 0.3179(2) 0.3286(2) 0.16112(13) 0.0276(5) 

C8S 0.5305(3) -0.0431(2) 0.30520(18) 0.0401(7) 

C9 0.2344(2) 0.2540(2) 0.11955(15) 0.0330(6) 

C9S 0.4152(3) 0.1230(3) 0.48048(17) 0.0388(7) 

C10 0.1776(2) 0.1825(2) 0.14420(16) 0.0334(6) 

C11 0.2037(2) 0.1847(2) 0.21017(16) 0.0326(6) 

C12 0.2872(2) 0.2594(2) 0.25196(14) 0.0264(5) 

C13 0.4879(2) 0.51811(17) 0.23776(12) 0.0219(4) 

C14 0.4083(2) 0.5632(2) 0.20863(15) 0.0313(6) 

C15 0.4322(3) 0.6304(2) 0.17051(16) 0.0344(6) 
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C16 0.5368(3) 0.6549(2) 0.16245(15) 0.0325(6) 

C17 0.6172(2) 0.6133(2) 0.19260(14) 0.0292(5) 

C18 0.5925(2) 0.54431(18) 0.22916(12) 0.0237(4) 

C19 0.7570(2) 0.61866(18) 0.38971(12) 0.0243(4) 

C20 0.7421(3) 0.7120(2) 0.41289(16) 0.0344(6) 

C21 0.8011(3) 0.7947(2) 0.39868(19) 0.0428(8) 

C22 0.8749(3) 0.7854(2) 0.36196(17) 0.0380(7) 

C23 0.8918(3) 0.6938(2) 0.33995(17) 0.0365(6) 

C24 0.8327(2) 0.6098(2) 0.35299(14) 0.0297(5) 

C25 0.7650(2) 0.47942(18) 0.47446(12) 0.0231(4) 

C26 0.7233(2) 0.3972(2) 0.49724(13) 0.0284(5) 

C27 0.7825(3) 0.3740(2) 0.55206(14) 0.0340(6) 

C28 0.8851(3) 0.4327(3) 0.58454(14) 0.0360(6) 

C29 0.9269(2) 0.5130(3) 0.56130(14) 0.0345(6) 

C30 0.8672(2) 0.5371(2) 0.50646(13) 0.0283(5) 

C31 0.5392(2) 0.22921(18) 0.08170(12) 0.0231(4) 

C32 0.4597(2) 0.1888(2) 0.02382(13) 0.0289(5) 

C33 0.4094(3) 0.2494(2) -0.01147(14) 0.0347(6) 

C34 0.4402(3) 0.3508(2) 0.01045(15) 0.0387(7) 

C35 0.5175(3) 0.3913(2) 0.06811(16) 0.0415(8) 

C36 0.5671(3) 0.3311(2) 0.10350(14) 0.0317(6) 

C37 0.49705(19) 0.04428(17) 0.12061(11) 0.0206(4) 

C38 0.5147(2) -0.05116(19) 0.11512(13) 0.0252(5) 

C39 0.4293(2) -0.1302(2) 0.11041(15) 0.0306(5) 

C40 0.3271(2) -0.1152(2) 0.11252(14) 0.0297(5) 

C41 0.3100(2) -0.0204(2) 0.11949(14) 0.0287(5) 

C42 0.3938(2) 0.05886(19) 0.12332(13) 0.0260(5) 

C43 0.96964(19) 0.2149(2) 0.26827(13) 0.0250(5) 

C44 0.9624(2) 0.1152(2) 0.26851(14) 0.0282(5) 

C45 1.0342(3) 0.0861(3) 0.31568(16) 0.0361(6) 

C46 1.1136(2) 0.1569(3) 0.36299(16) 0.0402(7) 

C47 1.1205(2) 0.2559(3) 0.36292(15) 0.0376(7) 

C48 1.0489(2) 0.2855(2) 0.31596(14) 0.0306(5) 

C49 0.9291(2) 0.3733(2) 0.20167(14) 0.0280(5) 

C50 1.0322(2) 0.3978(2) 0.18984(18) 0.0375(7) 

C51 1.0714(3) 0.4915(3) 0.1815(2) 0.0538(10) 

C52 1.0091(3) 0.5620(3) 0.1845(3) 0.0626(12) 

C53 0.9080(3) 0.5395(3) 0.1968(3) 0.0557(11) 

C54 0.8686(2) 0.4452(2) 0.20571(18) 0.0376(7) 

S1S 0.85199(6) -0.15723(6) 0.15975(4) 0.03149(14) 

F4S 1.0128(2) -0.2040(2) 0.11393(15) 0.0659(7) 

F5S 0.8974(2) -0.1544(2) 0.04749(11) 0.0654(7) 

F6S 1.01123(19) -0.05060(17) 0.12714(13) 0.0575(6) 

O6S 0.7936(2) -0.25796(18) 0.13438(13) 0.0451(6) 
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O7S 0.78977(19) -0.08459(18) 0.14657(13) 0.0421(5) 

O8S 0.9208(2) -0.1365(2) 0.22435(12) 0.0518(7) 

C10S 0.9479(3) -0.1407(2) 0.10954(17) 0.0384(7) 

O9S 0.2188(4) -0.1166(4) 0.2661(2) 0.1042(14) 

C11S 0.1859(7) -0.1259(4) 0.3263(3) 0.0912(19) 

C12S 0.1868(6) -0.2222(5) 0.3394(3) 0.0344(13) 

C16S 0.2355(8) -0.1949(7) 0.3525(5) 0.052(2) 

C13S 0.2598(5) -0.2580(4) 0.3061(2) 0.0710(14) 

C14S 0.2499(4) -0.2150(4) 0.2461(2) 0.0599(11) 

O10S 0.1921(4) 0.5700(4) 0.0703(3) 0.0463(11) 

C17S 0.2042(10) 0.4756(8) 0.0416(6) 0.071(3) 

C18S 0.1775(10) 0.4655(9) -0.0295(6) 0.074(3) 

C19S 0.1748(8) 0.5651(7) -0.0417(5) 0.062(2) 

C20S 0.2145(6) 0.6348(5) 0.0320(3) 0.1086(18) 

O11S 0.2145(6) 0.6348(5) 0.0320(3) 0.1086(18) 

C21S 0.2670(11) 0.5632(9) 0.0005(7) 0.085(3) 

C22S 0.2129(11) 0.4752(10) 0.0071(8) 0.085(3) 

C23S 0.0973(13) 0.4915(11) 0.0126(8) 0.105(4) 

C24S 0.1202(11) 0.6093(9) 0.0255(7) 0.086(3) 

H1A 0.3344 0.5039 0.3239 0.033 

H1B 0.3734 0.4321 0.3698 0.033 

H1SA 0.9280 0.2573 0.4697 0.042 

H1SB 0.9135 0.1939 0.3980 0.042 

H2A 0.4379 0.6054 0.4194 0.036 

H2B 0.5097 0.6153 0.3681 0.036 

H2SA 0.9357 0.0527 0.4366 0.054 

H2SB 1.0205 0.1367 0.4938 0.054 

H3A 0.5405 0.4892 0.4582 0.031 

H3B 0.6054 0.6014 0.4754 0.031 

H3SA 0.8966 0.1423 0.5565 0.052 

H3SB 0.8714 0.0259 0.5260 0.052 

H4A 0.7002 0.0375 0.0818 0.029 

H4B 0.6356 0.0816 0.0255 0.029 

H4SB 0.7203 0.0308 0.4523 0.041 

H4SC 0.7194 0.1235 0.5064 0.041 

H5A 0.7733 0.2379 0.0738 0.032 

H5B 0.8104 0.1518 0.0322 0.032 

H5SB 0.7778 -0.0104 0.3239 0.042 

H5SC 0.7232 0.0167 0.2567 0.042 

H6A 0.9500 0.2008 0.1220 0.030 

H6B 0.8795 0.1060 0.1372 0.030 

H6SA 0.7053 -0.1673 0.2750 0.043 

H6SB 0.6260 -0.1370 0.2167 0.043 

H7SA 0.5007 -0.1954 0.2705 0.058 
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H7SB 0.5869 -0.1590 0.3403 0.058 

H8A 0.3572 0.3772 0.1439 0.033 

H8SA 0.4845 -0.0358 0.2640 0.048 

H8SB 0.4913 -0.0347 0.3397 0.048 

H9A 0.2166 0.2523 0.0743 0.040 

H10A 0.1206 0.1319 0.1159 0.040 

H11A 0.1647 0.1354 0.2271 0.039 

H12A 0.3053 0.2602 0.2971 0.032 

H14A 0.3372 0.5477 0.2150 0.038 

H15A 0.3773 0.6596 0.1500 0.041 

H16A 0.5531 0.7005 0.1361 0.039 

H17A 0.6892 0.6320 0.1883 0.035 

H18A 0.6474 0.5143 0.2487 0.028 

H20A 0.6915 0.7190 0.4384 0.041 

H21A 0.7904 0.8582 0.4144 0.051 

H22A 0.9141 0.8421 0.3518 0.046 

H23A 0.9443 0.6878 0.3157 0.044 

H24A 0.8438 0.5467 0.3369 0.036 

H26A 0.6538 0.3569 0.4751 0.034 

H27A 0.7535 0.3183 0.5675 0.041 

H28A 0.9257 0.4173 0.6223 0.043 

H29A 0.9971 0.5523 0.5829 0.041 

H30A 0.8964 0.5929 0.4911 0.034 

H32A 0.4397 0.1194 0.0084 0.035 

H33A 0.3544 0.2215 -0.0503 0.042 

H34A 0.4080 0.3925 -0.0143 0.046 

H35A 0.5367 0.4607 0.0835 0.050 

H36A 0.6206 0.3595 0.1430 0.038 

H38A 0.5848 -0.0622 0.1146 0.030 

H39A 0.4412 -0.1951 0.1057 0.037 

H40A 0.2693 -0.1695 0.1092 0.036 

H41A 0.2405 -0.0096 0.1217 0.034 

H42A 0.3810 0.1235 0.1278 0.031 

H44A 0.9083 0.0669 0.2364 0.034 

H45A 1.0292 0.0181 0.3156 0.043 

H46A 1.1627 0.1372 0.3952 0.048 

H47A 1.1746 0.3041 0.3952 0.045 

H48A 1.0540 0.3537 0.3164 0.037 

H50A 1.0749 0.3499 0.1876 0.045 

H51A 1.1413 0.5079 0.1737 0.065 

H52A 1.0363 0.6259 0.1780 0.075 

H53A 0.8658 0.5878 0.1991 0.067 

H54A 0.7995 0.4298 0.2147 0.045 

H11B 0.2361 -0.0757 0.3629 0.109 
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H11C 0.1120 -0.1138 0.3224 0.109 

H11D 0.2088 -0.0616 0.3573 0.109 

H11E 0.1060 -0.1478 0.3170 0.109 

H12B 0.2119 -0.2186 0.3865 0.041 

H12C 0.1134 -0.2657 0.3232 0.041 

H16B 0.3029 -0.1604 0.3858 0.063 

H16C 0.1866 -0.2326 0.3739 0.063 

H13A 0.2403 -0.3309 0.2942 0.085 

H13B 0.3350 -0.2368 0.3336 0.085 

H13C 0.2090 -0.3232 0.2964 0.085 

H13D 0.3345 -0.2667 0.3212 0.085 

H14B 0.1931 -0.2589 0.2094 0.072 

H14C 0.3197 -0.2043 0.2335 0.072 

H17B 0.1551 0.4231 0.0536 0.085 

H17C 0.2798 0.4693 0.0575 0.085 

H18B 0.1062 0.4198 -0.0497 0.088 

H18C 0.2333 0.4396 -0.0477 0.088 

H19A 0.1006 0.5686 -0.0637 0.075 

H19B 0.2251 0.5847 -0.0685 0.075 

H20B 0.2930 0.6655 0.0432 0.130 

H20C 0.1734 0.6873 0.0361 0.130 

H21B 0.2592 0.5658 -0.0458 0.102 

H21C 0.3451 0.5759 0.0224 0.102 

H22B 0.2508 0.4562 0.0465 0.102 

H22C 0.2063 0.4230 -0.0312 0.102 

H23B 0.0758 0.4660 0.0492 0.125 

H23C 0.0408 0.4606 -0.0280 0.125 

H24B 0.0794 0.6313 -0.0117 0.103 

H24C 0.0992 0.6361 0.0651 0.103 
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