
Bulletin of the Section of Logic
Volume 45/2 (2016), pp. 111–124

http://dx.doi.org/10.18778/0138-0680.45.2.04

George Voutsadakis

CATEGORICAL ABSTRACT LOGIC: HIDDEN

MULTI-SORTED LOGICS AS MULTI-TERM

π-INSTITUTIONS

Abstract

Babenyshev and Martins proved that two hidden multi-sorted deductive systems

are deductively equivalent if and only if there exists an isomorphism between

their corresponding lattices of theories that commutes with substitutions. We

show that the π-institutions corresponding to the hidden multi-sorted deductive

systems studied by Babenyshev and Martins satisfy the multi-term condition of

Gil-Férez. This provides a proof of the result of Babenyshev and Martins by

appealing to the general result of Gil-Férez pertaining to arbitrary multi-term

π-institutions. The approach places hidden multi-sorted deductive systems in

a more general framework and bypasses the laborious reuse of well-known proof

techniques from traditional abstract algebraic logic by using “off the shelf” tools.
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Multi-term π-Institutions, Interpretability, Deductive Equivalence.

1. Introduction

In [13], the author introduced a framework in which the deductive equiv-

alence of two logical systems formalized as π-institutions may be studied.

In Lemma 9.4 of [13] it was proved that if two π-institutions I and I ′ are

deductively equivalent, then there exists an adjoint equivalence between

their categories of theories that commutes with substitutions. The con-

verse of this result does not hold for arbitrary π-institutions (see Section 9

of [9]). The notion of a term π-institution was also introduced in [13] and
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it was proved that for term π-institutions the converse holds, i.e., if there

exists an adjoint equivalence between the categories of theories of two term

π-institutions that commutes with substitutions, then the two π-institutions

are deductively equivalent (see Theorem 10.5 of [13]).

This equivalence result was extended in [9], where a more general no-

tion than that of a term π-institution, that of a multi-term π-institution,

was introduced and it was shown that two multi-term π-institutions are

deductively equivalent if and only if there exists an adjoint equivalence be-

tween their categories of theories that commutes with substitutions (see

Theorem 8.9 of [9]).

These results were further enhanced in subsequent work, first, by Gala-

tos and Tsinakis [8] and, more recently, by Galatos and Gil-Férez [7], that

partly based their investigations on preceding work by Blok and Jónsson

[3]. However, these more recent expansions of the theory will not concern

us in this paper, since the level of generality of [9] is adequate for our

purposes.

In [10], Martins initiated the study of behavioral reasoning in hidden

logics in the context of abstract algebraic logic (see, also, [11]). Behavioral

algebraization of logics was also expounded upon in [5] in which the logical

systems are multi-sorted, but there is only a single visible sort of formulas,

which are the formulas in the contexts of which experiments can be per-

formed with visible or observable outputs/outcomes. The work of [5] was

extended to a categorical level in [14].

In [1], the scope of the framework of [5] was extended to cover the case

of hidden multi-sorted logical systems (HMsLs) with multiple visible sorts

and their behavioral algebraization was introduced. The main theorem,

Theorem 4.5, of [1] is more widely encompassing than preceding results

in the framework of behavioral logics. One of the main drawbacks of its

proof, however, is that its technical details are almost identical to those

employed in establishing previously obtained results of a similar kind in

abstract algebraic logic, e.g., Theorem 3.7 of [4].

We undertake in this work the task of showing how the powerful meth-

ods of categorical abstract algebraic logic may be employed, within a rather

limited scope and with rather moderate force, as compared to their full

power, to establish results of this kind, avoiding a tedious reapplication of

a long and cumbersome process from scratch.

In fact the present paper, apart from its technical details may be viewed

as a manifesto in advertising the appropriateness and suitability of employ-
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ing abstract equivalence results for logical systems from categorical abstract

algebraic logic with the purpose of, not only avoiding repetition of identical

or similar proofs for similar equivalence results, but, also, placing them in

a hierarchy of “equivalence strengths”, which may be roughly described by

the equivalences studied in [3, 13, 9, 8, 7] and [6].

2. Behavioral Equivalence of HMsLs

We borrow the following treatment of hidden multi-sorted logical systems

from the work of Babenyshev and Martins [1]. We omit details pertaining

to the basics of multi-sorted set theory which are intuitively clear, since

many details may be found in [1] and more, if necessary, in [10, 12].

A hidden (sorted) signature is a triple Σ = ⟨SORT,VIS, ⟨OPτ ∶ τ ∈

TYPE⟩⟩, where

● SORT is a nonempty countable set of sorts;

● VIS ⊆ SORT is the set of visible sorts;

● TYPE is a set of nonempty sequences S0, . . . , Sn−1, Sn of sorts, called

types, written S0, . . . , Sn−1 → Sn, and, for all τ ∈ TYPE, OPτ is

a countable set of operation symbols of type τ . We denote OP =

⟨OPτ ∶ τ ∈ TYPE⟩.

Sorts in HID = SORT/VIS are called hidden sorts. Elements of OPτ
are operation symbols of type τ and those of type → S are called

constants. We assume that all sets of operation symbols are disjoint.

For a hidden signature Σ, the associated unhidden signature ΣUH is

the one obtained from Σ by making all sorts visible. We call two hidden

signatures Σ,Σ′ algebraically indistinguishable if ΣUH
= Σ′UH.

Let X = ⟨XS ∶ S ∈ SORT⟩ be a fixed countably infinite sorted set

of (sorted propositional) variables with pairwise disjoint components.

Terms are formed in the usual way starting from the variables in X and

using the operation symbols in OP respecting types. We denote by TeΣ(X)
the SORT-sorted set of terms over Σ with variables in X. Since the

components of TeΣ(X) are pairwise disjoint, we may identify any (sorted)

subset Γ ⊆ TeΣ(X) with the union ⋃S∈SORT ΓS .

If the sorted signature Σ has a ground term of every sort (i.e., one

without variables), it will be called standard.

Let k ≥ 1 be a fixed natural number. A k-variable of sort S is

a sequence of k-variables all of sort S. A k-term or k-formula of sort S is
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a sequence of k-terms of sort S. We write ϕ ∶ S = ⟨ϕ0(x) ∶ S,. . ., ϕk−1(x) ∶ S⟩
for such a k-term of sort S and denote the set of k-terms of sort S by

(TeΣ(X))
k
S. Set TekΣ(X) = ⟨(TeΣ(X))

k
S ∶ S ∈ SORT⟩. The set of visible

k-terms is (TekΣ(X))VIS = ⟨(TeΣ(X))
k
V ∶ V ∈ VIS⟩.

A sorted function or mapping h from a SORT-sorted set A = ⟨AS ∶ S ∈
SORT⟩ to a SORT-sorted set B = ⟨BS ∶ S ∈ SORT⟩, in symbols h ∶ A → B,

is a sorted set h = ⟨hS ∶ S ∈ SORT⟩ of functions such that hS ∶ AS → BS ,

for each S ∈ SORT. We define, in the usual way, operations over TeΣ(X)
to obtain the term algebra TeΣ(X) over the signature Σ. Then TeΣ(X)
has the universal mapping property over X in the sense that, for every

Σ-algebra A and every sorted map h ∶ X → A, called an assignment,

there is a unique sorted homomorphism h∗ ∶ TeΣ(X) → A that extends

h. As usual no notational distinction is made between h and h∗. A map

from X to the set of terms, and its unique extension to an endomorphism

of TeΣ(X), is called a substitution.

A hidden k-logic is a pair L = ⟨Σ,⊢L⟩, where Σ is a hidden signature

with VIS the set of visible sorts and ⊢L⊆ P((Te
k
Σ(X))VIS) × (Te

k
Σ(X))VIS

an unsorted relation satisfying, for all Γ ∪∆ ∪ {γ,ϕ} ⊆ (TekΣ(X))VIS,

(i) Γ ⊢L γ, for all γ ∈ Γ;

(ii) Γ ⊢L ϕ and ∆ ⊢L γ, for all γ ∈ Γ, imply ∆ ⊢L ϕ;

(iii) Γ ⊢L ϕ implies σ(Γ) ⊢L σ(ϕ), for every (sorted) substitution σ ∶

TeΣ(X)→ TeΣ(X).

A SORT-sorted set A = ⟨AS ∶ S ∈ SORT⟩ is called locally finite if, for

every S ∈ SORT, AS is a finite set. Moreover A is said to be globally

finite if A is locally finite and AS is empty except for a finite number of

sorts.

Let L = ⟨Σ,⊢L⟩ be a hidden k-logic. The relation ⊢L is finitary if

Γ ⊢L ϕ implies ∆ ⊢ ϕ, for some globally finite subset ∆ of Γ. We say that

L is specifiable if ⊢L is finitary. We say L is standard if Σ is standard.

We say L is a visible k-logic if VIS = SORT.

A set of visible k-terms T closed under ⊢L, i.e., such that T ⊢L ϕ

implies ϕ ∈ T , is called a theory of L or an L-theory. The set of all

L-theories is denoted by Th(L). It is well known that, under set-theoretic

inclusion, this set forms a complete lattice Th(L). This lattice is algebraic
if the logic L is specifiable.

Let Σ,Σ′ be two algebraically indistinguishable signatures with sets

of visible sorts VIS and VIS′, respectively. A (k, ℓ)-translation from Σ
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to Σ′ is a VIS-VIS′-sorted set τ = ⟨τR(x ∶ R) ∶ R ∈ VIS⟩, where τR(x ∶
R) = ⟨τR,V (x ∶ R) ∶ V ∈ VIS

′⟩ is a VIS′-sorted set of visible terms, with

τR,V (x ∶ R) a finite set of ℓ-terms over Σ′ of sort V , with variables in

x = ⟨x0 ∶ R, . . . , xk−1 ∶ R⟩.
A translation τ is an interpretation from the hidden k-logic L to the

hidden ℓ-logic L′ over hidden signatures Σ and Σ′, respectively, if, for all

Γ ∪ {ϕ} ⊆ (TekΣ(X))VIS,

Γ ⊢L ϕ iff τ(Γ) ⊢L′ τ(ϕ).

Given two algebraically indistinguishable hidden signatures Σ,Σ′, a hidden

k-logic L over Σ and a hidden ℓ-logic L′ over Σ′, L is equivalent to L′

if there are globally finite interpretations (i.e., with only finitely many

nonempty components, each of finite cardinality) τ and ρ from L to L′ and

from L′ to L, respectively, such that

x ∶ V ⊣⊢L ρ(τ(x ∶ V )) and y ∶ V ′ ⊣⊢L′ τ(ρ(y ∶ V
′)),

for all V ∈ VIS and all V ′ ∈ VIS′.

Let Σ,Σ′ be two algebraically indistinguishable hidden signatures and

L,L′ a hidden k-logic and a hidden ℓ-logic over Σ,Σ′, respectively. A map

α ∶ Th(L)→ Th(L′) commutes with substitutions if, for every substi-

tution σ and all T ∈ Th(L),

CL′(σ(α(T ))) = α(CL(σ(T ))),

where CL and CL′ denote the closure operators associated with the conse-

quence operators ⊢L and ⊢L′ , respectively.

The main result of Babenyshev and Martins, Theorem 4.5 of [1], is the

following characterization of the equivalence of two hidden multi-sorted

logical systems in terms of the existence of a complete lattice isomorphism

between their corresponding lattices of theories that commutes with sub-

stitutions:

Theorem 1 (Babenyshev and Martins [1]). Let L and L′ be a k- and

an ℓ-hidden standard, specifiable logic over algebraically indistinguishable

hidden signatures Σ and Σ′, respectively. Then L and L′ are equivalent iff

there exists an isomorphism from Th(L) to Th(L′) that commutes with

substitutions.
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3. Cofibrations and Grothendieck Construction

To pass to a brief account of the treatment of the equivalence of multi-term

π-institutions of [9], we first need a few categorical preliminaries pertaining

to cofibrations. We borrow these from [2], even though a few details are

also offered in [9], as the theory is developed.

Let P ∶ E→C be a functor between small categories, f ∈C(C,D) and
P (X) = C. Then an arrow u ∈ E(X,Y ) is cocartesian for f and X if

● P (u) = f and

● for any v ∈ E(X,Z) and k ∈ C(D,P (Z)), such that k ○ f = P (v),
there exists unique w ∈ E(Y,Z), such that w ○ u = v and P (w) = k.

X
u - Y C

f - D

Z

w

?

.................

v

-

P (Z)

k

?

P
(v) -

The functor P ∶ E→C is a cofibration if there exists a cocartesian arrow

for all f ∈C(C,D) and all X ∈ ∣E∣, such that P (X) = C.
A cocleavage for a cofibration P ∶ E → C is a function κ that takes

f ∈C(C,D) and X ∈ ∣E∣, such that P (X) = C, to an arrow κ(f,X) that is
cocartesian for f and X.

The cocleavage κ is called a splitting of a cofibration P ∶ E→C if

● κ(iC ,X) = iX , for all P (X) = C, and

● κ(g, Y ) ○ κ(f,X) = κ(g ○ f,X), for all f ∈ C(C,D) and g ∈ C(D,E),
P (X) = C and Y the codomain of κ(f,X).

A split cofibration is one that possesses a splitting.

If P ∶ E → C and P ′ ∶ E′ → C′ are two cofibrations over C and C′,

respectively, a morphism of cofibrations from P to P ′ is a pair of

functors ⟨ζ, ξ⟩, such that the following diagram commutes:

E
ζ - E′

C

P
?

ξ
- C′

P ′

?



Categorical Abstract Logic: Hidden Multi-Sorted Logics... 117

If P,P ′ are split cofibrations with splittings κ and κ′, respectively, a mor-

phism of cofibrations ⟨ζ, ξ⟩ ∶ P → P ′ is a morphism of split cofibrations

(relative to κ and κ′) if and only if , for all X ∈ ∣E∣ and f ∈C(P (X),D),

ζ(κ(f,X)) = κ′(ξ(f), ζ(X)).

A functor F ∶ E → C is said to be exhaustive on objects if for every

C ∈ ∣C∣, there exists X ∈ ∣E∣, such that F (X) = C. It is exhaustive on

arrows if, for every f in C, there exists u in E, such that F (u) = f .
In Proposition 5.3 of [9], it is shown that, given two cofibrations

P ∶ E→C, P ′ ∶ E′ →C′, with P exhaustive on objects (and, hence, also on

arrows) and ⟨ζ, ξ⟩ ∶ P → P ′ a morphism of cofibrations, then ξ is determined

by ζ, since ξ is the unique functor χ ∶ C → C′, such that ⟨ζ, χ⟩ ∶ P → P ′ is

a morphism of cofibrations. Thus, in this setting, one is justified using the

notation ξ = ζ+ for ξ and writing ⟨ζ, ζ+⟩ ∶ P → P ′.

Consider, next a functor F ∶ C → Cat. Define the Grothendieck

construction (of F over C) to be the category ∫C F =G(C, F ) specified
as follows:

GC1 An object of G(C, F ) is a pair (x,C), where C ∈ ∣C∣ and x is an

arrow in F (C);

GC2 An arrow (u, f) ∶ (x,C)→ (x′, C ′) has f ∶ C → C ′ an arrow of C and

u ∶ F (f)(x)→ x′ an arrow of F (C ′);

F (C)
F (f)- F (C ′)

x - F (f)(x)

x′

u
?

GC3 If (u, f) ∶ (x,C)→ (x′, C ′) and (v, g) ∶ (x′, C ′)→ (x′′, C ′′),

F (f)(x)
u - x′ F (g)(x′)

v - x′′

then (v, g) ○ (u, f) ∶ (x,C)→ (x′′, C ′′) is defined by

F (g)(F (f)(x))
F (g)(u)- F (g)(x′)

v - x′′

(v, g) ○ (u, f) = (v ○ F (g)(u), g ○ f).

It turns out that the following result holds (Theorem 12.2.9 of [2]):
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Theorem 2. Given a functor F ∶C→Cat, G(C, F ) is a category and the

second projection is a functor P ∶G(C, F )→C which is a split cofibration

with splitting

κ(f, (x,C)) = (iF (f)(x), f) ∶ (x,C)→ (F (f)(x), C
′)

for any arrow f ∶ C → C ′ of C and object (x,C) of G(C, F ).

4. Equivalence of Multi-Term π-Institutions

A π-institution is a triple I = ⟨Sign,SEN, C⟩, where Sign is a cat-

egory of signatures, SEN ∶ Sign → Set is a sentence functor and

C = {CΣ}Σ∈∣Sign∣ is a closure system on SEN, i.e., a ∣Sign∣-indexed family

of closure operators CΣ ∶ P(SEN(Σ))→ P(SEN(Σ)) that satisfy

SEN(f)(CΣ(Φ)) ⊆ CΣ′(SEN(f)(Φ)),

for all Σ,Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all Φ ⊆ SEN(Σ).
Given a π-institution I, the category of sentences Sen(I) is the

Grothendieck construction Sen(I) = ∫Sign SEN. Modulo some obvious

identifications, we may view its objects as pairs ⟨Σ, ϕ⟩, where Σ ∈ ∣Sign∣
and ϕ ∈ SEN(Σ). Its arrows f ∶ ⟨Σ, ϕ⟩ → ⟨Σ′, ϕ′⟩ are Sign-morphisms

f ∶ Σ → Σ′, such that SEN(f)(ϕ) = ϕ′. The objects of this category are

called I-sentences.

If I = ⟨Sign,SEN, C⟩ is a π-institution, an endofunctor Υ ∶ Sen(I) →
Sen(I) is called a multi-source signature-variable (mssv) (see Defi-

nition 3.6 of [9]) if, for every pair ⟨Σ, ϕ⟩, ⟨Σ′, ϕ′⟩ ∈ ∣Sen(I)∣, if g ∶ ⟨Σ, ϕ⟩ →
⟨Σ′, ϕ′⟩ is in Sen(I), then Υ(⟨Σ, ϕ⟩) = Υ(⟨Σ′, ϕ′⟩) and Υ(g) = 1Υ(⟨Σ,ϕ⟩)
and, there exists a natural transformation κ ∶ Υ→ ISen(I). Thus, for every

g ∶ ⟨Σ, ϕ⟩→ ⟨Σ′, ϕ′⟩ in Sen(I), the following diagram commutes:

Υ(⟨Σ, ϕ⟩)

⟨Σ, ϕ⟩
g

-
�

κ ⟨
Σ
,ϕ
⟩

⟨Σ′, ϕ′⟩

κ
⟨Σ
,ϕ
′⟩

-

A π-institution I is called multi-term ([9], Definition 3.8) (or is said

to satisfy the multi-term condition) if it has a multi-source signature-

variable.
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Given a π-institution I = ⟨Sign,SEN, C⟩, the theory functor of I is

the functor Th ∶ Sign → CoLat (the category of complete lattices), such

that, for all Σ ∈ ∣Sign∣, Th(Σ) = CΣ (the closed set system corresponding to

the closure operator CΣ) and, for every f ∈ Sign(Σ,Σ
′), Th(f) ∶ CΣ → CΣ′

is the lattice morphism given by

Th(f)(T ) = CΣ′(SEN(f)(T )), for all T ∈ CΣ.

The category of theories Th(I) of I is the Grothendieck construction

Th(I) = ∫SignTh of Th over Sign. More explicitly, again modulo some

obvious identifications, the objects are pairs ⟨Σ, T ⟩, with Σ ∈ ∣Sign∣ and T ∈
∣Th(Σ)∣. Given ⟨Σ, T ⟩, ⟨Σ′, T ′⟩ ∈ ∣Th(I)∣, a morphism f ∶ ⟨Σ, T ⟩ → ⟨Σ′, T ′⟩
is an arrow f ∈ Sign(Σ,Σ′), such that SEN(f)(T ) ⊆ T ′.

We denote by SIG ∶ Th(I) → Sign the second projection, which, by

Theorem 2, is a split cofibration.

Let SEN ∶ Sign → Set and SEN′ ∶ Sign
′
→ Set be two sentence func-

tors. A translation ⟨F,α⟩ ∶ SEN → SEN′ from SEN to SEN′ consists

of a functor F ∶ Sign → Sign
′
together with a natural transformation

α ∶ SEN → PSEN′F . Let I = ⟨Sign,SEN, C⟩,I ′ = ⟨Sign′,SEN′, C ′⟩ be
π-institutions. A semi-interpretation of I in I ′ is a translation ⟨F,α⟩ ∶
SEN→ SEN′, such that, for every Σ ∈ ∣Sign∣ and all Γ ∪ {ϕ} ⊆ SEN(Σ),

ϕ ∈ CΣ(Γ) implies αΣ(ϕ) ⊆ C
′

F (Σ)(αΣ(Γ)).

An interpretation of I in I ′ is a translation ⟨F,α⟩ ∶ SEN → SEN′, such

that

ϕ ∈ CΣ(Γ) if and only if αΣ(ϕ) ⊆ C
′

F (Σ)(αΣ(Γ)),

for every Σ ∈ ∣Sign∣ and all Γ ∪ {ϕ} ⊆ SEN(Σ). We write ⟨F,α⟩ ∶ I⟩−I ′ for
semi-interpretations and ⟨F,α⟩ ∶ I ⊢ I ′ for interpretations.

Let I,I ′ be π-institutions and ⟨F,α⟩ ∶ SEN → SEN′ a translation.

Define the functor Fα ∶ Th(I)→ Th(I ′) as follows:

1. Fα(⟨Σ, T ⟩) = ⟨F (Σ), C ′
F (Σ)(αΣ(T ))⟩, for all ⟨Σ, T ⟩ ∈ ∣Th(I)∣;

2. Fα(f) = F (f), for all f ∶ ⟨Σ, T ⟩→ ⟨Σ′, T ′⟩ in Th(I).

If SEN(f)(T ) ⊆ T ′, then SEN(F (f))(C ′
F (Σ)(αΣ(T ))) ⊆ C

′

F (Σ′)(αΣ′(T
′)),

and the definition makes sense.

Note that, with this definition of Fα, the pair ⟨Fα, F ⟩ ∶ SIG → SIG′

becomes a morphism of cofibrations.
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Th(I)
Fα- Th(I ′)

Sign

SIG
?

F
- Sign

′

SIG′

?

Let I = ⟨Sign,SEN, C⟩, I ′ = ⟨Sign′,SEN′, C ′⟩ be two π-institutions. I

is deductively equivalent to I ′ if and only if there exist interpretations

⟨F,α⟩ ∶ I ⊢ I ′, ⟨G,β⟩ ∶ I ′ ⊢ I and an adjoint equivalence ⟨F,G, η, ε⟩ ∶
Sign→ Sign

′
, such that

(i) for all Σ ∈ ∣Sign∣, Th(ηΣ)CΣ = (G
βFα)ΣCΣ;

(ii) for all Σ′ ∈ ∣Sign′∣, Th(εΣ′)(F
αGβ)Σ′C

′

Σ′ = C
′

Σ′ .

Returning to categories of theories, given two π-institutions I,I ′, as

above, a functor F ∶ Th(I) → Th(I ′) is signature respecting in the sense

of [13] if and only if ⟨F,F +⟩ ∶ SIG→ SIG′ is a morphism of cofibrations for

a unique functor F + ∶ Sign→ Sign
′
(see Remark 5.4 of [9]):

Th(I)
F- Th(I ′)

Sign

SIG
?

F +
- Sign

′

SIG′

?

If, given ⟨Σ, T ⟩ ∈ ∣Th(I)∣, we denote the second component of F (⟨Σ, T ⟩)
by FΣ(T ), we have, under the hypothesis of signature respectability,

F (⟨Σ, T ⟩) = ⟨F +(Σ), FΣ(T )⟩.

Let I,I ′ be two π-institutions and F ∶ Th(I) → Th(I ′) be signature

respecting, which forces ⟨F,F +⟩ to be a morphism of cofibrations. Then,

Theorem 5.6 of [9] shows that ⟨F,F +⟩ is a morphism of split cofibrations

if and only if, for all Σ,Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all ⟨Σ, T ⟩ ∈
∣Th(I)∣,

FΣ′(CΣ′(SEN(f)(T ))) = C
′

F+(Σ′)(SEN
′(F +(f))(FΣ(T ))),

i.e., if and only if F ∶ Th(I)→ Th(I ′) commutes with substitutions in the

sense of [13].

Gil-Férez established the following main theorem, Theorem 8.9 of [9],

generalizing Theorem 10.5 of [13]:
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Theorem 3. If I = ⟨Sign,SEN, C⟩ and I ′ = ⟨Sign′,SEN′, C ′⟩ are two

multi-term π-institutions, then I and I ′ are deductively equivalent iff there

exists an adjoint equivalence ⟨F,G, η, ε⟩ ∶ Th(I) → Th(I ′) that commutes

with substitutions.

5. HMsLs as Multi-Term π-Institutions

Let Σ be a hidden signature and consider a hidden k-logic L = ⟨Σ,⊢L⟩
over Σ. The π-institution IL associated with L is IL = ⟨MΣ,SEN, CL⟩,
where:

● MΣ is the category determined by the monoid of all SORT-sorted

substitutions σ ∶ TeΣ(X)→ TeΣ(X), with the single object ⋆.

● SEN ∶ MΣ → Set is the functor, such that SEN(⋆) = (TekΣ(X))VIS

and, for all σ in MΣ, SEN(σ) ∶ (Te
k
Σ(X))VIS → (Te

k
Σ(X))VIS maps

ϕ ∶ V to σ(ϕ) ∶ V .

● CL = {CL} is the closure operator on (Te
k
Σ(X))VIS determined by the

consequence operator ⊢L, i.e., such that CL(Γ) = {ϕ ∈ (Te
k
Σ(X))VIS ∶

Γ ⊢L ϕ}, for all Γ ⊆ (Te
k
Σ(X))VIS.

We now show that, given a k-hidden logic L = ⟨Σ,⊢L⟩ that is standard and

specifiable, the π-institution IL = ⟨MΣ,SEN, CL⟩ is multi-term.

Suppose L = ⟨Σ,⊢L⟩ is a standard specifiable hidden k-logic over a hid-

den signature Σ = ⟨SORT,VIS, ⟨OPτ ∶ τ ∈ TYPE⟩⟩. Let X = ⟨XS ∶ S ∈

SORT⟩ with XS = {x1 ∶ S,x2 ∶ S, . . .} be an enumeration of the set XS

of S-sorted propositional variables, where the XS ’s are assumed pairwise

disjoint.

For every S ∈ SORT, let x ∶ S = ⟨x1 ∶ S,x2 ∶ S, . . . , xk ∶ S⟩. Let Υ ∶

Sen(IL)→ Sen(IL) be the functor defined by:

● Υ(⟨⋆, ϕ ∶ V ⟩) = ⟨⋆, x ∶ V ⟩, for all ⟨⋆, ϕ ∶ V ⟩ ∈ ∣Sen(IL)∣;

● for all g ∶ ⟨⋆, ϕ ∶ V ⟩→ ⟨⋆, ψ ∶ V ′⟩ in Sen(IL), Υ(g) = iTeΣ(X).

Since g ∶ ⟨⋆, ϕ ∶ V ⟩ → ⟨⋆, ψ ∶ V ′⟩ is in Sen(IL) only if V = V ′, it suffices to

show that there exists a natural transformation from Υ to ISen(IL):

For ϕ ∶ V ∈ (TekΣ(X))VIS, let κ
ϕ∶V
∶ TeΣ(X) → TeΣ(X) be the SORT-

sorted endomorphism on TeΣ(X), such that

(i) For S = V , i ≤ k, κϕ∶V (xi ∶ V ) = ϕi;

(ii) For S = V , i > k, κϕ∶V (xi ∶ V ) = ϕk;
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(iii) For S ≠ V and all x ∈ XS , κ
ϕ∶V (x ∶ S) = t ∶ S, where t ∶ S is a fixed

ground term of sort S, which exists since L is standard.

For all ϕ ∶ V ∈ (TeΣ(X))VIS, SEN(κ
ϕ∶V )(x ∶ V ) = ϕ ∶ V . So by setting

κ⟨⋆,ϕ∶V ⟩ = κ
ϕ∶V , we get that κ ∶ Υ→ ISen(IL) is a transformation and it now

suffices to show that it is natural.

To see this, given g ∶ ⟨⋆, ϕ ∶ V ⟩→ ⟨⋆, ψ ∶ V ⟩, we get:

Υ(⟨⋆, ϕ⟩)
κ⟨⋆,ϕ⟩- ⟨⋆, ϕ⟩ ⟨⋆, x ∶ V ⟩

κ⟨⋆,ϕ∶V ⟩ - ⟨⋆, ϕ ∶ V ⟩

Υ(⟨⋆, ψ⟩)

Υ(g)

?

κ⟨⋆,ψ⟩

- ⟨⋆, ψ⟩

g

?

⟨⋆, ψ ∶ V ⟩
�

g

κ
⟨
⋆,ψ
∶V
⟩

-

gκ⟨⋆,ϕ∶V ⟩ = gκ
ϕ∶V
= κψ∶V = κ⟨⋆,ψ∶V ⟩.

So κ is indeed a natural transformation, Υ is a multi-source signature-

variable and IL is a multi-term π-institution.

Theorem 4. Let L and L′ be a standard, specifiable k- and a standard

specifiable ℓ-hidden logic over algebraically indistinguishable hidden signa-

tures Σ and Σ′, respectively. Then L and L′ are equivalent iff there exists

an isomorphism from Th(L) to Th(L′) that commutes with substitutions.

Proof: L and L′ are equivalent iff IL and IL′ are deductively equivalent

iff, by Theorem 3, there exists an adjoint equivalence ⟨F,G, η, ε⟩ ∶ Th(IL)→
Th(IL′) that commutes with substitutions iff, since the categories of sig-

natures are monoids, there exists an isomorphism from Th(L) to Th(L′)
that commutes with substitutions.

We showed in Theorem 4 that Theorem 4.5 of [1] (Theorem 1) can be

obtained as a corollary of Theorem 8.9 of [9] (Theorem 3). We advocate

that the machinery developed by the work on equivalence be employed,

when possible, instead of reusing tedious and heavily technical proofs from

scratch. Besides avoiding repetition, this application of “off the shelf”

tools would serve well in exploring how the various pieces fit in the general

(meta-meta-)theory and, also, in revealing interconnections between them

that may remain obscure or, perhaps, even hidden, otherwise.
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