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Abstract

The logic BN4 can be considered as the 4-valued logic of the relevant conditional
and the logic E4, as the 4-valued logic of (relevant) entailment. The aim of this
paper is to endow E4 with a 2-set-up Routley-Meyer semantics. It is proved that
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1. Introduction

Concerning the 2-set-up Routley-Meyer semantics he defined for the logic
RM3, Brady notes “the method of proof is fairly general and it is hoped that
other model structures can be axiomatized by appropriate modifications to
the proof” ([2], p. 9). The aim of this paper is to provide one of such model
structures: we endow the 4-valued logic of entailment E4 with a 2-set-up
Routley-Meyer semantics.

Brady’s logic BN4 can be viewed as the 4-valued logic of the relevant
conditional while the logic E4, introduced in [5], can be regarded as the
4-valued logic of (relevant) entailment. The logic BN4 was defined by
Brady in [2] and it can intuitively be described as a 4-valued extension
of contractionless relevant logic RW (that is, relevant logic R minus the
contraction axiom, i.e., [A — (A — B)] = (A — B)). On its part, E4 can
intuitively be described as a 4-valued extension of the logic of entailment
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E minus the reductio axiom, i.e., (A — —=A) — —A. Thus, E4 is related to
BN4 in a similar way to which Anderson and Belnap’s logic of entailment
E is related to their logic of relevant conditional R (cf. [1] about these
logics).

According to Meyer et al., “BN4 is the correct logic for the 4-valued
situation where the extra values are to be interpreted in the both and
neither senses” ([4], p. 25). On the other hand, E4 can be viewed as the
“4-valued logic of relevant entailment” on the basis of the two following
facts: (1) E4 enjoys the “weak relevance property” that is characteristic
of such logics as R-mingle. This property reads as follows: if A — B is
a theorem, then either A and B share at least a propositional variable or
both =A and B are theorems (cf. [1], p. 417); (2) as it is the case with the
logic of entailment E (cf. [1], §4.3 and references therein), E4 encloses “a
theory of logical necessity” when the necessity operator is defined via the
conditional as follows: A =4 (A — A) — A (cf. section 5 below).

In [2], BN4 is endowed with both a bivalent Belnap-Dunn type seman-
tics and a 2-set-up Routley-Meyer ternary relational semantics. On the
other hand, in [5], a bivalent Belnap-Dunn type semantics is defined for
the logic E4, which, nevertheless, still lacks the latter kind of semantics
mentioned above. The aim of this paper is then to provide a 2-set-up
Routley-Meyer ternary relational semantics for E4.

The paper is organized as follows. In section 2, the logic E4 is de-
fined and some of its theorems to be used in the completeness proofs are
remarked. In section 3, the 2-set-up semantics is characterized and the
soundness theorem is proved. In section 4, E4 is proved complete w.r.t.
the semantics defined in the previous section. Finally, in section 5, the ne-
cessity operator referred to above is introduced in the models by a binary
accessibility relation in the customary way.

2. The logic E4

Firstly, we define the logical language and the notion of logic used in the
paper.

DEFINITION 2.1 (Languages). The propositional language consists of a de-
numerable set of propositional variables py, i, ..., Pn,--, and the following
connectives — (conditional), N\ (conjunction), V (disjunction), = (nega-
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tion). The biconditional (<) and the set of wffs are defined in the custom-
ary way. A, B etc. are metalinguistic variables.

DEFINITION 2.2 (Logics). A logic S is a structure (L, g) where L is a
propositional language and bg is a (proof-theoretical) consequence relation
defined on L by a set of axioms and a set of rules of derivation. The notions
of ‘proof’ and ‘theorem’ are understood as it is customary in Hilbert-style
aziomatic systems (I' g A means that A is derivable from the set of wffs
I' in S; and -5 A means that A is a theorem of S).

Next, the logic E4 is defined (cf. [5]):

DEFINITION 2.3. The logic E} is axiomatized with the following axioms and
rules of inference.
Axioms

Al. A— A

A2. (ANB)—-A/(ANB)— B

A3. [[A—=B)AN(A—=C)] = [A—= (BAC)]
Af. A— (AVB) /B — (AVB)

A5. (A= C)N(B—=C)] = [(AVvB) = C]
A6. [AN(BVC)] = [(AANB)V (ANC))
A7. (A= B)—=[(B—C) = (A—C)]
A8. [A— (A— B)] - (A— B)
A9. [[([A—-AANB—B)]—-Cl—C
A10. (A — -B) = (B — —A)
All. (=A— B) = (=B — A)
A12. [(A— B)AN(AAN-B)] = —-(A— B)
A13. (A— B)V—-(A— B)
Al}. [-(A—= B)AN(mAAB)]— (A— B)
Al5. -A— [AV (A = B)]

Rules of derivation

Adjunction (Adj): A & B= ANDB
Modus Ponens (MP): A & A— B =B
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We note the following remarks.

REMARK 2.4 (The logic of entailmet E minus the reductio axiom). We
note that the logic of entailment E minus the reductio axiom (i.e., (A —
—A) = —A) can be axiomatized with A1-A11, Adj and MP. Notice, on the
other hand, that although A12 and A13 are theorems of E, A1} and A15
are neither theorems of E nor of R.

REMARK 2.5 (The logic BN4). Brady’s logic BN4 is axiomatized with the
following axioms: A1-A7, A10, A1l and A15 in Definition 2.3, and, in
addition: A — [(A — B) — B|, (FAAB) — (A — B), (AV-B)V(A — B)
and AV [-(A — B) — A]. The rules are Adj, MP and Disjunctive Modus
Ponens: CV (A — B) & CV A= CV B (cf [2] and [5]). Notice that
contractionless relevant logic R, RW, can be axiomatized with A1-A7, A10,
All, A — [(A— B) — B], Adj and MP.

Next, we introduce the matrices MBN4 and ME4 upon which BN4 and
E4 are defined, respectively (cf. [2] and [5]).

DEFINITION 2.6 (The matrix MBN4). The propositional language consists
of the connectives —, A, V and —. The matriz MBN/ is the structure (V, D,
F) where (1)V is {0,1,2,3}; (2) D = {3,2}; (3)F = {f=, fr, [y, [~} where
o, fn, fv, f= are defined according to the following truth-tables.

2 3 AlO 1 23 v][0o 1 2 3 |

-0 1 -
0 3 3 3 3 010 O 0 O 0j0 1 2 3 0] 3
1 1 3 1 3 170 1 0 1 11 1 3 3 1]1
2 0O 1 2 3 210 0 2 2 212 3 2 3 2|2
3 0O 1 0 3 310 1 2 3 313 3 3 3 310

DEFINITION 2.7 (The matrix E4). The propositional language is the same
as in MBN/. The matriz Ej is the structure (V, D, F) where V, D and F
are defined exactly as in MBN/ except for f_, which is defined according
to the following truth-table:

-0 1 2 3
0 |3

W N =
o O O
O O N W
OO W
W W W Ww
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In [5] (resp. [2]) it is proved that the logic E4 (resp. BN4) is determined
by the matrix ME4 (resp. MBN4). We end the section by remarking some
theorems that will be useful in the completeness proof.

PROPOSITION 2.8 (Some theorems of E4). The following are provable in E4

Ti. [AN(A— B)]— B

T2. A— —-—A

T8, - —A— A

T4. =(AV B) <> (HAN-B)

T5. -(ANB) < (nAV -B)

T6. (A — B) = (-B — —A)

T7. =B — [-AV (-A — B)]

T8. A— [BV (A — B)]

T9. ["(A—=B)A-A] = A
T10. (AvV-B)V (A — B)
T11. [-(A— B)AB] — B

PrOOF: T1-T11 are verified by matrix ME4 (in case a tester is needed, the
reader can use that in [3]). O

3. A 2-set-up Routley-Meyer semantics for E4

In this section, E4 is endowed with a 2-set-up Routley-Meyer semantics
(RM-semantics). We begin by defining the concept of a model and related
notions.

DEFINITION 3.1 (2-set-up E4-models). Let * be an involutive unary opera-
tion defined on the set K. That is, for any x € K, x = z**, and let K be
a set that contains an element (labelled 0) as well as 0* and no other ele-
ments. A 2-set-up Ef-model (E4-model, for short) is a structure (K, R, F)
where R is a ternary relation on K defined as follows: if a,b,c € K, then
Rabe iff a = 0% or b = c. And E is a (valuation) relation from K to the
set of all wffs such that the following conditions (clauses) are satisfied for
every propositional variable p, wffs A, B and a € K :
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(i). aEporakp

(ii). aE ANB iffaE A and a E B

(iii). aF AV B iffaE A orak B

(iv). a = A— B iff for allb,c € K, (Rabc and bF A) = cF B
(v). a E-Aiffa* ¥ A

Next, the notions of truth in an E4-model, validity and semantic con-
sequence are defined.

DEFINITION 3.2 (Truth in a E4-model). A wff A is true in a E4-model iff
0 F A in this model.

DEFINITION 3.3 (E4-validity). A wff A is E4-valid (in symbols, Eg; A) iff
0F A in all E4-models.

DEFINITION 3.4 (Semantic E4-consequence). For any set of wffs T' and wff
A, TEy A (Ais a consequence of T in the E4-model M) iff 0OF AifOET
(OET iff 0F B for all Be€T). Then, I Eg; A (A is an Ej-consequence
of ) iff T Ep A for each E4-model M.

We note a couple of remarks and then prove a proposition and lemma
useful in the proof of soundness.

REMARK 3.5 (R in RM3 and in BN4). We note that Brady (cf. [2], p. 18
and p. 29) defines the ternary relation R in the 2-set-up Routley-Meyer
semantics for RM3 and BN/ as follows. For all a,b,c € K: Rabc iff a # 0
orb # 0 orc =0, in RM3; Rabc iff (a # 0 orb =¢) & J[a # 0*
or (b=0 & ¢ =0%)] in BN4. In other words, and supposing 0 # 0%,
R is the total ternary relation minus R000* in RMS3; and in BN/, R is
{R000, RO0O*0*, RO*00*}.

REMARK 3.6 (Ternary relations in K). Suppose 0 # 0*. Then, from the
definition of R (Definition 3.1), it follows that, for any Ej4-model M, the
following ternary relations are the only ones holding in M: (a) R0O00; (b)
RO*0*0*; (¢) RO*0*0; (d) RO*00*, (e) RO0*0* and (f) R0O*00. (Or, put in
other words, R is the total ternary relation minus RO00* and R00*0.)
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By Definition 3.1, we have 0 F —A iff 0* ¥ A. But we have also the
following proposition.

PROPOSITION 3.7 (0* E —A iff 0 ¥ A). For any Ej-model M and wff A,
0% £ —A iff 0 A.

ProOOF: Immediate by clause v in Definition 3.1 and the involutiveness of
x: 0% F A iff (clause v) 0** # A iff (x is involutive) 0 F A. O

LeMMA 3.8 (Entailment lemma). For any wffs A, B, Fg; A — B iff
(aF A= akF B, for all a € K) in all E{-models.

ProorF: (I) Suppose (1) Fgs A — B and (2) 0 F A (resp., 0" F A). By
Remark 3.6, (3) R000 (resp., R00*0*). So, (4) 0 E B (resp., 0" F B) by
applying clause iv (Definition 3.1) to 1, 2 and 3. (II) Suppose (1) a E A =
a E Bfor all a € K in any E4-model. Further, suppose (2) ROzy and x F A
for z,y € K. We have to consider only two cases, viz., R000 and R00*0* (cf.
Remark 3.6). But by clause iv (Definition 3.1), it is clear that Fg4 A — B
iff (RO00 & 0F A) = 0F B and (R00*0* & 0" F A) = 0" F B. Thus,
given R000 and 0 F A (resp., R0O0*0* and 0* E A), and the hypothesis 1,
we have 0 E B (resp., 0* E B), as it was required. O

THEOREM 3.9 (Soundness of E4). For any set of wffs T and wff A, if
T |_E4 A, then T’ ':E4 A.

PrOOF: (I) A €T. The proof is trivial.

(IT) The rules preserve E4-validity. If A has been derived by Adj, the
proof is trivial. So, let us consider the case when A has been derived by MP.
Suppose then I' Fgy B — A, ' Fgy B for some wif B. Further, suppose
0 ET. Then, (1) 0 F B — A and 0 F B. By Remark 3.6, (2) R000. So,
0 F A follows by applying clause iv to 1 and 2.

(IIT) The axioms A1-A15 are E4-valid. A few instances will suffice as an
illustration. We prove the E4-validity of A12-A15, the lesser known axioms
in relevant logics (A1-All are proved similarly; actually, similarly as they
are proved in standard general RM-semantics). The use of the Entailment
lemma will simplify the proofs.

A15 =A — [AV (A — B)] is E4-valid. We have to take into considera-
tion the following two cases. For an arbitrary E4-model, (i) 0 F -A = 0F
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AV (A — B) and (ii) 0* F ~A = 0" AV (A — B). Case (i): Suppose (1)
O0F—-A (ie,0°F A)but (2) 0F AV(A— B),ie,0F Aand 0¥ A — B.
By clause iv, we have (3) ROzy, £ A and y ¥ B for z,y € K. Then, either
(4) R000 or (5) R00*0* (cf. Remark 3.6). Suppose 4. Then 0 F A follows
by 3, contradicting 2. Now, suppose 5. Then, by 3, 0* E A, contradicting
1. Case (ii): Suppose (1) 0* F —A (i.e.,, 0 A) but (2) 0* ¥ AV (A — B),
ie, 0* ¥ A and 0" ¥ A — B. By clause iv, we have (3) R0*zy, x E A and
y ¥ B for x,y € K. We have to consider the four following alternatives:
(4) R0O*0*0*, (5) R0*0*0; (6) R0*00*, (7) R0O*00. But by using 3 similarly
as in case i, 4 and 5 are impossible by 2, and 6 and 7, by 1.

A1} [-(A — B)A(-AAB)] — (A — B) is E4-valid. We prove cases (i)
and (ii) for an arbitrary E4-model. Case (i): 0F =(A — B)A (-AAB) =
0F A — B. Suppose (1) 0F =(A — B) (ie., 0¥ A — B), 0 F -A (ie.,
0*F# A),0F B but (2) 0¥ A — B for wifs A, B. By 2, we have (3) ROzy,
xE Aand y ¥ B for 2,y € K. Then, either (4) R000 or (5) R00*0*. But
both 4 and 5 are impossible by using 1 and 3 similarly as in the proof of the
Ed4-validity of A15. Case (ii): 0* F =(A — B)A(-mAAB)=0"F A — B.
Suppose (1) 0* F =(A — B) (ie., 0¥ A — B), 0" F =A (i.e, 0¥ A) and
0*E Bbut (2) 0*¥ A — B. Byl (0¥ A — B), we have ROzy, x F A
and y ¥ B for z,y € K, whence (3) R000, 0 E A and 0¥ B or (4) R00*0*,
0* E A and 0" ¥ B. But 3 and 4 are impossible by 1 (0¥ A and 0* F B).

The E4-validity of A12 is proved similarly as in the case of A14. So,
we conclude the proof of the soundness theorem by proving A13 E4-valid.

A13 (A — B)V (A — B) is E{-valid. Suppose for an E4-model, (1)
0F (A— B)V—(A— B). Then, (2) 0¥ A — B and (3) 0¥ -(A — B)
(i.e., 0" E A — B). By 2, we have (4) ROzy, © E A and y ¥ B for some
x,y € K. Now, either (5) R000, 0 F A and 0 ¥ B or (6) R00*0*, 0* F A
and 0* ¥ B. Suppose 5. We have (7) R0*00 (cf. Remark 3.6). Then,
0 F B follows (contradicting 5) by applying clause iv to 3 (0* F A — B),
5 (0F A) and 7. Suppose 6, on the other hand. We have (8) R0*0*0* (cf.
Remark 3.6). Then, 0* £ B follows (contradicting 6) by applying clause iv
to3 (0*FA— B),6 (0" E A) and 8. O

Any E4-model in which 0 = 0* verifies, of course, all classical two-
valued propositional tautologies. But this is not necessarily so in models
where 0 # 0*. Let us propose some examples. (The connectives of E4 are
matched in the obvious way with the connectives of classical propositional
logic.)
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AV =A is not E4-valid. Consider an E4-model in which 0 £ 0* and for
a propositional variable pg, 0 ¥ py and 0* F pg. Then, 0 ¥ —p; and thus,
0¥ pr V —pk.

AV(A — B) is not E4-valid. Consider an E4-model in which 0 # 0* and
for propositional variables p;, pi, (i # k) we have 0 ¥ p;, 0* E p; and 0* ¥ py,
(it is indifferent how py is evaluated in 0). Given R00*0*, 0 ¥ p; — px.
Thus, 0¥ p; V (pi — pr)-

A — (B — A) is not E4-valid. Consider an E4-model in which 0 # 0*
and for propositional variables p;, py (i # k) we have 0 E p;, 0* ¥ p;, 0* E py,
(it is indifferent how py is evaluated in 0). Given R00*0*, 0 ¥ pr — p;.
Thus, 0 ¥ p; — (pr — pi) (cf. Lemma 3.8).

A — [(A — B) — B] is not E4-valid. Consider an E4-model in which
0 # 0* and for propositional variables p;, px. (i # k) we have 0 ¥ p;, 0% E p;,
0 ¥ pr and 0* F pi. Given R000, R00*0*, 0 ¥ p; and 0* F pg, we have
(1) 0 E p; = p. By RO*00 and 0 ¥ py, (2) 0% ¥ (p;i —pr) = pi- By 2,0* E p;
and the Entailment lemma (Lemma 3.8), 0 ¥ p; — [(pi — pr) — Dkl

In view of these examples it will be natural to ask why not to require 0 #
0* in Definition 3.1. The answer is that in the canonical model construction
defined in the next section, the crucial regular prime theory 7 and its
x-image 7 * do not seem to be proved equivalent and non-equivalent either.

4. Completeness of E4

We prove the strong completeness of E4 w.r.t. the semantics defined in the
previous section by using a canonical model construction. We proceed as
follows. Let I' be a set of wifs and A a wif such that I" ¥g4 A. Then, we
show that there is a regular prime theory 7 (the notions are defined below)
such that I' € 7 and A ¢ 7. This means that A is not a consequence of
I' from a canonical point of view to be defined, whence I'" #g4 A follows.
We begin by defining the notion of a theory and the classes of theories of
interest in the present paper.

DEFINITION 4.1 (E4-theories). An E4-theory (theory, for short) is a set of
formulas closed under Adjunction (Adj) and E4-entailment (Ej-ent). That
18, a 1s a E4-theory if whenever A, B € a, then AN\ B € a; and if whenever
A — B is a theorem of Ef and A € a, B € a.



102 G. Robles, S. M. Lépez, J. M. Blanco, and M. M. Recio, J. R. Paradela

DEFINITION 4.2 (Classes of E4-theories). Let a be an E4-theory. We set
(1) a is prime iff whenever AV B € a, then A € a or B € a; (2) a is
reqular iff a contains all theorems of E4.

The standard concept of “set of consequences of a set of wifs” will be
useful.

DEFINITION 4.3 (The set Cnl'[E4]). The set of consequences in E4 of a
set of wffs T' (in symbols CnI'[E4]) is defined as follows: CnI'[E4] = {A |
I'tp, A} (cf. Definitions 2.2 and 2.3).

We note the following corollary:

COROLLARY 4.4 (CnI'[E4] is a regular theory). For any I', CnI'[E4] is
a reqular theory.

PROOF: It is immediate by Definitions 2.2, 2.3 and 4.3. Clearly, CnI'[E4]
is closed under Adj and MP and contains all theorems of E4. Then, it is
closed under E4-ent. O

Next, we build the regular prime theory 7 upon which the canonical
model is defined. But firstly we recall the primeness lemma.

LEMMA 4.5 (Extension to prime theories). Let a be a theory and A a wff

such that A ¢ a. Then, there is a prime theory x such that a C z and
Aé¢x.

Proor: Cf. [6], Chapter 4, where it is shown how to proceed in an ample
class of logics including Routley and Meyer’s basic positive logic By by
either applying the Extension lemma or Kuratowski-Zorn’s lemma (notice
that, of course, E4 includes B). O

PROPOSITION 4.6 (The building of 7). Let T be a set of wffs and A a
wff such that I' ¥g; A. Then, there is a regular prime theory T such that
FCTand A¢T.

PRrOOF: For I" and A, suppose I' ¥g4 A. Then, A ¢ CnI'[E4]. By Corollary
4.4, CnI'[E4] is a regular theory. Hence, by Lemma 4.5, there is a (regular)
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prime theory 7 such that CnI'E4] C 7 and A ¢ 7. Thus, I' C 7 and
A ¢ T, since I' C CnI'[E4], as it was required. O

The canonical model is defined upon the theory 7 just built as follows.
In the first place, we define some preliminary notions.

DEFINITION 4.7 (RF %P and EF). Let KT be the set of all prime theories.
Then, RT ¥ and =T are defined as follows for all a,b,c € K¥ and wffs
A,B: (i) RPabc iff (A— B€a & A€b) = Bec; (i) a* ={A|-A¢
a}; (iii) a EY A iff A € a.

Now, we show that % is an operation on K*.

PROPOSITION 4.8 (x! is an operation on K*). (1) Let a be a prime theory.
Then, a*’ is a prime theory as well. (2) Moreover, for any A, ~A € a*’

iff A¢a.

Proor: Cf. [6], Chapter 4. (1) a*" is closed under Ed-ent by T6; o’ is
closed under Adj by T4; a*’ s prime by T5. (2) By T2 and T3. O]

Notice that a** is not necessarily regular if a is regular. Also, remark
that 7+ is a prime theory. We can now define the canonical model.

DEFINITION 4.9 (The canonical E4-model). The canonical E4-model is the
structure (K€, x¢, R® E®) where K€ = {T, T*c}, T is the regular prime
theory built in Proposition 4.6 and x©, R and EC are the restrictions of
P RP and EPto K©. (Notice that for any set of wifs T and wff A, T ¢ A
iff TEC Aif TECT (TECT iff T EC B for each BET).)

We need to prove that the canonical E4-model is indeed an E4-model.
This requires proving a series of preliminary facts. We begin by showing
that + is an involution in K. (In the rest of the section the superscripts
P and C' are generally omitted above * and R when there is no risk of
confusion.)

PROPOSITION 4.10 (a = a**). For anya € K¥', a = ar "

PrOOF: Immediate by T2, T3 and closure of a under E4-ent. O
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As a corollary of Proposition 4.10, we have:

COROLLARY 4.11 (x¢ is an involutive operation on K¢). The operation

. . . : . c
¢ is an involutive operation on K€. That is, for any a € K¢, a* € K¢

%O %€

*
and, moreover, a = a

ProOOF: Immediate by Proposition 4.8 and Proposition 4.10. O

Thus, in order to prove that the canonical model is a model, it remains
to prove that both the ternary relation R and the (valuation) clauses in
Definition 3.1 hold canonically.

LEMMA 4.12 (R holds canonically). Ifa,b,c € K€, then R¢abc iff a = T
orb=-c.

PROOF: Given Corollary 4.11, it suffices to prove that the following rela-
tions hold: (a) RTTT; (b) RT*T*T*; (¢) RT*T*T; (d) RT*TT";
(e) RTT*T*; (f) RT*TT.

(a) RTTT: For wifs A, B, suppose A — B € T and A € T. Then,
B e T follows immediately by T1 ([AA (A — B)] — B).

(b) RT*T*T*: For wifs A, B, suppose (1) A - B € T*and A € T".
Then, (2) (A — B) ¢ T and A ¢ T. By T7 (-B — [-AV (-4 — B)]),
2 and the primeness of T, =B ¢ T, whence B € T*, as it was required.

(¢) RT*T*T: For wifs A, B, suppose (1) A — B € T* and A € T*.
And, for reductio, (2) B ¢ T. We have (3) =B € T*. Now Al2 ([(A —
B) A (AAN-B)] = —(A — B)) is applied and we have (4) -(A — B) € T*
by 1 and 3, whence (5) A — B ¢ T by Proposition 4.8(2). Next, Al3
((A— B)V —(A — B)) is applied and we get (6) =(A — B) € T. Finally,
again by Proposition 4.8(2) and 6, we have (7) A— B ¢ T*. But 1 and 7
contradict each other.

(d) RT*TT™: The proof is similar to that of case ¢ by using again A12
and A13.

(e) RTT*T*: For wifs A, B, suppose A — B € T and A € T*. Then,
-A¢T.ByT6 ((A— B)— (=B — —A)) we have =B — = A € T whence
—-B ¢ T and, finally, B € T*, as it was to be proved.

(f) RT*TT: For wifs A, B, suppose (1) A— B € T* and A€ T. By
T8 (A — [BV—(A — B)]) wehave BV-(A — B) € T. But ~(A— B) ¢ T
follows by 1. So, we have B € T by the primeness of 7. O
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LEMMA 4.13 (Clauses (i)-(v) hold canonically). Clauses (i)-(v) in Defini-
tion 3.1 are satisfied by the canonical Ej-model.

PROOF: (Cf. Definitions 4.7, 4.9.) (i) is immediate; (ii) follows by A2 and
closure of theories under Adj; (iii) is proved by A4 and primeness of 7 and
T*; and (v) and (iv) (from left to right) are immediate by Definition 4.9.
So, let us prove (iv) from right to left.

(I) Suppose A — B ¢ T for wifs A, B. We have to prove (RTTT &
AeT & B¢T)or (RTT'T* & AcT* & B ¢ T*). Suppose, for
reductio, that this is not the case. Then, at least one of the following four
alternatives is obtained: (i) A¢ T & A¢T* (i) A¢T & Be T (iii)
BeT & A¢T*and (iv) BeT & B e T* We show that each one
of these four alternatives is untenable thus proving case I. Firstly, notice
that, given (a) A — B ¢ T, by A13 (A — B) V—(A — B)), we have (b)
—(A — B) € T. Next, we examine, i-iv.

(i)A¢T & A¢T* Then (1) A e T. By T9 ([-(A — B) A—-A4] —
A), band 1, (2) A€ T. But 2 contradicts i.

(i) A¢T & BeT* Then (1) -B ¢ T. By T10, (AV-B)V (A —
B) € T. Thus, (2) A€ T by a and 1. But 2 contradicts ii.

(iii) BeT & A ¢ T* Then (1) -A € T. By Al4, ([-(4 —
B) A (=AAB)]— (A— B)), b, iii and 1, we have (2) A — B € 7. But 2
contradicts a.

(ivy BeT & B € T* Then (1) =B ¢ T. By T11, ([-(A —
B) A B] = =B), b, and iv, we get (2) =B € T. But 2 contradicts 1.

(IT) Suppose A — B ¢ T* for wifs A, B. Given RT*T*T*, RT*T*T,
RT*TT* and RT*TT, we have to prove: (A€ T* & B¢ T*)or (AeT*
& B¢T)or (AeT & B¢T*)or (AeT & B ¢ T). For reductio
suppose that this is not the case. We then are given 16 alternatives. But
it is easy to check that in each one of these 16 alternatives we have (i)
A¢T & A¢ T*and/or (ii) Be€T & B e T* Butiand iiare proved
untenable as in subcases i and iv of case L. O

We can now prove completeness, once shown that the canonical E4-
model is an E4-model.

LEMMA 4.14 (The canonical E4-model is an E4-model). The canonical E/-
model is indeed an Ejf-model.
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PrOOF: By Corollary 4.11, ¢ is an involutive operation on K; by Lemma
4.12, the ternary relation R® holds canonically, and, finally, by Lemma
4.13, the (valuation) classes i-v hold when interpreted canonically. O

THEOREM 4.15 (Completeness of E4). For any set of wffs T' and wff A, if
I ':E4 A, then T’ FE4 A.

PRrROOF: Suppose I Fgqy A for I' and A. By Proposition 4.6, there is a
regular prime theory 7 such that ' C 7 and A ¢ T. Then, the canonical
E4-model is defined upon 7T as shown in Definition 4.9. By Lemma 4.14,
the canonical E4-model is an E4-model. Then, I' ¢ A since 7 EC T but
T #C A. Thus, I' ¥4 A by Definition 3.4. O

5. The necessity operator

In [5], it is shown that a necessity operator can be introduced in E4 via the
definition 0JA =4 (A — A) — A, similarly as in Anderson and Belnap’s
logic of entailment (cf. [1], §4.3 and references therein; the possibility oper-
ator is defined in the customary way: ¢ A =4 —0—-A). The resulting truth
tables are (cf. section 2):

[0 1 2 3 [0 1 2 3
Ojo 0o 2 3 00 3 2 3

Then O could be interpreted in E4-models by introducing a binary
accessibility relation in the usual way. This relation S is reflexive (for all
x € K, Sxx) and, in addition, S0*0 holds but S00* does not. The clause
for O is , of course:

(vi). Foralla € K, aFOAiff forallb e K, Sab=0bF A

‘We prove:

PROPOSITION 5.1 (Fgy (A — A) — Aiff SOz = x F A). For any E4-model
and wff A, 0 (A — A) = A iff for any x € K, if SOx, then z E A.

ProOOF: Let M be any E4-model and A be a wif. Subcase (i). Suppose
(1)0F (A — A) = Aand (2) SOz, for any x € K. We have to consider only
the case (3) S00. (Recall that S00* does not hold.) By Remark 3.6(a),
(4) R0O00; on the other hand we obviously have (5) 0 F A — A. Then,
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(6) 0 F A follows (by 1, 4 and 5), as it was required. Subcase (ii). Suppose
(1) S0z = a2 F A (forany v € K) and (2) t F A — A (for any z € K). We
have to prove x F A. By reflexivity of S, (3) S00. Then, (4) 0 F A follows
by 1 and 3. So, if x is 0, subcase ii is proved. Let then x be 0*. By Remark
3.6(d), (5) R0*00*. Thus, we get (6) 0* F A by 2, 4 and 5. O

This necessity operator could be introduced (independently of the def-
inition via —) by means of the following axioms and rules:

Al6. 0A — A
AL7. (DA A-OA) — A
Al8. AV -0A

Necessitation (Nec). A = OA
Disjunctive Necessitation (dNec). BV A = BV IOA

Given soundness and completeness of E4, we sketch a proof of the
soundness and completeness of E4 plus axioms A16, A17, A18, Nec and
dNec. (Let us refer by E4g to this expansion of E4.)

THEOREM 5.2 (Soundness of Edm). For any set of wffs I' and wff A, if
r |_E4D A, then T’ ':E4D A.

PRrOOF: (Sketch) A16 OA — A is E4q-valid: Case (i) 0OFOA=0F A
and case (ii) 0* F A = 0* F A are immediate by reflexivity of S.

A17 (DAN-OA) — —A is E{/g-valid: We prove cases (i) and (ii) for
an arbitrary E4-model. Case (i): 0 F DA A -0OA = 0 F =A. Suppose
(1) 0 FOA, 0 F -0A (ie.,, 0 ¥ OA) and (2) 0 ¥ -A (i.e, 0 E A).
By 1 (0* ¥ OA), we have (3) S0*z and = ¥ A for some z € K. Now,
x = 0" is impossible since 0* F A by 2. So, let us suppose (4) = = 0.
Then (5) S0*0 and 0 ¥ A by 3. But, by 1 (0 E JA) and reflexivity of S,
(6) 0 E A, contradicting 5.

Case (ii): 0* F DAA-OA = 0* E =A. Suppose (1) 0* £ OA, 0* F -0A
(i.e., 0¥ OA) and (2) 0" ¥ =A (i.e.,, 0 F A). By 1 (0¥ OA), we have (3)
S0z and x ¥ A for some x € K. But the only possibility is S00. Then,
0¥ A, by 3, contradicting 2

A18 AV -0A is E{g-valid: Suppose (1) 0¥ A and (2) 0¥ -0OA (i.e.,
0* EOA). Given S0*0, we have (3) 0 F A, contradicting 1.
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Finally, Nec and dNec are immediate by reflexivity of S. O

In what follows we turn to completeness.

THEOREM 5.3 (Completeness of E4dn). For any set of wffs T and wff A, if
r ':E4D A, then T' |_E4D A.

PROOF: (Sketch) In the first place, the notion of an E4g-theory is intro-
duced. An E4g-theory a is, as an E4-theory (cf. Definition 4.1), a set of
wifs closed under Adj and E4g-entailment. But, in addition, a is also closed
under Nec and dNec. That is, for wifs A, B, (i) if A € a, then JA € a; and
(ii) if BV A € a, then BV A € a. Then, dNec is essentially used in the
extension to prime theories lemma (Lemma 4.5) in order to build a regular
prime theory closed under Nec and dNec (consult [6], Chapter 4, pp. 336,
ff. on the use of disjunctive rules in building prime theories defined upon
logics closed under weak rules of derivation).

Next, we prove that the relation S and clause vi hold when interpreted
canonically, i.e., a F¢ OA (for all a € K¢ and wff A) is interpreted accord-
ing to Definition 4.9, and Sab (for all a,b € K©) is interpreted as follows:
SCab iff for any wif A, JA € a= A€ b.

(1) SCTT and SCT*T* are immediate by A16.

(2) SCT*T: Suppose OA € T* for wif A. Then, -(JA ¢ T and next
A € T follows by A18 and primeness of 7.

(3) For all a € K€, a FC DA iff for all b € K€, Sb = bE® A. The
canonical clause vi is immediate from left to right. So, let us prove it from
right to left.

(I) Suppose A ¢ T for wif A. We have to prove STT & A& T.
But this follows by closure of 7 under Nec, since if A € T, then JA € T.

(IT) Suppose (1) OA ¢ T* for wif A. We have to prove (ST*T* &
A¢T*)or (ST*T & A ¢ T). For reductio, suppose (2) A € T* (i.e.,
-A ¢ T)and (3) A€ T. Now, A — (-AV OA) is a theorem of E4q.
Then, by 2, 3 and this theorem we have (using in addition the primeness
of T), (4) A € T. By 1, (5) -OA € T follows. But by 4, 5 and A17
((HAAN-OA) — —A), we get (6) =A € T, contradicting 2. O
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