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The logic BN4 can be considered as the 4-valued logic of the relevant conditional

and the logic E4, as the 4-valued logic of (relevant) entailment. The aim of this
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E4 is strongly sound and complete w.r.t. this semantics.
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1. Introduction

Concerning the 2-set-up Routley-Meyer semantics he defined for the logic

RM3, Brady notes “the method of proof is fairly general and it is hoped that

other model structures can be axiomatized by appropriate modifications to

the proof” ([2], p. 9). The aim of this paper is to provide one of such model

structures: we endow the 4-valued logic of entailment E4 with a 2-set-up

Routley-Meyer semantics.

Brady’s logic BN4 can be viewed as the 4-valued logic of the relevant

conditional while the logic E4, introduced in [5], can be regarded as the

4-valued logic of (relevant) entailment. The logic BN4 was defined by

Brady in [2] and it can intuitively be described as a 4-valued extension

of contractionless relevant logic RW (that is, relevant logic R minus the

contraction axiom, i.e., [A → (A → B)] → (A → B)). On its part, E4 can

intuitively be described as a 4-valued extension of the logic of entailment
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E minus the reductio axiom, i.e., (A → ¬A) → ¬A. Thus, E4 is related to

BN4 in a similar way to which Anderson and Belnap’s logic of entailment

E is related to their logic of relevant conditional R (cf. [1] about these

logics).

According to Meyer et al., “BN4 is the correct logic for the 4-valued

situation where the extra values are to be interpreted in the both and

neither senses” ([4], p. 25). On the other hand, E4 can be viewed as the

“4-valued logic of relevant entailment” on the basis of the two following

facts: (1) E4 enjoys the “weak relevance property” that is characteristic

of such logics as R-mingle. This property reads as follows: if A → B is

a theorem, then either A and B share at least a propositional variable or

both ¬A and B are theorems (cf. [1], p. 417); (2) as it is the case with the

logic of entailment E (cf. [1], §4.3 and references therein), E4 encloses “a

theory of logical necessity” when the necessity operator is defined via the

conditional as follows: �A =df (A → A) → A (cf. section 5 below).

In [2], BN4 is endowed with both a bivalent Belnap-Dunn type seman-

tics and a 2-set-up Routley-Meyer ternary relational semantics. On the

other hand, in [5], a bivalent Belnap-Dunn type semantics is defined for

the logic E4, which, nevertheless, still lacks the latter kind of semantics

mentioned above. The aim of this paper is then to provide a 2-set-up

Routley-Meyer ternary relational semantics for E4.

The paper is organized as follows. In section 2, the logic E4 is de-

fined and some of its theorems to be used in the completeness proofs are

remarked. In section 3, the 2-set-up semantics is characterized and the

soundness theorem is proved. In section 4, E4 is proved complete w.r.t.

the semantics defined in the previous section. Finally, in section 5, the ne-

cessity operator referred to above is introduced in the models by a binary

accessibility relation in the customary way.

2. The logic E4

Firstly, we define the logical language and the notion of logic used in the

paper.

Definition 2.1 (Languages). The propositional language consists of a de-
numerable set of propositional variables p0, p1, ..., pn, .., and the following
connectives → (conditional), ∧ (conjunction), ∨ (disjunction), ¬ (nega-
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tion). The biconditional (↔) and the set of wffs are defined in the custom-
ary way. A,B etc. are metalinguistic variables.

Definition 2.2 (Logics). A logic S is a structure (L, ⊢S) where L is a
propositional language and ⊢S is a (proof-theoretical) consequence relation
defined on L by a set of axioms and a set of rules of derivation. The notions
of ‘proof’ and ‘theorem’ are understood as it is customary in Hilbert-style
axiomatic systems (Γ ⊢S A means that A is derivable from the set of wffs
Γ in S; and ⊢S A means that A is a theorem of S).

Next, the logic E4 is defined (cf. [5]):

Definition 2.3. The logic E4 is axiomatized with the following axioms and
rules of inference.

Axioms

A1. A → A

A2. (A ∧B) → A / (A ∧B) → B

A3. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

A4. A → (A ∨B) / B → (A ∨B)

A5. [(A → C) ∧ (B → C)] → [(A ∨B) → C]

A6. [A ∧ (B ∨ C)] → [(A ∧B) ∨ (A ∧ C)]

A7. (A → B) → [(B → C) → (A → C)]

A8. [A → (A → B)] → (A → B)

A9. [[(A → A) ∧ (B → B)] → C] → C

A10. (A → ¬B) → (B → ¬A)

A11. (¬A → B) → (¬B → A)

A12. [(A → B) ∧ (A ∧ ¬B)] → ¬(A → B)

A13. (A → B) ∨ ¬(A → B)

A14. [¬(A → B) ∧ (¬A ∧B)] → (A → B)

A15. ¬A → [A ∨ (A → B)]

Rules of derivation

Adjunction (Adj): A & B ⇒ A ∧B

Modus Ponens (MP): A & A → B ⇒ B
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We note the following remarks.

Remark 2.4 (The logic of entailmet E minus the reductio axiom). We
note that the logic of entailment E minus the reductio axiom (i.e., (A →
¬A) → ¬A) can be axiomatized with A1-A11, Adj and MP. Notice, on the
other hand, that although A12 and A13 are theorems of E, A14 and A15
are neither theorems of E nor of R.

Remark 2.5 (The logic BN4). Brady’s logic BN4 is axiomatized with the
following axioms: A1-A7, A10, A11 and A15 in Definition 2.3, and, in
addition: A → [(A → B) → B], (¬A∧B) → (A → B), (A∨¬B)∨(A → B)

and A ∨ [¬(A → B) → A]. The rules are Adj, MP and Disjunctive Modus
Ponens: C ∨ (A → B) & C ∨ A ⇒ C ∨ B (cf. [2] and [5]). Notice that
contractionless relevant logic R, RW, can be axiomatized with A1-A7, A10,
A11, A → [(A → B) → B], Adj and MP.

Next, we introduce the matrices MBN4 and ME4 upon which BN4 and

E4 are defined, respectively (cf. [2] and [5]).

Definition 2.6 (The matrix MBN4). The propositional language consists
of the connectives →, ∧, ∨ and ¬. The matrix MBN4 is the structure (V, D,
F) where (1) V is {0, 1, 2, 3}; (2) D = {3, 2}; (3) F = {f→, f∧, f∨, f¬} where
f→, f∧, f∨, f¬ are defined according to the following truth-tables.

→ 0 1 2 3

0 3 3 3 3

1 1 3 1 3

2 0 1 2 3

3 0 1 0 3

∧ 0 1 2 3

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3

1 1 1 3 3

2 2 3 2 3

3 3 3 3 3

¬
0 3

1 1

2 2

3 0

Definition 2.7 (The matrix E4). The propositional language is the same
as in MBN4. The matrix E4 is the structure (V, D, F) where V, D and F

are defined exactly as in MBN4 except for f→ which is defined according
to the following truth-table:

→ 0 1 2 3

0 3 3 3 3

1 0 2 0 3

2 0 0 2 3

3 0 0 0 3
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In [5] (resp. [2]) it is proved that the logic E4 (resp. BN4) is determined

by the matrix ME4 (resp. MBN4). We end the section by remarking some

theorems that will be useful in the completeness proof.

Proposition 2.8 (Some theorems of E4). The following are provable in E4

T1. [A ∧ (A → B)] → B

T2. A → ¬¬A

T3. ¬¬A → A

T4. ¬(A ∨B) ↔ (¬A ∧ ¬B)

T5. ¬(A ∧B) ↔ (¬A ∨ ¬B)

T6. (A → B) → (¬B → ¬A)

T7. ¬B → [¬A ∨ (¬A → B)]

T8. A → [B ∨ ¬(A → B)]

T9. [¬(A → B) ∧ ¬A] → A

T10. (A ∨ ¬B) ∨ (A → B)

T11. [¬(A → B) ∧B] → ¬B

Proof: T1-T11 are verified by matrix ME4 (in case a tester is needed, the

reader can use that in [3]).

3. A 2-set-up Routley-Meyer semantics for E4

In this section, E4 is endowed with a 2-set-up Routley-Meyer semantics

(RM-semantics). We begin by defining the concept of a model and related

notions.

Definition 3.1 (2-set-up E4-models). Let ∗ be an involutive unary opera-
tion defined on the set K. That is, for any x ∈ K, x = x∗∗, and let K be
a set that contains an element (labelled 0) as well as 0∗ and no other ele-
ments. A 2-set-up E4-model (E4-model, for short) is a structure (K, ∗,R,�)
where R is a ternary relation on K defined as follows: if a, b, c ∈ K, then
Rabc iff a = 0∗ or b = c. And � is a (valuation) relation from K to the
set of all wffs such that the following conditions (clauses) are satisfied for
every propositional variable p, wffs A,B and a ∈ K:
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(i). a � p or a 2 p

(ii). a � A ∧B iff a � A and a � B

(iii). a � A ∨B iff a � A or a � B

(iv). a � A → B iff for all b, c ∈ K, (Rabc and b � A) ⇒ c � B

(v). a � ¬A iff a∗ 2 A

Next, the notions of truth in an E4-model, validity and semantic con-

sequence are defined.

Definition 3.2 (Truth in a E4-model). A wff A is true in a E4-model iff
0 � A in this model.

Definition 3.3 (E4-validity). A wff A is E4-valid (in symbols, �E4 A) iff
0 � A in all E4-models.

Definition 3.4 (Semantic E4-consequence). For any set of wffs Γ and wff
A, Γ �M A (A is a consequence of Γ in the E4-model M) iff 0 � A if 0 � Γ

(0 � Γ iff 0 � B for all B ∈ Γ). Then, Γ �E4 A (A is an E4-consequence
of Γ) iff Γ �M A for each E4-model M.

We note a couple of remarks and then prove a proposition and lemma

useful in the proof of soundness.

Remark 3.5 (R in RM3 and in BN4). We note that Brady (cf. [2], p. 18
and p. 29) defines the ternary relation R in the 2-set-up Routley-Meyer
semantics for RM3 and BN4 as follows. For all a, b, c ∈ K: Rabc iff a 6= 0

or b 6= 0 or c = 0, in RM3; Rabc iff (a 6= 0 or b = c) & [a 6= 0∗

or (b = 0 & c = 0∗)] in BN4. In other words, and supposing 0 6= 0∗,
R is the total ternary relation minus R000∗ in RM3; and in BN4, R is
{R000, R00∗0∗, R0∗00∗}.

Remark 3.6 (Ternary relations in K). Suppose 0 6= 0∗. Then, from the
definition of R (Definition 3.1), it follows that, for any E4-model M, the
following ternary relations are the only ones holding in M: (a) R000; (b)
R0∗0∗0∗; (c) R0∗0∗0; (d) R0∗00∗, (e) R00∗0∗ and (f) R0∗00. (Or, put in
other words, R is the total ternary relation minus R000∗ and R00∗0.)
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By Definition 3.1, we have 0 � ¬A iff 0∗ 2 A. But we have also the

following proposition.

Proposition 3.7 (0∗ � ¬A iff 0 2 A). For any E4-model M and wff A,
0∗ � ¬A iff 0 2 A.

Proof: Immediate by clause v in Definition 3.1 and the involutiveness of

∗: 0∗ � ¬A iff (clause v) 0∗∗ 2 A iff (∗ is involutive) 0 2 A.

Lemma 3.8 (Entailment lemma). For any wffs A, B, �E4 A → B iff
(a � A ⇒ a � B, for all a ∈ K) in all E4-models.

Proof: (I) Suppose (1) �E4 A → B and (2) 0 � A (resp., 0∗ � A). By

Remark 3.6, (3) R000 (resp., R00∗0∗). So, (4) 0 � B (resp., 0∗ � B) by

applying clause iv (Definition 3.1) to 1, 2 and 3. (II) Suppose (1) a � A ⇒
a � B for all a ∈ K in any E4-model. Further, suppose (2) R0xy and x � A
for x, y ∈ K. We have to consider only two cases, viz., R000 and R00∗0∗ (cf.

Remark 3.6). But by clause iv (Definition 3.1), it is clear that �E4 A → B
iff (R000 & 0 � A) ⇒ 0 � B and (R00∗0∗ & 0∗ � A) ⇒ 0∗ � B. Thus,

given R000 and 0 � A (resp., R00∗0∗ and 0∗ � A), and the hypothesis 1,

we have 0 � B (resp., 0∗ � B), as it was required.

Theorem 3.9 (Soundness of E4). For any set of wffs Γ and wff A, if
Γ ⊢E4 A, then Γ �E4 A.

Proof: (I) A ∈ Γ. The proof is trivial.

(II) The rules preserve E4-validity. If A has been derived by Adj, the

proof is trivial. So, let us consider the case when A has been derived by MP.

Suppose then Γ �E4 B → A, Γ �E4 B for some wff B. Further, suppose

0 � Γ. Then, (1) 0 � B → A and 0 � B. By Remark 3.6, (2) R000. So,

0 � A follows by applying clause iv to 1 and 2.

(III) The axioms A1-A15 are E4-valid. A few instances will suffice as an

illustration. We prove the E4-validity of A12-A15, the lesser known axioms

in relevant logics (A1-A11 are proved similarly; actually, similarly as they

are proved in standard general RM-semantics). The use of the Entailment

lemma will simplify the proofs.

A15 ¬A → [A∨ (A → B)] is E4-valid. We have to take into considera-

tion the following two cases. For an arbitrary E4-model, (i) 0 � ¬A ⇒ 0 �
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A∨ (A → B) and (ii) 0∗ � ¬A ⇒ 0∗ � A∨ (A → B). Case (i): Suppose (1)
0 � ¬A (i.e., 0∗ 2 A) but (2) 0 2 A ∨ (A → B), i.e., 0 2 A and 0 2 A → B.

By clause iv, we have (3) R0xy, x � A and y 2 B for x, y ∈ K. Then, either

(4) R000 or (5) R00∗0∗ (cf. Remark 3.6). Suppose 4. Then 0 � A follows

by 3, contradicting 2. Now, suppose 5. Then, by 3, 0∗ � A, contradicting
1. Case (ii): Suppose (1) 0∗ � ¬A (i.e., 0 2 A) but (2) 0∗ 2 A ∨ (A → B),

i.e., 0∗ 2 A and 0∗ 2 A → B. By clause iv, we have (3) R0∗xy, x � A and

y 2 B for x, y ∈ K. We have to consider the four following alternatives:

(4) R0∗0∗0∗, (5) R0∗0∗0; (6) R0∗00∗, (7) R0∗00. But by using 3 similarly

as in case i, 4 and 5 are impossible by 2, and 6 and 7, by 1.

A14 [¬(A → B)∧(¬A∧B)] → (A → B) is E4-valid. We prove cases (i)

and (ii) for an arbitrary E4-model. Case (i): 0 � ¬(A → B)∧ (¬A∧B) ⇒
0 � A → B. Suppose (1) 0 � ¬(A → B) (i.e., 0∗ 2 A → B), 0 � ¬A (i.e.,

0∗ 2 A), 0 � B but (2) 0 2 A → B for wffs A,B. By 2, we have (3) R0xy,
x � A and y 2 B for x, y ∈ K. Then, either (4) R000 or (5) R00∗0∗. But

both 4 and 5 are impossible by using 1 and 3 similarly as in the proof of the

E4-validity of A15. Case (ii): 0∗ � ¬(A → B) ∧ (¬A ∧B) ⇒ 0∗ � A → B.

Suppose (1) 0∗ � ¬(A → B) (i.e., 0 2 A → B), 0∗ � ¬A (i.e., 0 2 A) and

0∗ � B but (2) 0∗ 2 A → B. By 1 (0 2 A → B), we have R0xy, x � A
and y 2 B for x, y ∈ K, whence (3) R000, 0 � A and 0 2 B or (4) R00∗0∗,

0∗ � A and 0∗ 2 B. But 3 and 4 are impossible by 1 (0 2 A and 0∗ � B).

The E4-validity of A12 is proved similarly as in the case of A14. So,

we conclude the proof of the soundness theorem by proving A13 E4-valid.

A13 (A → B) ∨ ¬(A → B) is E4-valid. Suppose for an E4-model, (1)

0 2 (A → B) ∨ ¬(A → B). Then, (2) 0 2 A → B and (3) 0 2 ¬(A → B)

(i.e., 0∗ � A → B). By 2, we have (4) R0xy, x � A and y 2 B for some

x, y ∈ K. Now, either (5) R000, 0 � A and 0 2 B or (6) R00∗0∗, 0∗ � A
and 0∗ 2 B. Suppose 5. We have (7) R0∗00 (cf. Remark 3.6). Then,

0 � B follows (contradicting 5) by applying clause iv to 3 (0∗ � A → B),

5 (0 � A) and 7. Suppose 6, on the other hand. We have (8) R0∗0∗0∗ (cf.

Remark 3.6). Then, 0∗ � B follows (contradicting 6) by applying clause iv

to 3 (0∗ � A → B), 6 (0∗ � A) and 8.

Any E4-model in which 0 = 0∗ verifies, of course, all classical two-

valued propositional tautologies. But this is not necessarily so in models

where 0 6= 0∗. Let us propose some examples. (The connectives of E4 are

matched in the obvious way with the connectives of classical propositional

logic.)
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A∨¬A is not E4-valid. Consider an E4-model in which 0 6= 0∗ and for

a propositional variable pk, 0 2 pk and 0∗ � pk. Then, 0 2 ¬pk and thus,

0 2 pk ∨ ¬pk.
A∨(A → B) is not E4-valid. Consider an E4-model in which 0 6= 0∗ and

for propositional variables pi, pk (i 6= k) we have 0 2 pi, 0
∗
� pi and 0∗ 2 pk

(it is indifferent how pk is evaluated in 0). Given R00∗0∗, 0 2 pi → pk.
Thus, 0 2 pi ∨ (pi → pk).

A → (B → A) is not E4-valid. Consider an E4-model in which 0 6= 0∗

and for propositional variables pi, pk (i 6= k) we have 0 � pi, 0
∗
2 pi, 0

∗
� pk

(it is indifferent how pk is evaluated in 0). Given R00∗0∗, 0 2 pk → pi.
Thus, 0 2 pi → (pk → pi) (cf. Lemma 3.8).

A → [(A → B) → B] is not E4-valid. Consider an E4-model in which

0 6= 0∗ and for propositional variables pi, pk (i 6= k) we have 0 2 pi, 0
∗
� pi,

0 2 pk and 0∗ � pk. Given R000, R00∗0∗, 0 2 pi and 0∗ � pk, we have

(1) 0 � pi→pk. By R0∗00 and 0 2 pk, (2) 0
∗
2 (pi→pk)→pk. By 2, 0∗ � pi

and the Entailment lemma (Lemma 3.8), 0 2 pi → [(pi → pk) → pk].
In view of these examples it will be natural to ask why not to require 0 6=

0∗ in Definition 3.1. The answer is that in the canonical model construction

defined in the next section, the crucial regular prime theory T and its

∗-image T ∗ do not seem to be proved equivalent and non-equivalent either.

4. Completeness of E4

We prove the strong completeness of E4 w.r.t. the semantics defined in the

previous section by using a canonical model construction. We proceed as

follows. Let Γ be a set of wffs and A a wff such that Γ 0E4 A. Then, we

show that there is a regular prime theory T (the notions are defined below)

such that Γ ⊆ T and A /∈ T . This means that A is not a consequence of

Γ from a canonical point of view to be defined, whence Γ 2E4 A follows.

We begin by defining the notion of a theory and the classes of theories of

interest in the present paper.

Definition 4.1 (E4-theories). An E4-theory (theory, for short) is a set of
formulas closed under Adjunction (Adj) and E4-entailment (E4-ent). That
is, a is a E4-theory if whenever A,B ∈ a, then A∧B ∈ a; and if whenever
A → B is a theorem of E4 and A ∈ a, B ∈ a.
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Definition 4.2 (Classes of E4-theories). Let a be an E4-theory. We set
(1) a is prime iff whenever A ∨ B ∈ a, then A ∈ a or B ∈ a; (2) a is
regular iff a contains all theorems of E4.

The standard concept of “set of consequences of a set of wffs” will be

useful.

Definition 4.3 (The set CnΓ[E4]). The set of consequences in E4 of a
set of wffs Γ (in symbols CnΓ[E4]) is defined as follows: CnΓ[E4] = {A |
Γ ⊢E4 A} (cf. Definitions 2.2 and 2.3).

We note the following corollary:

Corollary 4.4 (CnΓ[E4] is a regular theory). For any Γ, CnΓ[E4] is
a regular theory.

Proof: It is immediate by Definitions 2.2, 2.3 and 4.3. Clearly, CnΓ[E4]

is closed under Adj and MP and contains all theorems of E4. Then, it is

closed under E4-ent.

Next, we build the regular prime theory T upon which the canonical

model is defined. But firstly we recall the primeness lemma.

Lemma 4.5 (Extension to prime theories). Let a be a theory and A a wff
such that A /∈ a. Then, there is a prime theory x such that a ⊆ x and
A /∈ x.

Proof: Cf. [6], Chapter 4, where it is shown how to proceed in an ample

class of logics including Routley and Meyer’s basic positive logic B+ by

either applying the Extension lemma or Kuratowski-Zorn’s lemma (notice

that, of course, E4 includes B+).

Proposition 4.6 (The building of T ). Let Γ be a set of wffs and A a
wff such that Γ 0E4 A. Then, there is a regular prime theory T such that
Γ ⊆ T and A /∈ T .

Proof: For Γ and A, suppose Γ 0E4 A. Then, A /∈ CnΓ[E4]. By Corollary

4.4, CnΓ[E4] is a regular theory. Hence, by Lemma 4.5, there is a (regular)



A 2-set-up Routley-Meyer Semantics for the 4-valued Relevant Logic E4 103

prime theory T such that CnΓ[E4] ⊆ T and A /∈ T . Thus, Γ ⊆ T and

A /∈ T , since Γ ⊆ CnΓ[E4], as it was required.

The canonical model is defined upon the theory T just built as follows.

In the first place, we define some preliminary notions.

Definition 4.7 (RP , ∗P and �
P ). Let KP be the set of all prime theories.

Then, RP , ∗P and �
P are defined as follows for all a, b, c ∈ KP and wffs

A,B: (i) RPabc iff (A → B ∈ a & A ∈ b) ⇒ B ∈ c; (ii) a∗
P

= {A | ¬A /∈
a}; (iii) a �

P A iff A ∈ a.

Now, we show that ∗P is an operation on KP .

Proposition 4.8 (∗P is an operation on KP ). (1) Let a be a prime theory.

Then, a∗
P

is a prime theory as well. (2) Moreover, for any A, ¬A ∈ a∗
P

iff A /∈ a.

Proof: Cf. [6], Chapter 4. (1) a∗
P

is closed under E4-ent by T6; a∗
P

is

closed under Adj by T4; a∗
P

is prime by T5. (2) By T2 and T3.

Notice that a∗
P

is not necessarily regular if a is regular. Also, remark

that T ∗P

is a prime theory. We can now define the canonical model.

Definition 4.9 (The canonical E4-model). The canonical E4-model is the

structure (KC , ∗C , RC ,�C) where KC = {T , T ∗C

}, T is the regular prime
theory built in Proposition 4.6 and ∗C , RC and �

C are the restrictions of
∗P , RP and �

P to KC . (Notice that for any set of wffs Γ and wff A, Γ �
C A

iff T �
C A if T �

C Γ (T �
C Γ iff T �

C B for each B ∈ Γ).)

We need to prove that the canonical E4-model is indeed an E4-model.

This requires proving a series of preliminary facts. We begin by showing

that ∗P is an involution in KP . (In the rest of the section the superscripts

P and C are generally omitted above ∗ and R when there is no risk of

confusion.)

Proposition 4.10 (a = a∗∗). For any a ∈ KP , a = a∗
P ∗P

.

Proof: Immediate by T2, T3 and closure of a under E4-ent.



104 G. Robles, S. M. López, J. M. Blanco, and M. M. Recio, J. R. Paradela

As a corollary of Proposition 4.10, we have:

Corollary 4.11 (∗C is an involutive operation on KC). The operation

∗C is an involutive operation on KC . That is, for any a ∈ KC , a∗
C

∈ KC

and, moreover, a = a∗
C∗C

.

Proof: Immediate by Proposition 4.8 and Proposition 4.10.

Thus, in order to prove that the canonical model is a model, it remains

to prove that both the ternary relation R and the (valuation) clauses in

Definition 3.1 hold canonically.

Lemma 4.12 (R holds canonically). If a, b, c ∈ KC , then RCabc iff a = T ∗C

or b = c.

Proof: Given Corollary 4.11, it suffices to prove that the following rela-

tions hold: (a) RT T T ; (b) RT ∗T ∗T ∗; (c) RT ∗T ∗T ; (d) RT ∗T T ∗;

(e) RT T ∗T ∗; (f) RT ∗T T .

(a) RT T T : For wffs A,B, suppose A → B ∈ T and A ∈ T . Then,

B ∈ T follows immediately by T1 ([A ∧ (A → B)] → B).

(b) RT ∗T ∗T ∗: For wffs A,B, suppose (1) A → B ∈ T ∗ and A ∈ T ∗.

Then, (2) ¬(A → B) /∈ T and ¬A /∈ T . By T7 (¬B → [¬A ∨ (¬A → B)]),

2 and the primeness of T , ¬B /∈ T , whence B ∈ T ∗, as it was required.

(c) RT ∗T ∗T : For wffs A,B, suppose (1) A → B ∈ T ∗ and A ∈ T ∗.

And, for reductio, (2) B /∈ T . We have (3) ¬B ∈ T ∗. Now A12 ([(A →
B) ∧ (A ∧ ¬B)] → ¬(A → B)) is applied and we have (4) ¬(A → B) ∈ T ∗

by 1 and 3, whence (5) A → B /∈ T by Proposition 4.8(2). Next, A13

((A → B) ∨ ¬(A → B)) is applied and we get (6) ¬(A → B) ∈ T . Finally,

again by Proposition 4.8(2) and 6, we have (7) A → B /∈ T ∗. But 1 and 7

contradict each other.

(d) RT ∗T T ∗: The proof is similar to that of case c by using again A12

and A13.

(e) RT T ∗T ∗: For wffs A,B, suppose A → B ∈ T and A ∈ T ∗. Then,

¬A /∈ T . By T6 ((A → B) → (¬B → ¬A)) we have ¬B → ¬A ∈ T whence

¬B /∈ T and, finally, B ∈ T ∗, as it was to be proved.

(f) RT ∗T T : For wffs A,B, suppose (1) A → B ∈ T ∗ and A ∈ T . By

T8 (A → [B∨¬(A → B)]) we have B∨¬(A → B) ∈ T . But ¬(A → B) /∈ T
follows by 1. So, we have B ∈ T by the primeness of T .



A 2-set-up Routley-Meyer Semantics for the 4-valued Relevant Logic E4 105

Lemma 4.13 (Clauses (i)-(v) hold canonically). Clauses (i)-(v) in Defini-
tion 3.1 are satisfied by the canonical E4-model.

Proof: (Cf. Definitions 4.7, 4.9.) (i) is immediate; (ii) follows by A2 and

closure of theories under Adj; (iii) is proved by A4 and primeness of T and

T ∗; and (v) and (iv) (from left to right) are immediate by Definition 4.9.

So, let us prove (iv) from right to left.

(I) Suppose A → B /∈ T for wffs A,B. We have to prove (RT T T &

A ∈ T & B /∈ T ) or (RT T ∗T ∗ & A ∈ T ∗ & B /∈ T ∗). Suppose, for

reductio, that this is not the case. Then, at least one of the following four

alternatives is obtained: (i) A /∈ T & A /∈ T ∗; (ii) A /∈ T & B ∈ T ∗; (iii)

B ∈ T & A /∈ T ∗ and (iv) B ∈ T & B ∈ T ∗. We show that each one

of these four alternatives is untenable thus proving case I. Firstly, notice

that, given (a) A → B /∈ T , by A13 ((A → B) ∨ ¬(A → B)), we have (b)

¬(A → B) ∈ T . Next, we examine, i-iv.

(i) A /∈ T & A /∈ T ∗: Then (1) ¬A ∈ T . By T9 ([¬(A → B)∧¬A] →
A), b and 1, (2) A ∈ T . But 2 contradicts i.

(ii) A /∈ T & B ∈ T ∗: Then (1) ¬B /∈ T . By T10, (A ∨ ¬B) ∨ (A →
B) ∈ T . Thus, (2) A ∈ T by a and 1. But 2 contradicts ii.

(iii) B ∈ T & A /∈ T ∗: Then (1) ¬A ∈ T . By A14, ([¬(A →
B) ∧ (¬A ∧B)] → (A → B)), b, iii and 1, we have (2) A → B ∈ T . But 2

contradicts a.

(iv) B ∈ T & B ∈ T ∗: Then (1) ¬B /∈ T . By T11, ([¬(A →
B) ∧B] → ¬B), b, and iv, we get (2) ¬B ∈ T . But 2 contradicts 1.

(II) Suppose A → B /∈ T ∗ for wffs A,B. Given RT ∗T ∗T ∗, RT ∗T ∗T ,

RT ∗T T ∗ and RT ∗T T , we have to prove: (A ∈ T ∗ & B /∈ T ∗) or (A ∈ T ∗

& B /∈ T ) or (A ∈ T & B /∈ T ∗) or (A ∈ T & B /∈ T ). For reductio

suppose that this is not the case. We then are given 16 alternatives. But

it is easy to check that in each one of these 16 alternatives we have (i)

A /∈ T & A /∈ T ∗ and/or (ii) B ∈ T & B ∈ T ∗. But i and ii are proved

untenable as in subcases i and iv of case I.

We can now prove completeness, once shown that the canonical E4-

model is an E4-model.

Lemma 4.14 (The canonical E4-model is an E4-model). The canonical E4-
model is indeed an E4-model.
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Proof: By Corollary 4.11, ∗C is an involutive operation onKC ; by Lemma

4.12, the ternary relation RC holds canonically, and, finally, by Lemma

4.13, the (valuation) classes i-v hold when interpreted canonically.

Theorem 4.15 (Completeness of E4). For any set of wffs Γ and wff A, if
Γ �E4 A, then Γ ⊢E4 A.

Proof: Suppose Γ 0E4 A for Γ and A. By Proposition 4.6, there is a

regular prime theory T such that Γ ⊆ T and A /∈ T . Then, the canonical

E4-model is defined upon T as shown in Definition 4.9. By Lemma 4.14,

the canonical E4-model is an E4-model. Then, Γ 2
C A since T �

C Γ but

T 2
C A. Thus, Γ 2E4 A by Definition 3.4.

5. The necessity operator

In [5], it is shown that a necessity operator can be introduced in E4 via the

definition �A =df (A → A) → A, similarly as in Anderson and Belnap’s

logic of entailment (cf. [1], §4.3 and references therein; the possibility oper-

ator is defined in the customary way: ♦A =df ¬�¬A). The resulting truth

tables are (cf. section 2):

0 1 2 3

� 0 0 2 3

0 1 2 3

♦ 0 3 2 3

Then � could be interpreted in E4-models by introducing a binary

accessibility relation in the usual way. This relation S is reflexive (for all

x ∈ K, Sxx) and, in addition, S0∗0 holds but S00∗ does not. The clause

for � is , of course:

(vi). For all a ∈ K, a � �A iff for all b ∈ K, Sab ⇒ b � A

We prove:

Proposition 5.1 (�E4 (A → A) → A iff S0x ⇒ x � A). For any E4-model
and wff A, 0 � (A → A) → A iff for any x ∈ K, if S0x, then x � A.

Proof: Let M be any E4-model and A be a wff. Subcase (i). Suppose

(1) 0 � (A → A) → A and (2) S0x, for any x ∈ K. We have to consider only

the case (3) S00. (Recall that S00∗ does not hold.) By Remark 3.6(a),

(4) R000; on the other hand we obviously have (5) 0 � A → A. Then,
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(6) 0 � A follows (by 1, 4 and 5), as it was required. Subcase (ii). Suppose

(1) S0x ⇒ x � A (for any x ∈ K) and (2) x � A → A (for any x ∈ K). We

have to prove x � A. By reflexivity of S, (3) S00. Then, (4) 0 � A follows

by 1 and 3. So, if x is 0, subcase ii is proved. Let then x be 0∗. By Remark

3.6(d), (5) R0∗00∗. Thus, we get (6) 0∗ � A by 2, 4 and 5.

This necessity operator could be introduced (independently of the def-

inition via →) by means of the following axioms and rules:

A16. �A → A

A17. (�A ∧ ¬�A) → ¬A

A18. A ∨ ¬�A

Necessitation (Nec). A ⇒ �A

Disjunctive Necessitation (dNec). B ∨A ⇒ B ∨�A

Given soundness and completeness of E4, we sketch a proof of the

soundness and completeness of E4 plus axioms A16, A17, A18, Nec and

dNec. (Let us refer by E4� to this expansion of E4.)

Theorem 5.2 (Soundness of E4�). For any set of wffs Γ and wff A, if
Γ ⊢E4�

A, then Γ �E4�
A.

Proof: (Sketch) A16 �A → A is E4�-valid : Case (i) 0 � �A ⇒ 0 � A
and case (ii) 0∗ � �A ⇒ 0∗ � A are immediate by reflexivity of S.

A17 (�A ∧ ¬�A) → ¬A is E4�-valid : We prove cases (i) and (ii) for

an arbitrary E4-model. Case (i): 0 � �A ∧ ¬�A ⇒ 0 � ¬A. Suppose

(1) 0 � �A, 0 � ¬�A (i.e., 0∗ 2 �A) and (2) 0 2 ¬A (i.e., 0∗ � A).
By 1 (0∗ 2 �A), we have (3) S0∗x and x 2 A for some x ∈ K. Now,

x = 0∗ is impossible since 0∗ � A by 2. So, let us suppose (4) x = 0.

Then (5) S0∗0 and 0 2 A by 3. But, by 1 (0 � �A) and reflexivity of S,
(6) 0 � A, contradicting 5.

Case (ii): 0∗ � �A∧¬�A ⇒ 0∗ � ¬A. Suppose (1) 0∗ � �A, 0∗ � ¬�A
(i.e., 0 2 �A) and (2) 0∗ 2 ¬A (i.e., 0 � A). By 1 (0 2 �A), we have (3)

S0x and x 2 A for some x ∈ K. But the only possibility is S00. Then,

0 2 A, by 3, contradicting 2

A18 A∨¬�A is E4�-valid : Suppose (1) 0 2 A and (2) 0 2 ¬�A (i.e.,

0∗ � �A). Given S0∗0, we have (3) 0 � A, contradicting 1.
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Finally, Nec and dNec are immediate by reflexivity of S.

In what follows we turn to completeness.

Theorem 5.3 (Completeness of E4�). For any set of wffs Γ and wff A, if
Γ �E4�

A, then Γ ⊢E4�
A.

Proof: (Sketch) In the first place, the notion of an E4�-theory is intro-

duced. An E4�-theory a is, as an E4-theory (cf. Definition 4.1), a set of

wffs closed under Adj and E4�-entailment. But, in addition, a is also closed

under Nec and dNec. That is, for wffs A,B, (i) if A ∈ a, then �A ∈ a; and
(ii) if B ∨ A ∈ a, then B ∨ �A ∈ a. Then, dNec is essentially used in the

extension to prime theories lemma (Lemma 4.5) in order to build a regular

prime theory closed under Nec and dNec (consult [6], Chapter 4, pp. 336,

ff. on the use of disjunctive rules in building prime theories defined upon

logics closed under weak rules of derivation).

Next, we prove that the relation S and clause vi hold when interpreted

canonically, i.e., a �
C
�A (for all a ∈ KC and wff A) is interpreted accord-

ing to Definition 4.9, and SCab (for all a, b ∈ KC) is interpreted as follows:

SCab iff for any wff A, �A ∈ a ⇒ A ∈ b.
(1) SCT T and SCT ∗T ∗ are immediate by A16.

(2) SCT ∗T : Suppose �A ∈ T ∗ for wff A. Then, ¬�A /∈ T and next

A ∈ T follows by A18 and primeness of T .

(3) For all a ∈ KC , a �
C
�A iff for all b ∈ KC , SCab ⇒ b �C A. The

canonical clause vi is immediate from left to right. So, let us prove it from

right to left.

(I) Suppose �A /∈ T for wff A. We have to prove ST T & A /∈ T .

But this follows by closure of T under Nec, since if A ∈ T , then �A ∈ T .

(II) Suppose (1) �A /∈ T ∗ for wff A. We have to prove (ST ∗T ∗ &

A /∈ T ∗) or (ST ∗T & A /∈ T ). For reductio, suppose (2) A ∈ T ∗ (i.e.,

¬A /∈ T ) and (3) A ∈ T . Now, A → (¬A ∨ �A) is a theorem of E4�.

Then, by 2, 3 and this theorem we have (using in addition the primeness

of T ), (4) �A ∈ T . By 1, (5) ¬�A ∈ T follows. But by 4, 5 and A17

((�A ∧ ¬�A) → ¬A), we get (6) ¬A ∈ T , contradicting 2.
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