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Abstract

Reference [12] introduced a novel formula to formula translation tool (“formula-

tors”) that enables syntactic metatheoretical investigations of first-order modal

logics, bypassing a need to convert them first into Gentzen style logics in order to

rely on cut elimination and the subformula property. In fact, the formulator tool,

as was already demonstrated in loc. cit., is applicable even to the metatheoretical

study of logics such as QGL, where cut elimination is (provably, [2]) unavailable.

This paper applies the formulator approach to show the independence of

the axiom schema �A → �∀xA of the logics M3 and ML3 of [17, 18, 11, 13].

This leads to the conclusion that the two logics obtained by removing this ax-

iom are incomplete, both with respect to their natural Kripke structures and to

arithmetical interpretations. In particular, the so modified ML3 is, similarly to

QGL, an arithmetically incomplete first-order extension of GL, but, unlike QGL,

all its theorems have cut free proofs. We also establish here, via formulators,

a stronger version of the disjunction property for GL and QGL without going

through Gentzen versions of these logics (compare with the more complex proofs

in [2, 8]).
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1. Introduction

Cut elimination is a standard proof-theoretic tool for propositional and

first-order logics that are defined as Gentzen systems. The tool is also

applicable to Hilbert style logics through a process of Gentzenisation of

the logic, that is, introducing a provably equivalent sequent calculus for the
original logic. Assuming that said Gentzenisation admits cut elimination,

one may use the subformula property associated with this tool and derive

metatheoretical results of the original Hilbert logic syntactically.

The point of departure of the present article is [12] where formulae

of a Hilbert style modal logic L are translated syntactically into formulae

over the same language, in a manner that the translations are provable

in L if the pre-images are. As in loc. cit. we will call these translations

“formulators”.

By a judicious choice of the formulator mapping one can metaprove

positive and negative results of the types “such and such a rule is, or is

not, admissible in logic L”. This approach works directly on the original

Hilbert style logic and is much simpler than the Gentzenisation approach,

as was illustrated in [12] and is further exemplified here. The method is

applicable toward simplifying old proofs but also toward discovering new

results, such as the independence results (and the corollary incompleteness

results) proved in the present article. It is important to note that the

formulator method is applicable even if the Gentzenisation of the logic

under study does not admit cut elimination, as is the case with the well

known QGL.

The present article promotes the usefulness of the formulator approach

further, by proving:

• That the axiom schema �A → �∀xA of M3 and ML3 is not redun-

dant in either logic, and, as a corollary, that the two logics obtained
by removing this axiom are incomplete with respect to their natural
Kripke structures and are also arithmetically incomplete.

• A strong version of the disjunction property for GL and QGL as

a corollary of a result in [12], thus establishing said property without

the benefit of Gentzenisation (contrast with [2, 8]).

The two logics M3 and ML3 were originally developed in [17, 13] the

former as a modal first-order extension of K4 and the latter as a common

extension of GL and M3 (see Definitions 2.1 and 2.2).
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The motivation for introducing M3 in loc. cit. was to obtain a logic that

acts as a provability logic for pure classical first-order logic in the sense that

the conservation theorem holds, which in its simplest form states: “For all

classical formulae A and B, we have A ⊢ B classically iff �A → �B
is provable modally”, thus formalising the classical informal “⊢” via the

modal box �. This theorem was proved model-theoretically in [17, 18] and

proof-theoretically in [11]. Since we have ∀A ⊢ A and A ⊢ ∀A classically,

where “∀A” represents the universal closure of A (see Section 2 for the exact

definition), we see that ⊢ is “blind” to free variables. Correspondingly,

given that the conservation theorem was the design criterion for M3, � in

the language of this logic must be blind to free variables as well: �A is

constructed so that it is a sentence for all A (see the syntactic details in

Section 2 and semantics in Section 5).

ML3 was introduced with two criteria in mind: one, to be a possi-

ble candidate for a first-order modal provability logic, for (arithmetised)
provability in PA this time, in the style of GL. Two, like M3, to remain

a provability logic for classical pure first-order logic. The former goal ex-

plains why it was chosen to be an extension of GL, just as QGL is. The

conservation theorem was proved for ML3 in [13] verifying that the second

design criterion was met. On the other hand, a nearly identical logic, the

QGLb, was introduced in [20] and was proved to be arithmetically com-

plete. We will endeavour to establish in a future publication the conjecture

that ML3 is arithmetically complete as well, since the two logics only differ

in that necessitation is admissible in ML3 but primary in QGLb.

It should be noted that the provability of the schema �A → �∀xA in

both M3 and ML3 was dictated in [17, 18, 13] by the design requirement

to have the conservation theorem while it was also adopted in [20] with

no explicit rationale. Indeed, given that we have A ⊢ ∀xA classically,

conservation requires that the schema is provable in each of these logics.

To meet this it was sufficient to add the schema as an axiom. The present

article now shows that it was also necessary.

The import of ML3 itself – besides being a provability logic for classical

pure predicate logic – is in what it “can do” that QGL cannot:
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• Its Gentzenisation admits cut elimination,2 while that of QGL does

not [2].

• ML3 is semantically complete with respect to finite, transitive, reverse

well-founded Kripke structures – just like GL is – while QGL is not

complete with respect to any class of Kripke structures [7].

Is the restriction that our �A be closed too strong? No, because on

one hand, it is a natural requirement toward obtaining the conservation

theorem that allows ML3 (and M3) to efficiently simulate classical pure

first-order proofs, especially when the latter are formulated in the Equa-

tional style [17, 18]. On the other hand, we prove in this paper that the

logic ML2 – that is, ML3 with the axiom schema �A→ �∀xA removed – is

arithmetically incomplete and therefore the first order structure has added

a substantial layer of complexity making this logic behave differently, vis

a vis arithmetical completeness, than its propositional restriction, GL.

This incompleteness result is significant since ML2 is essentially the

“same” logic as QGL (if we set aside the difference in the syntax and

semantics3 of �A between the two): they both extend GL by adding first-

order structure but do so without adding any axioms beyond those needed
by the classical pure predicate calculus (without equality); and they both

are arithmetically incomplete. Yet, there is also a marked dissimilarity

between the two: since ML2 is a sublogic of ML3, there is a cut free proof

within the Gentzen style logic GLTS [13],4 for every theorem of ML2. No

similar result holds for QGL [2].

Thus ML2 provides an example of a first-order arithmetically incom-

plete extension of GL, all of whose theorems have proofs in a companion

(but not equivalent) cut free Gentzen logic.

2. The first-order modal logics M3, ML3 and QGL

Our first-order modal alphabet uses the connectives →,⊥, ∀ and � to build

formulae. The remaining familiar connectives are formed via definitions.

The alphabet contains no constant or function symbols but has predicates,

2Strictly speaking, the Gentzenisation introduced in [13] is cut free, but was proved
that the cut rule is admissible in it.

3Semantics of QGL are covered in [7] and are not needed for the results of this paper.
4In loc. cit. GLTS is cut free by definition, but provably the cut rule is admissible. Of

course, GLTS is not equivalent to ML2, since the former can also prove �A → �∀xA [13].



A New Arithmetically Incomplete First-Order Extension... 21

φ, ψ (with or without primes or subscripts), not including an equality pred-

icate. As in [10], we employ two types of object variables: free, denoted by

a, b, c with or without primes or subscripts, and bound, denoted by x, y, z
with or without primes or subscripts. Thus, as was carefully defined in [11],

the metalogical abbreviation “∀(x, a)A”, or simply “∀xA” if the free vari-

able a is understood from the context, stands for the expression ∀xA[a := x]
– where “a := x” indicates substitution from right to left – formed by first

replacing all the a by the bound variable x and then by prepending the

string ∀x to the so obtained expression. The well-known rules of formula

formation will be omitted but we will elaborate on the way � is used to

build new formulae:

• In the language LQGL of QGL, if A is a formula, then so is �A. The
free variables of �A are precisely the free variables of A.

• In the language LM of M3 and ML3, the expression �A is metatheo-
retical (textual abbreviation) and denotes the formula formed from A
as follows: Let aj1 , . . . , ajn be all the free variables of A, in ascending

alphabetical order. Let xk1
, . . . , xkn

be the first unused in A bound

variables, in ascending order. Form the expression Ã by substituting

each occurrence of aji by xki
. Then the expression �xk1

. . . xkn
Ã is

a formula, denoted in metanotation by �A.5 Thus, if A has no free

variables, then xk1
. . . xkn

is the empty string, and thus, in this case,

the meta name “�A” names precisely the string formed by prepend-

ing� to A, i.e., the name and the named are identical strings. Clearly,

�A is always closed. A is the scope of the leading � and the bound

variables xk1
, . . . , xkn

belong to this �.

The first-order modal logic M3 over the language LM was originally in-

troduced and investigated model-theoretically in [17, 18] with the goal of

formalising the expression ⊢ A as �A for classical A. Its syntactic proof

theory was first developed in [11] via cut elimination after proving its va-

lidity in the Gentzenisation (GTKS) of M3.

Definition 2.1 (Axioms and Rules of Inference for M3). The set of logical

axioms of M3 is ΛM3 ∪ �ΛM3, where ΛM3 consists of all instances of the

following basic schemata:

5This description and use of �A as metanotation parallels the one in Bourbaki [4]
for the meta-expression τxA.
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(1) All tautologies

(2) ∀xA[x] → A[a]

(3) A[a] → ∀xA[x], provided a does not occur A.

(4) ∀x(A→ B) → ∀xA→ ∀xB

(5) �(A→ B) → �A→ �B

(6) �A→ ��A

(7) �A→ �∀xA

The primary rules of inference are: modus ponens and “strong”6 generali-

sation “from A infer ∀xA”. The notation Γ ⊢L A in general means that A
is derived from hypotheses Γ within logic L. �

A closely related first-order logic ML3 over the same language LM is

defined below by adding Löb’s axiom (schema) �(�A → A) → �A. This

logic is a first-order extension of the propositional provability logic GL and

was first introduced in [13], along with its Gentzenisation GLTS that was

proved to admit cut elimination.

Definition 2.2 (Axioms and Rules of Inference for ML3). The set of logical

axioms of ML3 is ΛML3 ∪�ΛML3,
7 where ΛML3 is ΛM3 plus all instances

of the Löb schema. ML3 has the same primary rules as M3. �

Definition 2.3 (Partial generalisations of a formula A). The set PG(A)
of all partial generalisations of A is defined recursively: a) A ∈ PG(A),
and b) if B ∈ PG(A), then so are i) �B and ii) ∀xB, where “x” stands

for any bound variable. Omitting case b)i) in the recursion step we ob-

tain CLPG(A), the set of classical partial generalisations. For a set Γ,

[CL]PG(Γ) =
⋃

A∈Γ[CL]PG(A). �

Some members of PG(A): A, �A, ∀xA, ∀x�A, and�∀y�∀z∀x∀x�∀zA.

Note. The definition does not assume a classical (�-free) language, not

even in the case of CLPG(A).

6Weak generalisation is usually introduced as a derived rule in first-order logics that
are defined with only modus ponens as primary, cf. [5, 6]. It states: if A is provable with
a condition on the assumptions Γ, then ∀xA is also provable from Γ.

7Adding ��ΛML3 to the axioms renders axiom schema �A → ��A redundant, but
we find it technically more convenient to not add this part in the axioms.
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Definition 2.4 (Axioms and Rules of Inference for QGL). Recall that in

the language LQGL the formula �A need not be closed. The set of logical

axioms of QGL is PG(ΛQGL), where ΛQGL consists of all instances of the

schemata (1)–(6) of M3 plus all instances of Löb’s axiom schema. There is

one primary rule of inference: modus ponens. �

Remark 2.5. Axiom schema (1) enables proof by tautological implication,
that is, if A1 → A2 → . . . → An → X is a tautology, then X is provable

from the hypotheses A1, A2, . . . The propositional logic GL is, essentially,

the logic over (without loss of generality) LM with axioms ΛGL ∪ �ΛGL,

where ΛGL contains all tautologies and all instances of axiom schemata 5,

6, of M3, as well as those of Löb’s schema. �

Lemma 2.6. QGL supports the derived rule “if Γ ⊢ A and a does not occur
in any formula of Γ, then Γ ⊢ ∀xA[a := x]”.

Proof. Induction on proofs from Γ in the manner of [5, 6]. Basis: A ∈ Γ;

then a is not free in A and we are done by (3) in the M3 axiom list, and

modus ponens. A ∈ PG(ΛQGL); then so is ∀xA[a := x]. Induction step:
We have Γ ⊢ B → A and Γ ⊢ B, for some B. By the Induction Hypothesis

(I.H.) we have Γ ⊢ ∀x(B → A) and Γ ⊢ ∀xB. We are done by axiom

schema 4 in the M3 list, and modus ponens. �

Proposition 2.7 (Weak Necessitation (WN)). All three first-order logics
introduced above support weak necessitation, that is, “if Γ ⊢ A, then Γ,�Γ ⊢

�A, where ‘⊢’ is any one of ⊢M3 , ⊢ML3 or ⊢QGL.”

Proof. Induction on proofs from Γ. For ⊢M3 , ⊢ML3 cf. [17, 13]. Basis:
A ∈ Γ; then �A ∈ �Γ. A ∈ PG(ΛQGL); then �A ∈ PG(ΛQGL). Induction
step: Γ ⊢ B due to Γ ⊢ A and Γ ⊢ A → B. By the I.H. Γ,�Γ ⊢ �A and

Γ,�Γ ⊢ �(A→ B) and we are done by modus ponens and axiom 5. �

Note. QGL is introduced in the literature as an “extension of classical

first-order logic” —albeit over the modal language LQGL— obtained by

including the GL modal axioms and adding strong necessitation, “A ⊢

�A”, as a primary rule. Since the classical part may be taken to be as in

[5] where weak generalisation is a derived rule —and noting that the various

definitions of QGL in the literature are silent on the precise nature of the

classical part— we adopted the exact same approach for generalisation and
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necessitation: we hide them both in the axioms. In particular, it helps

not to have to worry about the presence of strong generalisation when one

wants to prove that weak necessitation holds for QGL.

3. Formulators

Definition 3.1 (Formulators [12]). A formula translator or formulator is

a mapping, F, from the set of formulae over a modal language L to itself

such that:

1. F(A) = A for every atomic formula A.

2. F(A→ B) = F(A) → F(B) for all formulae A,B.

3. F(∀xA[a := x]) = ∀xB[a := x], where B = F(A[a]).

4. The free variables of F(�A) are among those of �A. �

Remark 3.2. The formulator approach applies to the propositional cases

as well by ignoring 3 in the definition. As the applications of Section 4
make clear, we do not want a formulator to commute with �. �

Definition 3.3. We let CLM stand for the “classical” sub logic of M3 or

ML3, and CLQGL that of QGL. CLM has as axioms the classical axiom

schemata (1)–(4). No change to rules of inference. CLQGL has as axioms⋃
A CLPG(A), for each instance A of schemata (1)–(4). No change to rules

of inference. We also let CpL stand for the classical propositional logic over
the language of GL, obtained by omitting the modal axioms of GL. �

Theorem 3.4. If Γ ⊢CL A and F is a formulator then F(Γ) ⊢CL F(A),
where F(Γ) = {F(A) : A ∈ Γ} and “CL” is an abbreviation of CLX , where
X ∈ {M3, ML3, QGL}.

Proof. See [12]. The omitted proof, by induction on proofs, has four

parts, I–IV, case IV being the induction step for an application of gener-

alisation. Generalisation is irrelevant to the case where CL is the classical

sublogic of QGL as the latter’s only rule is modus ponens. �

Corollary 3.5. If Γ ⊢CpL A and F is a formulator then F(Γ) ⊢CpL F(A).
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Proof. As in the proof of 3.4, replacing CL by CpL throughout and

noting that the generalisation case IV does not apply. �

Well chosen formulators satisfy Theorem 3.4 and Corollary 3.5 for

modal logics L, predicate or propositional, also when ⊢CL (resp. ⊢CpL)

is replaced by ⊢L. We call them “conservative” for the logic L. The propo-
sition/criterion below, proved in [12], tells us how to recognise conservative

formulators. In essence, it says that for a logic L that has as classical

sublogic the logic CL (resp. CpL) it suffices to verify that L proves the
F-transforms of all modal axioms.

Proposition 3.6. Let L be a first-order (resp. propositional) modal logic
whose axiom set is ΛL = ΛCL ∪ ΩL (resp. ΛL = ΛCpL ∪ ΩL), where ΩL

is the set of modal axioms of L. Suppose further that modus ponens and
possibly generalisation are the only primary rules.

Given a formulator F, it is sufficient that ⊢L F(A), for all A ∈ ΩL, in
order that F be conservative for L.

Proof. Cf. loc. cit. The propositional case follows by omitting consider-

ation of universally quantified formulae. �

4. Three Formulators of Interest

The specific formulators defined in this section were all introduced in [12].

Definition 4.1. We let S be the formulator that, for every formula A,
satisfies S(�A) = �A∧A. Analogously we define G by G(�A) = �A∧∀A,
where ∀A is the universal closure of A. �

Lemma 4.2 ([12]). G is conservative for each of M3 and ML3.

Lemma 4.3 ([12]). S is conservative for QGL.

The following, with a shortened proof here, is adapted from 4.2 and 4.3

and their respective proofs, and applies in a unified manner to GL, QGL,

M3 and ML3, for the latter two after the axiom schema �A → �∀xA is

removed.
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Lemma 4.4. S is conservative for each of M3 and ML3 with the schema
�A→ �∀xA removed, and also for GL and QGL.

Proof. We apply the test of 3.6. Thus we show that ⊢X S(A), where X
stands for any logic listed in the lemma.

1. A = �(B → C) → �B → �C. Then S(A) = �(B → C) ∧ (B →

C) → (�B ∧B) → (�C ∧ C). Then ⊢X S(A) by tautological impli-

cation from axioms A and (B → C) ∧B → C.

2. A = �B → ��B. Then S(A) = �B ∧ B → ��B ∧ �B. We

have ⊢X S(A) by tautological implication from axioms �B → �B,

�B ∧B → �B and �B → ��B.

3. Löb’s axiom; it is applicable only to ML3, GL and QGL:

A = �(�B → B) → �B. Then S(A) = �(�B → B) ∧ (�B →

B) → �B ∧ B. This is provable in all three logics by tautological

implication from the axioms A and �B ∧ (�B → B) → B.

4. A ∈ �ΛX , where X ∈ {GL, M3, ML3}. Then A = �B for some

B ∈ ΛX . ThusS(A) = �B∧B is provable by tautological implication

from axioms B and �B. If X = QGL, then the corresponding (new)

case is A = �B ∈ PG(ΛQGL), where B ∈ PG(ΛQGL). By the

obvious I.H. on the definition of PG, B is provable, and so is A by

WN (2.7) and we are done by tautological implication. �

Theorem 4.5. The axiom schema �A → �∀xA of M3 and ML3 is not
provable from the remaining axioms.

Proof. The reader may want to consult Section 5 for the semantic con-

text. Let L be either logic with the schema �A → �∀xA removed. Let

A = φ(a) be an atomic formula, and assume ⊢L �φ(a) → �∀xφ(x). Then

⊢L �φ(a) ∧ φ(a) → �∀xφ(x) ∧ ∀xφ(x) (1)

by 4.4. We can find a Kripke structure where φ(a) is interpreted as t

(true) at only one individual in the domain of the start world, and is t

everywhere for all worlds reachable from the start world. Then �φ(a)∧φ(a)
is satisfiable but �∀xφ(x)∧∀xφ(x) is not in said structure, contradicting (1)

since the two logics (and their sublogics) are sound ([18, 13]). �
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Definition 4.6 ([12]). Let ∆ be a nonempty set of formulae. We define the

characteristic formulator of ∆, denoted by X∆, as the formulator whose

operation on boxed formulae is as follows:

X∆(�A) =

{
⊤ If ∆ ⊢ �A

⊥ If ∆ 0 �A

where ⊤ abbreviates ⊥ → ⊥. �

The following lemma is proved in loc. cit. We add here the logic GL in

the list of those to which it applies.

Lemma 4.7. X∆, for any ∆, is conservative for each of M3, ML3, QGL
and GL.

Proposition 4.8 below, proved in [12], is a good example of the power

of the characteristic formulator. It readily implies the disjunction property
for all four logics, GL, QGL, M3 and ML3. It is worth repeating the very

straightforward and short proof of the proposition in order to contrast it

with the rather involved proofs of the disjunction property in [2] for the

case of QGL and in [8] for the case of GL.

Proposition 4.8 ([12]). Let Σ,Ξ be sets of classical formulae (i.e., �-
free), and suppose that Σ,�∆ ⊢

∨
�Ψ ∨

∨
Ξ. Then Σ ⊢

∨
Ξ or there is

some B ∈ Ψ such that �∆ ⊢ �B, where deducibility ⊢ is that of any one
of M3, ML3, QGL, or GL.

Proof. Assume that �∆ 0 �B, for all B ∈ Ψ, then, by definition,

X�∆(�B)

= ⊥, for all B ∈ Ψ. Also, since clearly �∆ ⊢ �C for all C ∈ ∆,

we have that X�∆(�C) = ⊤, for all such C’s. Thus, by 4.7 and the

fact that formulators commute with Boolean connectives, we know that

X�∆(�∆),X�∆(Σ) ⊢
∨
X�∆(�Ψ) ∨

∨
X�∆(Ξ), or (since Σ,Ξ are classi-

cal) ⊤,Σ ⊢ ⊥ ∨
∨

Ξ which is the same as Σ ⊢
∨

Ξ. �

The disjunction property itself (4.10 below) is a corollary of theorem 7

proved in [2]. This theorem is reproduced below, as 4.9, and we offer

a straightforward alternative proof using 4.8 and 4.4. By contrast, Avron

uses in his proof an induction on the height of Gentzen proofs in a Gentzeni-

sation of QGL, which have no “essential cuts”. He notes, p. 939 of loc. cit.,

that “every provable QGL sequent has a proof without essential cuts”.
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Proposition 4.9 (The pre-Disjunction Property for GL, QGL, M3 and

ML3). Let Σ,Ξ be two disjoint sets of atomic formulae and ⊥ /∈ Σ. Then
the derivability of the sequent

Σ,�A1, . . . ,�Ak ⊢ �B1, . . . ,�Bm,Ξ (1)

in the Gentzenisation of QGL (or of any one of GL, M3, ML3) is equivalent
to that of

(for some i : 1 ≤ i ≤ m): �A1, A1, . . . ,�Ak, Ak ⊢ Bi (2)

Proof. (1)→(2). The assumption precludes that Σ ⊢ Ξ is derivable.

Thus, by 4.8,

�A1, . . . ,�Ak ⊢ �Bi (3)

is derivable, for some i such that 1 ≤ i ≤ m. Applying 4.4 to (3), followed

by a tautological implication, we get (2) in the cases of GL or QGL.

Applying instead 4.2 to (3) we obtain, for some i,

�A1, ∀A1, . . . ,�Ak, ∀Ak ⊢ �Bi ∧ ∀Bi (4)

in the cases of M3 or ML3. Since Aj and ∀Aj are inter derivable in these

logics, and dropping �Bi to the right of ⊢ we obtain (2) once more.

(2)→(1). In the Gentzenisation of each of the following logics proceed

as follows, recalling the inter derivability of Aj and ∀Aj for the first two

bullets below:

• Case of M3: Use the TR rule ([9, 11])
∀Γ,�Γ ⊢ A

Φ,�Γ ⊢ �A,Ψ
on (2).

• Case of ML3: Use the GLR rule ([9, 13])
∀Γ,�Γ,�A ⊢ A

Φ,�Γ ⊢ �A,Ψ
on (2),

preceding it with an application of weakening to correctly format the

premise.

• Case of GL or QGL: Use the GLR rule
Γ,�Γ,�A ⊢ A

Φ,�Γ ⊢ �A,Ψ
on (2), pre-

ceding it with an application of weakening to correctly format the

premise. �

Note. Proposition 4.8 generalises 4.9 since atomic formulae are special

cases of classical formulae. Moreover, 4.8 needed no Gentzenisation for
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its proof. The case for GL was originally proved in [8] by devising a proof-

search procedure.

Corollary 4.10 (Disjunction Property of QGL and GL – cf. [2, 8] – and

M3, ML3). ⊢L �A1 ∨ �A2 ∨ · · · ∨ �Ak iff there is an i, 1 ≤ i ≤ k, such
that ⊢L Ai, where L is one of these four logics.

Proof. The if part is by necessitation followed by strengthening. For the

only if part, we think in terms of the Gentzenisation of L: So the sequent

⊢ �A1,�A2, . . . ,�Ak is derivable. By (2) in 4.9 so is the sequent ⊢ Ai for

some i. �

5. Incompleteness of M2 and ML2

We name M2 and ML2 the logics obtained from M3 and ML3 respectively

after removing the axiom schema �A→ �∀xA. We will show that they are

incomplete with respect to their natural Kripke structures. For the common

language of these logics, the natural Kripke structures are coloured by the

fact that �A is closed and by the presence or absence of Löb’s axiom.

These structures were originally defined in [18] in the context of M3 and in

[13] for ML3. A pointed Kripke frame appropriate for M3 or M2 is a tuple

F = (W,R,α0) where W is a set of worlds, and α0 ∈ W is the start

world, while R is a transitive connectivity relation on W for which α0 is

a minimum, that is, for all β ∈W , it is α0 = β ∨ α0Rβ.
A pointed Kripke frame appropriate for ML3 or ML2 is as above, where,

moreover, the converse relation R−1 is well-founded.8 A structure for the

underlying language is a triple M = (F , (Mβ)β∈W ,
) with F as above,

each Mβ —the domain of β— being a nonempty set of individuals. 
 is

the forcing relation (forcing truth) defined, for each world α, by recursion

on closed instances of formulae. Parameters substituted for free variables

are from Mα (this is in the style of Henkin’s imported constants). An

unspecified closed instance of A is denoted by A′, while A′

a denotes that

all free variables, except a, were instantiated. α 
 A′ (resp. α 1 A′) means

A′ is true (resp. false) on α.

• 
 is defined on atomic formulae as we please (basis), but we must set

α 1 ⊥.

8Transitivity of R is intimately connected with the presence of the axiom �A → ��A,
where the well-foundedness of R−1 is so connected with the presence of Löb’s axiom.
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• For any A and B, α 1 A′ → B′ iff α 
 A′ and α 1 B′.

• α 
 ∀xA′

a[a := x] iff, for all i ∈Ma, α 
 A′

a[a := i].

• α 
 �A —note that �A is closed— iff, for all β such that αRβ, we
have β 
 ∀A.

A formula A is true in a Kripke structure iff all its instances are true on
the start world α0. It is known from [18, 13] that M3 and ML3, and

therefore M2 and ML2, are sound with respect to their Kripke structures,

that is, if A is provable, then α0 
 A. However the latter two are not

semantically complete since on one hand �A → �∀xA is true for all the

structures appropriate for M2 or ML2 (easy exercise; cf. loc. cit.), but not

provable by 4.5.

It is easy to see that ML2 is not arithmetically complete either, as

it follows from 4.5 and the fact that the arithmetical interpretation of

�A → �∀xA is Pr(pA∗
q) → Pr(p∀xA∗

q), but this schema is provable in

PA. Here is a very high-level outline of the why: This PA-schema captures

the meta statement “if ⊢PA A∗, then ⊢PA ∀xA∗”. Now, informally, Pr(x)
is the Σ1 formula ∃yProof(y, x) that says “x is the Gödel number of a for-

mula that appears in a PA-proof with Gödel number y”, where Proof(y, x)
is a Σ0 formula. Machinery in either of [15, 16] can be used straight-

forwardly to prove, for any formula B in the language of PA, that ⊢PA

Proof(y, pBq) → Proof(y ⌢ p∀xBq, p∀xBq)9 and that is because this

is a true Σ0 formula. Thus, ⊢PA Proof(y, pBq) → ∃zProof(z, p∀xBq).

Using the “∃-introduction rule” ([14, 16]) we get ⊢PA ∃yProof(y, pBq) →

∃zProof(z, p∀xBq).
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