
Instituto Tecnológico de Costa Rica

Escuela de Ingenieŕıa Electrónica

Programa de Maestŕıa en Ingenieŕıa Electrónica

Sequential Code Parallelization for Multi-core Embedded
Systems: A Survey of Models, Algorithms and Tools

para optar por el t́ıtulo de

Magister Scientiae en Ingenieŕıa Electrónica

énfasis en Sistemas Empotrados

con el grado académico de

Maestŕıa

Jorge Alberto Castro God́ınez

Cartago, 15 de Diciembre del 2014

I declare that this thesis document has been made entirely by my person, using and

applying literature on the subject, and introducing my own knowledge and experimental

results.

In the cases I have used literature, I proceeded to indicate the sources by the respective

references. Accordingly, I assume full responsibility for this thesis work and the content

of this document.

Jorge Alberto Castro God́ınez

Bühl, Germany. December 15, 2014

Céd.: 1 1236 0930

This work is licensed under a Creative Commons

“Attribution-NonCommercial-ShareAlike 4.0 International”

license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Instituto Tecnológico de Costa Rica

Electronics Engineering School

Master’s Thesis

Evaluation Committee

Master’s Thesis presented to the Evaluation Committee as a requirement to obtain the

Master of Science degree from the Instituto Tecnológico de Costa Rica.

Evaluation Committee Members

The members of the Evaluation Committee certify that this Master’s Thesis has been

approved and that fulfills the requirements set by the Electronics Engineering School.

Bühl, Germany. December 15, 2014

Abstract

In recent years the industry experienced a shift in the design and manufacture of pro-

cessors. Multiple-core processors in one single chip started replacing the common used

single-core processors. This design trend reached the develop of System-on-Chip, widely

used in embedded systems, and turned them into powerful Multiprocessor System-on-

Chip. These multi-core systems have presented not only an improvement in performance

but also in energy efficiency.

Millions of lines of code have been developed over the years, most of them using sequen-

tial programming languages such as C. Possible performance gains of legacy sequential

code executed in multi-core systems is limited by the amount of parallelism that can be

extracted and exploit from that code. For this reason, several tools have been devel-

oped to extract parallelism from sequential program and produce a parallel version of the

original code. Nevertheless, most of these tools have been designed for high-performance

computing systems rather than for embedded systems where multiple constraints must

be considered, and a reduction in the execution time is not the only desirable objective.

Due there is no definitive solution for parallelizing code, especially for multi-core embed-

ded systems, this work aims to present a survey on some different aspects involved in

parallelizing code such as models of code representation, code analysis, parallelism ex-

traction algorithms, parallel programming. Also existing parallelizing tools are presented

and compared.

This work ends with a recommended list of important key aspects that should be consider

when designing and developing a parallelizing compiler, automatic or semiautomatic, for

multi-core embedded systems; and when using existing tools to use them.

Keywords: Parallelism extraction, multi-core embedded systems, representation models,

code analysis, parallelizing algorithms, parallelization tools.

Resumen

En los últimos años, la industria ha experimentado un cambio en el diseño y manufactura

de procesadores. Procesadores con múltiples núcleos en un solo chip han reemplazado

aquellos procesadores, comúnmente usados, con un solo núcleo. Esta tendencia de diseño

ha alcanzado el desarrollo de sistemas en chip, ampliamente usados en sistemas embe-

bidos, y los ha convertido en potentes sistemas en chip con múltiples procesadores. Estos

sistemas multinúcleo no solo han presentado mejoras en el rendimiento sino también en

la eficiencia energética.

Millones de ĺıneas de código han sido desarrolladas a los largo de los años, principalmente

usando lenguages de programación secuencial como C. Los potenciales beneficios de eje-

cutar código secuencial existente en sistemas multinúcleo están limitados por la cantidad

de paralelismo que pueda ser extráıdo y explotado de estos códigos. Por esta razón, varias

herramientas han sido desarrolladas para extraer paralelismo de programas secuenciales

y producir una versión paralela del código original. Sin embargo, la mayoŕıa de estas

herramientas han sido diseñadas para sistemas computacionales de alto rendimiento en

lugar de sistemas embebidos, donde múltiples restricciones deben ser consideradas, y una

reducción del tiempo no es el único objetivo deseable.

Debido a que no existe una solución definitiva para la paralelización de código, particular-

mente para sistemas embebidos multinúcleo, este trabajo tiene como objetivo presentar

un estudio sobre diferentes aspectos involucrados en la paralelización de código tal como

los modelos de representación de código, análisis de código, algoritmos de extracción de

paralelismo, programación paralela. Además, herramientas existentes son presentadas y

comparadas.

Este trabajo concluye con una lista de recomendaciones al respecto de aspectos clave im-

portantes que deben ser considerados al diseñar y desarrollar un compilador paralelizable,

automático o semiautomático, para sistemas embebidos multinúcleo, aśı como cuando uti-

lizat herramientas existentes.

Palabras clave: Extracción de paralelismo, sistemas embebidos multinúcleo, modelos

de representación, análsis de código, algoritmos de paralelización, herramientas para par-

alelización.

to Silvia & Fabiana

Acknowledgments

I am deeply grateful for the opportunity to continue with my formal higher education.

It have been always my goal to obtain all the education possible. I truly believe that

education is the gate to bigger opportunities in life.

I would like to thank to M.Sc. Miguel Aguilar, my thesis’s director, that despite his

personal challenges, continued willing to supervise me in this work. Also I thank to

M.Sc. Maŕıa Rodŕıguez and Dr. Esteban Meneses for being part of the evaluation com-

mittee.

I would like to thank the master’s program coordination, in the persons of Dr.-Ing Paola

Vega and M.Sc. Anibal Coto, for their support, help, and collaboration. Also, I thank to

my colleagues at the Costa Rica Institute of Technology for their support and encourage-

ment, especially to Dr.-Ing. Pablo Alvarado for his counsel and advise along the time of

my master’s studies.

I have to recognize and deeply thank to the MICITT (Ministerio de Ciencia, Tecnoloǵıa y

Telecomunicaciones), the CONICIT (Consejo Nacional para Investigaciones Cient́ıficas y

Tecnológicas) and the Fondo de Incentivos, that made possible the funding for my master

studies, by means of a scholarship.

Finally, and most important, I thank to my family, especially to Silvia, my wife, who

always impulses and motivates me in our life adventures; and to Fabiana, my daughter,

who inspires me to do my best everyday.

Jorge Alberto Castro God́ınez

Bühl, Germany. December 15, 2015

Contents

List of Figures v

List of Tables vii

List of Abbreviations ix

1 Introduction 1

1.1 The sequential code problem . 5

1.2 Parallelism extraction . 6

1.3 Scope of this work . 7

1.4 Outline . 8

2 Background 9

2.1 Amdahl’s law . 9

2.2 Dependencies in code . 10

2.2.1 Data dependencies . 11

2.2.2 Control dependencies . 12

2.3 Parallelism: types and relationships . 13

2.3.1 Granularity and parallel performance 13

2.3.2 Data Level Parallelism . 14

2.3.3 Instruction Level Parallelism . 15

2.3.4 Thread Level Parallelism . 16

2.3.4.1 Task Level Parallelism . 17

2.3.4.2 Pipeline Level Parallelism 18

2.4 Parallelizing compilers . 19

2.5 Embedded Systems and High-Performance Computing 22

2.5.1 Parallelizing for ES and HPC . 24

3 Representation Models 27

3.1 Data Flow Graph . 27

3.2 Data Dependence Graph . 29

3.3 Control Flow Graph . 29

3.4 Dependence Flow Graph . 32

3.5 Control Data Flow Graph . 35

3.6 Program Dependence Graph . 36

i

ii Contents

3.6.1 Augmented Program Dependence Graph 38

3.6.2 Parallel Program Graph . 38

3.7 Hierarchical Task Graph . 40

3.7.1 Augmented Hierarchical Task Graph 41

3.8 System Dependence Graph . 42

4 Code Analysis and Parallelizing Algorithms 47

4.1 Code analysis . 47

4.1.1 Static . 47

4.1.2 Dynamic . 50

4.1.3 Hybrid . 52

4.2 Algorithms . 53

4.2.1 Machine learning . 53

4.2.2 Integer Linear Programming . 54

4.2.3 Thread extraction algorithm . 56

4.2.4 Genetic Algorithms . 57

5 Parallel Programming Models and Parallelism Extraction Tools 61

5.1 Parallel programming models . 62

5.1.1 OpenMP . 63

5.1.2 POSIX Threads . 67

5.1.3 MPI . 68

5.1.4 CUDA . 69

5.1.5 OpenCL . 70

5.1.6 Cilk . 71

5.1.7 Taxonomy . 72

5.2 Tools . 72

5.2.1 ParallWare . 73

5.2.2 PaxES . 73

5.2.3 PLuTo . 75

5.2.4 Par4All . 76

5.2.5 AESOP . 77

5.2.6 MAPS . 79

5.2.7 Paralax . 80

5.2.8 Tournavitis . 81

5.2.9 Thies . 82

5.3 Taxonomy . 83

6 Conclusions and future work 87

6.1 Conclusions . 87

6.2 Future work . 89

Bibliography 91

Contents iii

A Pi parallel codes 105

iv Contents

List of Figures

1.1 Processors performance . 2

1.2 OMAP5432 MPSoC . 4

2.1 Data dependence graph . 11

2.2 Parallelism levels . 14

2.3 Relationship of parallelism types . 17

2.4 Relevant parallelism forms to embedded systems 19

2.5 Porting strategies for parallel applications 20

3.1 Data Flow Graph for a quadratic equation solution 28

3.2 Data Dependence Graph . 30

3.3 Control Flow Graph for a acyclic and cyclic code 31

3.4 Control Flow Graph . 32

3.5 Control Flow Graph and Data Dependence Graph for example code 33

3.6 Dependence Flow Graph . 33

3.7 Control Data Flow Graph . 35

3.8 Program Dependence Graph . 37

3.9 Augmented Program Dependence Graph 39

3.10 Hierarchical Task Graph . 41

3.11 Augmented Hierarchical Task Graph . 42

3.12 System Dependence Graph . 44

4.1 Call tree for watermark detection algorithm 51

4.2 Gene configuration in genetic algorithm . 58

5.1 Speedup on TI DSP multi-core platform using OpenMP 66

5.2 PaxES parallelization tool . 75

5.3 PLuTo source-to-source transformation system 76

5.4 Par4All flow . 77

5.5 AESOP Parallelizer . 78

5.6 MAPS tool flow . 79

5.7 Paralax tool flow . 80

5.8 Tournavitis parallelization work-flow . 81

v

vi List of Figures

List of Tables

3.1 Auxiliar nodes. 45

5.1 Comparison chart for parallel programming models. 73

5.2 Taxonomy of tools for parallelism extraction. 84

5.3 Taxonomy of tools for parallelism extraction.Continuation 85

vii

viii List of Tables

List of Abbreviations

AHTG Augmented Hierarchical Task Graph

BCE Base Core Equivalent

BDF Boolean Dataflow

CDFG Control Data Flow Graph

CFG Control Flow Graph

CMP Chip Multi-processor

CSDF Cyclo-static Dataflow

DepFG Dependence Flow Graph

DFG Data Flow Graph

DLP Data Level Parallelism

DSP Digital Signal Processor

DSWP Decoupled Software Pipelining

GA Genetic Algorithm

GPP General Purpose Processor

GPU Graphics Processing Unit

HTG Hierarchical Task Graph

IC Integrated Circuit

ILP Instruction Level Parallelism

IR Intermediate Representation

ISA Instruction Set Architecture

LLP Loop Level Parallelism

MoC Model of Computation

MPSoC Multiprocessor System-on-Chip

PDG Program Dependence Graph

PE Processing Element

PLP Pipeline Level Parallelism

POSIX Portable Operating Systems Interface

SDF Synchronous Dataflow

SDG System Dependence Graph

SMP Symmetric Multiprocessor

SoC System-on-Chip

TI Texas Instruments

TkLP Task Level Parallelism

TLP Thread Level Parallelism

ix

x List of Abbreviations

Chapter 1

Introduction

Nowadays computer-based systems are ubiquitous. Every person interacts with many

of these systems everyday: from conventional personal computers to tablets and smart-

phones, and from computers in cars, plans and trains to home appliances powered by

microcontrollers. Embedded and cyber-physical systems have reached unthinkable areas

and its computational power is far beyond the desktop computers of a couple decades

ago.

The end of the Dennard’s scaling theory [36] in the sub-micron era, and the continuous

increment in transistor count per integrated circuit (IC) due the Moore’s law [89], forced

a new paradigm in the design of microprocessor to harness more available hardware and

increase performance. Around 2005 the industry shifted from single-threaded processors

to multi-core processors [41]. As seen in Figure 1.1, the increase in performance in the

last decade is thanks to the entrance on the scene of processor of multi-core systems, such

the Intel Core 2 family.

A multi-core processor is a single computing system that presents two or more independent

processors units (cores or, in a general perspective, Processing Elements, PE,) in an IC,

with the goal to enhance performance, reduce power consumption, and be capable to

efficiently process simultaneous tasks [106]. According to [130], a multi-core architecture

implies three fundamental aspects:

• There are multiple computational cores.

• There is a way by which the cores can communicate.

• The processor cores communicate with the outside world.

With a multi-core system, a software program can be splitted and distributed to differ-

ent PEs in order to be executed simultaneously and, in consequence, increase the task

performance. Also, multiple independent software programs can be executed in different

PEs.

The multi-core concept may appear to be trivial. Nonetheless, it suffers of scalability

issues and there are numerous trade-offs to consider in its design. For instance, one

1

2

1

5

9

13

18

24

51

80

117

183

280

481

649

993

1,267

1,779

3,016

4,195
6,043 6,681

7,108

11,865
14,387

19,484
21,871

24,129

1

10

100

1000

10,000

100,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

P
e
rf

o
rm

a
n
c
e
 (

v
s
.
V

A
X

-1
1
/7

8
0
)

25%/year

52%/year

22%/year

 IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz

AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A

Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz

 Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)

1.5, VAX-11/785

 AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz

HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz

MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz

VAX 8700, 22 MHz

AX-11/780, 5 MHz

a

Figure 1.1: Processors performance from 1970 (Taken from [61]).

crucial consideration is whether the processor should be homogeneous or expose some

heterogeneity; most current general-purpose multi-core processors are homogeneous both

in Instruction Set Architecture (ISA) and performance, meaning that the cores can execute

the same binaries and that it does not really matter, from functional point of view, on

which core a program runs. However, recent multi-core systems allow, through system

software, to control the clock frequency and supply voltage for each core individually in

order to either save power or to temporarily boost single-thread performance [130]. In the

other hand, heterogeneous multi-core architecture, using at least two different kinds of

cores that may differ from performance and functionality up to different ISA, have been

used in areas like gaming devices and high-performance computing.

Increasing the amount of cores or PEs in a multi-core system, reaching the dozens and

even hundreds, is consider as many-core processors [58]. Currently exists some of com-

mercial many-core systems. For example: the Intel Laberre [114], a many-core visual

computer architecture made of multiple in-order x86 CPUs; the Intel Xeon Phi, that in-

tegrates up to 61 x86 64-bit cores [69]; and the Adapteva Ephiphany-IV, that presents

64 high performance RISC cores capable all to run for just 2 W of maximum chip power

consumption [4]. Several challenges come when considering plenty of PEs. For instance,

the capacity of applications to be mapped and to exploit the computational power of this

platforms, and the current fact that for these system it will be impossible to switch on all

PEs at the same time due the power and thermal constraints. This phenomenon is called

the dark silicon problem and it will have a significant impact on how future processors

will be designed [130]; recent works even predict that for 8 nm technology node, more

than 50% of a multi- and many-core chip will remain dark [41].

1 Introduction 3

It is important to set a difference between multi-core and multi-thread processors. The

latter is consider as the ability of a program or an operating system process to manage

its use by more than one user at the same time, which could be done by a single-core

processor. Multi-threading capabilities are desired in multi-core systems because it aims

to increase the utilization of a each core employing Thread Level and Instruction Level

Parallelism1 [68]. Also, processor engines that can run numerous simple threads con-

currently, traditionally used for graphics and media applications, are now evolving to

allow general-purpose usage. Some authors refer to this type of systems as Many-Thread

(MT) machines. Examples this are the current General-purpose computing on Graphics

Processing Units (GPGPU) of Nvidia and AMD [58].

Embedded systems scene is not exempt of the multi-core advent. System-on-Chip (SoC),

broadly used in embedded systems, are defined as IC that contains not just a General

Purpose Processors (GPP), mainly RISC-architecture based, but also includes, in the

same silicon substrate, digital, analog, mixed-signal and even radio-frequency functions.

A SoC commonly integrates communication and data transfer interfaces such as I2C,

SPI, I2S, USB, Ethernet, WiFi, display systems controller, like VGA or HDMI, memory

management, to name some. Which components are integrated in a SoC depends of the

application for which is designed [70].

A Multiprocessor System-on-Chip (MPSoC) is a SoC with multiple PEs and special hard-

ware blocks used to accelerate certain functions [142]. Most MPSoCs are heterogeneous,

because of the diversity of PEs, which makes them harder to program than traditional

multi-core systems. The combination of high reliability, real-time performance, small

memory footprint, and low-energy, represents a considerable challenge in MPSoC soft-

ware design [70].

The Figure 1.2 presents a good example of a state-of-the-art MPSoC. It contains a dual

core of ARM Cortex-A15 Microprocessor Subsystem, capable to run up to 2 GHz, an

ARM Dual Cortex-M4 image processing unit, HD hardware accelerator subsystem, a dual-

core PowerVR 3D GPU, 2D-Graphics accelerator, imaging subsystem consisting of image

signal processor and still image co-processor, also plenty of communication interfaces,

memory controllers and diverse input/outputs ports. This example shows the diversity

of PEs that can be found in a modern MPSoC.

Technology trends in MPSoCs design indicate an increase in the amount of PEs and the

specialization of them. A multi-core system with specialized cores have demonstrated

not only an increase in performance, but also a better power consumption compromise.

In chips like the Apple A5, half of the chip area is dedicated to accelerators that are

active only for some time and for specific tasks [103]. For instance, consider a RISC-

based big core that operates at 620 MHz, consumes 365 mW, and presents a throughput

of 900 MIPS. In the other hand a small core, also RISC-based, that operates at 225

MHz, consumes 32 mW, and presents a throughput of 330 MIPS. If three small core work

together, this set will present a slightly increase performance, 990 MIPS, but a reduced

1Chapter 2 presents these types of parallelism.

4

Figure 1.2: OMAP5432 MPSoC Multimedia Device (Taken from www.ti.com).

required power budget, 96 mW, which means 4 times energy improvement regarding the

big core.

Embedded and cyber-physical systems present different constraints than PC-processors,

e.g.:

• Energy: most of embedded systems are battery-powered, so this resource must be

well administered. For a handheld device results impractical to carry huge battery

packs or keep the device pluged to energy sources.

• Heat dissipation: most of the embedded system use passive cooling to dissipate heat

due the form factor of the final devices.

• Response time: real-time applications may have hard requirements. Certain mission-

critical systems can not admit failures, and a correct execution out of a time con-

straint can lead to a tragic outcome.

The complexity of the applications nowadays require higher performance capabilities

within tight power envelops. This is a reason why many heterogeneous MPSoC use Graph-

ical Processor Units (GPU) or Digital Signal Processors (DSP) to increase performance

of specific software applications such as multimedia, gaming, audio and image process-

ing, machine vision. The following are just two examples of current high performance

embedded platforms:

www.ti.com

1 Introduction 5

• big.LITTLE is an heterogeneous multi-core architecture from ARM that presents

a compromise of high-performance cores combined with power-efficient cores, with

the goal to provide peak-performance processing capacity, a higher sustained perfor-

mance, and increase the parallel processing performance, at a lower average power

consumption [12]. Also it includes GPUs to assist in graphics related tasks. This

platform allows the operative system to assign task and threads to the appropriate

core, either a low-power or a high-power one, based on dynamic run-time behavior.

• Texas Instruments (TI) have released in the past years the Keystone Multi-core

Processors family following in part the multi-core DSP trends described in [73].

The Keystone I presents configurations from 1, 2, 4 or 8 cores of the powerful fixed

and floating-point C66x DSPs. The Keystone II integrates to the C66x cores a

cluster of up to 4 ARM Cortex A-15 cores for general purpose computing, providing

a unified platform of RISC and DSP cores. These platforms are suitable for high-

performance signal processing applications such as mission critical systems, medical

imaging, communications and networking, to name a few.

1.1 The sequential code problem

Take advantage of the computational power of a MPSoC, or a general multi-core system,

does not come for free. Millions of lines of sequential code have been developed over

the years considering its execution on a single core. A sequential program is one whose

instructions are executed in the order they were written. Possible performance gains of

legacy sequential code executed in multi-core systems is limited by the amount of paral-

lelism that can be extracted and exploit from that code. Considering the improvement

in core performance and energy efficiency, one could consider to keep mapping sequential

applications to a single PE, but doing so no profit is achived from the modern MPSoC

parallel computing power.

The majority of mainstream programming languages are designed to express sequential

programs [119]. Most of the code running in embedded systems has been written in

languages like C2 and C++. These programming languages are inherently incapable to

express parallelism. If a parallel program in intended to be written, add-on libraries and

language extensions are used, which encapsulate the expression of concurrency in a form

that, to the compiler or language, it remains sequential [119].

Availability of parallel hardware platforms has not change automatically the form in

which software is develop. We still continue thinking and developing code in a sequential

fashion, even this is the way programming is still taught in universities and technical

training institutions, which represent a challenge to exploit hardware parallelism. Parallel

2This language has been widely used in embedded systems due it brings an abstraction layer with

easy access to hardware components. It has have been adopted for many chips manufacturing providing

compilers for a extensive assortment of architectures, even DSPs and soft-cores built on FPGAs.

6 1.2 Parallelism extraction

programming paradigms should be taught in order to take advantage of the hardware

technological advances.

A proposal to overcome the codes shortcomings, is to create specifically languages for con-

current programming in order to exploit parallel processing capabilities in a general sense

and to facilitate automatic compilation and analysis [119]. Nevertheless, the sequential

problem, as proposed by [23], should be addressed as a parallelism extraction problem

from sequential programs, if legacy sequential code is trying to be reused.

1.2 Parallelism extraction

The improvement in performance that can be achieved using multi-core processors de-

pends very much on the software algorithms used and their implementation. New ap-

proaches propose to write the code using explicit parallelism instructions and indications,

by using libraries and language extensions to current programming languages.3

Manual parallelization is a time-consuming and error-prone task. It is desired a tool

capable to take an unaltered and unannotated (or with small annotations) sequential

program, and produce a parallel version of the original program, able to be compile

and execute in a multi-core platform [88]. However, this is an ambitious goal. Most of

existing applications require some effort from the programmer in re-factoring the code to

help the tool to discover and exploit parallelism, which corresponds to a semiautomatic

parallelization. Those tools that can handle unmodified code are consider as automatic

parallelization tools.

Extracting parallelism from a sequential code is not a new task. Since the 80s and 90s,

the problem has been addressed with different success rates. According to [121], the topic

of auto-parallelizing compilers has been in the table of researchers from a long time ago,

mainly attacked for high performance computing (HPC) and desktop systems. Many of

the techniques used and developed over the time to attack parallelization have moved into

commercial compilers and are supporting both parallel and serial optimization.

Automatic and semiautomatic parallelization success have achieved fairly success in FOR-

TRAN language, and partially in languages such as C/C++, due the language inherently

inability to represent parallelism. Application program interfaces such as OpenMP has

become popular. OpenMP is a compiler extension for C, C++ and FORTRAN that al-

lows to add parallelism into existing source code without significantly having to rewrite

it. The programmer’s knowledge of the source code is required to determine which region

of the program can run in parallel and then annotate the code. The OpenMP success had

pressured multi-core vendors and designer to support it by their platforms and tools.

Techniques such as OpenMP provide more information to the compiler in the form of

3In Section 5.1, parallel libraries and language extensions, frequently used in industry and academia,

are presented.

1 Introduction 7

code annotations, but they still suffer from the fact that they are inherently bound to the

sequential languages that they are used with.

Some challenges faced by the automatic and semiautomatic parallelization problem are:

• The diversity and nature of the different programming languages makes it difficult

to have a universal tool for such task. Each programming language is able to in-

trinsically represent parallelism at different levels, with certain degree of parallelism

(DoP).

• Using pointers, like in C or C++, create a big problem for compilers because they

obscure what data is actually being accessed, making the problem of understanding

data access hard task [121].

• Compiler has little information about the program. Runtime information obtained

from the program through profiling is useful.

• The cores architecture is another issue. Different ISA based processors would require

a compiler capable to map parallel code to different architectures, and probably

different backends. For instance, a heterogeneous multi-core system with different

types of PEs, such as General Purpose Processors (GPP) and DSPs, in the same

chip. Communication and synchronization among cores is another challenge that

can have a big impact in performance.

Recently works have addressed new and important approaches, even considering con-

strained MPSoCs for embedded systems. As a glimpse, in [125] static information at

compiling time is complemented considering profiling and runtime information to the

compiler. In [33] parallelizing techniques are developed considering not only improve-

ment in execution time as an objective but considering energy, an important constraint

in nowadays embedded systems.

1.3 Scope of this work

It is clear that automatic and semiautomatic parallelizations is an open-end problem

and there is not a general solution. Embedded MPSoC platforms present new challenges

and opportunities. Even that most compiler technology have been thought for one-core

systems, and of course it does not scale properly to multi-core ones, its fundamentals can

be used to develop parallelizing compilers at a greater level of granularity. Many of the

approaches treated over the time to represent and extract parallelism have been focused

to supercomputers and desktop computers. These different approaches, used to tackle

this challenge, are worthy to study and analyze in order to find applicability in recent

multi-core embedded systems.

This work aims to present a survey related with the models, algorithms and tools used

for parallelism extraction and its possible usage for multi-core embedded systems. This

work aim to assess:

• Different representation models used to abstract parallelism.

8 1.4 Outline

• Algorithms used to detect and extract parallelism.

• Existing tools for parallelism extraction and conversion of sequential code into a

parallel version and its usability in real MPSoC platforms such as the Texas Instru-

ments Keystone I TMS320C6678 with 8 DSP cores.

1.4 Outline

The remainder of this thesis is structured as follows:

Chapter 2: Background concepts related automatic and semiautomatic parallelization

are presented, such as dependencies, types of parallelism, granularity, and characteristics

of multi-core systems, in embedded and high-performance scopes.

Chapter 3: Models employed to represent code and its relationship are presented in this

chapter. Its characteristics are presented and discussed.

Chapter 4: Many algorithms have been used to detect and extract parallelism from

sequential code. Some of this algorithms are presented in this chapter. This chapter

presents characteristics of static, dynamic, and hybrid code analysis.

Chapter 5: Commercial and academic tools for parallelization of sequential code have

been developed in the past years. As well, there are parallelism extraction approaches

developed and proposed. Some tools and approaches are considered and analyzed in

this chapter. Code libraries and language extensions have been widely used for tools to

transform the sequential codes into parallel, some of which are presented in this chapter.

Chapter 6: Conclusions from this work and possible future lines of analysis and discus-

sion are presented.

Chapter 2

Background

To better comprehend how different models represent parallelism, and how algorithms and

tools work to find and extract parallelism from sequential code, it is necessary to intro-

duce some background concepts regarding parallelism, e.g., Amdahl’s law, dependencies,

types of parallelism and its relationships, characteristics of parallelizing compilers, and

characteristics of embedded and high-performance systems.

2.1 Amdahl’s law

Gene Amdahl’s work brought an important conclusion to the computational landscape,

the Amdahl’s law [9]. This law establishes that the speedup of a program using multiple

processors in parallel computing is limited by the time needed for the sequential fraction of

the program. Considering this premise, any application can present a portion of code that

executes strictly in a serial manner, and a complementary portion which can be executed

in parallel. Hence, for a given sequential program, its execution time can be improved

if portions of code are run in parallel. Determine these parallel sections of code is the

challenge.

Mathematically, Amdahl’s law states that if P is the portion of a program in parallel and

(1− P) the serial portion, the maximum speedup that can be achieve by N processors is

given by

S(N) =
1

(1− P) + P
N

(2.1)

It is important to emphasize that Amdahl’s considerations were conceived in a time

when single-core computers were available. Execute programs in parallel was possible

by interconnecting several computers and distributing parallel portions of the application

among them.

Today multi-core capabilities in a single chip are higher than ever though, but the vast

9

10 2.2 Dependencies in code

amount of sequential code developed along the years, limits the exploitation of this plat-

forms using such programs as currently. It is needed to extract the inherent parallelism

in applications in order to obtain the parallel fraction of (2.1).

Some studies have questioned the validity of this law in the multi-core era, specially con-

sidering embedded systems. Nevertheless, authors have presented important consequences

of the Amdahl’s law in the multi-core era [62].

Considering a baseline core equivalent, BCE, and assuming a system of n BCEs, the

authors of [62] developed 3 models for multi-core chips: symmetric, single BCEs or groups

of BCEs, e.g, tiles of 4 BCEs; asymmetric or heterogeneous, where cores present different

computational power capabilities; and dynamic, where some cores in a chip are combined

dynamically to boost the performance in the sequential component. For each model

speedup formulations are defined based in (2.1). Simulations, considering high fractions

of parallel code, showed an increase in the speedup as predicted by Amdahl’s law.

Even that the space explored by the authors can not be build by current design techniques,

this work set forth insightful ideas for multi-core hardware and software developers to

harness the continuous increments in the number of transistors per IC, such as dealing

with the overhead to develop parallel code, and its associated cost, and the challenge to

schedule software to asymmetric or dynamic multi-core chips. The work even show that

asymmetric multi-cores can offer potential speedups that are much greater then symmetric

multi-core chip.

2.2 Dependencies in code

Automatic and semiautomatic parallelism detection requires data dependence testing [96].

Data dependence relations are used to determine when two instructions, operations, state-

ments, or iterations of a loop, can be executed in parallel. How one instruction depends

on another is important to determining how much parallelism exists in a program and

how that parallelism can be exploited. The dependencies tell where data is produced and

consumed.

For instance, if two instructions are data dependent, they must execute in order and

cannot be executed simultaneously or be completely overlapped. The dependence im-

plies that there would be a chain of one or more data hazards between two instructions.

The key is to determine whether an instruction is dependent on another one [61], and a

precise analysis of these dependencies is critical do detect and extract parallelism while

not violating the functional correctness of a program. In this section, data1 and control

dependencies in basic code structures are presented.

1These dependencies are classified as load-store, due they are expressed in terms of load-store order

[74].

2 Background 11

1 X = Y + Z ;

2 W = X + 3 ;

3 V = X ∗ 2 ;

Listing 2.1: True dependencies.

Figure 2.1: Data dependence graph.

2.2.1 Data dependencies

Consider the code in Listing 2.1. The instruction 2 can not be executed at the same time

than instruction 1, due the first modify the value of X needed by the second instruction.

If both instructions are execute at the same time, W would have an incorrect value. The

same situation happens with instruction 3, it can not be executed at the same time than

1. Thus instruction 1 must be executed before 2 and 3, and thus ensure that instruction

2 and 3 receives the correct value from the first instruction [96]. This is called true

dependence, and it is depicted in Figure 2.1.

In the context of hardware design, dependencies are commonly called hazards. Data

hazard is consider whenever there is a data dependence between instructions and, just

as previously presented, the overlap of instructions during execution would change the

order of access to the operand involved in the dependence. Read After Write (RAW) is

a common data hazard that corresponds to true dependences [74]. From the Figure 2.1

can be notice that instruction 2 and 3 are not connected and they may be executed in

parallel if PEs are available.

A parallelizing compiler should implement techniques to exploit parallelism by preserving

the program order only where it affects the outcome of the program. Detecting and

avoiding hazards ensures that necessary program order is preserved [61].

Consider the code in Listing 2.2. The instruction 2 assigns a new value to Y. Since instruc-

tion 1 use an old value of Y, it must be executed before 2. This is called antidependence

and it is data harzard classified as Write After Read (WAR). At a microarchitectural

level, this hazard occurs either when there are some instructions that write results early

in the instruction pipeline and other instructions that read a source late in the pipeline.

A third type of dependence is exemplified in Listing 2.3. In this case, the instruction

3 assigns a new value to X, after instruction 1 did it. In a case where instruction 1 is

12 2.2 Dependencies in code

1 X = Y + Z ;

2 Y = W / 2 ;

Listing 2.2: Antidependence.

1 X = Y + Z ;

2 Z = X + 3 ;

3 X = V + W;

Listing 2.3: Output dependence.

executed after the 3, the value of X would be incorrect. For this case, instruction 1

must precede the execution of 3. This is known as output dependence and correspond to

a Write After Write (WAW) data hazard, where writes end up being performed in the

wrong order.

2.2.2 Control dependencies

The flow of control must also be taken into account when discovering data dependence

relations. A control dependence determines the ordering of an instruction with respect

to a branch instruction, so that instruction is executed in correct program order and

only when it should be executed [61]. Control dependencies must be preserved to keep

the program order. One simple example is the dependence of the then part of an if

statement on a branch. For instance, consider the code segment in Listing 2.4. The

output dependence between instruction 1 and 3, and the true dependence between 1 and

5 are present. However, between instruction 3 and 5 there is not a true dependence. Due

instruction 3 and 5 are in different branches of the same if statement, the value of A

assigned to D will never proceed from instruction 3.

A slightly modified code in show in Listing 2.5. In this code true dependences appears

between instruction 1 and 5, and instructions 3 and 5. Those dependences could be

computed by a compiler, even when the value assigned to D would come only from one

of the instructions (1 or 3) depending of the value of X.

Due the actual execution flow of a program is not known until run time, data dependence

relation does not always imply data communication or memory conflicts [96]. This make

a static analysis, at compile time, a needed but incomplete tool to accurate determine

and extract parallelism.

According to [61], there are two constraints imposed by control dependences:

• An instruction that is control dependent on a branch cannot be moved before the

branch, so that its execution is no longer controlled by the branch. One instruction

from inside the then section in an if statement, cannot be moved before the if.

• An instruction that is not control dependent on a branch cannot be moved after the

2 Background 13

1 A = B + C;

2 i f (X >= 0) then

3 A = 0 ;

4 e l s e

5 D = A;

6 end i f

Listing 2.4: Control dependence 1

1 A = B + C;

2 i f (X >= 0) then

3 A = A + 2 ;

4 end i f

5 D = A ∗ 3 ;

Listing 2.5: Control dependence 2.

branch, so that its execution is controlled by the branch. One instruction before a

if statement cannot be move it into the then segment.

2.3 Parallelism: types and relationships

2.3.1 Granularity and parallel performance

In modern computers systems, parallelism appears at different abstraction levels, both in

hardware and software. In [90], parallelism is consider at signal, circuit, component, and

system levels. Signals and circuits levels are consider as hardware parallelism, and the

execution in those levels occurs concurrently due the nature of hardware. Component and

system levels are consider as software parallelism and they are mostly expressed implicitly

or explicitly using various software techniques.

The levels of parallelism can be based on pieces of code, also called grain size, that

can be potential candidates for parallelism. Figure 2.2 shows a classification of levels of

parallelism according to granularity.

The granularity can be defined as the size of work in a single task of a multi-thread

application [37], the amount of work in a parallel task. It is important to mention that

different levels of granularity can affect the performance in different aspects. As presented

in [37], a fine-grained parallelism means individual tasks are relatively small in terms

of code size and execution time, but it introduces communication overhead; in coarse-

grained parallelism data communicate infrequently but may introduce load imbalance

among parallel tasks and cause synchronization issues [26].

As presented in Figure 2.2, different levels of parallelism can be found in an application,

14 2.3 Parallelism: types and relationships

Figure 2.2: Parallelism levels (Based on Figure from [90]).

from execution of specific operations, such as adds or multiplications, up to tasks or

threads of a task execution at the same time in different PEs. Parallelism based on code

granularity have a common goal to boost processor efficiency facing the compromise of

latency of lengthy operations. The very-fine grain size, found in code as instructions, is

parallelized by the processor. The fine grain size, loops or instructions blocks, is primarily

parallelized by the compiler. Parallelize medium and large grain size code segments,

found in program functions and separate programs, has been a task for the programmer.

Automatic or semiautomatic parallelizing tools look for the exploitation of coarser-grained

size sections.

From the granularity concepts, and how it is related with different levels of code, it is

important to conceptualize the different levels of parallelism that is possible to extract

and exploit from an application, and also how these types are related one to each other.

In [61] the basic, and classic, types are covered from the micro-architectural perspective

and considering software impact. [139] and [115] emphasize in their relationships.

2.3.2 Data Level Parallelism

Data Level Parallelism (DLP) is a class of parallelism that can be exploited by broad-

casting, at each step in the execution, one operation to a set of n PEs, this is several

2 Background 15

cores executing the same instruction (or instructions) simultaneously, but using different

data [139]. As a simple example, consider a thresholding operation applied to a gray-scale

image. If n PEs are available, each one can perform the threshold operation on one single

pixel at a time. This type of parallelism is exploited using Single-Instruction Multiple-

Data (SIMD) processors, according to Flynn taxonomy [45]. DLP tries to duplicate the

statements of a loop’s body to execute the same task on several processing units.

There are three processors variants that take advantage of the SIMD concept. The vec-

tor variation implements instructions that operates on one dimension arrays of data, a

pipelined execution of many data operations. The SIMD variation perform simultane-

ous parallel data operations and nowadays is found in most Instruction Set Architectures

(ISA) today that support primarily multimedia applications [61], such as the Multimedia

Extensions (MMX) and the Streaming SIMD Extensions (SSE) in the x86 CPU architec-

ture. A GPU, for instance, offers high potential performance used in current multi-core

computer to accelerate task as video decoding.

2.3.3 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is a type of parallelism in which one thread of con-

trol is capable to schedule multiple, and usually different, operations for the execution

on different PE [139]. The processor must present multiple functional units capable to

operate in parallel, in one same clock cycle. For example overlap CPU and I/O activities,

memory interleaving techniques [90].

This parallelism has been exploit by superscalar and Very Long Instruction Word (VLIW)

processors, where those might have, e.g., two integer ALU functional units, a floating

multiply unit and floating point divide unit. In a processor like this one, the code might

be scheduled in order to have an integer add, a floating point multiply and a floating point

division instructions executed at the same time if the instructions issued are independent

and have no true dependencies between them.

According to [61], there are two major approaches to exploiting ILP. One relies on hard-

ware to help in the process of discover and exploit the parallelism dynamically; the other

one relies on compilers to find parallelism statically at compilation time.

A basic block of code, one with no branches (just at the beginning and at the end), present

a small amount of parallelism. To increase the parallelism at this level, ILP should be

done across multiple basic blocks. The most common way to increase the ILP is to exploit

parallelism among iterations of a loop. This type of parallelism is often called Loop-Level

Parallelism (LLP).

There are several techniques that allow the conversion of LLP into ILP:

• Compilers techniques such as loop unrolling and basic pipeline scheduling.

• Reduce branch costs with advanced branch prediction.

• Overcome data hazards with dynamic scheduling, e.g. using Tomasulo’s approach.

16 2.3 Parallelism: types and relationships

• Hardware based speculation.

• Multiple issues and static scheduling.

• Increase instruction fetch bandwidth.

2.3.4 Thread Level Parallelism

Thread Level Parallelism (TLP) is a type of parallelism exploited in architectures where

multiple threads of control can be executed, each of which involves multiple operations

that may be executed on multiple functional units. Chip multi-processors (CMP) and

MPSoC can exploit this type of parallelism [139].

Multi-core processors, typically controlled by a single operating system and that share

memory through a shared address space, are used to exploit this type of parallelism. Such

systems exploit TLP through two different software models, by the execution of [61]:

• A tightly coupled set of threads collaborating on a single task, which is typically

called parallel processing.

• Multiple and relatively independent processes whose origin can be from one or more

users.

Many multi-core systems support multiple threads executing in an interleaved manner,

just like in single multiple-issue processors. According to [45], processors capable to ex-

ploit TLP are classified as Multiple-Instruction Multiple-Data (MIMD) processors. For

example, if n PEs are available, it is capable to handle up to n simultaneous threads

mapped to its cores. The independent threads within a single process are typically iden-

tified by the programmer or created by the operating system. Also, it is important to

denote that a thread may consist of a few tens of iterations of a loop, generated by a

parallel compiler exploiting data parallelism in the loop [61].

This type of parallelism presents challenges to be exploited: one is the limited parallelism

available in the source code of applications, which limits the potential speed-up using

the multi-core systems; the other is related with the potential high communication cost

between threads running on different PEs, and the effect of long communication delays is

clear.

At this point, three general parallelism levels have been presented. They exhibit a hier-

archy. As a summary [115]:

• Data Level Parallelism is the lowest level. It is class of parallelism where one oper-

ation is performed by a group of similar processing elements at the same time.

• Instruction Level Parallelism is the next level. It refers to several different instruc-

tions being executed by different processing elements at the same time.

• Thread Level Parallelism is at the top level in the hierarchy. It refers to multiple

threads of control being executed in parallel, usually in multiple PEs.

There is an interesting and important relationships between these parallelism levels, ac-

2 Background 17

Figure 2.3: Relationship of parallelism types (Based on Figure from [139]).

cording to [139] and [115]. As defined by Amdahl’s law, there is a portion of the code that

can only be executed in serial and a portion that can be executed in parallel, as shown in

the Figure 2.3. This models breaks the parallel portion into fractions of parallelism that

can be only exploited by TLP; a fraction that can exploit TLP and ILP, which is the ILP

fraction; and a fraction that can be exploited by any of the three types of parallelism, this

is the DLP fraction. This way to describe the parallelism present in a given application, is

consider by the authors as a guide for the parallelism extraction process and for targeting

to the right PEs.

For instance, DLP is a subset of ILP. If a ILP-capable processor can exploit data par-

allelism if it has multiple versions of each type of functional units in a PE. It schedules

multiple instructions of the same type, on multiple units of the same type. On the

other hand, ILP cannot be exploited by DLP-capable processors, due ILP is exploited

by concurrently executing different instructions on different functional units. In DLP

architectures, a common instruction is broadcast to all PE, so it is not able to execute

independent instructions in parallel because it can only broadcast one type of instruction

simultaneously.

ILP is a subset of TLP. An ILP program can be executed on a PE design to exploit TLP,

creating multiple instances of the ILPs thread control. Conversely it is not possible due

TLP present in a program that have multiple independent threads of control cannot be

exploited by an ILP PE since it can only execute one thread control at a time.

Embedded multi-core systems, due its variety of PEs, present a better performance boost

when coarser levels of parallelism are extracted from sequential code and exploit in its

architectures. There are two types of TLP that can be exploit particularly for multi-core

embedded systems, Task Level Parallelism and Pipeline Level Parallelism [33].

2.3.4.1 Task Level Parallelism

Task Level Parallelism (TkLP) is a coarser-grained type of TLP. This type of parallelism

focus on the distribution of execution process, or threads, to the PEs of a multi-core or

18 2.3 Parallelism: types and relationships

multi-processors system. As presented in [33], big and independent code blocks of an

application can be processed by concurrently executed tasks. These blocks can be code

functions or even single statements, depending on the desired level of granularity. This

parallelism divides statements of an application into coarse-grained, disjunctive tasks to

operate, in preference, on independent data.

In embedded systems, this type of parallelism is efficiently because in many cases only

few data has to be communicated between the different executed tasks. [33] propose tech-

niques for extracting this kind of parallelism applied to homogeneous and heterogeneous

embedded MPSoCs for one and also for multiple objectives. Task level parallelism of-

ten benefits from concurrently executed function calls or the parallel execution of several

independent loops. In [50], one of the first works on automatic detection of task-level

parallelism is presented. The authors approach the problem of detecting, expressing, and

optimizing task-level parallelism, considering a task as program statements of arbitrary

granularity.

2.3.4.2 Pipeline Level Parallelism

Pipeline Level Parallelism (PLP) is another type of TLP. It can be used to extract efficient

parallelism from many embedded applications, especially those which are written with a

streaming-oriented structure. Pipeline parallelism splits a loop code structure into differ-

ent tasks, which are executing disjointed parts. In other words, with Pipeline Parallelism

each loop iteration is splitted into stages and threads operate on different stages from

different iterations concurrently. Each stage is assigned one or more worker threads and

an in-queue which stores the work to be processed by that stage.

PLP is powerful because it can expose parallelism in ordered loops where iterations are

non-independent, loop-carried are present, and cannot run concurrently. By splitting each

loop iteration into segments, intra-iteration parallelism can be exposed. This parallelism

is a powerful method to extract parallelism from loops which are difficult to parallelize

otherwise. The advantage of this parallelization is that each task can start the next

iteration of the loop, executing its assigned statements as soon as it has communicated

its result to the tasks waiting for its output. In this way, a pipeline of calculations is

created [29].

The advent of general-purpose multi-core system as well as the proliferation of multimedia

consumer electronics has underlined the importance to focus on higher-level parallelism

[125]. Multimedia applications typically comprise pipelined computations and operate on

a stream of data of different granularity. The reason is that many embedded applications,

especially those like networking, voice and image processing, and multimedia tasks like

video decoding, are structured in a pipelined manner. All these applications have in

common that most of their parallelism is hidden in loops containing different pipelining-

based jobs. For instance, in image processing several filters are applied to a block of a

source image and each filter depends on the previous one [127].

2 Background 19

����

�� �� ��

���	� 	� 	�

��
��
��

���

���

��
�

�� �� ��

���	� 	� 	�

��
��
��

���

���

��
�

��

��

��

��

��
�

	�

	�

	�

	�

��
�

	�

��
�

��� 	�

��
�

�����������	������
����

�����������	�

��������	�����

���

A
, ,

CDFG
A

or

es

METIS MCL

Figure 2.4: Relevant parallelism forms to embedded systems: a) Task, b) Data, and c) Pipeline

Level Parallelism (Figure taken from [23]).

PLP may be also conceptualized as a chains of producers and consumers directly con-

nected in the stream graph [51]. Compared to DLP, this type of parallelism approach

offers reduced latency, reduced buffering and good locality. It does not introduce any odd

communication, and it provides the ability to execute any pair of statements in parallel.

Nevertheless, this type of pipelining introduces extra synchronization, as producers and

consumers must stay tightly coupled in their execution. In addition, effective load balanc-

ing is critical, as the throughput of the stream graph is equal to the minimum throughput

across all of the PEs.

From the different kinds or level of parallelism already exposed, some can be present, but

hidden, in an application. Traditional compiler has focused in detecting and exploiting

ILP. Nevertheless, the required parallelism for MPSoC is in a coarser-grained level. So,

the most important types of parallelism should be consider by tools looking for an auto-

matic or semiautomatic parallelism extraction should focus in Data, Task, and Pipeline

Level Parallelism. Figure 2.4, from [23], depicts these parallelism types for different tasks

(T1, T2, ..., Tn), their corresponding input data set (DS) and the output results (R).

2.4 Parallelizing compilers

Automatic and semiautomatic parallelization of sequential source code has been an am-

bitious research focus in order to exploit and take advantage of the capabilities of parallel

architectures and commercial multi-core processors, such as modern MPSoC. The ultimate

goal for a parallelizing compiler, one automatic, is to take an unaltered and unannotated

sequential program and perform a compilation process that produces a efficient parallel

object code without any, or very little, additional work [88], relieving the programmers

from the exhausting and error-prone task of manual parallelization [47]. This issue has

been deeply covered for dense array-based numerical programs and shared memory multi-

core processors, due the wide availability of those types of processors and the great amount

of applications that using this data structure.

There are essentially two approaches for parallel programming according to [90]. One is

based on implicit parallelism, where the parallelizing compiler is responsible for obtaining

20 2.4 Parallelizing compilers

(a) Automatic parallelization

(b) Parallel libraries

(c) Recoding

Figure 2.5: Porting strategies for parallel applications (Based on a Figure from [90]).

the parallelism and scheduling the tasks. This approach is followed by parallel languages

and parallelizing compilers developed, and is important to mention that there is no control

by the user in, e.g., how the scheduling is done. The other approach is based on explicit

parallelism, in which the programmer is responsible for most of the parallelization effort,

such as task decomposition, mapping task to processors, communication structure. Even

when this approach represents a big load of work, the user is often the best judge of how

parallelism can be exploited for a particular application.

A parallelizing tool could includes both implicit and explicit parallelism approaches, due

the fact that programmer’s knowledge about which parts of the application to parallelize

is extremely useful. This information can be accompanied by dynamic information, appli-

cation’s run-time behavior, that can bring information, e.g, about which code’s sections

in a program are executed the most (see Section 4.1).

In [90], three approaches are presented on how obtain a parallel version of a sequen-

tial program. Figure 2.5 illustrates these approaches. This classification can apply to

automatic and semiautomatic parallelizing compilers, with some minor differences. The

2 Background 21

Figure 2.5(a) truly represent the case of an automatic tool. Minor modifications, or no

modifications, are expected for an automatic process, however some existing automatic

tools can not support certain code structures and require slightly modifications in order to

automatically detect and extract parallelism2. Other important point is that automatic

tools may use libraries and language extensions to generate parallel version of the input

sequential code (see Chapter 5). The Figure 2.5(b) represents a flow that applies for a

semiautomatic parallelizing compiler. In this case, the programmer annotate or instru-

ment the code to help the tool discover parallelism, or to indicate important code sections

that have parallelism potential; even mayor code modifications by the programmer are

done to help the tool to better find and exploit the parallelism. Figure 2.5(c) present the

manual process of converting sequential source code to a parallel version.

A parallelizing compiler may present the same stages of a typical compiler: a front-end, a

middle-end, and a back-end; but for the purposes of extracting parallelism, [23] proposes

that these compiler phases perform their work at a coarser level than regular compilers.

In a roughly way, the general procedure of parallelization should consider (based on [137]):

1. Identification of parallelizable code sections, which in a semiautomatic fashion can

be determined by the programmer. The challenge arises when the program was

written by a person different than the one trying to parallelize it. These code “hot

spots” or parallelizable candidates could be functions or loops.

2. Dependencies analysis of the selected code sections to determine a model of the

program. This step difficult because it involves lot of analysis. Generally for codes

that use pointers are difficult to analyze. Many special techniques such as pointer

alias analysis, functions side effects analysis are required to conclude whether a

section of code is dependent on any other code.

3. Reduce the amount of iterations among different parts of the program that may

prevent parallelization, usually done by code transformations. Code transformation

are used to remove dependencies [88]. Code is transformed such that the functional-

ity, and hence the output, is not changed but the dependency, if any, on other code

section or other instruction is removed. Also, additional optimization of sequential

threads so it can be execute efficiently.

4. Once dependencies are identified and reduced, the parallelism should be detected

and extracted from the input source code.

5. The last step is to generate the parallel code, manually or automatically, or in some

cases produce the parallel executable code. In case that the output is a parallel

version, this must have the same functionality than the original sequential code, but

with additional constructs or code structures, that once compiled, create multiple

threads or processes.

2An example is the tool presented in Section 5.2.1

22 2.5 Embedded Systems and High-Performance Computing

One key to parallelization is find a way to split the work of the code such that a write

to a memory location by one thread is always separated from another thread’s access to

the memory location by a synchronization. So, uncertainty about which data is being

accessed by which threads really hampers parallelization [121] In fact, one of the main

difference between a shared and distributed memory is how communicating thread, or

processes, communicate. Barriers are used to synchronize parallel execution of tasks, and

this barriers ensures that all the threads executing in parallel finish before any part of the

program after the parallel construct is executed, for example a serial, not parallelizable,

part of the program [88].

When a program executes in parallel, different parts of the program are spread across

multiple PE and execute simultaneously. However, develop parallel applications exhibits

challenges not presented in sequential programming, e.g., non-determinism, communica-

tion, synchronization, data partitioning and distribution, load-balancing, fault-tolerance,

heterogeneity, shared or distributed memory, dead locks and race conditions; this chal-

lenges should be considered in the process of developing a tool that identifies and extract

parallelism [90]. The challenge is even bigger when considering state-of-the-art MPSoC

systems where not only heterogeneous CPU cores are found (with different power/perfor-

mance profiles but sharing the same ISA) but also PEs such as DSPs and GPUs.

Considering MPSoCs, a parallelizing compiler should not just take in account increase

performance by exploiting all the available parallelism in a program. It should consider

outstanding aspects regarding MPSOoCs, such as energy consumption associated with the

number of PEs active and running, and communication overhead cause by the different

threads and tasks running and it impact in the overall performance. In this context not

always exploit the highest amount of parallelism available is the best choice for a MPSoC.

The present work intend to present and discuss different aspects to be consider when

developing a tool for automatic or semiautomatic parallelization tool from sequential

code, such as representation models, algorithms for detection and extraction parallelism,

and tools and approaches already developed, and how those can be used considering

multi-core embedded systems as a target.

2.5 Embedded Systems and High-Performance Com-

puting

Embedded System (ES) and High-Performance Computing (HPC) are two distinct areas

in the computational world. General-purpose systems, such as desktop and servers com-

puters, have followed an aggressive development to provide high performance for a range

of applications [72]. Since the 1960s, HPC systems have been designed as front-line ma-

chines considering its processing capacity. At the beginning these systems were designed

with only few processors, by the end of the last decade, massively parallel supercomputers

with tens of thousands of the manufactured state-of-the-art processors became the norm.

2 Background 23

HPC systems have been extensively used for a wide spectrum of computationally inten-

sive tasks in various fields, e.g., numerical simulation, systems modeling and synthesis,

quantum mechanics, weather forecasting, molecular modeling and machine learning [86].

In the other hand, the embedded systems are computational systems that have been

designed, generally, with one or a few specific functions [141], either as custom standalone

device dedicated to the execution of specific tasks, e.g. aeronautical guidance systems in

aerospace industry, or as custom integrated devices with a dedicated function within a

larger mechanical or electrical system, e.g. ABS car breaks, telecommunications systems

(radar, satellite), bio-medical instrumentation [86]. Despite the broad field of embedded

systems applications, there are some common characteristics:

• Specialized to an application domain, single application or task, which makes them

less flexible but probably more efficiently to design.

• Underlines many and tight constraints, such as power/energy, heat dissipation, tim-

ing, form factor, price.

• Due the constraints, design embedded systems becomes more challenging than de-

sign a general-purpose computers.

• There is a high volume compare to regular CPUs. For instance, a luxury car has

already more than 100 embedded systems.

• Embedded systems are a whole system in a single IC, with CPU, memory and I/Os.

Many modern embedded systems present high computing capabilities that overcome the

desktop computers of 15 or 10 years ago. Current embedded system encompass HD,

3D video and multimedia systems, and smart-phone and tablet computers never thought

before. The latter two have been classified as Personal Mobile Device (PMD), a term

used for wireless devices with multimedia user interfaces [61].

Much of the research effort in parallelization detection and exploitation from sequential

code have been done for HPC, a probe of this is the automatic and semiautomatic par-

allelization tools developed (see Chapter 5). Due the difference in the characteristics of

both worlds, HPC parallelization tools are not able to work, one to one, to a wide diversity

of embedded systems. Of course, some tools may applied due some embedded systems

capabilities. For instance, Texas Instruments offers support for the OpenMP API in its

KeyStone multi-core architecture [66], allowing the usage of OpenMP parallel versions of

sequential C codes, parallelized with HPC tools.

Even the differences between these two worlds, nowadays both face similar design chal-

lenges and issues, whose solutions converge to similar approaches. For example, increasing

computational demands and large degrees of parallelism take an important role, especially

when considering in real-time applications. These factors led to distributed many-core

platforms in embedded systems design, and to massively parallel systems in HPC domain

[87]. The introduction of heterogeneous processors, specialized for different and special-

ized workloads, like GPUs, which often lead to the integration of embedded systems

in complex HPC systems. The movement of graphics processing units into mainstream

general-purpose platforms in now a reality in desktop IC CPUs [72]. Modern computing

24 2.5 Embedded Systems and High-Performance Computing

systems contain a heterogeneous mixture of processing cores (e.g., FPGAs, GPUs, DSPs)

combined with a single- or multi-core CPUs.

Power constraints have become one of the most relevant design considerations for both

classes of systems, even is now consider a dominant design consideration, due the increase

in power density with every next technology node. Communication minimization, which is

fundamental for reducing power consumption on embedded processors, is now a stringent

requirement for next supercomputer design at the chip, node, and machine level [86]. The

technology scaling, which resulted in process variation as well as component degradation,

introduced the need of designing more flexible systems, able to deal with unpredictable

behaviors (adaptivity). In the nano scale era reliability and predictability have become

important metrics [116].

The design process of such increasingly new complex architectures requires great skills

and significant programming effort, which is a time-consuming and error-prone task. Im-

provements in the design automation process is a challenge for both embedded systems

and HPC scenarios. Most of the approaches used for the design of embedded systems

have been also applied, in a way or another and at a different scale, to HPC systems

[72]. As proposed in [48], a holistic approach that relies on tightly coupled hardware-

software co-design methodologies is required for the design of modern embedded systems

and supercomputers requires.

2.5.1 Parallelizing for ES and HPC

The development of parallelizing compilers have been focus for HPC, and they have

followed, in one way or another, the steps aforementioned. Parallelizing for ES should

consider some aspect usually not contemplated for HPC. Some differences are:

• Many of the HPC systems are distribute-memory systems, while mainly ES are

shared-memory. This affect the way that information is shared and communicate

among process or task executed in different PEs.

• ES exhibit a wide variety of PEs, so harnessing all the computational power avail-

able requires the capacity to map executable code to heterogeneous cores, even

architectural different. HPC usually present a large number of cores of the same

type. This affect the number of parallel task concurrently executed.

• Objectives in parallelization for ES go beyond than speed-up. Due the constrained

nature of ES, other objectives should be take in count such as time and energy.

For instance, exploiting a high degree of parallelism (DoP) to enhance speed-up

could cause an increase in energy consumption and task could end pretty soon

considering the time requirement. Hence a trade decreasing the degree of parallelism

and consuming less energy while being within time constraints could be a better

bet.

• Due the diversity of ES, the target hardware characteristics should be consider as an

input to the parallelizing compiler, which also applies to HPC systems. For example,

2 Background 25

operation voltage, frequency and TDP (Thermal Design Power) parameters should

be consider, so that parallelism is not exploit for long periods at maximum running

capacity, exceeding thermal constraints and causing the activation of mechanism like

DTM (Dynamic Thermal Management) to mitigate the emergence but throttling

down the execution and compromising the total reachable speed-up [104, 97].

26 2.5 Embedded Systems and High-Performance Computing

Chapter 3

Representation Models

Computational or representation models are abstractions of conceptual notions, used to

express the function of a system. For example, a finite-state machine (FSM) can represent

a sequential logic circuit. Most of the graphs used in code analysis are based on direct

graphs. According to [6], a direct graph G, where G = (B,E), is composed by a set of

blocks or nodes (also called vertices), B = b1, b2, b3, . . . , bn, and a set of edges (arcs or

arrows), E = (bi, bj), (bk, bl), The nodes, not necessarily distinct, are connected by an

edge, e.g., the edge (bi, bj) indicates that there is a link from node bi to bj, where bi is the

predecessor of bj and bj is the successor of bi. Several types of graphs are used to perform

code analysis to detect and extract parallelism, and perform code transformation and

optimization. As mentioned by [144], data flow models naturally expose the parallelism

contained in an application.

Intermediate representation (IR) is a data structure that is constructed from input data

to a program. IR is used to represent the original program in an equivalent form, more

suitable for exposing application features, such as parallelism level [86]. IR allows to

match with the inherent parallel nature of hardware cores. Most of the direct graphs

presented in this Chapter are created from IR in parallelizing compilers and approaches.

Computational structures consists basically of two parts: data and control. Each of them

can be represented by a direct graph, a Data Flow Graph (DFG) and a Control Flow

Graph (CFG), also called precedence graph. These two models are presented first in this

Chapter.

3.1 Data Flow Graph

A Data Flow Graph (DFG) comprises a set of nodes, containers or storage cells (S), and

operators (P), and a set of edges that indicates the input and output storage cells related

to operators [135]. The nodes of a DFG perform operations when the data values are

available, following the firing rule [133].

27

28 3.1 Data Flow Graph

Figure 3.1: DFG for a quadratic equation solution.

The DFG represents global data dependence at the operator level (called as the atomic

level in [78]). The execution process proceed with fetching data form the input port and

the result is forwarded through each output port; a producing node send the data to the

consuming node through edges. Due the partial ordering in a DFG, the nodes are not

strictly dependent on each other for their execution of instruction [118]. For instance,

consider a quadratic equation, ax2 + bx+ c = 0, with all coefficients different to zero, and

whose solutions can be calculate as:

x1,2 =
−b±

√
b2 − 4ac

2a
(3.1)

A DFG for the calculation of solution x1 is depicted in the Figure 3.1. Here, S includes the

input values and the output cell (S = {a, b, c, 2, 4, x1}); while P includes the operations

used in the calculation (P = {−1, pwr, sqrt,+,−, x, /}).

DFGs have been extensively used due their ability to specify algorithms which exhibit

high degree of parallel and asynchronous activity. DFG have been used to simulate

hardware. One advantage of DFG is its compactness and general amenability to direct

interpretation. Algorithms expressed in a DFG are controlled by the arrival of data

(token) at the transformation actors (nodes) [57]. Nevertheless, a complete analysis of

algorithms requires the knowledge of the control flow of the program.

3 Representation Models 29

3.2 Data Dependence Graph

Data Dependence Graph (DDG) is related with DFG. A DDG represent the dependencies

between data used in different instructions or statements. The edges represent depen-

dencies, the same presented in 2.2, i.e., true dependence, antidependence, and output

dependence [79]. The nodes represent different instructions. Consider the imperative

example code, in language C, presented in Listing 3.1. The DDG for the sample code is

represented in Figure 3.2 (the instructions are numbered according to the line numbers

in the Listing). The graph shows data relationships for all the instructions, even in the

output value (instruction 23), that depends of prior calculated data. The edges present

the data dependence type among nodes.

Data dependence graphs have provided some optimizing compilers with an explicit rep-

resentation of the definition-use relationships implicitly present in a source program [44].

Some DDG have been design for hierarchical analysis of dependence relations in pro-

grams, and those graphs are threaded through a syntactic representation of the program

as a multi list of tokens.

As stated in [98], this representation is a data structure that can be rapidly traversed to

determine dependence information, and it is commonly used by compilers that perform

wholesale reorganization of programs. DDG have been used to represent only the relevant

data flow relationships of a program [44], but lack of control information. DDG is not an

executable representation and does not incorporate information about the control flow of

the application [98].

3.3 Control Flow Graph

A Control Flow Graph (CFG) is a direct graph in which the nodes represent basic code

blocks and the edges represents control flow paths [6]. A CFG is defined as a directed

graph augmented with a unique entry node Entry and a unique exit node Exit1, such

that each node in the graph has at most two successors. Nodes with two successors have

attributes T (true) and F (false) associated with the outgoing edges in the usual way[44].

Considering two nodes in a CFG, X and Y, Y is control dependent of X if:

1. there exists a directed path P from X to Y, with any Z in P post-dominated by Y.

2. X is not post-dominated by Y.

A node Y is post-dominated by a node X in a CFG if every direct path from node Y to

Exit contains X. This definition does not include the initial node on the path. A node

never post-dominates itself. If Y is control dependent on X then X must have two exits.

1These nodes are usually named as Start and Stop.

30 3.3 Control Flow Graph

1 vo i d code (i n t a , i n t b , i n t c , i n t ∗ out){
2 i n t i , j , n , t , k , z , r e s ;

3 i = 0 ;

4 wh i l e (i < a){ // loop1

5 j = 0 ;

6 n = i + 1 ;

7 wh i l e (j < n){ // loop2

8 t = j + 1 ;

9 c = a + t ;

10 i = i + c ;

11 j = j + 1 ;

12 }
13 i = i + 1 ;

14 }
15 k = 0 ;

16 wh i l e (k < 10){ // loop3

17 i f (a > k)

18 b = k + a ;

19 k = k + 1 ;

20 }
21 z = a ∗ b ;

22 r e s = z + c ;

23 ∗ out = r e s ;

24 }

Listing 3.1: Example code 1 (Based on [86]).

Figure 3.2: DDG for example code in Listing 3.1 (Based in Figure from [86]).

Following one of the exits from X always results in Y being executed, while taking the

other exit may result in Y not being executed.

3 Representation Models 31

(a) block

schema

(b) if-then-else (c) if-then

(d) while loop (e) self-loop (f) loop with 2 exits

Figure 3.3: CFG representations for acyclic (a - c) and cyclic (d - f) code regions (Based on

Figure from [40]).

Different code structures can be represented with a CFG, as depicted in Figure 3.3, where

basic cyclic and acyclic code regions are illustrated with CFGs [40]. The Figure 3.4

presents the CFG for the code in Listing 3.1. In this example, the loops loop1 and loop2

are independent from loop3, since neither data nor control dependencies occur among the

instructions in the corresponding bodies. The graph shows such independent loops are

sequentialized through the edge between instructions 4 and 15 [86].

Most compilers store the programs in the form of CFGs, using the program’s IR, and is

used it for optimization purposes. CFG has been the usual representation for the control

flow relationships of a program, the control conditions on which an operation depends can

be derived from such a graph. An undesirable property of a control flow graph, however,

is a fixed sequencing of operations that need not hold the usual way [44].

32 3.4 Dependence Flow Graph

Figure 3.4: CFG for example code in Listing 3.1 (Based in Figure from [86]).

1 x = 1 ;

2 y = 2 ;

3 i f (x == 1)

4 y = 3 ;

5 . . . y . . . // r e p r e s e n t s an op e r a t i o n tha t i n v o l v e s y

6 x = 2 ;

Listing 3.2: Example code 2 (Based on [98]).

3.4 Dependence Flow Graph

Dependence Flow Graph (DepFG) is model that allows the representation of a program

proposed by [98]. DepFG is a data structure that can be rapidly traversed to determine

dependence information and is a program in its own right, with a parallel, local model

of execution. This representation naturally incorporates the best aspects of many other

representations such as data and program dependence, static single assignment form and

data flow programs graphs.

To describe this model, consider the small section of code in Listing 3.2. The Figure 3.5

presents the CFG and the DDG for this code. The Figure 3.6 depicts the corresponding

DepFG.

3 Representation Models 33

(a) CFG (b) DDG

Figure 3.5: CFG and DDG for code example in Listing 3.2 (Based on Figure from [98]).

Figure 3.6: DepFG for example code in Listing 3.2 (Based in Figure from [98]).

DepFGs are a synthesis of ideas from DDG and the data flow model of computation. As

in the DDG, the DepFG can be viewed as a data structure in which the edges represent

dependencies between the operations. For every dependence edge in the DDG, presented

34 3.4 Dependence Flow Graph

in Figure 3.5(b), there is a corresponding path in the DepFG in the Figure 3.6. However,

unlike DDG, DepFG are executable, and the execution semantics, called dependence-

driven execution, is a generalization of the data-driven execution semantics available in

DFG. In the latter, nodes represent functional operators that communicate with each

other by exchanging value-carrying tokens along the edges of the graph; these edges can

be considered as flow dependencies since they connect a node that produces a value with

one that consumes it. This edges are called functional dependencies. In Figure 3.6, the

edges names as v, v1 and b.

In DepFG, the data flow model is extended by adding an imperative, and updatable, global

store and two operations called load and store which manipulate it. The load operator

reads the contents of a storage location and outputs the value as a token. The store is the

opposite than load, it receives a value on a token and stores it into a memory location.

DepFG introduces new type of edge called imperative dependence. In the DepFG in the

Figure, d2 and d3 are imperative dependencies that sequence operations on location x,

corresponding to edges in the DDG. To preserve the token-pushing semantics of DFG, the

load and store operators produce a special token when the operation is completed. These

tokens flow down the imperative dependence edges to enable operators at the destinations

of those edges. For instance, when the assignment of 1 is done to x it produces a token

carrying on d2. This is said to satisfy the dependence d2, thereby enabling the load x

operator for execution. When the load x executes, it produces tokens carrying on line d3

and the value 1 on the line v, Thus operations on a given memory location are sequenced,

but operations on different locations can be executed in parallel [98].

Imperative dependencies, denoted as d in the Figure 3.6, are classified as true dependence,

antidependence and output dependence (as presented in Section 2.2). For instance, d2

is classified as true dependence and d3 as an antidependence. Dependence edges that

sequence operations on location y are intercepted by switch and merge operators, which

implement flow control. These operators are used to combine control information with

data dependencies, which is missing in representions as the CFG and DDG.

To complete the explanation of DepFG, it is useful to execute the graph depicted in Figure

3.6 by pushing tokens. Execution begins when the Start operator sends a token carrying

to the store operations, i.e, x = 1 and y = 2. Depending on whether the token received

on edge b is true or false, the switch operator outputs the token it receives on d4 in either

edge d5 or d6. In this example, the switch routes the token to d5, and the assignment of

3 to y is executed. The merge operator receives a token on either one, but not both, of

its inputs, and simply outputs this token. For this case, a token carrying the value 3 will

be generated on edge v1 [98].

3 Representation Models 35

Figure 3.7: CDFG for example code in Listing 3.1 (Based in Figure from [86]).

3.5 Control Data Flow Graph

The Control Data Flow Graph (CDFG) is a basic block graph built by considering the

data dependencies in the DDG and the control dependencies in CFG. In fact, the CDFG

is based on the CFG [86]. The CDFG exposes the parallelism at basic block level, this is

groups of instructions belonging to different basic blocks are sequentialized, while instruc-

tions belonging to the same basic block can be simultaneously executed, if they are data

independent. The CDFG is a fundamental component of most compilers, where most

optimization and design decisions are performed to improve frequency, power, timing,

and area [143]. In Figure 3.7, the CDFG for the code in Listing 3.1 is presented, and the

groups of instructions may be noticed.

CDFG provides the necessary information to determine whether a loop is parallelizable

36 3.6 Program Dependence Graph

or not [125]. To establish if a variable is privatizable it suffices to check if there are any

incoming or outgoing data-dependence edges for this specific variable in the CDFG. In

[125] an algorithm is presented to create a CDFG from the IR of a input source code,

on which the parallelism detection is performed. The algorithm distinguishes between

control and data flow items and maintains various data structures supporting dependence

analysis. The control flow section constructs a global CFG of the application including call

stacks, loop nest trees, and normalized loop iteration vectors [128]. The data flow section

is responsible for mapping memory addresses to specific high-level data flow information.

For this a hash table keeps the information of where data items are traced at byte-level

of granularity. Data dependencies are registered as data edges in the CDFG. These edges

are further annotated with the specific data sections, like array indices, that cause and

preserve the dependencies. The profiling-based CDFG is the basis for the detection of

parallelism in the Tournavitis approach [125].

3.6 Program Dependence Graph

The Program Dependence Graph (PDG), proposed originally by [44], is a program repre-

sentation that makes explicit both the data and control dependencies for each operation in

a program. PDG represents a program as a graph in which the nodes are statements and

predicate expressions (operators and operands), and the edges between nodes represent

both the data values on which the node’s operations depend and the control conditions

on which the execution of the operations depends. Control dependencies in PDG are in-

troduced to similarly represent the essential control flow relationships of a program, and

they are derived from the usual CFG.

PDG is an alternative to CDFG. Such graph contains the minimum data and control

dependencies, thus not causing potential unnecessary sequencing. Figure 3.8 shows the

PDG for the code in Listing 3.1, where the dotted edges represent data dependencies and

the solid edges represent control dependencies.

The PDG explicitly represents both the essential data relationships, as present in the

data dependence graph, and the essential control relationships, without the unnecessary

sequencing present in the control flow graph. Since dependencies in the PDG connect com-

putationally related parts of the program, a single walk of these dependencies is sufficient

to perform many optimizations. These dependence relationships determine the necessary

sequencing between operations, exposing potential parallelism [44]. Indeed, PDGs have

been shown to be useful for automatic detection and management of parallelism and

solving a variety of problems, including optimization, vectorization, code generation for

VLIW machines, merging versions of programs [113].

PDG has been successfully used to extract parallelism. Nevertheless, since it does not

contain control flow information at all, it lacks of the subset of control flow edges that

ensure correct execution. This information associated to control constructs is needed

3 Representation Models 37

Figure 3.8: PDG for example code in Listing 3.1 (Based in Figure from [86]).

to accurate detect parallelism [86]. For instance, the instruction 21 in the PDG must

be activated after the 18 due to a data dependence. Nevertheless, since instruction 18

belongs to a loop, the 21 must wait for the termination of loop3 to guarantee correct

execution. Such information, represented by the edge from 16 and 21 in the corresponding

CFG (Figure 3.4), is missing in the PDG, which thus allows the instruction 21 to read

the wrong value of the variable b (Listing 3.1). Another example is related with the

instruction 16 in the example code which is data dependent on the prior instruction, the

15, and can be executed just after instruction 15 is executed. However, once the first

iteration of loop3 is terminated, instruction 16 must be reactivated. This information is

represented in the CFG through the edge between 19 and 16, but it is lacking in the PDG.

The PDG effectively supports powerful program analysis by explicitly capturing depen-

dence information between different program elements. Originally it was proposed for

compiler optimizations, but the PDG has also been used as an effective foundation for

debugging, testing, and maintenance. Originally constructed for procedural programs,

PDG have been extended to support various object-oriented features such as classes and

objects, inheritance, polymorphism, and dynamic binding [145].

38 3.6 Program Dependence Graph

1 f o r (i = 0 ; i < NUMAV; ++1) {
2 f l o a t s amp l e r e a l [SLICE] ;

3 f l o a t sample imag [SLICE] ;

4

5 i n t i nd ex = i ∗ DELTA;

6 f o r (i n t j = 0 ; j < SLICE ; ++j) {
7 s amp l e r e a l [j] = i n p u t s i g n a l [i nd e x + j] ∗ hamming [j] ;

8 sample imag [j] = ze r o ;

9 }
10

11 f f t (s amp l e r e a l , sample imag) ;

12 f o r (i n t j = 0 ; j < SLICE ; ++j) {
13 mag [j] = mag [j] + (((s amp l e r e a l [j] ∗
14 s amp l e r e a l [j]) + (sample imag [j] ∗
15 sample imag [j])) / SLICE 2) ;

16 }
17 }

Listing 3.3: Section code of spectral benchmark [81]).

3.6.1 Augmented Program Dependence Graph

Related to PDG, an Augmented Program Dependence Graph (APDG) is presented in [33].

The PDG is extracted and augmented with cost information. As a regular PDG, the

APDG combines control and data flow dependencies in one graph representation. In a

APDG, each node of the PDG is augmented with the iteration count and execution costs

of the statement represented by the node. The Figure 3.9 depicts the APDG for the code

in Listing 3.3, where this node can be notice.

It is also essential to have information about the communication costs which have to

be taken into account if the statements of the nodes are executed in separate tasks.

Therefore, in the APDG, the edge type, communication costs, the communicated data,

the iteration count as well as an interleaving level, describing the minimal amount of

loop iterations which can be executed before the data is consumed at the target node, are

annotated to the data dependence edges, as in the edge info node in Figure 3.9. Additional

information like the estimated energy consumption or different objective values depending

on the executing PE increases the value of one approach like this applied to embedded

multi-core systems.

3.6.2 Parallel Program Graph

Also related with PDG, the Parallel Program Graph (PPG), introduced by [113], is a

more general intermediate representation of parallel programs than Program Dependence

Graphs. PPG contain mgoto edges that represent parallel control flow, and synchronization

3 Representation Models 39

!"#"$%&'(

!)*+,"-""!"."/012'3

!!"456789+:;+69<"

56789+:!76=>3

??!

!"-"@

#$"%&

#'("

A"-"@ A"#"B1CD0

56789+:!76=EAF"-"

G+;H3

56789+:;+69EAF"-"!)8IJ:5!=)69E!)*+,"?"AF"."

K677!)=EAF3
??A

A"-"@ A"#"B1CD0

76=EAF"-"76=EAF"?"44456789+:;+69EAF"."

56789+:;+69EAF>"?"456789+:!76=EAF"."

56789+:!76=EAF>>"L"B1CD0:M>3

??A

"""""""""""""""""""""""""""""#)*+,-$!./

"""""""""""""""0*=+"JN8+O""""""P+6*Q6RJ+;QS;!J+

"""""""""""""""DH77I)!T6J!H)"TH5JO""UV

"""""""""""""""DH77I)!T6J+*"*6J6O"""E!F

"""""""""""""""CJ+;6J!H)"THI)JO"""""""""""""WU

"""""""""""""""C)J+;9+6X!)="9+X+9O"""""""""W

0.)+ -$!./

CJ+;6J!H) THI)JO WU

0,+TIJ!H) TH5JO M@@

!"#"$"%&" '()'*'"+"%'

Therefore, a so-called Program Dependence Graph (PDG) [FOW87] is extracted
and augmented with cost information for a loop(-nest) as soon as a hierarchical
node representing a loop is reached in the parallelization process. The employed

Figure 3.9: APDG for example code in Listing 3.3 (Figure taken from [33]).

edges that impose ordering constraints on execution instances of PPG nodes.

As they execute, the PPG nodes perform read and write accesses to a shared memory. If a

read and a write accessing to the same location are not properly guarded by mgoto edges

or by synchronization edges, then the PPGs execution may incur in an anomaly access.

If a read access is performed in parallel with a write access that changes the location’s

value, then the result of the read access is undefined. This representation uses the mgoto

and synchronization edges as the only mechanisms available in the PPG for coordinating

execution instances of PPG nodes.

A PPG can be built from a given PDG. The same set of nodes is used in both cases.

The control and data dependence edges in the PDG correspond to mgoto edges and

synchronization edges in the PPG. A control dependence edge from the PDG can directly

be used as an mgoto edge in the PPG. A data dependence edge from the PDG can be

used as a synchronization edge in the PPG by translating the context information to an

appropriate synchronization condition on execution histories. However, not all PPG are

derivable from PDG, this is the reason PPG is more general than PDG [113].

40 3.7 Hierarchical Task Graph

3.7 Hierarchical Task Graph

The Hierarchical Task Graph (HTG) is an intermediate parallel program representation,

proposed in [49] and [101], which encapsulates minimal data and control dependencies,

and which can be used for the extraction and exploitation of functional or task level

parallelism. This is desirable when considering exploit parallelism at a coarse-grain for a

better harnessing of computational capabilities in modern multi-core embedded systems.

This representation model emerged as a proposal to exploit parallelism across loop and

procedure boundaries.

The HTG can be viewed as an IR of a parallel program, which encapsulates data and

control dependence ordering as well as thread management and scheduling policies. Be-

sides, as an abstract IR the HTG can be used as the code generation vehicle for a variety

of processor architectures [101].

A HTG is a direct acyclic graph with unique nodes start and stop, such that there is a

path from the start node to every node, and from every node to the stop node. The Figure

3.10 represents the basic structure of a HTG. The graph contains communication edges

for data dependencies and four different kinds of nodes, this is:

• simple nodes: correspond to one basic statement in the original source code and

they do not contain any child nodes (e.g., a = b),

• hierarchical nodes: loop or function bodies in the original code, the hierarchical

nodes contain a communication in node, a communication out node and an arbitrary

number of child nodes. These child nodes can be simple nodes or other hierarchical

nodes.

• communication in nodes: are part of every hierarchical node. Communication from

a node not contained in the hierarchical node to any inner node is redirected through

this communication in node.

• communication out nodes, are also part of every hierarchical node. As in commu-

nication in nodes, the communication from a child node of the hierarchical node to

any node not contained in the hierarchical node is redirected through this commu-

nication out node.

According to [101], a HTG can be constructed by the compiler. From natural loop

recognition using CFG, the compiler constructs the loop level hierarchy. A loop and all

statements immediately nested inside that loop constitute a node at a given hierarchy

level. All nodes at a given hierarchy level together with all flow edges incident to nodes

at the same level define the control flow graph at that level. The flow graph of a given

hierarchy level is then represented as a single composite node at the next higher level of

the hierarchy. On top, the entire program is represented as a single node, corresponding

to the body of a fictitious loop with a single iteration, representing the main program.

Using the control and data dependencies the task graph is derived separately for each

hierarchy. The collection of task graphs at different hierarchies constitute the HTG. Due

single entry and exit on different code regions, this allows parallelization in subregions in

3 Representation Models 41

In

Out

In

Out

In

... ...

...

Out

In

...

...

...

Out

Communication Node

Hierarchical NodeData dependency

Simple node

cial communication nodes to encapsulate the communication

by the hierarchical structure of the graph except for spe-
cial jump statements like , return or goto

Figure 3.10: HTG basic structure (Figure taken from [32]).

an isolated manner.

3.7.1 Augmented Hierarchical Task Graph

The Augmented Hierarchical Task Graph (AHTG), proposed in [33] and [32], is a HTG but

with the addition of performance characteristics, all in one graph. Particularly, the classic

HTG model is enhanced with special communication nodes to encapsulate the commu-

nication between different levels of the hierarchy. The communication between different

levels of the hierarchy is always redirected through these special communication nodes,

and this is used in the parallelization process in [32], because it enables the extraction of

parallelism for each node separately.

Information from the graph structure containing nodes and edges is not enough to create

well-balanced tasks from sequentially applications. Additional information about com-

munication overhead and execution costs, is required particularly if two statements are

executed in different tasks, as Figure 3.11 shows it. The nodes of an AHTG are augmented

with additional cost information, such as:

• iteration count, which is equal to the iteration count of the statement represented

by the node;

• objective values, such as execution costs in CPU cycles and the energy consumption

in pJ are annotated to the nodes;

• and reference to statement, which keeps the relationship of nodes to the IR, used

to adapt changes from the graph regarding the original application code and vice

versa.

Essential information about the communication costs is also added to the edges, to aug-

ment the graph:

42 3.8 System Dependence Graph

!"#"$%

!"

#$%

&"#"!"'"(%)"#"!"*"+%

!"

#$%

!"

#$%

!"

#$%

,!-.&./0!/&1"234-"2(

536678!/&9!38

234-:

;!6<1-"

234-:

,!-.&./0!/&1"234-"2=

,!-.&./0!/&1

234-"2+

>"#"?%

@-<-84-8/-"A4B-:

6"#">"C"+%

&'()*)+,'+*-.

/01(./2

&'()*)+,'+*-.

/01(./3

&'()*)+,'+*-

/01(./4

&#!'()#!*+ !#$

&'()*)+,'+*-

/01(./5

6#>C+>#?

2D

!"#$%$&'"&%()*+$,&+,$#

-.)/!012

6(7(-.89

6(7(-.29

6(7(-.39

6(7(-.49

.............................345#)67.-2

...............:1;(.%<=(9.......................>?@

...............A0BB$"'+*%'0".+0C%C9..D5

...............A0BB$"'+*%(1.1*%*9....*E'F

...............!%()*%'0".+0$"%9..............G

))))))))))))))))))))))))))))))))8-4#)67.-2

............!%()*%'0".+0$"%9....................2D

............#HI(+%'7(2.J(K(+L%'B(M9......388.+<+-(C

............#HI(+%'7(3.J("();<M9...........2N8.=O

............#HI(+%'7(4.JPM9.....................LLL

......................E-F-.-8/-"93";9&9-6-89

Figure 3.11: AHTG components and hierarchical structure (Figure taken from [33]).

• edge type: the dependence type (as presented in Section 2.2) is annotated to the

edges, which is useful for parallelization purposes.

• communication costs: communication delay in CPU cycles and energy required to

communicate the data, if the source and target node of the edge are executed in

different tasks.

• communicated data: symbols or expressions that have to be communicated are

annotated to the edges to be later available, especially for parallelization purposes.

• iteration count: number of times the communication takes place.

Even though AHTG present advantages for parallelism extraction, it is not the best

IR to extract it from loops, especially those nested ones, for which PDG has a better

performance. For instance, the APDG is a flat graph without hierarchical levels and

communication redirection. Each statement of the loop to be parallelized is represented

by a node in the PDG, and data and control flow edges are directly added between the

nodes [33].

3.8 System Dependence Graph

The System Dependence Graph (SDG) is a direct graph, a representation model that

combine PDG to model inter-procedural dependencies, developed by [63]. The SDG is an

inter-procedural extension of the PDG. Each program consists of a main procedure and

all auxiliary procedures. Procedures possess a distinguished entry node and an argument

free return statement. All parameters are passed to by value-result. Compared to the

previously presented models, the SDG allows parallelization of different procedures and

the map of them into different PE, the compromise is present when dealing with the

3 Representation Models 43

dependencies and the communication and synchronization required.

The SDG are the basis for multiple applications in program analysis, such as slicing,

debugging, testing and model-checking. E.g., SDG and precise slicing are used in a

flow-sensitive, object-sensitive and field-sensitive information flow analysis for full Java

Bytecode [52].

[83] presents a complete description of the SDG. This model contains one PDG for each

procedure, and every PDG contains an entry vertex that represents the entry into a pro-

cedure. To model parameter passing, an SDG associates each procedure entry vertex with

formal-parameter vertices: a formal-in vertex for each formal parameter of the procedure,

and a formal-out vertex for each formal parameter that may be modified by the procedure.

An SDG associates each call site in a procedure with a call vertex and a set of actual-

parameter vertices: an actual-in vertex for each actual parameter at the call site, and an

actual-out vertex for each actual parameter that may be modified by the called procedure.

At procedure entries and call sites, global variables are treated as parameters. These

parameter vertices represent the assignments featuring the copy-in and copy-out scheme

of parameter passing; with these vertices, a data flow analysis algorithm can be used to

compute data dependencies among the parameters and statements in the procedures.

An SDG connects procedure dependence graphs at call sites. A call edge connects a

call vertex to the entry vertex of the called procedure’s dependence graph. Parameter

edges represent parameter passing: parameter-in (parameter-out) edges connect actual-

in; formal-in vertices (formal-out and actual-out vertices). For instance, the Figure 3.12

depicts the SDG for the code in Listing 3.4 (the nodes’s name correspond to the ones in

the code’s comments). In this Figure solid lines represent control dependencies, dashed

lines represent data dependencies, and dotted lines represent procedure calls and param-

eter bindings. In this example, the nodes represent program statements and parameter

vertices. A particular parameter vertex is referenced by prefixing the parameter label with

the call or entry vertex upon which it is control dependent (Table 3.1 presents the symbols

and meaning used in the SDG example). For instance, C1→A1 in refers to the parameter

vertex representing actual parameter a in the call to proc1() in C1. The statement S4 is

control dependent on the value of the predicate in S3; thus, there is a control dependence

edge (S3,S4) in the SDG. The value of b in S2 is passed into proc1() at C1; thus, there is

a data dependence edge (S2,C1→A2in) in the SDG. A parameter binding occurs between

a in main and x in proc1() at the call to proc1() at C1; this binding results in parameter-in

edge (C1→A1 in,E1→F1 in) and parameter-out edge (E1→F2 out,C1→A2 out).

For a small code, as the one in Listing 3.4, the SDG is a big representation. Typically,

for real application, the SDG becomes a graph too large to represent the entire system at

once.

44 3.8 System Dependence Graph

1 main (vo i d) { // E0

2 i n t a , b ;

3 a = 0 ; // S1

4 b = 0 ; // S2

5 proc1 (a , b) ; // C1

6 proc2 (b , 1) ; // C2

7 }
8

9 proc1 (i n t &x , i n t &y) { // E1

10 i f (y > 0) // S3

11 x = x + y ; // S4

12 proc2 (y , 1) ; // C3

13 }
14

15 proc2 (i n t &z , i n t w) { // E2

16 z = z + w: // S5

17 }

Listing 3.4: Example code 3 (Based on [83]).

Figure 3.12: SDG for example code in Listing 3.4 (Figure taken from [83]).

3 Representation Models 45

Table 3.1: Auxiliar nodes.

In Out

A1 in: x in = a A1 out: b = y out

A2 in: y in = b A2 out: a = x out

A3 in: w in = 1 A3 out: y = z out

A4 in: z in = y A4 out: b = z out

A5 in: z in = b

F1 in: x = x in F1 out: y out = y

F2 in: y = y in F2 out: x out = x

F3 in: w = w in F3 out: z out = z

F4 in: z = z in

46 3.8 System Dependence Graph

Chapter 4

Code Analysis and Parallelizing

Algorithms

Parallelizing compilers make use of different tools to detect and extract parallelism, even

to optimize the code. Code analysis is required to determine and deal with dependencies in

the code, and find where parallelism can be exploit without altering the program output.

This code analysis can be done statically, without executing the code at compilation

time; or dynamically, obtaining information at runtime, executing the program on a real

or virtual processor. An hybrid analysis can be done mixing both static and dynamic

analysis.

Algorithms have been developed and implemented to find parallelism in sequential code

structures and generate a parallel code version, generally from the program intermediate

representation. This chapter presents some relevant algorithms developed in recent years.

4.1 Code analysis

4.1.1 Static

One of the most wanted characteristics in a compiler is the capacity to automatically

extract parallelism from sequential specifications. Initial works on coarse-grained paral-

lelism extraction were based on traditional static compiler analysis [23]. The principal

strategy for finding useful parallelism is to look for a data decomposition in which parallel

tasks perform similar operations on different elements [74].

Static code analysis, known as source code analysis or static analysis, is a software ver-

ification activity for analyzing source code, generally for quality and reliability. This

analysis allows the identification and diagnosis of errors such as overflows, divide-by-zero,

resource leaks, and illegally de-referenced pointers [3]. Static code analysis is performed

at compilation time, without executing the program under analysis, or developing test

47

48 4.1 Code analysis

cases. This analysis can find errors in the source code, but also can try to prove the

absence of certain critical errors.

Static code analysis that is augmented with formal methods (abstract interpretation) can

be an important tool for improving the quality of embedded software used in high-integrity

software systems [3]. Ideally, a static source code analyzer should be integrated with the

everyday compiler to maximize use and reduce complexity of the toolchain. In addition,

integrated checking enables source code parsing to be performed only once instead of

twice [77].

A common compiler generate warnings and errors for some basic potential code problems,

such as violations of the language standard or use of implementation-defined constructs.

In the other hand, a static source code analyzer performs a full program analysis, finding

bugs caused by complex interactions between pieces of code that may be in different

source files. Static analysis looks for different kinds of flaws, looking for bugs that would

normally compile without error or warning. Some common errors that modern static

source code analyzer detect are [77]:

• Potential NULL pointer de-references.

• Buffer overflow.

• Writes to potentially read-only memory.

• Reads of potentially uninitialized objects.

• Resource leakages, like memory leaks and file descriptor leaks.

• Use of deallocated memory.

• Out-of-scope memory usage (e.g., returning the address of an automatic variable

from a subroutine).

• Failure to set a return value from a subroutine.

• Buffer and array underflows.

Static code analysis plays a important role for parallelism extraction purposes. In [74],

a wide variety of techniques are presented to manage dependencies, transform code, and

detect parallelism1. For instance, part of the dependence testing is the process of deter-

mining if two references to the same variable, in a given set of loops, might access the same

memory location. This implies different code transformations that support dependence

testing, such as:

• loop normalization: a transformation that makes a loop run from a standard lower

bound to an upper bound in steps of one,

• constant propagation: replace unknown variables with constants known at compile

time,

• induction-variable substitution: eliminates auxiliary induction variables, replacing

them with linear functions of the standard loop induction variable.

For parallelism detection, Kennedy and Allen [74] present techniques to deal with fine-

1For a complete review of this techniques, the reader should consult the result. In this work, some of

the techniques are briefly presented.

4 Code Analysis and Parallelizing Algorithms 49

and coarse-grained parallelism. Enhancing fine-grained parallelism, found primarily in

innermost loops, a considerable amount of transformations are available, e.g, loop in-

terchange, scalar expansion, scalar renaming, array renaming, node splitting, reduction

recognition, index set splitting, symbolic resolution, and loop skewing. Having a large

set of transformations provide several alternatives for exploiting parallelism. The adverse

side is the complex task to choose the right transformation. There are at least two con-

siderations that must be addressed in choosing transformations: making sure that the

selected transformation actually improves the program over its original form, and making

sure that selected transformation does not conflict or interfere with other transformations

that offer more overall benefit for the program.

Coarse-grained parallelism, at the level of multi-core processors and using static code

techniques, requires a different focus.Commonly parallelism is exploited in multi-core

processors by creating a thread for each one of the PEs, executing the threads in parallel

for a period of time with occasional synchronization, and synchronizing via a barrier at

the end. To achieve a high degree of performance on such systems, it is needed to find

and package parallelism with a granularity large enough to compensate the overhead of

parallelism initiation and synchronization. [74] propose to focus finding parallel loops with

significant amounts of computation within their bodies. This usually means parallelization

of outer loops rather than inner loops, and it often means parallelization of loops with

subroutine calls.

The challenge is to manage the trade-off between parallelism and granularity. For example,

if there is insufficient parallelism, the multi-core system will not be effectively used. On

the other hand, if the computation is too fine-grained, the start-up and synchronization

costs of parallel execution will outweigh the performance gains. Thus, the challenge is

to find parallelism at the coarsest possible granularity. In [74], three mechanisms are

presented to address this challenge in three different loop contexts:

• In single loops, transformations including privatization, alignment, and replication,

can be used to eliminate carried dependencies and thereby obviate the need for loop

distribution, which reduces granularity.

• In perfect loop nests, loop interchange, loop reversal, and loop skewing are proposed

to uncover parallelism and move it to the outermost position possible. The decision

on how organize the loops for optimal performance is influenced by concerns related

with architectural issues, such as performance of the memory hierarchy, and not

only by the goal of maximizing parallelism.

• In general loop nests, which are not necessarily perfectly nested, multilevel loop

distribution, followed by parallelization of the resulting loop nests and aggressive

application of loop fusion can be used to extract the parallelism available and pack-

age it for high efficiency.

50 4.1 Code analysis

4.1.2 Dynamic

Researchers have realized that just static techniques for code analysis are not enough to

optimally uncover parallelism. Different works, for HPC and embedded domains, have

been developed, targeting on exploiting pipeline parallelism, and with less emphasis on

coarse-grained data parallelism [23].

Dynamic code analysis uses code instrumentation to perform checks of the code as it

executes [77]. For example, an instrumented program could check a pointer prior to be

de-reference, in order to validate that it is not NULL. Some compilers have dynamic code

analysis instrumentation available as a standard option. First the code is instrumented by

the compiler, and then it is executed to obtain the desired information. During execution,

the code calls a diagnostic function, provided by a library that is automatically linked to

the program when using this option, which informs the user that a fault occurred, as well

as the type and location of the error within the source code.

Dynamic analysis is able to detect dependencies that is not possible in static analysis,

like dynamic dependencies using reflection, dependency injection, or polymorphism. Some

dynamic analysis could also detect:

• Buffer overflows: when values are pretend to be stored in invalid array locations.

• Assignment bounds: when values assign to declare variables exceed the range of the

variable type.

• Missing cases: in switch-case structures where the switch statement do not cover all

the possible values of the control expression type.

• Memory leaks: a memory leaks occurs when a function allocates memory but never

releases it, which can be detected with dynamic information.

Other important information can be obtained and analysis can be done using a dynamic

approach, for instance, pointer analysis and dynamic dependencies to solve pointers, ex-

ecution count and basic block count, loop execution count, code coverage, performance

estimation and computation, applications timing (estimated or measured), detection of

race conditions and potential dead locks, and profiling information, such as number of

times a function is called and its proportional execution time respecting an entire program.

From the dynamic behavior of an application, it is important to identify the sections of

code that could bring more benefit if parallelized, or that would bring a better resource

compromise. Generally this sections are called hotspots. In the programming context, a

hotspot is a region of a program that presents a high proportion of executed instructions

respecting the entire program, or where most of time is spent during the execution of a

program. Determine those sections in an application can help to make the decision of

which section parallelize. Profiling tools can bring help in this task.

Profiling allows to obtain measurements like memory or time complexity of a program,

the usage of particular instructions, the frequency and duration of function calls, among

others. Prof is an example a of pro filer [53]. This tool creates a call graph with information

4 Code Analysis and Parallelizing Algorithms 51

gst_h264watermark_chain

97.12%

(2.88%)

gst_buffer_unref

0.96%

(0.96%)

6139×

0.96%

6139×

watermark_detect

93.27%

(32.69%)

53×

93.27%

53×

watermark_block_detect

39.42%

(39.42%)

1389328×

39.42%

1389328×

decode_dc_4x4

10.58%

(5.77%)

43231×

10.58%

43231×

watermark_gen

8.65%

(8.65%)

1×

8.65%

1×

message_decode

1.92%

(1.92%)

53×

1.92%

53×

hadamard4x4

4.81%

(4.81%)

43231×

4.81%

43231×

__udivsi3

1.92%

(1.92%)

__aeabi_uidivmod

0.96%

(0.96%)

Figure 4.1: Diagram of the call tree for detection mode of the watermark algorithm, using

block method.

such as the percentage of the total execution time of a function respecting the entire

program, the number of times a function is called, the time spend, and the relations

of time spent (in miliseconds) respecting the function per call, and a function and its

descendants per call. A call graph is a direct graph that represents the calling relationship

between subroutines in a program. Each node of the graph represents a procedure and

the edges indicates that a procedure calls another procedure [75].

The Figure 4.1 represents a call graph for the detection mode of a watermark detection

algorithm, based in the implementation of [146], which consist in insertion and detection

of watermark on H.264 coded video. The graph is created with gprof and Gprof2Dot [46].

The Figure shows the procedures in each node with its function name, total percentage

of the running time spent by a function alone and with all its children, and total number

of times that a function is called, including recursive calls; the edges present information

regarding the percentage of the running time transferred from the children to this parent

and the number of calls the parent procedure called the children. From this example, it can

be noticed that the watermark detect, and particularly the watermark block detect

consumes most of the execution time and it is called much more times than any other

function. watermark block detect becomes a hot spot and a good candidate to be

parallelized.

One key difference between a static and dynamic code analyzer is the how depth the

code review process is done. By default, static code analysis combs through every single

52 4.1 Code analysis

line of source code to find flaws and errors. For dynamic analysis, the lines of code that

get reviewed depend upon which lines of source code are activated during the testing

process. Unless a line of code is interacted with, the dynamic analysis tool will ignore

it and continue checking active codes for flaws. Static analysis provides a confirmation

that each and every line of source code has been thoroughly inspected [16], while dynamic

guarantees jus the revision of those lines executed.

A profile based approach has some advantages compared to a static analysis. For example,

it delivers very detailed information about access patterns and very fine grained depen-

dency information. Thus, by using a profiling based approach, it is possible to identify for

example that loop iterations modifying arrays or pointers are independent and therefore

possible parallelization candidates. Usually, this is very hard to detect via static analysis

techniques [32].

From the perspective of parallelism extraction, different approaches have used dynamic

analysis to detect parallelism. For instance, the work in [126, 128, 127] employs profiling

information to exploit and extract pipeline parallelism in multimedia applications, based

on intermediate representation profiling and a hierarchical whole program representation.

In this approach the sequential source program written in C is processed by the CoSy C

compiler [42] and its IR is instrumented. The resulting executable is executed with one or

more representative input files, and the results, a set of trace files, is presented to a trace

analyzer for the dependence analysis. Due profiling for data and control dependencies

is inherently unsafe, it is important to mention that a profiled based technique can not

guarantee correctness.

In [107] profiling information is also used to uncover pipeline parallelism in general purpose

applications. The measuring of data dependencies in a profiled execution of a program

is used to determine control flow and data flow. Even though it is not clear the profiling

tool employed, the profiled information is used to construct a function call graph and an

interprocedural data flow graph to detect function-level parallelism. In this approach the

functions in a program are clustered such that strongly dependent functions are members

of the same clusters. TLP between function clusters is detected by analyzing inter-cluster

data flow.

4.1.3 Hybrid

Automatic parallelization can not be achieved because classic compiler analysis are not

powerful enough and the program behavior depends in many cases of the inputs. An

hybrid code analysis implies the combination of static and dynamic techniques to detect

and extract parallelism.

For instance, in [108] a hybrid approach is presented, a Hybrid Analysis (HA), which

unifies the two approaches into framework, modifying both methods in order to integrate

them seamlessly. So instead of only answering the question of whether an optimization

is legal it also generates the dynamic conditions under which it could be legal. The HA

4 Code Analysis and Parallelizing Algorithms 53

statically verifies memory reference properties, and when this is not possible, generates the

conditions for which these properties can become true during program execution. These

parallelization conditions can be evaluated dynamically with potentially little overhead

and predicate the execution of the optimized parallelized blocks of code or loops. The

Hybrid Dependence Analysis represents a process that extracts independence conditions

from dependence equations at compile-time and then evaluate them efficiently at runtime.

It does not only validate transformations but also generates sufficient, simple conditions

which can validate optimizations at runtime.

4.2 Algorithms

Over the years, different algorithms and techniques have been developed to extract par-

allelism and generate parallel code. Most of the early effort was dedicated to extracting

parallelism from regular nested loops. Loop parallelization algorithms have worked in

finding a favorable loop transformation that reveals parallelism, but keeping in mind that

generating parallel loops is not sufficient for creating efficient parallel executable pro-

grams. The design of these parallel loop detection algorithms considered many other

optimizations related to the granularity of the parallel program, data distribution, and

communications, to name a few. For instance, many loop transformations have been pro-

posed to change the enumeration order so as to increase the efficiency of the code [22].

Some classic algorithms for loop parallelization are: Lamport [80], Feautrier [43], Allen

and Kennedy [7], Wolf and Lam [140], and Darte and Vivien [35].

The complexity of the programs to parallelize and the emergence of multi-core systems,

have motivated the development of new algorithms capable to produce parallel code that

better harness the computational power available. Some of these algorithms use artifi-

cial intelligence algorithms as a base to find optimal solutions to the parallelism extrac-

tion challenge. This section presents four recent algorithms based con Machine Learning

techniques, Integer Linear Programming, Genetic Algorithms and Decoupled Software

Pipelining. This section does not pretend to cover all existing algorithms developed to

parallelize code, but aims to present some with important impact to multi-core embedded

systems.

4.2.1 Machine learning

In [128] a Machine Learning based parallelism mapping is presented, to exploit DLP.

The parallelism mapping stage in this approach is responsible to decide if a parallel

loop candidate is profitable to be parallelize, and to select a scheduling policy from the

four options offered by OpenMP: cyclic, dynamic, guided and static. Determine which

parallelizable loop brings advantages is a challenge. Incorrect classification would produce

slowdowns due synchronization overhead.

54 4.2 Algorithms

This machine learning technique is based on Support Vector Machines (SVM) to determine

if parallelize a loop candidate or not, and how it should be scheduled. The SVM classifier

is used to construct hyper-planes in the multi-dimensional space of program features

to identify profitably parallelizable loops. The classifier implements a multi-class SVM

model with a radial basis function kernel, which is capable of handling linear and non-

linear classification problems[21].

Program features are extracted to describe the relevant aspects of a program and present

it to the SVM classifier. The static features: IR instruction count, IR load/store count,

IR branch count, and loop iteration count; are obtained from the CoSy internal code

representation. These features characterize the amount of work carried out in the parallel

loop. The dynamic features: data access count, instruction count, and branch count;

capture the dynamic data access and control flow patterns of the sequential program, and

this information is obtained from the same profiling execution that this approach does for

parallelism detection [128].

Off-line supervised learning is used. Pairs of program features and desired mapping deci-

sions are used for the training. These are generated from a library of known parallelizable

loops through repeated, timed execution of the sequential and parallel code with the dif-

ferent available scheduling options and recording the performance on the target platform.

Once the prediction model is built using all the available training data, no further learning

is done.

When new programs, with parallel annotations, are treated with this approach, some

steps are required to follow [128]:

• Feature extraction: collect the static and dynamic features from the sequential

version of the program, which is done with the profiler, part of the approach.

• Prediction: for each parallel loop candidate the corresponding feature set is pre-

sented to the SVM predictor and it returns a classification indicating if parallel

execution is profitable and which scheduling policy to choose.

• User interaction: in case that the parallelization appears to be possible and prof-

itable, but correctness can not be proven by static analysis, the user’s final approval

is required.

• Code generation: OpenMP annotation with the appropriate scheduling clause is

placed, otherwise delete if the parallelization does not present any performance

improvement or the user rejects it.

4.2.2 Integer Linear Programming

[32] presents a parallelizing algorithm based on Integer Linear Programming and used to

extract TkLP and PLP. This algorithm extracts parallelism from the source code of an

application represented in an AHTG.

The parallelization process started by calling the parallelize function with the root node

4 Code Analysis and Parallelizing Algorithms 55

of the AHTG. This parallelization function is recursively called in a depth-first-search-

manner initially. As a consequence, the algorithm starts the parallelization step at the

innermost nodes of the graph. Since moving one node to a separate task and wait for

its completion is not something wise, these nodes are skipped in the parallelization al-

gorithm and a solution set containing only the sequential solution of this one task is

returned. The algorithm is then moving upwards in the graph hierarchy and will reach

a hierarchical node. Since all child nodes have already been processed, parallel sets are

available for them. These parallel sets are combined to be used as input for the integer

linear programming based parallelization approach.

This parallelization algorithm brings the option to limit the number of generated concur-

rently executed tasks. The Integer Linear Programming based (ILP-based)2 paralleliza-

tion step is executed several times to compute solutions for maximum amount of tasks,

and down to 2 tasks. This step is used to parallelize a node for a set upper bound number

of concurrent tasks and the already generated parallel sets of its child nodes. It tries to

minimize the critical path, or the most expensive path, within a hierarchical node, which

means that the ILP-based approach aims for the minimization of the costs of the path

from the hierarchical node.

Due every child node has parallel sets with different execution times, depending on the

number of tasks, deeper in the hierarchy, the ILP-based solver is able to choose solutions

with different granularity for the child nodes, as long as the maximum number of concur-

rent tasks is not exceeded. To adopt this approach to different hardware platforms, the

authors proposed that the user can specify two parameters:

• Task creation overhead, added to the computed path for every created task. This

parameter can be used to steer the granularity of the parallelization step, depending

on the utilized hardware platform.

• Communication costs are needed if data is transferred from one task to another.

The communication overhead can also be changed by the user to model different

hardware platforms (communication takes place only at the beginning and at the

end of a task).

This parallelization approach divides the hierarchical node into three sections. All state-

ments of the first section are executed sequentially on the same processor, which started

the execution of the hierarchical node. The second one, called parallel section, where

different concurrent tasks can be executed. In order to leave such a parallel section, all

tasks have to synchronize and all data has to be communicated back to the parent task.

This last section is sequential, where statements without explicit data communication can

be executed. This is something similar to OpenMP and MPA directives. The details of

the Integer Linear Programming formulation are presented in the [32] and [33].

2Do not confuse, at this point, ILP with Instruction Level Parallelism.

56 4.2 Algorithms

4.2.3 Thread extraction algorithm

In [94], the author present an automatic approach to non-speculative thread extraction al-

gorithm from applications loops, that uses Strongly Connected Component (SCC) and De-

coupled Software Pipelining (DSWP). This algorithm partitions operations into pipeline

stages and presents the following steps [94, 129]:

1. Constructing PDG. The PDG the loop being parallelized is constructed. This graph

contains all register, memory, and control dependencies present in the loop.

2. Building the dependence graph. The algorithm operates on a PDG which is trans-

formed into a directed acyclic graph by identifying and clustering the SCCs formed

by data and control dependencies. To ensure that there are no cyclic cross-thread

dependencies after partitioning, the SCCs would be the minimum scheduling units.

3. Thread partitioning. Ensure an acyclic partitioning by finding the SSC and creating

the directed acyclic graph of them. Each SCC is allocated to a thread while ensuring

that no cyclic dependencies are formed between the threads. SCCs are partitioned

among the desired number of threads according to a heuristic that tries to balance

the execution time of each thread

4. Splitting the code. Involves the computation and creation of relevant basic clocks for

each previous partition, place instructions assigned to partitions in corresponding

basic blocks, and fix branch targets.

5. Inserting the flow. The last step implies the insertion of produce and consume,

two special instructions used to send and receive values respectively, to guarantee

correctness of the transformed code.

DSWP is a non-speculative pipelined multi-threading transformation that parallelize a

loop by partitioning the loop body into stages of a pipeline [129]. DSWP allows the ex-

traction of pipeline parallelism, which is efficient for many embedded applications. Like

conventional software pipelining (SWP), each stage of the decoupled software pipeline op-

erates on a different iteration of the loop, with earlier stages operating on later iterations.

In this algorithm, the parallelism is detected by computing the SCCs, like cycles, on the

PDG of a loop. Each SCC represents a group of instructions that are cyclically dependent.

As such, they cannot be split across pipeline stages. The SCCs are clustered in pipeline

stages using basic block execution frequencies and inter-SCC dependences in order to load

balance the pipeline. Parallel-stage pipelines are possible when an SCC does not have a

loop-carried dependence with itself.

DSWP can be applied efficiently to various loops, even if they are not operating on

recursive data structures. The extracted pipeline stages are balanced by an heuristic

which merges the node with the highest estimated cycles, extracted by profiling in the

compiler backend, to the currently processed pipeline stage. This step is repeated until

4 Code Analysis and Parallelizing Algorithms 57

the estimated cycles of the current partition reaches the overall estimated cycles divided

by the number of extracted stages [33].

Unlike other attempts about automatically multi-threading sequential programs, this al-

gorithm does not try to partition programs into totally independent threads. Instead, it

pipelines programs into dependent communicating threads. This makes DSWP a very

practical multi-threading technique. Nevertheless, there is a important challenge, DSWP

operates on assembler level which drastically limits portability, readability and the pos-

sibility to present the extracted results, in a comprehensible form, to the user. Another

challenge presented by this algorithm is that operates in a representation that is too low

level to perform the data privatization [33].

In [129], this algorithm is extended. The proposal is based in adding speculation to

DSWP and evaluates an automatic approach for its implementation. By speculating past

infrequent dependencies, the benefit of DSWP is increased by making it applicable to

more loops, facilitating better balanced threads, and enabling parallelized loops to be run

on more cores. This approach focuses on breaking dependence recurrences, and by doing

so, instructions that were formerly restricted to a single thread to ensure decoupling are

now free to span multiple threads. If the dependencies are speculatively ignored, large

dependence recurrences, in the forms of SCCs, may be split into smaller ones with more

balanced performance characteristics.

This work is also extended by [64], in something called DSWP+. DSWP+ looks beyond

the performance benefits of DSWP, and explores DSWP as an enabling transformation

for various loop parallelization techniques. Different than DSWP, which tries to maximize

performance by balancing the stages of the pipeline, DSWP+ tries to assign work to stages

so that they can be further parallelized by other techniques. After partitioning, DSWP+

allocates enough threads to the parallelizable stages to create a balanced pipeline.

4.2.4 Genetic Algorithms

A Genetic Algorithm (GA) is implemented in [28] for automatic extraction of TkLP and

PLP. This algorithm is able to extract pipeline parallelism from loops of sequential C

applications considering multiple objectives, i.e., contemplating not only an optimiza-

tion in the execution time but also, for instance, energy consumption or communication

overhead.

Streaming structure found in many embedded applications, such as multimedia applica-

tion, are best parallelized by extracting pipeline parallelism. In this approach, each loop

is transformed into an APDG and processed by a GA. Then, a front of Pareto, with

optimal solutions, represents the parallelized versions of the considered loop.

GAs are algorithms that facilitate the task of solving optimization problems in a multi-

objective aware manner. GAs operates as follows: they start with an initial popula-

tion consisting of individuals representing possible solution candidates for a optimization

58 4.2 Algorithms

*M'

*MV
M#

*M$

.V

.%

.#

.'

.$

.W

Z=H=*

[=<?=:=H!9!)8H
M9:*Z?9<P

M'

M'

M#

MV

MV

M$

.#

.V

.$

.W

.%

.'

.
8
I
=
]!
8
]M
9
:\
*0

9
<
<
)H
G

(P
8
?)
Q8
H
!9
7*
:<
7)
!:
4

M
9
:\
]A
<
7)
!*
2
9
?)
9
^
7=
:

(_
=
?!
)`
9
7*
:<
7)
!:
4

'

"

'

"

M#

MV

M$

M'

!"

!#

!$

!%

!&

!!!"#$%

'*!9:\]:<7)!*

86*!9:*'

(+*#*<9?977=7*

:O^]!9:\:4

&'()

#

$

%

&'(*

'

V

W

&)

'

#

V

$

W

%

&*()

#

$

%

&

&*(*

'

V

W

X

&+

'

#

V

$

&

E_97O9!)8H

"*!9:\]:<7)!:*

86*!9:*$

(977*)!=?9!)8H:*

:=aO=H!)974

77

Figure 4.2: Gene configuration in genetic algorithm (Figure taken from [28]).

problem. Each individual is characterized by a gene sequence called chromosome which

describes the configuration of the optimization values. In each optimization step, some

promising individuals are chosen to be recombined with other individuals to create a new

population. This process is then repeated until a predefined termination criterion, for ex-

ample a maximum number of generated populations, is met [28]. The challenge for using

GA is to map the optimization problem to genes in a way that they can be efficiently

evaluated for different objectives.

For genetic pipeline parallelization, disjoint pipeline stages of a loop which are executed

in an interleaved way. This is done splitting horizontally the body of the loop. To increase

the performance, the genetic algorithm should also be able to vertically split these pipeline

stages to allow different loop iterations of the stage to run concurrently.

The Figure 4.2 shows the gene representation and its relationship with the task graph.

Each chromosome is divided in two. The mapping of PDG nodes to tasks (nodes that

represents different statements of the body of the loop) are placed in one section of the

chromosome. Each node is mapped to exactly one task which represents one of the

extracted pipeline stages due to horizontal splits. In the rest of the chromosome, an

integer variable declares how often each task, pipeline stage, is split into sub-tasks which

are executing different loop iterations of the stage in parallel.

Figure 4.2 shows how the nodes are mapped to task in this algorithm. For instance,

nodes N1 and N2 are mapped to the first pipeline stage, T1, N4 and N5 are mapped to

stage T3, N3 and N6 are mapped to stages T2 and T4. T1 starts with the execution of

the first iteration of nodes N1 and N2. The generated data is sent to pipeline stages T2

4 Code Analysis and Parallelizing Algorithms 59

and T3 allowing the next iteration of T1 to be executed concurrently respecting the first

iteration of T2 and T3. If one node is moved from one task to another, e.g. by mutating

an individual, the dependencies between the stages may change which also influences the

execution order of the tasks. Even small changes in the mutation steps may have big

influences for the evaluation of different objectives.

Depending on the task creation and communication costs, one configuration of genes could

represent a good solution candidate for the given example regarding executing time. This

depends of the splitting of each stage into subtasks, and its behavior respecting to the

objectives that the algorithms consider. The solutions from GA primarily depends on

the population sizes used and the number of generated populations, the configuration

of a chromosome must be evaluated very efficiently. This implies perform simulations

for certain solution candidates, evaluation different objectives in the implementation,

for instance, execution time, energy consumption and communication overhead. The

evaluation of each of these objectives is explained in [28].

GA generates new solution candidates when values of the genes of existing individuals

are modified. This is done by a combination of mutation (one gene of the chromosome is

modified with a given probability, e.g. one statement is moved from one task to another)

and recombination (cut the chromosomes of two individuals at a random position to com-

bine the left-hand side of the first chromosome with the right-hand side of the other side

and vice versa). Mutation and recombination are processed until a given number of pop-

ulations are evaluated and the front of Pareto, with optimal solutions of the parallelized

loop, is returned.

The GA is extended to HTG representations [30]. First the code is analyzed to extract

necessary information to create the corresponding HTG. Once the graph is extracted, the

parallelization process starts to extract parallelism in a bottom-up search strategy in the

hierarchical structure of the graph. Each hierarchical node is processed in isolation. The

GA moves child nodes of the hierarchical nodes to tasks which are then evaluated for all

considered objectives.

A front of Pareto-optimal is obtained, with solutions for the different objectives, and it

is attached to the hierarchical nodes. When all nodes on the same level of the hierarchy

are processed, the parallelization algorithm continues with the parent node. There, the

algorithm is also able to move child nodes to new tasks. The algorithm chooses one of

the solutions of the front of Pareto of each child node which may contain additional tasks

deeper in the hierarchy. This procedure continues until each node in the hierarchical task

graph is processed and the top node is reached. The Pareto-front of parallel solutions is

then returned to the user, whom can chose the solution with the best trade-off scenario.

60 4.2 Algorithms

Chapter 5

Parallel Programming Models and

Parallelism Extraction Tools

Programming models represent an abstraction of the capabilities of the hardware to the

programmer. A programming model is a bridge between the actual machine organization

and the software that is going to be executed on it [39].

There are multiple general purpose parallel programming models that have been developed

over the years, mainly created to target the HPC and desktop world. Some of the most

used are models built on top of sequential languages like C, by providing libraries, like MPI

and Pthreads, or language extensions, like OpenMP. The models are typically classified

by the way tasks or processes interact, commonly, shared memory (e.g. OpenMP and

Pthreads) and distributed memory (e.g. MPI) [23].

Most current parallelizing tools perform source-to-source transformations, this is, the

original sequential code is transform into a parallel version. For this target, many tools

employ code libraries and language extension commonly used and increasingly supported

by different chip manufacturers in their tools. Due that most of the available tools and

approaches generates parallel code, this chapter presents some of the most representative.

Since the parallelism extraction challenge has been on the research table for decades,

many attempts to approach a solution have been developed over the years, each one with

certain degree of success. In this chapter some tools are presented.1 These tools could

be considered to used them to generate parallel code for embedded systems, or as point

of comparison to analyze and determine desired characteristics in the design and devel-

opment of a parallelizing compiler for state-of-the-art embedded multi-core systems. The

chapter ends with a taxonomy, a comparison table, of highlighted features in parallelizing

tools presented throughout this document.

1It is not an exhaustive list of all the existing parallelizing tools, but some relevant are considered by

the author due its possible application to embedded multi-core systems

61

62 5.1 Parallel programming models

5.1 Parallel programming models

The programming models in the embedded domain have been hardware or formalism

centered. Hardware centered approaches aim for efficiency, require expert programmers,

and expose architectural features in the language, such as memory and register banks.

Programming models used by SoC companies have been typically hardware centered. In

academia, formalism centered programming models are more common [23].

Programming models for embedded systems have been based on different Model of Com-

putations (MoC). Early work implemented Synchronous Dataflow (SDF), Boolean Dataflow

(BDF) and Cyclo-static Dataflow (CSDF). Other approaches have used Dynamic Dataflow

(DDF), Petri-nets, and Kahn Process Networks (KPN). For instance, MAPS tool [24] cur-

rently uses C for process networks (CPN) as input language, an easy-to-use C extension

that models concurrent processes and applications as well as legacy sequential code [136].

These models, based in states and processes, present good characteristics when designing

and developing embedded systems. They have used by High Level Synthesis (HLS) tools,

but they were not conceived to parallelize sequential code. When embedded multi-core

platforms are available, these approaches, in most cases, requires re-factoring the input

code, which is not the main idea for a parallelizing compiler.

Applications such streaming, pretty commonin embedded systems, have motivated the

creation of specialized languages, such as StreamIt [123, 34]. StreamIt is an architecture-

independent language for high-perfomance stream programming. The MoC in StreamIt is

SDF. In this model, the user implements independent actors, called filters, which translate

data items from input channels to output channels. Filters are composed into graphs that

represent the overall computation. One key property of this SDF is that the number of

items consumed and produced during each execution of a filter is known at compile time,

allowing the compiler to perform static scheduling and optimization. A language like

StreamIt allows a better exploitation of PLP, which is propitious for exploiting multi-core

embedded systems capabilities in real-life embedded applications.

In the other hand, even though the initial motivation for libraries and language exten-

sions have not been multi-core embedded systems, they have reached the embedded world.

Having standard Application Programming Interfaces (API) increases the portability of

parallelized code across different embedded platforms, even from HPC to embedded sys-

tems. This could harness the available computational power in modern MPSoC. Clearly,

the corresponding hardware and software support is required, at a bare-metal or operative

systems level.

In this section, language extensions and libraries to write parallel programs are pre-

sented. Some of them are currently used by parallelizing tools and approaches to write

the parallel outputs. According to [39], these extensions and libraries can be classified as

shared-memory, distributed-memory, and heterogeneity models. This last term is due the

nonautomous origin of cores like GPU and GPGPU, that commonly are used together

with a CPU that off-loads code regions to be executed in these cores.

5 Parallel Programming Models and Parallelism Extraction Tools 63

5.1.1 OpenMP

OpenMP is an industry standard API for parallel programming [93], it provides portable

high-level programming constructs that enable users to easily expose a program’s task and

loop level parallelism in an incremental fashion. The language, created in the late 90s, has

continuously evolved and is currently at the version 4.0. OpenMP extends FORTRAN,

C and C++ and was designed to make it straightforward for application programmers to

create portable programs for shared memory computers (both symmetric multiprocessors

systems (SMP) and non-uniform memory access (NUMA)) [119]. Shared memory models,

as OpenMP, are based on the assumption that the execution entities, called workers, that

carry the actual execution of the program instructions, have access to a common memory

area, where they can store objects, uniformly accessible to all [39].

The basic idea with OpenMP is to incrementally add parallel constructs to the source

code to convert a serial program into a parallel version, whereby directives can be added

gradually. Hence, OpenMP constructs are designed to have a small (or even neutral)

impact on the semantics of a program. OpenMP constructs are composed of a compiler

directive and a block of code associated with that directive. In C and C++, the directives

are in the form of code pragmas annotations. OpenMP presents three fundamental aspects

[119]:

• Parallelism in OpenMP is explicit. The constructs are placed into the source code

which tell the compiler how to turn the sequential program into a parallel program.

While the compiler assists the programmer by managing the low-level details of how

the parallelism is realized, it is up to the programmer to expose the concurrency in

the program and express it for parallel execution.

• OpenMP is multi-threaded programming language extension. OpenMP assumes

that an operative system will provide a set of threads that execute in a shared

address space on behalf of the program. All of the issues common to multi-threaded

programming environments such as race conditions, livelock, and deadlock apply

when using OpenMP.

• OpenMP is fundamentally built on top of tasks. Tasks are the basic unit of com-

putation when using OpenMP. A task defines the body of code to execute and the

data environment required to support that execution. Tasks are defined by the pro-

grammer and scheduled for execution by the threads in the OpenMP program. Any

time a thread is created, an implicit task is created as well, an this is tied to the

thread, which means that the implicit task will only be executed by its associated

thread.

OpenMP supports a parallelism model called fork-join. This is, the programs begin

executing on a single, master thread which spawns additional threads as parallelized

regions are encountered. Parallel regions can be nested although the compiler is not

64 5.1 Parallel programming models

required to exploit more than one level of parallelism. At the end of the outermost parallel

region the master thread joins with all worker threads before continuing execution. A

parallel region essentially replicates a job across a set of spawned threads. The threads

may cooperate by performing different parts of a job through work-sharing constructs.

The most prominent of such constructs is the omp for directive,2 in C/C++, where

the iterations of the adjacent loop are divided and distributed among the participating

threads. This allows for easy parallelization of regular loop nests and has been the main

strength of OpenMP since these loops are prevalent in scientific codes such as linear

algebra or simulation of physical phenomena on rectangular grids.

OpenMP defines support for several features, among them [130]:

• Parallel regions: sections of code that can be executed in parallel by multiple

threads.

• Synchronization primitives: co-ordination between parallel regions.

• Data-sharing attributes: OpenMP supports both thread-private and shared memory

constructs, as well as directive-driven partitioning of data and variable values among

threads.

• Nested parallelism, including task nesting.

• Thread pool sizing and management.

OpenMP-enabled platforms were uncommon in the embedded domain [23], however this

had changed. Embedded multi-core chip vendors and developers are giving supporting to

OpenMP in their tools and platforms. Nowadays many embedded multi-core platforms are

OpenMP compliant. For instance, Texas Instruments offers support for the OpenMP API

in its KeyStone multi-core architecture [66]. For the DSPs, TI has integrated OpenMP

support into its optimized TMS320C66x compilers and DSP runtime software. For the

Cortex-A15 processors, TI is leveraging industry standard GCC Compiler and Linux for

OpenMP support. OpenMP is a powerful programming model for this architecture as

it allows reuse of existing C/C++ software investment, leverages the ARM and DSP

shared memory architecture for multi-core, makes use of dedicated DSP hardware for fast

synchronization, and runs efficiently on industry-standard Linux and on TI’s SYS/BIOS

real-time operating system (RTOS). TI has defined OpenMP Accelerator Model, a subset

of OpenMP 4.0 specification that enables execution on heterogeneous SoC with host CPUs

and one or more on-chip target accelerators. For instance, in the TI 66AK2H MPSoC,

the host is a Quad Core ARM Cortex-A15 cluster running SMP Linux and the target

accelerator is a single cluster consisting of 8 C66x DSP cores, so the ARMs cores can

can offload computation, code and data, to the target accelerators [67]. This is truly

convenient for programming and parallelizing conde to multi-core heterogeneous systems.

For instance, the Figure 5.1 shows the speedup achieved using OpenMP directives for a

simple pi (π) number computation, present in Listing 5.1 (the number of steps used was

10000 just to increase the workload). The sequential code was parallelized using available

2The details of the code implementations for OpenMP in C/C++ are not presented in this work, the

reader may consult any of the abundant sources available.

5 Parallel Programming Models and Parallelism Extraction Tools 65

1 i n t p i (i n t num steps , doub l e ∗ p i) {
2

3 doub l e x ;

4 doub l e sum = 0 . 0 ;

5 doub l e s t ep = 1 . 0/ (doub l e) num steps ;

6

7 i n t i ;

8 f o r (i =0; i < num steps ; ++i) {
9 x = (i +0.5)∗ s t e p ;

10 sum = sum + 4.0/(1 .0+ x∗x) ;
11 }
12 ∗ p i = s t ep ∗ sum ;

13

14 r e t u r n 0 ;

15 }

Listing 5.1: Code for pi (π) calculation.

parallelizing tools, in this case Parallware [11] and Par4All [117], which produce OpenMP

versions of the sequential input code (the parallel versions obtained are presented in

the Appendix A). Many of the current existing tools and approaches for automatic and

semiautomatic parallelization produce OpenMP versions from the sequential inputs, as

presented further in this document. The KeyStone C6678 platform was used as target to

execute these parallel versions, and the code was compile using the TI toolchain for the

C66x. From the Figure 5.1, it can be observed that a speedup up to 6× can be achieve

when using the 8 available cores and for both parallelized codes.

Due OpenMP was originally designed for HPC systems, there are some challenges that pre-

vent the direct use for embedded multi-core systems. One of the hurdles is that embedded

systems may lack some of the features which can be commonly found in general-purpose

processors. For example, a traditional OpenMP compiler translates non-executable prag-

mas (parallel, for, and so on) into multi-threaded code with function calls to a customized

runtime library, which typically relies on POSIX threads and SMP GNU/Linux. The

example presented takes the advantage of an OpenMP-compliant operative system. Nev-

ertheless, as exposed, this is not always the case for all systems in the embedded world.

Some works have tried to target the issue of OpenMP support when no operative system

is available.

In [134], the authors developed a runtime system to explore mapping of OpenMP on multi-

core embedded systems, with no operative system. This effort, with the support of the

OpenMP alliance, leverages the Multicore Association (MCA) APIs as an OpenMP trans-

lation layer. The MCA APIs is a set of low-level APIs handling resource management,

inter-process communications and task scheduling for multi-core embedded systems. It

is only required to maintain a single OpenMP code base which is compatible by various

compilers, while on the other hand, the code is portable across different possible types

66 5.1 Parallel programming models

2 3 4 5 6 7 8

2

3

4

5

6

Cores

S
p
ee
d
u
p

Parallware Par4All

Figure 5.1: Speedup achieved for a simple pi calculation on TI DSP multi-core platform using

OpenMP.

of platforms. Even though the worked is developed and testes using the Freescale QorIQ

P4080 multi-core platform, the aim of is to have a flexible library that supports a wide

spectrum of platforms of different vendors. This approach supports non-cache-coherent

systems and its performance comparable to customized vendor-specific implementations.

It implements OpenUH as the front-end source-to-source compiler, which translates the

source code into C with OpenMP runtime function calls, employs a GCC back-end to

generate the object file and libraries and finally generates executable files by linking the

object file, the OpenMP runtime library developed, libEOMP, and the MCA runtime

library.

Other approaches have addressed the problem for multi-core DSPs platforms. In [120] a

work, at a bare-metal level (between the runtime and the device level), is presented for a

OpenMP software stack to be used in the KeyStone II platforms from TI, which presents

multiple ARM and DSP cores in the same chip. This work is particularly developed

considering tasks running in ARM Linux-powered cores and the possibility to map parallel

tasks, created through OpenMP, to the DSPs cores available. The executables for the

DSP are compiled from the mapped code using the proprietary TI compiler for this cores.

In [60] another approach to port OpenMP to DSPs is presented, targeting the Freescale

MSC8156 chip, a DSP processor with six cores, The authors introduce OpenMDSP, an

extension of OpenMP 2.5 for multi-core DSP, together with the implementation of a

compiler and runtime system for the mentioned platform.

5 Parallel Programming Models and Parallelism Extraction Tools 67

5.1.2 POSIX Threads

POSIX Threads, usually referred to as Pthreads, is a POSIX (Portable Operating Sys-

tem Interface) standard for threads. A thread is defined as an autonomous execution

entity, with its own program counter and execution stack which is usually described as

a lightweight process. A normal process (consider heavyweight) may generate multiple

threads; while autonomous, the threads share the process code, its global variables, and

any heap-allocated data [14]. The POSIX provides a standard interface to create threads

and control them in a user program. POSIX is a standardization of the interface be-

tween the operating system and applications, mainly in the Unix-like operating systems,

but it has reached other operating systems like many RTOS for embedded systems (e.g,

FreeRTOS, ThreadX, QNX Neutrino RTOS, NuttX).

In parallel applications, multiple threads can be created with Pthreads, for shared-memory

multi-processors. Because the execution speed and sequence of different threads is un-

predictable and without order by default, programmers must be aware of race conditions

and deadlocks. Synchronization should be used if operations must occur in certain order

[39]. This is an important trade-off to consider, especially in time-constraint systems.

POSIX provides condition variables as their main synchronization mechanism. Condition

variables provide a structured means for a thread to wait, i.e. block, until another thread

signals that a certain condition becomes true. Real-time extensions to POSIX define

barriers as an additional synchronization mechanism for Pthreads. Pthreads provide

mutex objects as a primary way of achieving mutual exclusion, which is typically used to

coordinate access to a resource which is shared among multiple threads. A thread should

lock the mutex before entering the critical section of the code and unlock it right after

leaving it. Pthreads also provide semaphores as another mechanism for mutual exclusion.

Pthreads have been widely used on HPC and embedded systems. Nevertheless, few works

have attempt to use it as a final output in a automatic or semiautomatic parallelism tool.

For instance, the automatic parallelization tool S2P, a source-to-source conversion tool

developed by KPIT Cummins Infosystems Ltd. India. The author of this tool, according

to [105] and [13], claim that is a fully automated parallelizing compiler that converts

sequential C source code to a parallel multi-threaded source code by adding threading

constructs of OpenMP and Pthreads. AESOP [2], an automatic tool generates parallel

code using Pthreads calls.

Pthreads could be use for semiautomatic tools that only analyze and detect parallelism,

and indicates to the user where potential parallelism could be exploited, so the insertion

of threads directives can be done manually. To use Pthreads for parallelizing compilers

is important to note that target platforms must support it, due these libraries usually

rely on specific architecture or operative system; this is effective in a broad amount of

current multi-core embedded systems, but not all. On the other hand, Pthreads puts too

much burden on the programmer. Explicitly managing and manipulating the execution

entities can sometimes give ultimate control to an expert programmer, but this comes at

68 5.1 Parallel programming models

the cost of increased complexity and lower productivity since larger Pthreads programs

are considered hard to develop, debug, and maintain [39].

5.1.3 MPI

The message-passing model assumes a collection of execution entities, particularly pro-

cesses, which do not share anything and are able to communicate with each other by ex-

changing explicit messages. This is a common and natural model for distributed-memory

systems where communication cannot be achieved through shared variables. It is also an

efficient model for NUMA systems where, even if they support a shared address space, the

memory is physically distributed among the processors [39]. Message Passing Interface

(MPI) is a specification for message-passing operations and is implemented as a library

which can be used by C and FORTRAN programs [55].

An MPI program consists of a number of identical processes with different address spaces,

where data is partitioned and distributed among different PEs. The interaction among the

processes is done through messaging operations. MPI provides send and receive operations

between a named sender and a named receiver, called point-to-point communications.

These operations are cooperative or two-sided, as they involve both sending and receiving

processes, and are available in both synchronous and asynchronous versions.

MPI is generally considered an efficient but low-level programming model. Like Pthreads,

the programmer must partition the work to be done by each execution entity and derive

the mapping to the actual processors. Different than Pthreads, there is need of partition

and distribution of the data on which the program operates.

In the clustered computing world, MPI is the de-facto standard for message passing among

the clusters of workstations. Additionally, there exist implementations that allow appli-

cations to run on larger computational grids. Respecting the embedded multi-core sys-

tems, there is a lightweight implementation specialized for this world, called Lightweight

MPI (LMPI) [5] for heterogeneous distributed embedded system. Some other works have

tried to address the implementation of MPI on embedded systems, such as LAM (Local

Area Multicomputer) implementation [84], the MSG library and MSG-core layer [65], the

TMD-MPI, a MPI-based programming model for MPSoC implemented in FPGAs [111]

and later used in HPC Reconfigurable Computers (HPRCs)3 [112]. Some implementa-

tions based on MPI have been worked for multi-processor signal systems [109, 110]. Also,

there is a case of study about the design of a scheduler based on Open MPI for large-scale

heterogeneous distributed embedded systems [71].

Although there are implementations and efforts to provide support for MPI in embed-

ded systems, by the time this document was written there are not parallelizing tools or

approaches that produce MPI-based parallel outputs from sequential input code.

3One or more standard micro-processors tightly-coupled with one or more reconfigurable FPGAs

5 Parallel Programming Models and Parallelism Extraction Tools 69

5.1.4 CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing platform and pro-

gramming model created by NVIDIA and implemented by GPUs that this company pro-

duce [91]. With CUDA, GPUs can be used for general purpose processing, and not just for

graphics purposes, which is known as General-Purposes Computing on GPU (GPGPU).

Unlike CPUs, however, GPUs have a parallel throughput architecture that emphasizes

executing many concurrent threads slowly, rather than executing a single thread very

quickly, which allows the exploitation of TLP [76].

Shared memory is a powerful feature for writing well optimized CUDA code [59]. However,

with the demanding needs of more intensive workloads, porting GPU programs to more

scalable distributed memory environment, such as multi-GPUs, has been worked [25]; but

to achieve this, programs need to be re-written mixed, e.g, CUDA and message passing.

With CUDA, the threads are organized in a two level hierarchy, i.e. the block and the grid.

The first is a set of tightly coupled threads where each thread is identified by a thread ID

while the second is a set of loosely coupled blocks with similar size and dimension. The

grid is handled by the GPU, which is organized as a collection of multiprocessors. Each

multiprocessor executes one or more of the blocks and there is no synchronization among

the blocks [39].

CUDA is implemented as an extension to the C language, which is beneficial for port-

ing legacy sequential C programs. Tasks to be executed on the GPU, called kernels, are

functions marked with qualifiers in the code. Thread management is implicit; program-

mers need only specify grid and block dimensions for a particular kernel and do not need

to manage thread creation and destruction. The memory model of CUDA consists of

a hierarchy of memories. In particular, there is per-thread memory (registers and local

memory), per-block memory (shared memory, accessed by all threads in a block), and

per-device memory (read/write global and read-only constant memory, accessed by all

threads in a grid and by the host).

Even that GPUs first appeared in the HPC and desktop scene, state-of-the-art MPSoC

includes several power efficient GPUs. For instance, the NVIDIA Tegra K1 SoC, which

incorporates NVIDIA Kepler GPU with 192 CUDA cores and 4-Plus-1 quad-core ARM

Cortex A15 CPUs [92]. Also, there are parallelizing tools and approaches that produce

output code in CUDA, considering HPC systems as a target. Tools as Par4All [117] and

PLuTo [18, 19] (no longer maintained) parallelize C code into CUDA parallel versions.

[15] presents an automatic code transformation system that generates parallel CUDA

code from input sequential C code for regular affine programs; [38] presents a compiler

framework for tiling and parallelizing loop nests with uniform dependencies into CUDA

code, built upon the based of PLuTo tool.

70 5.1 Parallel programming models

5.1.5 OpenCL

Open Computing Language (OpenCL) is a standardized, cross-platform, parallel-computing

API based on the C99 language and designed to enable the development of portable paral-

lel applications for systems with heterogeneous computing devices. It is similar to CUDA,

however it can be somewhat more complex as it strives for platform independence and

portability [39], program written with OpenCL can be executed across heterogeneous

platforms: CPU, GPU, DSP, and FPGA [56]. Although OpenCL is based on C, it ex-

cludes support for some features, such as function pointers, recursion, variable length

arrays, bit fields; while adding some features to support specific concepts such as work

items, work groups, synchronization and new data types. In addition it has a powerful

library of built-in functions, e.g. for image processing [130]. OpenCL provides parallel

computing using task and data level parallelism.

The execution platform on which an OpenCL program is executed is modeled as a collec-

tion of OpenCL devices, managed by a host processor, responsible for dispatching work to

the devices [130]. Internally an OpenCL device consists of one or several compute units,

each one divided into one or more PEs that may have single-instruction multiple-data

or single-program multiple-data characteristics. The basic execution model of OpenCL

relies on the concepts of kernel and program. A kernel is the basic unit of executable

code, similar to a function in another language which can be applied over a data set, for

data parallel execution, or as one instance, to model a task. A program is a collection of

kernels and supporting functions for managing kernels.

Execution of an OpenCL program is based on the concept of a command queues. The

host will place commands into one of the command queues, which are then scheduled

for execution on the available devices. There are three types of commands supported in

OpenCL:

• Kernel execution: a kernel is scheduled for execution using an index space.

• Memory management: transferring data between memory objects and mapping

memory objects between address spaces.

• Synchronization: constrain the execution order of commands.

OpenCL supports two styles of command execution:

• In order, where commands are executed serially, the next command cannot start

before the previous one completes, and

• Out-of-Order, where commands are still issued in order for execution, but do not

wait on each other, thus any synchronization requires the use of explicit mechanisms.

OpenCL is designed to offer a set of C APIs and abstract the hardware layer into some-

thing like a computing layer, where the target platform is a second matter, but what is

more important is the OpenCL version supported by the hardware and the level of API

that your machine can offer. For instance, in the OpenCL design if a CPU and GPU

are working in the same way, they can be activated to compute the same thing on both

5 Parallel Programming Models and Parallelism Extraction Tools 71

or only 1 of them. This may be beneficial for porting applications among different and

heterogeneous PEs capable to handle OpenCL.

Current embedded systems presents PEs that supports OpenCL. ARM Mali GPU systems

presents full support to be programmed using OpenCL, and they are used in modern MP-

SoC chips as the ARM big.LITTLE platforms. In the other hand, High Level Synthesis

(HLS) tools had implemented OpenCL to develop applications for FPGA platforms. The

Altera SDK for OpenCL allows the easy implementation of applications by abstracting

away the complexities of FPGA design, allowing the development of hardware-accelerated

kernel functions in OpenCL C, an ANSI C-based language with additional OpenCL con-

structs [8].

Few attempts exists to automate the process of generating OpenCL parallel applications

from sequential inputs. Par4All claims to have limited support for C and FORTRAN par-

allelization into OpenCL parallel outputs [117]. The authors in [124] present a methodol-

ogy for parallelization of sequential C programs with function calls to equivalent OpenCL

programs with little assistance from programmer, identifying function calls and convert-

ing them into kernels to be executed in parallel on GPU devices. The GPSME toolkit

aims to automatically convert C/C++ into OpenCL programs for GPU [138, 102]. [54]

presents a compiler based approach to automatically generate optimized OpenCL code

from data parallel OpenMP programs for GPUs. This approach brings together the ben-

efits of a clear high level language, like OpenMP, and an emerging standard OpenCL for

heterogeneous multi-cores systems. The OpenMP Accelerator model host runtime imple-

mentations uses the TI OpenCL Runtime as a back-end [67], so that OpenCL is, in a way

or another, used in TI’s tools and multi-core platforms.

5.1.6 Cilk

Cilk is a multi-threaded language derived from ANSI C [17, 95]. Cilk is an algorithmic

language, which is an important distinction to make relative to other multi-threaded

languages, as this means that the Cilk runtime guarantees both efficient and predictable

performance. Cilk is based on both a language definition and a capable runtime system.

The purpose of the runtime system is to remove the responsibility of thread scheduling,

load balancing, and inter-thread communications from programmers, leaving them with

the primary concern of identifying parallelism within their program [119]. Cilk Plus is

the extension for both C and C++ programming languages.

The predictability of Cilk programs means that their analysis in a formal framework will

yield predictions of performance that are close to those observed in practice. A program-

mer can analyze the performance properties of parallel programs based on two metrics: the

work and span of the program. These metrics can be computed at runtime through auto-

matic instrumentation inserted during compilation. This allows programmers to observe

the actual parallel properties of their program under realistic workloads to understand

how well the program parallelized and how it scales. Cilk achieves this through its work-

72 5.2 Tools

stealing scheduler in order to dynamically balance work across processors as the program

executes.

Cilk Plus provides support for task and data parallelism. A user can perceived Cilk as a

very easy to pick up language extension if already well versed in C, as the extensions Cilk

makes to C are minimal and not disruptive to the base C language. Cilk Plus implements

only three keywords to implement task parallelism [100]:

• cilk for: allows iterations of the loop body to be executed in parallel.

• cilk spawn: specifies that a function call can execute asynchronously, without re-

quiring the caller to wait for it to return. This is an expression of an opportunity

for parallelism, not a command that mandates parallelism. The Intel Cilk runtime

will choose whether to run the function in parallel with its caller.

• cilk sync: specifies that all spawned calls in a function must complete before exe-

cution continues. There is an implied cilk sync at the end of every function that

contains a cilk spawn.

Cilk allows automatic load balancing which provides good behavior in multi-programmed

environments, and existing algorithms are easily adapted for parallelism with minimal

modification. Cilk is available in commercial and open source licenses, which allow to

have it in GCC and Clang/LLVM compilers and not just the Intel compilers.

Unfortunately, this extension is limited for x86 based architectures, of 32 and 64 bits,

which reduces the applicability to a vast majority of embedded multi-core platforms.

Nevertheless, Cilk presents a very interesting concept. By the time this document was

written there are not tools nor approaches found to transform sequential C code into a

Cilk parallel version.

5.1.7 Taxonomy

The Table 5.1 presents a comparative and summary table regarding the previous presented

parallel programming models. The Table considers the type of parallelism exploited,

if there is support for multi-core embedded systems, if there is parallelization tools or

approaches that uses the library to produce output parallel codes. All except Cilk, present

at least one approach to support it by embedded systems. Considering the tools available

for OpenCL and CUDA are just a few, a couple, compared to the large amount using

OpenMP for parallel outputs.

5.2 Tools

Many tools have been developed over the years to parallelize sequential code, with different

success and limitations. Cover all the existing tool in this survey is a very ambitious task.

Also, since most of the tools have been developed for HPC systems, their applicability

5 Parallel Programming Models and Parallelism Extraction Tools 73

Table 5.1: Comparison chart for parallel programming models.

Language Programming model Parallelism Embedded support Tools

OpenMP Shared-memory DLP,TLP Yes Yes

Pthreads Shared-memory TLP Yes Yes

MPI Distributed-memory TLP Yes No

CUDA Heterogeneity DLP,TLP Yes Yes

OpenCL Heterogeneity DPL Yes Yes

Cilk Shared-memory DLP,TLP No No

to multi-core embedded systems is limited. In this section some tools are presented

and described. They were selected, in part, for their potential usability for multi-core

embedded systems.

5.2.1 ParallWare

ParallWare is a novel commercial source-to-source parallelizing compiler, designed for HPC

systems and for sequential simulation programs. ParallWare automatically discovers the

parallelism available in the input sequential code and automatically generates parallel

equivalent source code annotated with OpenMP compiler directives [11], which preserves

the maintainability and human readability of the code.

One field of application of this tool is in computational electromagnetic (CEM) sim-

ulations, important to the design and modeling of antenna, radar, satellite and other

communication systems, nanophotonic devices and high-speed silicon electronics, medical

imaging and cell-phone antenna design, among other applications. ParallWare has been

able to provide a speedup of 4.85 on a quad-core platform.

This tool is intended to keep developing applications in a sequential manner, and run

it in parallel. For this, the user manual presents programming guidelines, so the work

of detecting parallelism is facilitated for the tool. Actually, the tool presents several

unsupported features and provides the re-factoring suggestions. This implies that for an

existing application it is required the modifications to make it compliant for the tool,

otherwise parallelism would no be detected.

Details of the tool internals are not available due its commercial condition. The tool is

available as a limited free-trial from the company web page4. To access to a full license

the cost rises up to 20 000 e.

5.2.2 PaxES

PaxES stands for Parallelism Extraction for Embedded Systems [31], a parallelization

4www.appentra.com

www.appentra.com

74 5.2 Tools

framework optimized for embedded multi-core systems. This is one tool, with three

different approaches, developed at TU Dortmund, that includes the works presented in

[32, 29, 30]. These first works where developed for homogeneous systems, but extended

to heterogeneous systems, as presented in [33]

This tool is among the few design for multi-core embedded systems and considering dif-

ferent objectives, i.e., rather than increase just the speedup of the applications, the tool

consider energy and communication costs. This is needed for embedded systems due the

constraints imposed by the applications.

The approaches in this tool are [31]:

• [32] presents an approach to extract very coarse-grained TkLP, e.g. two parallel

function calls. An ILP-based algorithm is used for the parallelism extraction and

HTG is used as an intermediate representation.

• [29] presents an approach to extract more fine-grained PLP from loops and loop nests

from sequential C applications. Due many embedded applications have a streaming-

oriented structure, is a strong motivation for extracting this type of parallelism. In

this approach the loops are divided into concurrently executed task, horizontal splits

are done to move statements to tasks and vertical splits to split iterations of tasks.

PDG is used in this case for intermediate representation.

• [30] presents another approach for multi-objective aware extraction of TkLP us-

ing an algorithm based on GA. A multi-objective approach is a embedded systems

motivation, due this systems must be optimized for multiple objectives. This ap-

proach observes three objectives while parallelizing an application: execution time,

energy consumption, and communication overhead. For instance, a multi-objective

compromise could be reduce the amount of extracted parallelism to save energy.

This approach bring as output a Pareto-front with the optimal solutions, so the

best implementation can be choose for a specific scenario. An augmented HTG for

intermediate representation in this approach.

The previous works were expanded adapting PLP extraction to a multi-objective ap-

proach, as presented in [28]. The Figure 5.2 depicts the general concept of this par-

allelization tool. This Figure shows the extraction of a HTG and the application of a

GA-based algorithms to determine the parallelism; but from the presented recently, this

could be the PDG extraction and the application of ILP-based algorithm.

The dependency analyzer in this tool takes the IR of the optimized source code as input to

extract all data dependencies of the application. This information is required to build the

PDG or the HTG. Note that information regarding execution time and energy estimation

is used to create this graphs. In this case, a profiling based approach is used. Due to

profiling driven analysis techniques, parallelization hints might ignore dependencies which

are not manifest in the profiling run.

5 Parallel Programming Models and Parallelism Extraction Tools 75

!"#$"%&'()*+,!-*./

!0$12"*.03"

4(1())")'5"3*(%3*

6(77"3*80$12"*203"

4(1())")'5(&'0%

900)

+9:;-<;

900)8

4(1())")

+,!-*./.03"

;(77'%=*&00)

+$=6"%&"3

+,!-*./.03"

4(1())")*

!7"2'>'2(&'0%

!"#$%&&'

())&'*&)+

;+..

?(&(@(8"

A'"1(12B'2()*9(8C*

D1(7B*"E&1(2&'0%

D+/@(8"3*7(1())")'5(&'0%

.03"*07&'6'5(&'0%

?"7"%3"%2F

(%()F8'8

GE"2/&'6"*H*G%="1F

"8&'6(&'0%

,%$%&&#&-.%/-)0'())&

,123'*$%4#+)$5

!4G+*I*/

D"%"&'2*!0)J"1

<
%
'E
/!
0
2C
"
&

.
0
6
6
$
%
'2
(
&'
0
%

Figure 5.2: PaxES parallelization tool (Figure taken from [30]).

In all the approaches, the augmented C code, produce by the parallelization tool and

a parallel specification are passed to the ATOMIUM tool suite, which implements the

extracted parallelism. MPA tool is used to implement the extracted parallelism; this

MPA requires a special runtime library, called RTLIB, which had to be ported to the

different platforms. At the end of the process, a mapping tool is used to map the different

tasks to the target platform.

5.2.3 PLuTo

PLuTo is a source-to-source transformation system based on the polyhedral model [18,

19, 20, 1]. The polyhedral model for compiler optimization provides an abstraction to

perform high level transformations such as loop-nest optimization and parallelization on

affine loop nests. This model is a geometrical representation for programs that utilizes

machinery from Linear Algebra and Linear Programming. PLuTo transforms C programs

from source to source for coarse-grained parallelism and locality simultaneously. The

core transformation mainly works by finding affine transformations for efficient tiling and

fusion.

PLuTo automatic transform C programs to OpenMP versions. Nevertheless, it requires

the user to specify the regions that want to parallelize. This is done using pragma scop

and pragma endscop around the target section code. The knowledge of the application

that the user have is important to determine which code sections would provide a better

profit if parallelized.

Several options are provided to tune aspects like tile sizes, unroll factors, and outer loop

fusion structure. Outer, inner, or pipelined parallelization is achieved, using OpenMP pra-

grams, besides register tiling and making code sensitive to auto-vectorization. A CUDA

76 5.2 Tools

Dependence

CLooG

Annotated code

framework
transformation

Our affine

affine transforms

Statement−wise

tile
specifier

Polyhedral

Syntactic

Transformer

sequences

scanner/parser
 +

Dependence

tester locality optimization)

(parallelization +

polyhedra

LooPo
Nested loop

with supernodes

and scatterings

Updated domainsgcc/icc
/xlc (OpenMP

 parallelized)

target code
Compilable

Figure 5.3: PLuTo source-to-source transformation system (Figure taken from [19]).

version of the tool was developed, but currently unsupported. The Figure 5.3 shows a

flow diagram of this tool.

Due many applications often spend most of their execution time in nested loops, the poly-

hedral model provides a powerful abstraction to transform such loop nests by viewing a

dynamic instance, or iteration, of each statement as an integer point in a well-defined

space called the statement’s polyhedron. With such a representation for each statement,

and a precise characterization of inter or intra-statement dependencies, it is possible to

reason about the correctness of complex loop transformations in a completely mathe-

matical setting relying on structures from linear algebra and linear programming [1]. The

transformations reflect in the generated code, as reordered execution with improved cache

locality and loops, that they have been parallelized. The polyhedral model is applicable

to loop nests in which the data access functions and loop bounds are affine combinations

of the enclosing loop variables and parameters.

PLuTo enables a model-driven or guided empirical search to be applied to arbitrary affine

programs. Due the transformation system in PLuTo operates entirely in the polyhedral

abstraction, it is not limited to C code, but could applied to any high level language from

which polyhedral domains can be extracted and analyzed.

PLuTo depends of three libraries: PipLib, a parametric integer linear programming solver

[99]; PolyLib, a library of polyhedral functions that operates on objects made up of unions

of polyhedra of any dimension [85]; and CLooG, a free software library to generate code for

scanning Z-polyhedra, and to solve the code generation problem for optimizing compilers

based on the polytope model [27].

5.2.4 Par4All

Par4All is an automatic parallelizing and optimizing compiler for C and FORTRAN se-

quential programs [117]. It is a source-to-source compiler that aims to adapt existing ap-

plications to various hardware targets such as multi-core systems, HPC systems, GPUs,

and some parallel embedded heterogeneous systems. The main goal of this Par4All is

to be naturally independent of the target architecture details and to take advantage of

the best back-end tools, such as highly optimized vendor compilers for a given proces-

5 Parallel Programming Models and Parallelism Extraction Tools 77

Figure 5.4: Par4All tool flow (Figure taken from [10]).

sor or platform, including for embedded systems, open-source compilers and tools, and

high-level hardware synthesizers [10].

Par4All aims an easy code generation for parallel architectures from sequential source

codes written with almost no manual code modification required. Par4All is based on

multiple components, mainly on the PIPS, a source-to-source compiler infrastructure, and

it benefits from its interprocedural capabilities like memory effects, reduction detection,

parallelism detection, but also polyhedral-based analyses such as convex array regions

and preconditions. The Figure 5.4 presents the internal flow of this tool.Par4All allows

the integration of third-party tools into the compilation flow, like in this case PIPS.

The PIPS internal representation is a hierarchical control flow graph (HCFG) with a

compact representation and a good trade-off between simplicity and source representation

precision.

The current version of Par4All can generate CUDA and OpenCL code from C code and

OpenMP from C and Fortran 77 code with a simple easy-to-use high-level script called

p4a. This outputs allow that original source codes of existing applications to remain

mainly unchanged for well formed programs. The future version of this tool is based on

Clang/LLVM. Some architectural aspects can be expressed or generated in special source

constructs to capture architectural details when needed (SIMD or accelerators intrinsics).

The source-to-source aspect makes Par4All de facto interoperable with other tools as

front-end or back-end compilers to build complete tool chains.

5.2.5 AESOP

AESOP is an automatic parallelizer is a tool that converts serial code from C, C++ and

FORTRAN programs, mainly loops structures, to a parallel code and targets shared-

memory machines [2]. This an open source project5 developed at the University of Mary-

land, College Park. AESOP leverages the LLVM infrastructure and presently works with

LLVM-3.0. It targets parallelism for dense array-based codes with affine-based analysis

using traditional methods.

AESOP is an affine automatic parallelizer. The Figure 5.5 shows the diagram for this tool.

5Available in aesop.ece.umd.edu.

aesop.ece.umd.edu

78 5.2 Tools

System

Characterization

effective

hardware

contexts

Best Barrier

Best Broadcast

Cache Line size

SPMD Parallel Code in LLVM IR

Serial LLVM IR

Distance/Direction Vectors

Parallelism Specification

Parallelization Module

Distance Vector

Generator
Alias

Analysis

Array Dependence
Information

Register Dependence
Information

Interchange

Blocking

Reduction

Clone Loop

Block the Loop Dimension

Add Synchronization Overheads

Apply

Transformations

Parallelism

Feedback

Detect
Parallelism

Loop Dependence Analysis

Parallelizer

Parallel Code Generator

I

D
e
c
is
io
n
A
lg
o

Undoing Compiler
optimizations

New Serial LLVM IR

Figure 5.5: AESOP Parallelizer (Figure taken from [2]).

As can bee seen from the flow, first the serial IR produced by LLVM is fed into the undoing

compiler optimizations module, which includes the Loop Simplify and Induction Variable

Simplify passes from LLVM. Doing this, the LLVM IR obtained after this remains serial,

but the loops are simplified, i.e. contain only one exit block when possible and canonical

induction variables are introduced into loops whenever possible. Such simplification of

loops is essential for this tool to execute the affine analysis on such loops and generate

parallel code [2]. After this first block, new serial LLVM IR is passed into the loop

dependence analysis block, which includes an alias analysis module and a distance vector

generator. Every pair of memory accesses in a loop are passed into the alias analysis

module and the distance vector generator. The alias analysis passes are the standard

ones present in LLVM.

The distance/direction vectors and the new serial LLVM IR are then passed into the

parallelizer block which communicates with the decision algorithm block. The decision

algorithm decides which loop dimensions to parallelize. Then, the parallel code generator

block generates SPMD, Single-Program Multiple-Data, parallel code for each of paral-

lelizable loops. This is done using POSIX-compliant Pthreads calls. AESOP is one of the

few tools that produce Pthreads parallel version of the sequential input. This could be

useful for multi-core embedded systems due many operative systems support this output,

like Linux.

In the code generated, only the main thread executes serial code between parallel loops.

The parallel threads produce by AESOP only execute loop code. When a parallel thread

finishes one loop it waits for the main thread to inform it which loop to execute next in

a broadcast. The broadcast also contains the values of registers calculated by the main

thread that are needed by the parallel loop threads. A barrier is inserted into the binary

at the end of every loop.

5 Parallel Programming Models and Parallelism Extraction Tools 79

Figure 5.6: MAPS sequential partitioning (Figure taken from [24]).

5.2.6 MAPS

The MPSoC Application Programming Studio, MAPS, [24, 82] developed by the ICE at

RWTH-Aachen. This tool performs a semiautomatic parallelization technique in which

the user can manually steer the granularity of the extracted parallelism. In this paral-

lelization process, TkLP, DLP and PLP can be exploited, which present better benefits on

multi-core embedded systems. The Figure 5.6 shows the sequential partitioning stage of

MAPS. As shown, the parallelization process in MAPS can be divided into three phases:

analysis, partitioning and code emission.

Two inputs are expected by MAPS, the sequential C code and the description of the

target MPSoC platform. In the analysis phase, both static and dynamic approaches are

applied in order to provide profiling information to the programmer, and data and control

flow information to the MAPS partitioning tool which search for parallel tasks in the

target application. MAPS combines information from static and dynamic profiling code

analysis, in order to extract a Weighted Statement Control Data Flow Graph (WSCDFG)

annotated with cost information.

The partitioning phase of MAPS was first approach by a heuristic clustering algorithm

was applied to the WSCDFG to group statements subsequently to coarse-grained tasks.

The partitioning phase of MAPS now uses two algorithms: SCC improvement and load

balancing.

In the code emission phase, the resulting tasks are translate to parallelized C code. MAPS

uses the Tightly-Coupled-Thread framework (TCT) as a backend for implementation and

simulation of the extracted parallelism, in order to evaluate the parallel performance. The

output of the tool are C source files with parallel constructs.

80 5.2 Tools

�������������

	
�����

���
���

������

�������

����������

��������

	
�����

���

�����

��	�

����������

���������

�����

���	�����

Figure 5.7: Paralax tool flow (Figure taken from [131]).

5.2.7 Paralax

Paralax compiler is a parallelizing compiler that is constructed specifically for parallelizing

irregular pointer-intensive applications, developed in the Ghent University [132, 131].

Paralax is built on top of the LLVM compiler framework and coarse-grain loops operating

on whole data structures. The Figure 5.7 shows the Paralax tool flow.

The compilation process starts with data structure analysis (DSA), a unification-based

shape analysis that recovers the identity and type, e.g. array or structure, of all memory

objects by inspecting the instructions that access them. DSA also identifies when one

object holds a pointer to another one and indicates when pointers to objects may escape

or when objects are aliased to other objects.

The parallelization follows by using DSWP. It is performed by analyzing the PDG. The

PDG captures all dependencies, data, control and memory, in a program. Due the PDG

may contain cycles, these cycles must always be contained within a single thread to

minimize inter-thread communication. SCCs are computed from PDG and build the

directed acyclic graph of strongly connected components (DAG-SCC). Using the DAG-

SCC, various parallel loop patterns can be recognized such as pipelines, parallel-stage

pipelines and DOALL loops, as well as a parallel sections in non-loop code.

The code is split across multiple threads using the multi-threaded code generation algo-

rithm of DSWP. This algorithm determines what basic blocks must be replicated in each

thread, which control transfers must be replicated and when values must be sent and

received. For this, it is required the existence of queues, FIFOs, between the threads and

two primitives: produce and consume, to perform and consume values from a queue.

Paralax assumes a lumped communication model where all values produced in a pipeline

stage are sent at once at the end of the stage and they are all received at once at the

start of the stage. This communication is effected by defining for each parallelized loop a

communication structure. This is a structure in the C language that contains all values

that are communicated between pipeline stages

In order to aid the Paralax compiler in finding significant TLP, we present a light-weight

programming model (LWPM) to fill in the semantic gaps. The LWPM adds annotations to

5 Parallel Programming Models and Parallelism Extraction Tools 81

C
FG

pa
rt
iti

on
in

g

Partitioner Trace Analyzer

CoSy
compiler

instr/nted
source

C

sequential
 source

C

Dependence

Analyzer

trace
files

exec

pipelinelib

runtime

input

GCC

whole
program

PDG

Hierachical

Explorer
Loop Analysis

Profitability
estimation

pipeline

specification

parallel implementation. Our approach, on the other hand,
is not restricted to a single loop level from which to extractis not restricted to a single loop level from which to extract

on the right side of figure 1. Using a hierarchical whole-
pipeline stages and constructs the more balanced pipeline

expose inner levels, creating a pipeline that spans multiple
levels of the loop nest. The more equally balanced pipeline
expose inner levels, creating a pipeline that spans multiple

Ir-profiling is a powerful toolIr-profiling is a powerful tool
for the extraction and exploitation of parallelization

-profiling is a powerful tool-profiling is a powerful tool

beyond loop level.

This simple, yet eff back annotation capabilityThis simple, yet e capability

methodologies.
distinguishes our approach from most other profiling

The parallelization work-flow is illustrated in figure 2. TheThe parallelization work-flow is illustrated in figure 2. The

CoSy
sequential source program

C compiler and its
sequential source program

IR
sequential source program written in C is processed by the

is instrumented. The resulting
written in C is processed by the

trace analyzer for dependence analysis. The generated

pipeline specification. Eventually this code is compiled. Eventually this code is compiled
Gcc

. Eventually this code is compiled
compiler and linked

. Eventually this code is compiled

against the
for the target platform using the

pipeline runtime library.
for the target platform using the

The Ir which is used to perform the hierarchical paral-
lelism extraction is based on the Program Dependence Graph
PdgPdgPdg control and) [6] with its explicit representation of both
data-dependencies. In our case the
(() [6] with its explicit representation of both) [6] with its explicit representation of both) [6] with its explicit representation of both

Depen-
dence Analyzer
with data-dependence edges as computed by thewith data-dependence edges as computed by the

Figure 5.8: Tounavitis parallelization work-flow (Figure taken from [127]).

a program that describe well-defined properties of functions, variables and data structures;

information that a static compiler can not infer. The annotations are designed such

that verification of their correctness is fairly easy. Paralax provides a dynamic analysis

tool that proposes program locations to the user where annotations could improve the

parallelization process.

5.2.8 Tournavitis

The Tournavitis [128, 126, 127, 125] approach integrates profile-driven parallelism detec-

tion and machine learning based mapping in a single framework, to exploit and extract

pipeline parallelism in multimedia applications. The profiling data brings the actual con-

trol and data dependencies and enhance the corresponding static analyses with dynamic

information. for this purpose the CoSy compiler is used to run instrumented IR code and

obtain the traces for the dependence analysis. A trained machine learning based predic-

tion mechanism is used to each parallel loop candidate to decide if the parallel mapping

should be performed and how to do it, as summarized in the subsection 4.2.1.

This approach generates parallel code using standard OpenMP annotations, due to the low

complexity of generating the required code annotations and the widespread availability

of native OpenMP compilers. This approach is semiautomatic because expect the user to

finally approval regarding the loops where parallelization is likely to be beneficial. DLP

and PLP are exploited within this tool. The dependence analysis uses CDFG and CFG

to represent the code. The Figure 5.8 depicts the work-flow for this approach.

82 5.2 Tools

5.2.9 Thies

[122] presents a tool presented in assists the programmer in extracting pipeline parallelism

by a semiautomatic profiling-based technique. This tool aims to leveraging coarse-grained

pipeline parallelism in C programs, present in streaming applications, such as audio, video,

and digital signal processing, which exhibit regular flows of data. To exploit PLP, this tool

provides to the user with a simple set of annotations, indicating pipeline boundaries, and

a dynamic analysis. This tool depends and relies in the user knowledge of the application

to properly parallelize it, but brings interaction to help y the process of partitioning the

code.

The first step in this tool is to identify the main loop in the application, which is typi-

cally iterating over frames, packets, or another long-running data source. The user an-

notates the start and end of this loop, as well as the boundaries between the desired

pipeline-parallel partitions. The tool reports the percentage of execution time spent in

each pipeline stage, to bring guidance in the placement of pipeline boundaries.

The tool presents some restrictions on the placement of the partition boundaries. All

boundaries must appear within the loop body itself, rather than within a nested loop,

within nested control flow, or as part of another function. The user may work around

these restrictions by performing loop distribution or function in lining. for and while

loops are supported, but can not be any break or continue statements within the loop;

such statements implicitly alter the control flow in all of the partitions, an effect that is

difficult to trace by the dynamic analysis.

Once a loop has been annotated with partition boundaries, the user selects a set of

training inputs and runs our dynamic analysis to trace the communication pattern. The

tool outputs a stream graph, which is a list of producer and consumer statements, and a

set of communication macros for automatically running the code in parallel. If the user

is not satisfied with the extracted speedup, the user has to redefine pipeline boundaries

over several steps, which is tricky and not scalable. Communication and synchronization

directives are finally inserted by the parallelization framework, based on the profiling

information. The dynamic analysis tool used is built on top of Valgrind, which is a

framework for dynamic binary instrumentation.

A standard inter-process communication mechanism, like pipes, is used to send and buffer

data from one process to another. Thus a producer sends its latest value for a given

location, and the consumer reads that value into the same location in its private address

space. At the end of the execution of one loop, all of the processes copy their modified

data, as recorded by the tool during the profiling stage, into a single process that continues

after the loop.

5 Parallel Programming Models and Parallelism Extraction Tools 83

5.3 Taxonomy

In this section, a comparison table is presented to summarized several of the most impor-

tant features that allows the characterization of tools for parallelizing sequential codes.

The Table 5.2 and 5.3 includes information regarding:

• The input language, sequential program, and the corresponding output language,

parallel program. Most of the tools receive as input C, while other also handle

FORTRAN and C++.

• The type (or types) of parallelism exploited by the tool.

• The type of graph used as a representation model to abstract the input program.

• The type of code analysis, i.e., static, dynamic or hybrid.

• The target system of the tool. Normally this is either high performance computing

(HPC) or embedded systems (ES), and in rare cases for both.

• The method, refers to the algorithm or technique used, if known, to extract paral-

lelism.

• Automation, this refers if the tool produce the output automatically, without any

user intervention, or semiautomatically, with input from the user in the paralleliza-

tion process.

• The objective (or objectives) for the parallelization process.

• The type of tool, commercial or academic.

• Source code. Due to the different license conditions of thetools, the source code

open or close; in some cases source code or executable is not available (n.a.).

• Architecture, this refers if the target platform for a tool is homogeneous or hetero-

geneous, in rare cases supports both.

In some cases, some tool characteristics are unknown and therefore some cells are empty.

As can be noticed from the Tables, most of the tools have been developed considering

HPC as target where the parallelized code will be executed. For this reason, the main

objective enhanced with parallelism extraction, over the time, has been the execution

time. Due PaxES implementation has been developed for multi-core embedded systems,

has consider multiple objectives, as presented before. Even though almost all tools are

academic, in few cases the source code of the tools is available for modifications and

experimentation.

8
4

5.3
T
ax

on
om

y

Table 5.2: Taxonomy of tools for parallelism extraction.

Framework Input Output Parallelism Representation Analysis Target

Parallware C OpenMP DLP,TLP — Static HPC

PaxES C MPA TkLP,DLP,PLP (A)HTG,(A)PDG Dynamic ES

PLUTO C OpenMP,CUDA DLP — Static HPC

Par4All C,FORTRAN OpenMP,CUDA,OpenCL DLP HCFG Static HPC/ES

AESOP C,C++,FORTRAN Pthreads DLP CFG Static HPC

MAPS C CPN DLP,TLP,PLP WSCDFG Hybrid ES

Paralax C C PLP PDG Hybrid HPC

Tournavitis C OpenMP DLP,PLP PDG,CFG Dynamic HPC

Thies C C PLP — Dynamic HPC

5
P
a
rallel

P
ro
gra

m
m
in
g
M
o
d
els

an
d
P
arallelism

E
x
traction

T
o
ols

8
5

Table 5.3: Taxonomy of tools for parallelism extraction.Continuation

Framework Method Automation Objectives Type Code Architecture

Parallware — Automatic Speedup Commercial Close Homogeneous

PaxES ILP, Genetic Semiautomatic Multiple Academic n.a. Homo/Hetero

PLuTo Polyhedral Semiautomatic Speedup Academic Open Homogeneous

Par4All Polyhedral Automatic Speedup Academic Open Homogeneous

AESOP Affine Automatic Speedup Academic Open Homogeneous

MAPS Clustering Semiautomatic Speedup Academic Close Homo/Hetero

Paralax SCC Semiautomatic Speedup Academic n.a. Homogeneous

Tournavitis Machine learning Semiautomatic Speedup Academic n.a. Homogeneous

Thies Manual annotation Semiautomatic Speedup Academic n.a. Homogeneous

86 5.3 Taxonomy

Chapter 6

Conclusions and future work

There is huge amount of legacy code developed in a sequential fashion over the years, par-

ticularly in C language, that have been used by single-core embedded systems. Nowadays,

powerful multi-core embedded systems are available. To harness this new computational

capabilities, it is required not only to write programs in a parallel manner, which are

inherently more difficult to write than sequential ones, but to transform existing code to

take advantage of these systems.

This work has presented a survey through different aspects considered over the time

to detect and extract parallelism form sequential programs, and that could present any

degree of applicability in modern multi-core embedded systems. This work does not

aim to cover everything that has been done in more than three decades of work from

the industry and mainly from the academia, to address the development of parallelizing

compilers to expand the use of sequential code in multi-core platforms. In this chapter,

conclusions and possible futures lines of work are presented.

6.1 Conclusions

From the information presented in this work, it is notable that there is no a definitive

approach for parallelizing compilers, nothing as a holy grail nor a silver bullet that allows

to take any sequential code and produce a parallel version capable to run in a wide

spectrum of multi-core systems. This remains as an open end challenge.

The following list presents important key aspects, derived from the information presented

in this work, that should be considered when designing and developing a parallelizing

compiler, automatic or semiautomatic, for multi-core embedded systems.

• Multi-core era. The multi-core era is here to stay. Multi-core systems have shown

a better compromise between performance and energy consumption than the pre-

vious design trends. Multi-core systems for HPC and embedded systems differ

significantly. For instance, in embedded systems constrained nature, the increase

87

88 6.1 Conclusions

in performance should be done considering energy, thermal, communication, and

time constraints, and how the number of multiple cores, running simultaneously,

may affect these constraints. Multi-core era also present challenges in the way these

systems are programmed, and therefore how sequential code can be parallelized to

run efficiently on them.

• Input information. Many existing tools are target agnostic, i.e., do not consider

information of the target platform where the parallelize code will run, or even in-

formation from the application itself. Usually the only input information available,

besides the sequential input code, is the number of desired threads in the output

code. Input information about target platform capabilities and desired performance

metrics is missing in most frameworks. Distinct programs and platforms have differ-

ent characteristics, that if known in the parallelization process, would provide useful

information for a optimal parallel output. For example, image processing and com-

puter vision applications can be optimally parallelized with a pipeline scheme, but if

this criterion is unknown by the tool, the resulting parallelized code may not be the

optimal. An ideal parallelizing compiler should be a resource-aware tool in order

to obtain high utilization of the chip resources as well as computational and energy

efficiency.

• More than execution time. Most of the tools and approaches developed have focused

in optimizing the execution time, from the original sequential to the parallel ver-

sion, mainly because of its applicability to HPC systems. Due few works, e.g. [24]

and [33], have been developed considering embedded multi-core systems as a target

platform where parallelized code will be executed, other important objectives, such

as energy, communication and time, have not been considered when parallelizing

programs. An ideal parallelizing compiler should consider not only the potential

speedup with the parallelization, but be aware of the energy consumption, commu-

nication overhead, timing and thermal management that this implies. For instance,

exploit all the available parallelism in an application may produce an undesired in-

crease in energy consumption, once the parallel version of the application is executed

in the multi-core platform.

• Coarse-grained parallelism. Coarser parallelism have shown better results for multi-

core mapping, and representation models such as HTG and PDG have been used for

this end. However, when generating parallel code for coarse-grained architectures,

many delicate trade-offs must be managed. One of the most difficult is minimiz-

ing communication and synchronization overhead while balancing the load evenly

across all the PEs. For this, input information, previously mentioned, plays an im-

portant role. Information regarding constraints of the parallel execution is needed

to evaluate of objectives, as presented in [28].

• Static and dynamic information. An ideal parallelizing compiler should consider

both static and dynamic dependencies information to better determine the man-

ner an application can be parallelized. Currently, few approaches incorporate both

6 Conclusions and future work 89

code analysis, while the static has been more used. For instance, runtime informa-

tion from an application can help to detect hot spots, regions of code where the

parallelization would bring a better profit, and avoid the risk of parallelizing code

regions, with low execution rates, that would consume resources, communication

and synchronization, but do not contribute significantly in performance gain.

• Automation. To have a totally automatic tool, without any user intervention, is

a golden dream. Nevertheless, doing so, the expert judgment, which can provide

useful information for the parallelization process, might be despised. Usually, the

user better knows the application and can bring hints to the tool about where to

focus or where not to, in order to enhance the parallelism discovery and extraction.

The parallel code generation from a sequential input is a desired, totally automated

process, this is because manual code adaptation and rewrite is a error-prone process.

• Supported outputs. Existing parallelizing tool are source-to-source compilers, which

transforms sequential C into parallel version on OpenMP and CUDA, for instance.

This is in part motivated by the tools available to program parallel machines. Due

this programming models are reaching the embedded systems world, it is worthy to

include this type of standard outputs in an ideal parallelizing compiler. As presented

in previous chapters, and as an example, modern multi-core embedded systems

support OpenMP, so a parallelizing tool can take advantage of the work done by

chip manufacturers and tools vendors to include the support in their toolchains,

like the OpenMP Accelerator Model of TI to support OpenMP in heterogeneous

MPSoC. On the other hand, this software abstraction layer could result in a benefit

due the parallel outputs might be used for a wider amount of multi-core platforms.

6.2 Future work

There is plenty of work to develop smarter parallelizing frameworks. Nevertheless, develop

an entire tool for discovering and extracting parallelism from sequential programs is not

an easy task. A couple of proposed lines of future work, using existing tools as a starting

point, are:

• Explore existing tools. Due the increased OpenMP-enabled multi-core embedded

systems, several existing tools, whose outputs are OpenMP C code can be tested

on a set of platforms and for a set of typical embedded applications. For instance,

execution time and energy consumption can be measured and evaluated to char-

acterize each tool parallel outputs, and to explore the compromise of speedup vs

energy for each tool. If a parallelizing tool is being designed and developed, this

experimentation can provide useful information about techniques or characteristics

present in other frameworks that can be worthy to replicate and implement in the

own tool.

90 6.2 Future work

• Expand existing tools. If the source is available for an existing tool or approach,

increase its capabilities by adding input information or more objectives, rather

than only execution time, may be valuable to treat. For instance, a speedup fo-

cused framework can be expand by adding support to heterogeneous PEs, like the

ones found in ARM big.LITTLE chips, so a program might be map either to high-

performance or energy-efficient cores depending on time or energy requirements,

information that the tool should receive as input for the parallelization.

Bibliography

[1] Pluto - an automatic parallelizer and locality optimizer for multicores. URL http:

//www.ece.lsu.edu/jxr/pluto/.

[2] T. Creech A. Kotha and R. Barua. Aesop: The autoparallelizing compiler for shared

memory computers. Technical report, Department of Electrical and Computer En-

gineering, University of Maryland, College Park, April 2013.

[3] Jay Abraham. Using formal methods for sophisticated

static code analysis, June 2012. URL http://www.

embedded.com/design/debug-and-optimization/4374801/1/

Using-formal-methods-for-sophisticated-static-code-analysis.

[4] Adapteva. Epiphany-iv 64-core 28nm microprocessor (e64g401), 2014. URL http:

//www.adapteva.com/epiphanyiv/.

[5] Adnan Agbaria, Dong-In Kang, and Karandeep Singh. Lmpi: Mpi for heterogeneous

embedded distributed systems. In ICPADS, pages 79–86. IEEE Computer Society,

2006.

[6] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, July 1970.

[7] Randy Allen and Ken Kennedy. Automatic translation of fortran programs to vector

form. ACM Trans. Program. Lang. Syst., 9(4):491–542, October 1987.

[8] Altera. Altera sdk for opencl. URL http://www.altera.com/products/software/

opencl/opencl-index.html.

[9] Gene M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint

Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA,

1967. ACM.

[10] Mehdi Amini, Batrice Creusillet, Onil Goubier, Serge Guelton, Ronan Keryell, and

Grgoire Pan. Par4all user guide, January 2014. URL http://download.par4all.

org/doc/par4all_user_guide/par4all_user_guide.pdf.

[11] Appentra. Parallware: Source-to-source parallelizing compiler, 2014. URL http:

//www.appentra.com.

91

http://www.ece.lsu.edu/jxr/pluto/
http://www.ece.lsu.edu/jxr/pluto/
http://www.embedded.com/design/debug-and-optimization/4374801/1/Using-formal-methods-for-sophisticated-static-code-analysis
http://www.embedded.com/design/debug-and-optimization/4374801/1/Using-formal-methods-for-sophisticated-static-code-analysis
http://www.embedded.com/design/debug-and-optimization/4374801/1/Using-formal-methods-for-sophisticated-static-code-analysis
http://www.adapteva.com/epiphanyiv/
http://www.adapteva.com/epiphanyiv/
http://www.altera.com/products/software/opencl/opencl-index.html
http://www.altera.com/products/software/opencl/opencl-index.html
http://download.par4all.org/doc/par4all_user_guide/par4all_user_guide.pdf
http://download.par4all.org/doc/par4all_user_guide/par4all_user_guide.pdf
http://www.appentra.com
http://www.appentra.com

92 Bibliography

[12] ARM. big.little technology. URL http://www.arm.com/products/processors/

technologies/biglittleprocessing.php.

[13] Aditi Athavale, Priti Randive, and Abhishek Kambale. Automatic paral-

lelization of sequential codes using s2p tool and benchmarking of the gener-

ated parallel codes. URL http://www.kpit.com/downloads/research-papers/

automatic-parallelization-sequential-codes.pdf.

[14] Blaise Barney. Posix threads programming, 2014. URL https://computing.llnl.

gov/tutorials/pthreads/.

[15] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic

c-to-cuda code generation for affine programs. In Proceedings of the 19th Joint

European Conference on Theory and Practice of Software, International Conference

on Compiler Construction, CC’10/ETAPS’10, pages 244–263, Berlin, Heidelberg,

2010. Springer-Verlag.

[16] Jason Benway. The 3 key differences between static and dynamic

code analysis tools. URL http://www.savagenomads.net/2013/01/02/

the-3-key-differences-between-static-and-dynamic-code-analysis-tools/.

[17] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-

erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime

system. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPOPP ’95, pages 207–216, New York, NY, USA,

1995. ACM.

[18] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanujam,

A. Rountev, and P. Sadayappan. Automatic transformations for communication-

minimized parallelization and locality optimization in the polyhedral model. In

International Conference on Compiler Construction (ETAPS CC), April 2008.

[19] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical

automatic polyhedral program optimization system. In ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), June 2008.

[20] Uday Bondhugula and J. Ramanujam. Pluto: A practical and fully automatic poly-

hedral parallelizer and locality optimizer. Technical report, Ohio State University,

2007.

[21] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algo-

rithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on

Computational Learning Theory, COLT ’92, pages 144–152, New York, NY, USA,

1992. ACM.

[22] Pierre Boulet, Alain Darte, and Georges-André Silber. Loop parallelization al-

gorithms: From parallelism extraction to code generation. Parallel Computing -

http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.kpit.com/downloads/research-papers/automatic-parallelization-sequential-codes.pdf
http://www.kpit.com/downloads/research-papers/automatic-parallelization-sequential-codes.pdf
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
http://www.savagenomads.net/2013/01/02/the-3-key-differences-between-static-and-dynamic-code-analysis-tools/
http://www.savagenomads.net/2013/01/02/the-3-key-differences-between-static-and-dynamic-code-analysis-tools/

Bibliography 93

Special issues on languages and compilers for parallel computers archive, 24:421 –

444, 1997.

[23] Jerónimo Castrillón. Programming Heterogeneous MPSoCs: Tool Flows to Close

the Software Productivity Gap. PhD thesis, RWTH Aachen Univeristy, Chair for

Software for Systems on Silicon, apr 2013.

[24] Jianjiang Ceng, Jeronimo Castrillon, Weihua Sheng, H. Scharwächter, Rainer Le-

upers, Gerd Ascheid, Heinrich Meyr, T. Isshiki, and H. Kunieda. Maps: An inte-

grated framework for mpsoc application parallelization. In 45th Design Automation

Conference (DAC ’08), pages 754–759, Anaheim, CA, USA, jun 2008. ACM.

[25] Dehao Chen, Wenguang Chen, and Weimin Zheng. Cuda-zero: a framework for

porting shared memory gpu applications to multi-gpus. SCIENCE CHINA Infor-

mation Sciences, 55(3):663–676, 2012.

[26] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew. The impact of synchronization

and granularity on parallel systems. In Proceedings of the 17th Annual International

Symposium on Computer Architecture, ISCA ’90, pages 239–248, New York, NY,

USA, 1990. ACM.

[27] CLooG. The cloog code generator in the polyhedral model’s home, 2013. URL

http://www.cloog.org.

[28] Daniel Cordes, Michael Engel, and Peter Marwedel Olaf Neugebauer. Automatic

extraction of multi-objective aware pipeline parallelism using genetic algorithms.

Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/-

software codesign and system synthesis - CODES+ISSS ’12, pages 73–82, 2012.

[29] Daniel Cordes, Andreas Heinig, Peter Marwedel, and Arindam Mallik. Automatic

extraction of pipeline parallelism for embedded software using linear programming.

2011 IEEE 17th International Conference on Parallel and Distributed Systems, 699-

706, 2011.

[30] Daniel Cordes and Peter Marwedel. Multi-objective aware extraction of task-level

parallelism using genetic algorithms. 2012 Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2012.

[31] Daniel Cordes and Peter Marwedel. Paxes arallelism extraction for embedded sys-

tems: Three approaches ne tool, mar 2012. Research Poster at The Designing for

Embedded Parallel Computing Platforms: Architectures, Design Tools, and Appli-

cations (DEPCP’2012) (DATE Workshop).

[32] Daniel Cordes, Peter Marwedel, and Arindam Mallik. Automatic parallelization of

embedded software using hierarchical task graphs and integer linear programming.

Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/-

software codesign and system synthesis - CODES/ISSS ’10, pages 267–276, 2010.

http://www.cloog.org

94 Bibliography

[33] Daniel Alexander Cordes. Automatic Parallelization for Embedded Multi-Core Sys-

tems using High-Level Cost Models. PhD thesis, Fakultät für Informatik, Technis-

chen Universität Dortmund, 2013.

[34] CSAIL. Streamit. URL http://groups.csail.mit.edu/cag/streamit/.

[35] Alain Darte and Frdric Vivien. Optimal fine and medium grain parallelism detection

in polyhedral reduced dependence graphs. In IEEE PACT, pages 281–291. IEEE

Computer Society, 1996.

[36] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nein Yu, V. Leo Rideout, Ernest

Bassous, and Andre R. LeBlanc. Design of ion-implanted mosfet’s with very small

physical dimensions. Solid-State Circuits, IEEE Journal of, 9(5):256–268, October

1974.

[37] Intel Developer Zone. Granularity and parallel performance, Febru-

ary 2012. URL https://software.intel.com/en-us/articles/

granularity-and-parallel-performance.

[38] Peng Di, Ding Ye, Yu Su, Yulei Sui, and Jingling Xue. Automatic parallelization

of tiled loop nests with enhanced fine-grained parallelism on gpus. In ICPP, pages

350–359. IEEE Computer Society, 2012.

[39] Vassilios V. Dimakopoulos. Smart Multicore Embedded Systems, chapter Parallel

Programming Models, pages 3 – 17. Springer, 2014.

[40] Felix Engel, Rainer Leupers, Gerd Ascheid, Max Ferger, and Marcel Beemster. En-

hanced structural analysis for c code reconstruction from ir code. In Proceedings of

the 14th International Workshop on Software and Compilers for Embedded Systems,

SCOPES ’11, pages 21–27, New York, NY, USA, 2011. ACM.

[41] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings

of the 38th Annual International Symposium on Computer Architecture, ISCA ’11,

pages 365–376, New York, NY, USA, 2011. ACM.

[42] ACE Associated Compiler Experts. Cosy compiler development system.

[43] Paul Feautrier. Some efficient solutions to the affine scheduling problem. part ii.

multidimensional time. International Journal of Parallel Programming, 21(6):389–

420, 1992.

[44] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence

graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349,

July 1987.

[45] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE Trans.

Comput., 21(9):948–960, September 1972.

http://groups.csail.mit.edu/cag/streamit/
https://software.intel.com/en-us/articles/granularity-and-parallel-performance
https://software.intel.com/en-us/articles/granularity-and-parallel-performance

Bibliography 95

[46] Jose Fonseca. Gprof2dot, May 2014. URL https://code.google.com/p/

jrfonseca/wiki/Gprof2Dot.

[47] Geoffrey C. Fox, Roy D. Williams, and Giuseppe C. Messina. Parallel Computing

Works! Morgan Kaufmann, 1994.

[48] Vladimir Getov, Adolfy Hoisie, and Harvey J. Wasserman. Codesign for systems and

applications: Charting the path to exascale computing. Computer, 44(11):19–21,

November 2011.

[49] M. Girkar and C. D. Polychronopoulos. Automatic extraction of functional paral-

lelism from ordinary programs. IEEE Trans. Parallel Distrib. Syst., 3(2):166–178,

March 1992.

[50] Milind Girkar and Constantine D. Polychronopoulos. Extracting task-level paral-

lelism. ACM Trans. Program. Lang. Syst., 17(4):600–634, July 1995.

[51] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting coarse-

grained task, data, and pipeline parallelism in stream programs. In Proceedings of

the 12th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XII, pages 151–162, New York, NY, USA,

2006. ACM.

[52] Jurgen Graf. Speeding up context-, object- and field-sensitive sdg generation. In

Proceedings of the 2010 10th IEEE Working Conference on Source Code Analysis

and Manipulation, SCAM ’10, pages 105–114, Washington, DC, USA, 2010. IEEE

Computer Society.

[53] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. Gprof: A call

graph execution profiler. SIGPLAN Not., 39(4):49–57, April 2004.

[54] Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. Portable mapping of

data parallel programs to opencl for heterogeneous systems. In CGO, pages 1–10.

IEEE Computer Society, 2013.

[55] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message-passing Interface. MIT Press, Cambridge, MA,

USA, 1999.

[56] Khronos Group. Opencl - the open standard for parallel programming of heteroge-

neous systems. URL https://www.khronos.org/opencl/.

[57] Sameer Gupta and Dominik Luecke. Comparison of different data flow graph mod-

els, 2006. URL http://www.iti.uni-stuttgart.de/~radetzki/Seminar06/11_

report.pdf.

https://code.google.com/p/jrfonseca/wiki/Gprof2Dot
https://code.google.com/p/jrfonseca/wiki/Gprof2Dot
https://www.khronos.org/opencl/
http://www.iti.uni-stuttgart.de/~radetzki/Seminar06/11_report.pdf
http://www.iti.uni-stuttgart.de/~radetzki/Seminar06/11_report.pdf

96 Bibliography

[58] Zvika Guz, Evgeny Bolotin, Idit Keidar, Avinoam Kolodny, Avi Mendelson, and

Uri C. Weiser. Many-core vs. many-thread machines: Stay away from the valley.

IEEE Comput. Archit. Lett., 8(1):25–28, January 2009.

[59] Mark Harris. Using shared memory in cuda c/c++, January 2013. URL http:

//devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/.

[60] Jiangzhou He, Wenguang Chen, Guangri Chen, Weimin Zheng, Zhizhong Tang,

and Handong Ye. Openmdsp: Extending openmp to program multi-core dsp. In

Lawrence Rauchwerger and Vivek Sarkar, editors, PACT, pages 288–297. IEEE

Computer Society, 2011.

[61] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition,

2012.

[62] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. IEEE

Computer, 41(7):33–38, July 2008.

[63] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using

dependence graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, January 1990.

[64] Jialu Huang, Arun Raman, Thomas B. Jablin, Yun Zhang, Tzu-Han Hung, and

David I. August. Decoupled software pipelining creates parallelization opportuni-

ties. In Proceedings of the 8th Annual IEEE/ACM International Symposium on

Code Generation and Optimization, CGO ’10, pages 121–130, New York, NY, USA,

2010. ACM.

[65] Shih-Hao Hung, Po-Hsun Chiu, and Chi-Sheng Shih. Building a scalable and

portable message-passing library for embedded multicore systems. In Proceedings of

the 2011 ACM Symposium on Research in Applied Computation, RACS ’11, pages

31–37, New York, NY, USA, 2011. ACM.

[66] Texas Instrument. Openmp programming for keystone multicore processors. On-

line, 2012. URL http://www.ti.com/lit/ml/sprt620a/sprt620a.pdf.

[67] Texas Instruments. Openmp accelerator model 0.3.3 - user’s guide, April

2014. URL http://processors.wiki.ti.com/index.php/OpenMP_Accelerator_

Model_0.3.3.

[68] Intel. Intel Hyper-Threading Technology. 2003. URL http://cache-www.intel.

com/cd/00/00/01/77/17705_htt_user_guide.pdf.

[69] Intel. Intel xeon phi coprocessor 7120a, 2014. URL http://ark.intel.

com/de/products/80555/Intel-Xeon-Phi-Coprocessor-7120A-16GB-1_

238-GHz-61-core.

http://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/
http://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/
http://www.ti.com/lit/ml/sprt620a/sprt620a.pdf
http://processors.wiki.ti.com/index.php/OpenMP_Accelerator_Model_0.3.3
http://processors.wiki.ti.com/index.php/OpenMP_Accelerator_Model_0.3.3
http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf
http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf
http://ark.intel.com/de/products/80555/Intel-Xeon-Phi-Coprocessor-7120A-16GB-1_238-GHz-61-core
http://ark.intel.com/de/products/80555/Intel-Xeon-Phi-Coprocessor-7120A-16GB-1_238-GHz-61-core
http://ark.intel.com/de/products/80555/Intel-Xeon-Phi-Coprocessor-7120A-16GB-1_238-GHz-61-core

Bibliography 97

[70] Ahmed Amine Jerraya and Wayne Wolf. Multiprocessor Systems-on-Chips, chapter

The What, Why, and How of MPSoCs, pages 1–18. Systems on Silicon. Morgan

Kaufman, 2004.

[71] YoungHoon Jung, Jinhyung Park, Michele Petracca, and Luca P. Carloni. netship:

A networked virtual platform for large-scale heterogeneous distributed embedded

systems. In Proceedings of the 50th Annual Design Automation Conference, DAC

’13, pages 169:1–169:10, New York, NY, USA, 2013. ACM.

[72] David Kaeli and David Akodes. The convergence of hpc and embedded systems

in our heterogeneous computing future. In Proceedings of the 2011 IEEE 29th

International Conference on Computer Design, ICCD ’11, pages 9–11, Washington,

DC, USA, 2011. IEEE Computer Society.

[73] Lina J. Karam, Ismail AlKamal, Gene A. Frantz, David V. Anderson, and Brian L.

Evans. Trends in multicore dsp platforms. IEEE Signal Processing Magazine, 26:38–

49, November 2009.

[74] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Architectures:

A Dependence-based Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2002.

[75] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: The-

ory and Practice. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2009.

[76] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors:

A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1st edition, 2010.

[77] David Kleidermacher and Mike Kleidermacher. Embedded Systems Security: Prac-

tical Methods for Safe and Secure Software and Systems Development. Newnes -

Elsevier, 2012.

[78] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence

graphs and compiler optimizations. In Proceedings of the 8th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’81, pages

207–218, New York, NY, USA, 1981. ACM.

[79] David L. Kuck. Structure of Computers and Computations. John Wiley & Sons,

Inc., New York, NY, USA, 1978.

[80] Leslie Lamport. The parallel execution of do loops. Commun. ACM, 17(2), February

1974.

[81] Corinna G. Lee. Utdsp benchmark suite, 1997. URL http://www.eecg.toronto.

edu/~corinna/DSP/infrastructure/UTDSP.html.

http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html

98 Bibliography

[82] Rainer Leupers and Jeronimo Castrillon. Mpsoc programming using the maps com-

piler. In Proceedings of the 2010 Asia and South Pacific Design Automation Con-

ference, ASPDAC ’10, pages 897–902, Piscataway, NJ, USA, 2010. IEEE Press.

[83] Donglin Liang and Mary Jean Harrold. Slicing objects using system dependence

graphs. In ICSM, pages 358–367, 1998.

[84] Jinfeng Liu. Mpi for embedded systems: A case study. Technical report, Department

of Electrical & Computer Engineering, University of California, Irvine.

[85] Vincent Loechner. Polylib - a library of polyhedral functions, 2010. URL http:

//icps.u-strasbg.fr/polylib/.

[86] Silvia Lovergine. Harnessing Adaptivity Analysis for the Automatic Design of Effi-

cient Embedded and HPC Systems. PhD thesis, Dipartimento di Elettronica, Infor-

mazione e Bioingegneria. Politecnico di Milano, 2013.

[87] Silvia Lovergine and Fabrizio Ferrandi. Harnessing adaptivity analysis for the au-

tomatic design of efficient embedded and hpc systems. In Proceedings of the 2013

IEEE 27th International Symposium on Parallel and Distributed Processing Work-

shops and PhD Forum, IPDPSW ’13, pages 2298–2301, Washington, DC, USA,

2013. IEEE Computer Society.

[88] Samuel P. Midkiff. Automatic Parallelization: An Overview of Fundamental Com-

piler Techniques. Synthesis Lectures on Computer Architecture. Morgan & Claypool

Publishers, 2012.

[89] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,

38(8):114–117, 1965.

[90] Lúıs Moura and Rajkumar Buyya. High Performance Cluster Computing: Pro-

gramming and Applications, volume 2, chapter Parallel Programming Models and

Paradigms, pages 4–27. Prentice Hall, 1999.

[91] Nvidia. Cuda. URL http://www.nvidia.com/object/cuda_home_new.html.

[92] Nvidia. Nvidia jetson tk1. URL http://www.nvidia.de/object/

jetson-tk1-embedded-dev-kit-de.html.

[93] OpenMP. The openmp api specification for parallel programming. URL http:

//openmp.org/wp/.

[94] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Automatic

thread extraction with decoupled software pipelining. In Proceedings of the 38th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 38,

pages 105–118, Washington, DC, USA, 2005. IEEE Computer Society.

http://icps.u-strasbg.fr/polylib/
http://icps.u-strasbg.fr/polylib/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.de/object/jetson-tk1-embedded-dev-kit-de.html
http://www.nvidia.de/object/jetson-tk1-embedded-dev-kit-de.html
http://openmp.org/wp/
http://openmp.org/wp/

Bibliography 99

[95] Hans Pabst. Intel system studio - multicore programming with intel cilk

plus, October 2014. URL https://software.intel.com/en-us/articles/

signal-processing-with-intel-cilk-plus.

[96] David A. Padua and Michael J. Wolfe. Advanced compiler optimizations for super-

computers. Commun. ACM, 29(12):1184–1201, December 1986.

[97] Santiago Pagani, Heba Khdr, Waqaas Munawar, Jian-Jia Chen, Muhammad

Shafique, Minming Li, and Jörg Henkel. Tsp: Thermal safe power: Efficient power

budgeting for many-core systems in dark silicon. In Proceedings of the 2014 Interna-

tional Conference on Hardware/Software Codesign and System Synthesis, CODES

’14, pages 10:1–10:10, New York, NY, USA, 2014. ACM.

[98] Keshav Pingali, Micah Beck, Richard Johnson, Mayan Moudgill, and Paul Stodghill.

Dependence flow graphs: An algebraic approach to program dependencies. In Pro-

ceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’91, pages 67–78, New York, NY, USA, 1991. ACM.

[99] PipLib. The parametric integer programming’s home. URL http://www.piplib.

org.

[100] Clik Plus. Intel clik plus. URL http://www.cilkplus.org.

[101] Constantine D. Polychronopoulos. The hierarchical task graph and its use in auto-

scheduling. In Proceedings of the 5th International Conference on Supercomputing,

ICS ’91, pages 252–263, New York, NY, USA, 1991. ACM.

[102] GPSME Project. A general toolkit for putilisationn sme applications (gpsme). URL

http://www.gp-sme.eu.

[103] Arun Raghavan, Laurel Emurian, Lei Shao, Marios Papaefthymiou, Kevin P. Pipe,

Thomas F. Wenisch, and Milo M.K. Martin. Computational sprinting on a hard-

ware/software testbed. In Proceedings of the Eighteenth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS

’13, pages 155–166, New York, NY, USA, 2013. ACM.

[104] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou, Kevin P.

Pipe, Thomas F. Wenisch, and Milo M. K. Martin. Computational sprinting. In

Proceedings of the 2012 IEEE 18th International Symposium on High-Performance

Computer Architecture, HPCA ’12, pages 1–12, Washington, DC, USA, 2012. IEEE

Computer Society.

[105] Priti Ranadive and Vinay G. Vaidya. Parallelization tool. URL http://www.kpit.

com/downloads/research-papers/parallelization-tools.pdf.

[106] Margaret Rouse. Multi-core processor, March 2007. URL http://

searchdatacenter.techtarget.com/definition/multi-core-processor.

https://software.intel.com/en-us/articles/signal-processing-with-intel-cilk-plus
https://software.intel.com/en-us/articles/signal-processing-with-intel-cilk-plus
http://www.piplib.org
http://www.piplib.org
http://www.cilkplus.org
http://www.gp-sme.eu
http://www.kpit.com/downloads/research-papers/parallelization-tools.pdf
http://www.kpit.com/downloads/research-papers/parallelization-tools.pdf
http://searchdatacenter.techtarget.com/definition/multi-core-processor
http://searchdatacenter.techtarget.com/definition/multi-core-processor

100 Bibliography

[107] Sean Rul, Hans Vandierendonck, and Koen De Bosschere. Function level parallelism

driven by data dependencies. SIGARCH Comput. Archit. News, 35(1):55–62, March

2007.

[108] Silvius Rus and Lawrence Rauchwerger. Hybrid dependence analysis for automatic

parallelization. Technical report, 2005.

[109] S. Saha, S. S. Bhattacharyya, and W. Wolf. A communication interface for multi-

processor signal processing systems. In Proceedings of the 2006 IEEE/ACM/IFIP

Workshop on Embedded Systems for Real Time Multimedia, ESTMED ’06, pages

127–132, Washington, DC, USA, 2006. IEEE Computer Society.

[110] Sankalita Saha, Jason Schlessman, Sebastian Puthenpurayil, Shuvra S. Bhat-

tacharyya, and Wayne Wolf. An optimized message passing framework for parallel

implementation of signal processing applications. In Proceedings of the Conference

on Design, Automation and Test in Europe, DATE ’08, pages 1220–1225, New York,

NY, USA, 2008. ACM.

[111] Manuel Saldaa and Paul Chow. Tmd-mpi: An mpi implementation for multiple

processors across multiple fpgas. pages 1–6. IEEE, 2006.

[112] Manuel Saldaa, Arun Patel, Christopher Madill, Daniel Nunes, Danyao Wang, Paul

Chow, Ralph Wittig, Henry Styles, and Andrew Putnam. Mpi as a programming

model for high-performance reconfigurable computers. ACM Trans. Reconfigurable

Technol. Syst., 3(4):22:1–22:29, November 2010.

[113] Vivek Sarkar. Languages and Compilers for Parallel Computing, chapter A Concur-

rent Execution Semantics for Parallel Program Graphs and Program Dependence

Graphs, pages 16 –30. Springer-Verlag, 5th edition, 1992.

[114] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep

Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Es-

pasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. Larrabee: A many-core x86

architecture for visual computing. ACM Trans. Graph., 27(3):18:1–18:15, August

2008.

[115] Kiruthika Selvamani and Tarek M. Taha. Estimating critical region parallelism to

guide platform retargeting. In Proceedings of the 43rd Annual Southeast Regional

Conference - Volume 1, ACM-SE 43, pages 168–173, New York, NY, USA, 2005.

ACM.

[116] Muhammad Shafique, Siddharth Garg, Tulika Mitra, Sri Parameswaran, and Jörg

Henkel. Dark silicon as a challenge for hardware/software co-design: Invited special

session paper. In Proceedings of the 2014 International Conference on Hardware/-

Software Codesign and System Synthesis, CODES ’14, pages 13:1–13:10, New York,

NY, USA, 2014. ACM.

Bibliography 101

[117] SILKAN. Par4all, 2011. URL http://www.par4all.org.

[118] Pushpendra Singh, Devesh Chaurasiya, Ankita Joshi, and Kumar Sambhav Pandey.

A study of data flow graph representation analysis with syntax and semantics.

In International Journal of Advanced Research in Computer Science and Software

Engineering, volume 2, February 2012.

[119] Matthew Sottile, Timothy G. Mattson, and Craig E. Rasmussen. Introduction to

Concurrency in Programming Languages. Chapman & Hall/CRC, 1st edition, 2009.

[120] Eric Stotzer, Ajay Jayaraj, Murtaza Ali, Arnon Friedmann, Gaurav Mitra, Al-

istair P. Rendell, and Ian Lintault. OpenMP in the Era of Low Power Devices

and Accelerators, chapter OpenMP on the Low-Power TI Keystone II ARM/DSP

System-on-Chip, pages 114 – 127. Springer, 2013.

[121] Michael Suess. An interview with dr. jay hoeflinger about automatic paral-

lelization, August 2007. URL http://www.thinkingparallel.com/2007/08/14/

an-interview-with-dr-jay-hoeflinger-about-automatic-parallelization/.

[122] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A practical ap-

proach to exploiting coarse-grained pipeline parallelism in c programs. In Proceed-

ings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 40, pages 356–369, Washington, DC, USA, 2007. IEEE Computer Society.

[123] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A lan-

guage for streaming applications. In Proceedings of the 11th International Confer-

ence on Compiler Construction, CC ’02, pages 179–196, London, UK, UK, 2002.

Springer-Verlag.

[124] Krishnahari Thouti and S. R. Sathe. Article: A methodology for translating c-

programs to opencl. International Journal of Computer Applications, 82(3):11–15,

November 2013. Full text available.

[125] Georgios Tournavitis. Profile-driven Parallelisation of Sequential Programs. PhD

thesis, Institute of Computing Systems Architecture, School of Informatics, Univer-

sity of Edinburgh, 2011.

[126] Georgios Tournavitis and Björn Franke. Towards automatic profile-driven paral-

lelization of embedded multimedia applications. MULTIPROG-2009: Proceedings

of the Second Workshop on Programmability Issues for Multi-Core Computers, pages

53–64, 2009.

[127] Georgios Tournavitis and Björn Franke. Semi-automatic extraction and exploita-

tion of hierarchical pipeline parallelism using profiling information. In Proceedings of

the 19th International Conference on Parallel Architectures and Compilation Tech-

niques, PACT ’10, pages 377–388, New York, NY, USA, 2010. ACM.

http://www.par4all.org
http://www.thinkingparallel.com/2007/08/14/an-interview-with-dr-jay-hoeflinger-about-automatic-parallelization/
http://www.thinkingparallel.com/2007/08/14/an-interview-with-dr-jay-hoeflinger-about-automatic-parallelization/

102 Bibliography

[128] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P. O’Boyle. To-

wards a holistic approach to auto-parallelization: Integrating profile-driven paral-

lelism detection and machine-learning based mapping. In Proceedings of the 2009

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’09, pages 177–187, New York, NY, USA, 2009. ACM.

[129] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guilherme

Ottoni, and David I. August. Speculative decoupled software pipelining. In Proceed-

ings of the 16th International Conference on Parallel Architecture and Compilation

Techniques, PACT ’07, pages 49–59, Washington, DC, USA, 2007. IEEE Computer

Society.

[130] András Vajda. Programming Many-Core Chips, chapter Multi-core and Many-core

Processor Architectures, pages 9–43. Springer Publishing Company, Incorporated,

1st edition, 2011.

[131] Hans Vandierendonck and Koen De Bosschere. Automatic parallelization in the

paralax compiler. In SCOPES, 2011.

[132] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. The paralax infrastruc-

ture: Automatic parallelization with a helping hand. In PACT, 2010.

[133] Arthur H. Veen. Dataflow machine architecture. ACM Comput. Surv., 18(4):365–

396, December 1986.

[134] Cheng Wang, Sunita Chandrasekaran, Peng Sun, Barbara Chapman, and Jim Holt.

Portable mapping of openmp to multicore embedded systems using mca apis. SIG-

PLAN Not., 48(5):153–162, June 2013.

[135] Martin Wei and Howard Sholl. An expression model for extraction and evaluation

of parallelism in control structures. IEEE Transactions on Computers, c-31(9):851

– 863, September 1982.

[136] Maximilian Odendahl Rainer Leupers Weihua Sheng, Stefan Schrmans and Gerd

Ascheid. Automatic calibration of streaming applications for software mapping

exploration. In Proceedings of the International Symposium on System-on-Chip

(SoC), pages 136 –142, nov 2011.

[137] Wikipedia. Automatic parallelization tool, 2014. URL http://en.wikipedia.org/

wiki/Automatic_parallelization_tool.

[138] David Williams, Valeriu Codreanu, Po Yang, Baoquan Liu, Feng Dong, Burhan

Yasar, Babak Mahdian, Alessandro Chiarini, Xia Zhao, and Jos BTM Roerdink.

Evaluation of autoparallelization toolkits for commodity graphics hardware. 10th

International Conference on Parallel Processing and Applied Mathematics, 2013,

2013.

http://en.wikipedia.org/wiki/Automatic_parallelization_tool
http://en.wikipedia.org/wiki/Automatic_parallelization_tool

Bibliography 103

[139] Linda Wills, Tarek Taha, Lewis Baumstark Jr, and Scott Wills. Estimating potential

parallelism for platform retargeting. In Proceedings of the Ninth Working Conference

on Reverse Engineering (WCRE’02), WCRE ’02, pages 55–, Washington, DC, USA,

2002. IEEE Computer Society.

[140] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to

maximize parallelism. IEEE Trans. Parallel Distrib. Syst., 2(4):452–471, October

1991.

[141] Wayne Wolf. High-Performance Embedded Computing: Architectures, Applications,

and Methodologies. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2007.

[142] Wayne Wolf, Ahmed Jerraya, and Grant Martin. Multiprocessor system-on-chip

(mpsoc) technology. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 27(10):1701–1713, October 2008.

[143] David C. Zaretsky, Gaurav Mittal, Robert Dick, and Prith Banerjee. Languages

and Compilers for Parallel Computing, 18th International Workshop, chapter Gen-

eration of Control and Data Flow Graphs from Scheduled and Pipelined Assembly

Code, pages 76 –90. Springer-Verlag, 2007.

[144] Christian Zebelein, Tobias Schwarzer Christian Haubelt, Joachim Falk, and Jürgen

Teich. Representing mapping and scheduling decisions within dataflow graphs. In

ECSI European Electronic Chips and Systems design Initiative, editors, 2013 Forum

on specification and Design Languages (FDL), Paris, France, September 24 - 26,

2013, volume FDL, pages 184–191. ECSI - European Electronic Chips and Systems

design Initiative, 2013.

[145] Jianjun Zhao and Martin Rinard. System dependence graph construction for aspect-

oriented programs, 2003.

[146] Martin Zlomek. Video watermarking. Master’s thesis, Faculty of Mathematics and

Physics, Charles University of Prague, 2007.

104 Bibliography

Appendix A

Pi parallel codes

The code produce by the Parallware tool is presented in Listing A.1, while the one generate

by Par4All is in Listing A.2.

1 i n t p i p a r a l l e l (i n t num steps , doub l e ∗ p i)
2 {
3 // De c l a r a t i o n s

4 doub l e s t ep ;

5 doub l e sum ;

6 doub l e x ;

7 i n t i ;

8

9 sum=0. ;

10 s t e p =(1 .)/(num steps) ;

11 i =0;

12#pragma omp p a r a l l e l p r i v a t e (i , x)

13 {
14#pragma omp f o r r e d u c t i o n (+:sum) s ch edu l e (s t a t i c)

15 f o r (i =0; i<num steps ; i=i +1){
16 x=((i)+(0 . 5))∗ (s t e p) ;

17 sum=(sum)+((4 .) / ((1 .)+ ((x)∗ (x)))) ;
18 }
19 }
20 p i [0]=(s t ep)∗ (sum) ;

21 r e t u r n 0 ;

22 }

Listing A.1: Parallel version of pi calculation produced by Parallware.

105

106

1 i n t p i c o d e (i n t num steps , doub l e ∗ p i)
2 {
3

4 doub l e x ;

5 doub l e sum = 0 . 0 ;

6 doub l e s t ep = 1 . 0 / ((doub l e) num steps) ;

7

8 i n t i ;

9#pragma omp p a r a l l e l f o r p r i v a t e (x) r e d u c t i o n (+:sum)

10 f o r (i = 0 ; i <= num steps −1; i += 1) {
11 x = (i +0.5)∗ s t e p ;

12 sum = sum+4.0/(1.0+x∗x) ;
13 }
14 ∗ p i = s t ep ∗sum ;

15

16 r e t u r n 0 ;

17 }

Listing A.2: Parallel version of pi calculation produced by Par4All.

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 The sequential code problem
	1.2 Parallelism extraction
	1.3 Scope of this work
	1.4 Outline

	2 Background
	2.1 Amdahl's law
	2.2 Dependencies in code
	2.2.1 Data dependencies
	2.2.2 Control dependencies

	2.3 Parallelism: types and relationships
	2.3.1 Granularity and parallel performance
	2.3.2 Data Level Parallelism
	2.3.3 Instruction Level Parallelism
	2.3.4 Thread Level Parallelism
	2.3.4.1 Task Level Parallelism
	2.3.4.2 Pipeline Level Parallelism

	2.4 Parallelizing compilers
	2.5 Embedded Systems and High-Performance Computing
	2.5.1 Parallelizing for ES and HPC

	3 Representation Models
	3.1 Data Flow Graph
	3.2 Data Dependence Graph
	3.3 Control Flow Graph
	3.4 Dependence Flow Graph
	3.5 Control Data Flow Graph
	3.6 Program Dependence Graph
	3.6.1 Augmented Program Dependence Graph
	3.6.2 Parallel Program Graph

	3.7 Hierarchical Task Graph
	3.7.1 Augmented Hierarchical Task Graph

	3.8 System Dependence Graph

	4 Code Analysis and Parallelizing Algorithms
	4.1 Code analysis
	4.1.1 Static
	4.1.2 Dynamic
	4.1.3 Hybrid

	4.2 Algorithms
	4.2.1 Machine learning
	4.2.2 Integer Linear Programming
	4.2.3 Thread extraction algorithm
	4.2.4 Genetic Algorithms

	5 Parallel Programming Models and Parallelism Extraction Tools
	5.1 Parallel programming models
	5.1.1 OpenMP
	5.1.2 POSIX Threads
	5.1.3 MPI
	5.1.4 CUDA
	5.1.5 OpenCL
	5.1.6 Cilk
	5.1.7 Taxonomy

	5.2 Tools
	5.2.1 ParallWare
	5.2.2 PaxES
	5.2.3 PLuTo
	5.2.4 Par4All
	5.2.5 AESOP
	5.2.6 MAPS
	5.2.7 Paralax
	5.2.8 Tournavitis
	5.2.9 Thies

	5.3 Taxonomy

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work

	Bibliography
	A Pi parallel codes

