
Digital integrated circuit implementation of an
identification stage for the detection of illegal

hunting and logging

Carlos Salazar-Garcı́a∗, Luis Alfaro-Hidalgo∗, Mauricio Carvajal-Delgado∗, Jordan Montero-Aragón∗,
Reinaldo Castro-Gonzalez∗, Juan Agustı́n Rodrı́guez†, Alfonso Chacon-Rodrı́guez∗, and Pablo Alvarado-Moya∗

∗Escuela de Ingenierı́a Electrónica, Tecnológico de Costa Rica

URL: http://www.ie.itcr.ac.cr, Email: {csalazar, palvarado, alchacon}@itcr.ac.cr
†Instituto de Investigaciones en Ingenierı́a Eléctrica, IIIE (UNS-CONICET)

Departamento de Ingenierı́a Eléctrica y de Computadoras

Universidad Nacional del Sur, Bahı́a Blanca, Argentina

Email: rodrijuana@gmail.com

Abstract—Results of the VLSI implementation of an acoustic
classification system’s identification stage, intended for the de-
tection of gunshots and chainsaws in a protected tropical area,
are shown, with the idea of later building a surveillance wireless
sensor network with similar nodes. The system performs from
signal preprocessing to feature extraction, with results of the
HDL description of the system tested on a FPGA against a golden
reference, using real data taken from a protected rain forest area.
Final classification of signals, using HMM, is in the final stages
of testing. Some post-place-and-route results of the code ported
to a commercial 130nm CMOS technology are also given.

Index Terms—Acoustic signals recognition, embedded systems,
dimensionality reduction, kd-tree, HMM, environmental protec-
tion, FPGA, ASIC, low-power CMOS.

I. INTRODUCTION

Theoretical results of a system for the detection of illegal

activities in environmentally protected areas such as logging

and hunting have been shown in [1]–[4]. The system, named

SiRPA (Spanish acronym of “Acoustic Pattern Recognition

System”) is a hardware oriented pattern recognition pipeline

designed to reduce the global false-positive detection rates of

an acoustic sensor, while keeping the flexibility of its configu-

ration for varying environments, and adjusting its architecture

for the lowest energy consumption possible.

Partial results of SiRPA’s implementation on a BeagleBoard-

xM embedded platform have been shown in [2].These results

demonstrate the feasibility of SiRPA’s hardware structure. But

the power requirements of this solution make it unsuitable

to be integrated on a low power Wireless Sensor Network

supposed to operate on battery power for long periods of

time, in places where battery replacement may be next to

impossible. The integration of SiRPA on a low power ASIC

may circumvent such power limitations. A first step is then

to translate the system’s architecture to a HDL description

and thoroughly validate its results, against the already tested

sections of the architecture. The advantage of testing on a

FPGA is that it allows for more exhaustive testing using

vectors of data already tested on the embedded implemen-

tation of SiRPA, without the unavoidable long delays of post-

place-and-route simulations. As the different sections of the

architecture are ported to the intended CMOS technology, just

a few validation simulations should be necessary to verify the

correct translation of the code to silicon.

This paper is structured as follows: Section II exposes the

steps taken to translate the C code description of SiRPA to

Verilog, considering issues such as word format and par-

allelization of the sequential algorithms for their hardware

implementation. Results from each sub-stage compared to out-

put results from embedded system implementation – using a

BeagleBoard-xM – are also given in this Section II. Hardware

resources and power needs for the identification stage – both

on a commercial FPGA and from place and route results on a

standard cells library for a commercial CMOS 130nm process

are given in Section III. Conclusions are offered in Section IV.

II. PORTING OF SIRPA TO HDL

The first step was to translate SiRPA’s code to an HDL

description, using Verilog with some open-source VHDL

libraries (the architecture of SiRPA is given in Fig. 1). But

testing the ported code using regular simulations resulted too

time intensive, considering the complexities of the arithmetic

operations involved, and the need to verify results against

those of the prior software implementations. Therefore, it was

decided to test each section of SiRPA on a FPGA, loading

input vector data either from prior testings on the embedded

implementation of the system, or from real gunshot and

chainsaw audio signals taken from measurements on a tropical

rain forest (see [5] for more details on the sound data base),

and then verifying results of the output vectors on Matlab. A

Digilent Inc.’s Nexys 4, with an ArtixTM XC7A100T-CSG324

FPGA from Xilinx, was used as the testing platform. Serial and

SPI interfaces were implemented on the board to connect with

Matlab and the needed ADC. Input data was then fed either

through the ADC (using the AGC and antialias conditioning978-1-4799-8332-2/15/$31.00 ©2015 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional del Instituto Tecnologico de Costa Rica

https://core.ac.uk/display/83115921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

depicted on the first block of Fig. 1), or as blocks of data

coming from the serial interface. Results were stored on the

board’s RAM, and transmitted back to the PC for evaluation.

Regarding the Verilog implementation, several issues were

taken into consideration, especially regarding data resolution

(as floating point resolution would be extremely expensive if

used in all SiRPA’s sections), programmability (the ability

to change parameters on the system after its fabrication),

and the modification of the essentially sequential or recursive

algorithms of each section, into their concurrent hardware

versions.

A. Word format

SiRPA was originally implemented on a BeagleBoard-xM,

using C, where standard floating point data representation

was used. Translating the system to a parallel implementation

required readjusting numeric precision in order to used fixed

point representation, but trying to keep resolution error low.

After several tests on the bank filter, and checking for overflow

and underflow conditions using either typical input signals

from the sound database or a impulsive function, a signed

fixed point representation in two’s complement was decided,

using 5 bits for the integer part and 19 bits for the fractional

part. The fractional 19-bit precision gives a 1.9073466x10−6

LSB precision, which meant an error under 4% at SiRPA’s

filter bank output when contrasting results against its floating

point implementation in C (see next subsection).

B. Identification stage implementation

The identification (ID) stage comprises an 8 band dyadic

filter, a dimensional reduction stage and a symbol generator

(more details of each in [1]–[4].

1) Filter bank: The identification stage generates the ob-

servation chain by first passing the conditioned signal through

an 8 band filter bank, using Quadrature Mirror Third Order

IIR Cauer Filters on a typical cascaded dyadic structure

[1]. Multirate sampling reduces computational demands. The

bank’s output is updated at the same frequency as the last

filter pair: 344.53125 Hz, reducing the workload on the system

and its dynamic energy requirements. The energy per band is

estimated at each output of the filter bank, using an averaging

rule (see [1]). Since in cascaded dyadic structures, the QMFs

(acronym of Quadrature Mirror Filter) are the same for each

dyad, being that, is the sampling that determines the particular

band, the low pass and high pass sections of the filter are

implemented using the same recursive structure (see Fig. 2),

with a transfer function given by

H = G

(

b01 + b11z
−1

a01 + a11z−1

)(

b02 + b12z
−1 + b22z

−1

a02 + a12z−1 + a22z−1

)

(1)

where coefficients (as given in [1]) determine the filter’s

passband (coefficients are programmable, via the SPI inter-

face).

This recursive structure, though ideal for software, becomes

too expensive if directly translated to hardware (each stage of

Z -1

Z -1
a22

a
a12

--

++ +
+

b12L

b12H

Z -1

11L

+++++

++

a

Z -1

11H

-++

GL

GH

Input

Low pass

filter outputSOS FOS L

FOS H

+

+

+

+ +

+ + +

+

Register

1

2

Register

bank

High pass

filter output

Band 1

Band 2
Band 3

Band 4

Band 5

Band 6

Band 7
Band 8

Figure 2. QMF Cauer IIR Filter used for each dyad. Taken from [1]

the filter uses 9 adders and 8 multipliers, each with 24-bit

resolution). Thus, only one instance of the IIR filter (being its

coefficients equal for each band), is used sequentially for each

band after the appropriate sub-sampling. A finite state machine

was added in order to control which band is being executed.

A 24 register bank is added to provide the previous outputs

of each band, to account for the IIR operation. Regarding the

operating frequency of the filter bank, every 44.1 kHz a sample

must reach the filter’s input, and every 128 samples there will

be a value at the output.Given its recursive implementation,

the filter must operate then at a minimal frequency of 705.6

kHz. Figure 3 shows the results of the Verilog implementation

of the filter bank, tested on the FPGA board and compared to

data from the BeagleBoard’s filter version. Table I shows the

filter bank’s output’s STD error per band for an impulsive input

signal, tested against BeagleBoard’s implementation output for

the same input signal. Worst case is band 5, close to a 4% STD

error, acceptable considering the translation from floating to

fixed point representation.

0 100 200 300 400 500 600 700 800
0

0.02

0.04

0.06

0.08

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

Band 1

Band 8

FPGA data

FPGA data

BeagleBoard

BeagleBoard

Figure 3. Sample of results from bands 1 and 8 from the Verilog version of
the filter bank, compared against data from the BeagleBoard’s filter version.

2) Dimensional reduction: The dimensional reduction pro-

cess projects the 8D space out of the filter bank into a 3D

space, by means of a linear transformation. This takes care

of the curse of dimensionality [6] that predicts problems for

a classification task using descriptors in a high-dimensional

Hidden Markov

Models

Audio input

Identification stage

Max P(O|λ)x(t) AGC

Classification

Filter bank
8D to 3D
reduction

Symbol generator

(Binary tree)

Current state

Signal Conditioning

8D 3D

Figure 1. Block diagram for SiRPA. The modularity of the architecture allows for its total or partial accommodation into an ASIC. A complete mathematical
description of each processing stage is given in [1]–[4].

Table I
FILTER BANK’S OUTPUT’S STD ERROR PER BAND FOR AN IMPULSIVE

INPUT SIGNAL, TESTED AGAINST BEAGLEBOARD’S OUTPUT FOR THE

SAME INPUT SIGNAL. WORST CASE IS BAND 5, CLOSE TO A 4% STD
ERROR.

Band 1 2 3 4 5 6 7 8

STD 0.0090 0.0097 0.0166 0.0291 0.0389 0.0116 0.0039 0.0082

space. Though this reduction impacts with the extra area and

energy consumption needed for the 8D→3D linear projection,

this extra energy that should be compensated with the lesser

energy needs of the following stages, proportional to their

reduced processing (see [1]–[4]). Figure 4 shows the block

diagram of this transformation, basically a mean centered

matrix-vector product y = Wx.

w
11

w
12w

13

w
83

w
82

w
81

1
x [n]

2
y [n]

1

y [n]
2

3
y [n]

x [n]

x [n]

4

3

5

6

x [n]

x [n]

x [n]
7

8

x [n]

x [n]

Mean Subtractor 1

Mean Subtractor 2

Mean Subtractor 3

Mean Subtractor 4

Mean Subtractor 5

Mean Subtractor 6

Mean Subtractor 7

Mean Subtractor 8

Figure 4. Block diagram for the dimensional reduction stage.

Direct implementation of this stage requires at least 32

adders and 24 multipliers if realized in combinational form. A

sequential implementation was thus used in our design, with

only a subtracter, an adder and a multiplier, that performed

the operation recursively, with a FSM providing recursion

control and the appropriate coefficients for each projection

(coefficients are again programmable, via an SPI interface).

This way, a new value is available every 34 clock cycles, the

time required by system to map the 8D input vector to an

3D output. Since the filter has a value every 2.9ms, and the

reduction stage takes only 45µs to have a value ready at a

clock frequency of 749 kHz, there is not a significant impact

in latency using the aforementioned sequential approach. On

the other side, the use of just two adders instead of 32

adders, and two multipliers instead of 24 multipliers, entail

a significant reduction in area and power. Figure 5 compares

results between the Verilog described 8D to 3D reduction stage

against the BeagleBoard’s results. STD error is 0.0344, 0.0084

and 0.0113 for each dimension, almost negligible, considering

the use of fixed point resolution.

0 100 200 300 400 500 600 700 800
−0.5

0

0.5

0 100 200 300 400 500 600 700 800
−0.4

−0.3

−0.2

0 100 200 300 400 500 600 700 800
0.2

0.3

0.4

First Dimension

Second Dimension

Third Dimension

FPGA data

FPGA data

FPGA data

BeagleBoard

BeagleBoard

BeagleBoard

Figure 5. Output results of the HDL described 8D to 3D reduction stage com-
pared with data from the BeagleBoard’s implementation. Error is negligible,
considering that fixed point resolution is used.

3) Symbol generator or tree classifier stage: The tree

classifier is a combinational binary tree, also called symbol

generator, used to find the closest centroid to a 3D input pattern

(see [1]–[4]); L1 or Manhattan distance is used. This way,

discrete symbols are generated, associated with the continuous

paths in the input vector 3D space that describe the acoustic

signal. This structure replaces the original kd-tree search

algorithm described in [1], [2] and used in the BeagleBoard,

unpractical in hardware due to its strongly recursive nature.

Centroids are also programmable via an SPI interface.

C. Classification stage

The final classification module of SiRPA (see Fig. 6 for

a block diagram) is based on three HMM machines. A

Hidden Markov Model λ = 〈A,B,π〉 is characterized by the

transition matrix A, the symbol emission matrix B, and the

start probability vector π [7].

A model is used for each of the classes to be recognized.

Details on the training and implementation of the HMM

algorithms used are given in [1]–[3]. The forward algorithm is

used to compute the logarithm of the probability P (O|λ) of the

Simbol

ctrlSimb

clk_x1

clk_x2

rst

start

load

HMMU

load_dir [9:0]

load_coef [31:0]

Dir_Deco

Simbol [4:0]

fila_dir [2:0]

DirB [9:0]

DirM [9:0]

DirD [9:0]

Simbol_Reg

out_0 [4:0]

.

.

.

out_19 [4:0]

in_simbol [4:0]

ctrl

rst

PC+1

Ctrl_HMM major

Dir_in [9:0]

opcode [2:0]
out [1:0]

Mux

Mux

Mux

Mux

ctrl

Mux

.

.

.

ctrl

ctrl

ctrl Inicia_coef

start

clk

rst

dir [9:0]

coef [31:0]

done

ctrl

ctrl

Comp_HMM

data_in [31:0]

ctrl [1:0]

clk

rst

HMM_Major [1:0]

ctrl

Mux

ctrl

HMM [1:0]

ctrl

ctrl

FPU

ctrl [1:0]

out [31:0]

in_A [31:0]

in_B [31:0]

Ready

5

5

5

70

5

10

32

32

32

12

32

10

10 32

32

32

2

10

12

2

Rom_Mem

dir [11:0] out [69:0]

10

2

Banco_Reg

out_0 [31:0]

out_1 [31:0]

read_reg0 [9:0]

read_reg1 [9:0]

wrt_reg [9:0]

w_en

data_in [31:0]

clk_x2

reset
2

3

PC

clk

rst

in [11:0]

enable

out [11:0]

Figure 7. RTL diagram of the classification stage. Floating point unit is taken from [8]. Control is microcoded.

F
 λ (Α , Β , π)

Forest Model

FF F

GG G G

Gunshot Model

 λ (Α , Β , π)

CC C C
 λ (Α , Β , π)
Chainsaw Model CλP(O |)

λ GP(O |)

P(O |)λ F

 chain

Observation

O

Current state
determination

λP(O |)

Current State
λmax(P(O |))n

Figure 6. Block diagram for the classification module, using a HMM for
each class to be recognized.

observation chain O, given the model λ. Since this stage in-

cludes probability and logarithmical sequential computations,

a microcoded FSM is implemented to control execution, and

a VHDL open source floating point unit is used [8]. The main

code is nonetheless implemented on Verilog and is still under

test as of the writing of this paper (see Fig. 7 for a RTL

diagram of the unit).

III. RESOURCE CONSUMPTION

Table II, shows total FPGA resources needed for the ID

stage of SiRPA (results from the classification unit are not

available yet). Xilinx Xpower Analyzer tool estimated 44 mW

of total power consumption at 750 kHz (1 mW of dynamic

power and 43 mW due to the FPGA’s own static consumption),

still very high in terms of energy needs.

Table II
DEVICE UTILIZATION SUMMARY FOR THE IDENTIFICATION STAGE,

TAKEN FROM XILINX’S ISE POST-SYNTHESIS REPORT.

Hardware resources Used

Number of Slice Registers 8592 out of 126800

Number of Slice LUTs 13910 out of 63400

Number of fully used LUT-FF pairs 2928 out of 18360

Number of DSP48E1s 12 out of 240

Table III, shows total area and power consumption estimated

for ID stage of SiRPA, ported to a low-power standard cell

library, for a 130nm CMOS commercial process. Results are

promising in terms of energy needs: only 139µW of dynamic

power consumption.

IV. CONCLUSIONS

An acoustic pattern recognition system (SiRPA) has been

partially implemented on a HDL, with only the classification

Table III
POWER AND AREA ESTIMATION (REPORTED FROM SYNOPSYS’

POST-PLACE AND ROUTE RESULTS ON A LOW-POWER STANDARD CELL

LIBRARY, 130NM CMOS PROCESS, AT 750 KHZ; IOS/PAD CELLS ARE

INCLUDED.

Parameter Post-place and route data

Cell Leakage Power 851.3693 nW

Total Dynamic Power 139.8817 µW

Total cell area 634,754 µm2

stage being still under verification. Partial results of the identi-

fication stage, verified against a BeagleBoard’s implementation

of the system have been shown. These results attest that

achieving similar recognition rates as the embedded system’s

implementation should be feasible on an ASIC. Post-place and

route power and area estimation of the tested ID stage code,

ported to a standard cells library for a 130nm CMOS commer-

cial process, show a 7.19 times dynamic power improvement

over the FPGA implementation, and decidedly several orders

of magnitude less than the power required by a BeagleBoard-

xM platform.

REFERENCES

[1] E. Salas-Chaverri and P. Alvarado-Moya, “Implementación de un banco
de filtros digitales multitasa para la estimación energética espectral en
una aplicación de protección ambiental,” in XXX IEEE Convención de

Centroamérica y Panamá, November 2010.
[2] M. Sequeira and P. Alvarado-Moya, “Módulo de reducción de dimen-

siones espectrales en un sistema empotrado nodal de una red inalámbrica
de sensores,” in Proceedings of the Embedded Technology Conference

2011, San José, Costa Rica, 2011.
[3] J. Cárdenas-Reyes, “Training strategies for HMM in the acoustic pattern

recognition,” Master’s thesis, Escuela de Ingenierı́a en Computación,
Instituto Tecnológico de Costa Rica, May 2012.

[4] E. Salas Chaverri and P. Alvarado-Moya, “Implementation of an auto-
matic gain control for audio signals in an application for environmental
protection,” in Proceedings of the Conference on Technologies for Sus-

tainable Development TSD2011, Cartago, Costa Rica, 2011.
[5] A. Chacon-Rodriguez, P. Julián, L. Castro, P. Alvarado, and

N. Hernández, “Evaluation of gunshot detection algorithms,” Circuits and

Systems Part I: Regular Papers, IEEE Transactions on, vol. 58, no. 2,
February 2011.

[6] C. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[7] L. Rabiner, “A tutorial on hidden markov models and selected applications
in speech recognition,” in Proceedings of the IEEE, vol. 77(2), February
1989, pp. 257–286.

[8] R. Usselmann, “Open floating point unit,” 2000. [Online]. Available:
http://opencores.org/project,fpuvhdl

