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Abstract—Supercomputers have seen an exponential increase in their size in the last two decades. Such a high growth rate is

expected to take us to exascale in the timeframe 2018-2022. But, to bring a productive exascale environment about, it is necessary

to focus on several key challenges. One of those challenges is fault tolerance. Machines at extreme scale will experience frequent

failures and will require the system to avoid or overcome those failures. Various techniques have recently been developed to tolerate

failures. The impact of these techniques and their scalability can be substantially enhanced by a parallel programming model called

migratable objects. In this paper, we demonstrate how the migratable-objects model facilitates and improves several fault tolerance

approaches. Our experimental results on thousands of cores suggest fault tolerance schemes based on migratable objects have low

performance overhead and high scalability. Additionally, we present a performance model that predicts a significant benefit of using

migratable objects to provide fault tolerance at extreme scale.

Index Terms—Migratable objects, fault tolerance, resilience, checkpoint/restart, message logging
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1 INTRODUCTION

NATURE provides us with a vast set of examples of resil-
ient systems. From short-term reconstruction of epi-

dermal cells after a scratch to long-term adaptation of
species to new environments, there is a built-in capacity in
the biosphere to overcome failure. Unlike biological sys-
tems, the majority of applications in high performance com-
puting (HPC) do not have an inherent ability to recover
from failures. Most of the time, parallel programs are writ-
ten optimistically, assuming that there will be no failures
during execution.

Although failures were rare on the supercomputers
of the past, which contained fewer components, that is not
the case for some of the current machines and it will most
likely not be true for future supercomputers. Fig. 1 shows in
two parts why fault tolerance is becoming a main concern
as we approach exascale. The first part, plot 1a, shows a his-
torical view of the largest systems in the Top 500 list [1]
according to the number of sockets. The growth of these
systems has been exponential, from machines with a few
thousand sockets in 1994 to a machine with more than a
hundred thousand sockets in 2007. Although the number of
cores per socket continues to increase, an exascale machine
(expected to be delivered by 2018-2022) will contain more

than 200,000 sockets [2]. The flip side of such an impressive
rate of growth is an increased probability of component
failure. The second part, plot 1b, presents the expected
mean-time-between-failures (MTBF) for a machine with
that many sockets and the reliability per socket ranging
from 5 to 80 years. When the number of sockets reaches
the expected size of an exascale machine, the MTBF of
the machine drops to a value that can be measured in
minutes. That estimation is not pessimistic. Most predictions
for failures at exascale foresee MTBF values of several
minutes [2], [3]. In addition, several trends in architecture
design (smaller feature size, near-threshold voltage) may
even increase the rate of errors.

Aware of this situation, the HPC community has recently
focused on developing a diverse range of fault tolerance
techniques. There are protocols that avoid failures by relying
on failure predictors and taking actions before the failure
actually happens. Other protocols overcome failures by
ensuring the system can recover from crashes of certain
components.

Several of the fault tolerance strategies in the HPC litera-
ture can be enhanced by leveraging a model of parallel pro-
gramming called migratable objects. In this model, an
application is divided into small data and computation units.
A smart runtime system is then responsible for assigning
these units to nodes for execution. Additionally, the runtime
system is able to migrate the units around to speed up the
computation. The ability of over-decomposing a computa-
tion and migrating the units is what makes this paradigm a
lever for different fault tolerance strategies. In this paper, we
describe how this model has improved several fault toler-
ance strategies. We demonstrate the potential of these ideas
with an implementation of the different protocols. We ran
several parallel programs on real systems with thousands of
cores. With the help of an analytical model, we project how
these techniqueswill perform at extreme scale.
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The contributions of this paper can be summarized as
follows:

� A comprehensive and detailed description of various
fault tolerance methods that have been enhanced
using the migratable-objects model (Sections 3, 4, 5).

� A comparative evaluation of these methods on thou-
sands of cores with an application set that includes
programs from multiple fields and written in two
different programming languages (Section 6).

� A performance model to predict the benefit of differ-
ent approaches to fault tolerance support enhanced
with migratable objects at extreme scale (Section 7).

Our vision of an enhanced fault tolerance scheme is
based on our philosophy of what a resilient supercomput-
ing system should be. The driving force in the HPC commu-
nity is to build more powerful systems to solve a problem
quickly or to solve a larger problem. In any case, the notion
of speedup is fundamental. A bigger system accelerates the
discovery of interesting scientific facts. Our vision of an
ideal resilient runtime system is one that keeps the same
execution speed despite the failures in the system. That
means, a good fault tolerance mechanism keeps the progress
rate of an application as high as possible.

2 MIGRATABLE OBJECTS

Our model for parallel programming assumes a machine is
composed of a collection of processing entities (PEs) con-
nected through a network that does not guarantee in-order
delivery of messages. The set of PEs is dynamic, i.e., it may
grow or shrink depending on what nodes become available
or are declared inaccessible. A failure, for instance, may
render a PE inaccessible. The memory in each PE is private
and the only way to share information is via message pass-
ing. In modern supercomputers, a multicore node would
be the equivalent of a PE.

In the migratable-objects model, the programmer is
expected to decompose a parallel program into a large
number of objects. Each of these objects holds a portion of
the data and performs part of the computation. These
objects do not share memory, but may interact with other
objects via messages. This mechanism provides a message-
driven execution of the application. Each object is a reactive
agent, responding to the messages it receives by poten-
tially sending more messages. The number of objects in an

application is independent of the number of PEs in the
machine. This way, the programmer does not need to be
aware of what size the system is. Instead, his responsibility
is to over-decompose the application into many objects and
coordinate the work among them. The average number of
objects per PE is referred as virtualization ratio. A balance
must be struck in defining the virtualization ratio. A higher
value increases concurrency, but also the communication
and synchronization overhead.

A runtime system is in charge of assigning the objects
onto the set of PEs. This assignment may optimize for the
peculiarities of the application, such as making highly con-
nected objects reside on the same PE. Moreover, the map-
ping of objects to PEs is dynamic (i.e. it can be changed)
during the execution of an application. The runtime system
may shuffle objects around if it sees a potential performance
benefit. For example, a load imbalance in the execution may
result in objects being migrated to even the load across the
set of PEs. The ability to move objects from one place to
another requires each object to be migratable. This means
that each object knows how to serialize its state to be
shipped somewhere else in the system.

Fig. 2 shows graphically the two properties previously
explained: over-decomposition and migratability. In this
case, a system contains four PEs (labeled from A to D)
and eight objects (named from a to u). On Fig. 2a, we rep-
resent over-decomposition by showing each PE contain-
ing multiple objects. The distribution of objects into PEs
does not need to be uniform, necessarily. Fig. 2b presents
the ability of the runtime system to migrate object g from
PE B to PE D. These two properties permit several novel

Fig. 1. Size and mean-time-between-failures (MTBF) of large scale machines.

Fig. 2. Two fundamental properties of the migratable-objects model.
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capabilities in fault tolerance strategies. In the following
sections, we will describe the way in which each of these
strategies is improved.

CHARM++[4] is an implementation of this model. In
CHARM++, the programmer decomposes an application
into a set of C++ objects, called chares. Each chare exposes
a list of methods other chares can call. The set of chares
share information via asynchronous method invocation.
CHARM++ also provides an adaptive runtime system that
handles object placement, load balancing, fault tolerance
and many other tasks associated with the execution of an
application. An extension to CHARM++, called AMPI[5],
provides the set of abstractions in the migratable-objects
model for MPI programs. In AMPI, an MPI application is
run as a CHARM++ application, where each MPI rank is
seen as a CHARM++ chare. AMPI allows MPI applications
have over-decomposition and migration.

The migratable-objects model can be extended to
include the fault tolerance dimension. We assume the
underlying machine is not reliable and experiences fail-
ures with a certain frequency. Each failure knocks out
one PE in what is known as the fail-stop model. A failed
PE stops working and becomes nonfunctional for the rest
of the execution. This means, a failed PE does not send
messages out and all in-transit messages are lost. All the
objects residing in the failed PE are lost. Mechanisms for
recovering those objects are explained in the following
sections. Spare PEs may replace the failed PEs. If the sys-
tem has spare PEs available, then the replacement PE
takes over the work of the failed PE. If no spare PEs are
available, then the set of PEs shrinks by one PE. The run-
time system adapts to this scenario and continues the exe-
cution with one less PE.

3 PROACTIVE FAULT TOLERANCE

The first fault tolerance mechanism we will discuss is a pro-
active approach that avoids failures by migrating the objects
from PEs that are predicted to fail soon. This mechanism
assumes that there is an agent in the system that predicts
failures. Although failure prediction is a hard problem in
HPC, there are many situations where measurements from
different sensors can point to an impending failure [6], [7],
[8]. If that is the case, the runtime system can receive a sig-
nal and proactively move away all the objects from the PE
that is expected to fail. Other types of failures may not be
predictable, but there is nothing that prevents combining a
proactive approach with a reactive method (such as those in
Sections 4 and 5).

It is easy to see how the migratable-objects model makes
a proactive approach for fault tolerance more effective. All
that is needed for the evacuation of a PE is already available
in the model. The objects can be naturally migrated from
their current PE to other safer locations and the system
should be flexible enough to cope with the update of data
structures for a correct execution. Fig. 3 shows two basic
functionalities that a proactive fault tolerance approach
should have: migration of tasks and reconstruction of data
structures. In Fig. 3a, the evacuation of PE C is illustrated.
After the system receives the alarm of an impending fault in
PE C, object z is moved to PE A and object h is moved to PE

D. These migrations are naturally implemented in the
migratable-objectsmodel. Moreover, havingmultiple objects
in one PE is not a problem, given the over-decomposition
property of themodel.

Fig. 3b presents the modification of a spanning tree for
collective communication operations. Initially, PE A is the
root of the spanning tree with children PE B and PE C. PE
D is a child of PE C. Once PE C is evacuated, the runtime
system should reconstruct this spanning tree by making the
necessary adjustments. The re-arrangement of the spanning
tree only affects the parent PE A and children PE D of the
warned PE C. The warned PE will first send the tree modifi-
cation message to its parent and children. After receiving
the message, parent and children store the changes but do
not make them to the current tree until all outstanding col-
lective communication operations are finished.

The major challenge of proactive fault tolerance is to keep
the communication mechanisms effective when a migration
occurs. The evacuation of a PE happens asynchronously
with the execution of the program. The application does not
stop to wait until a PE is evacuated. The runtime system
must ensure that point-to-point communication works cor-
rectly during migration of objects. Scalable approaches for a
correct message delivery in the face of asynchronous migra-
tion of objects can be found elsewhere [9]. Herein, we will
describe what problems may arise and what data structures
should be updated.

As pointed out in Section 2, the mapping of migratable
objects to PEs changes dynamically. The system assigns
each object to a home PE, which always knows where the
object is currently on. This data structure is called the object-
to-home mapping. However, an object may not necessarily
reside on the home PE, but on a different host PE. For
instance, imagine an object h whose home PE is B, but
whose host PE is C. If a message from PE A targets h and PE
A does not know where h resides, it will send the message
to B, the home PE of h. PE B knows that h lives on PE C, so
it will forward the message to PE C. Additionally, PE B will
send a control message to PE A to update its routing table.
The next time PE A sends a message to h, it will send it
directly to PE C.

As we mentioned earlier, a proactive fault tolerance
approach can be combined with other fault tolerance
strategies and even with a load balancing framework. The
migratable-objects model has the capability to rearrange

Fig. 3. Operations in proactive fault tolerance.
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the objects among the PEs to improve performance and
speed up the application. It is natural to assume that a
load imbalance will arise as a result of an evacuation. So,
an equally natural decision is to run a load balancer after
the evacuation.

An implementation of the ideas described in this section
is available in the CHARM++ runtime system [10]. The utility
of this approach for MPI applications has been demon-
strated [11]. The implementation of AMPI allows the run-
time system to migrate AMPI threads even when messages
are in flight. This means a thread may have multiple out-
standing MPI requests when it is migrated. If a thread
migrates from PE C to PE D, the queue of requests is also
packed on PE C and sent to PE D. On PE D, the queue is
unpacked and the AMPI thread restarts waiting on the
queued requests. However, almost all the outstanding send
and receive requests are associated with a user-allocated
buffer where the received data should be placed. Packing
and moving the buffers would cause the buffers have differ-
ent addresses on the destination PE. One way to solve this
problem is by using the isomalloc technique proposed in

PM2 system [12]. This technique reserves a unique range of
virtual address space for each thread. That way, there is no
threat of memory violations after migration.

4 CHECKPOINT/RESTART

In reactive fault tolerance, the objective of the protocols is to
overcome a failure by providing a recovery mechanism after
one component fails. We assume the system has a failure-
detection mechanism. Once the failure is detected, the run-
time system starts a recovery protocol that will bring the
application back on track with the execution. We will
assume that recovery is automatic. That means, the user
does not need to be aware that a failure has happened, the
runtime system will take care of the failure without the
intervention of the user.

Checkpoint/restart is easily the most popular technique
in HPC to provide fault tolerance. It is simple and effective
enough in situations where failures are relatively rare. The
fundamental principle of checkpoint/restart is to periodi-
cally save the state of the whole system. If a component
crashes, the system rolls back to the most recent checkpoint
and restarts execution from there. Although the workings of
checkpoint/restart are straightforward, it adopts many
variants.

The checkpoint of a system can be coordinated if the dif-
ferent components agree on when to store their state. The
Chandy-Lamport algorithm for global snapshots [13] cre-
ates a collection of node checkpoints plus in-flight mes-
sages that constitute a global checkpoint. An uncoordinated
protocol, on the other hand, allows nodes to checkpoint at
their own discretion. However, collecting all node check-
points does not make a consistent global checkpoint. If
messages are not stored, then this scheme may suffer cas-
cading rollback, a pathological situation where the rollback
of one node may require the entire system to rollback sev-
eral checkpoints. Coordinated checkpoint can be blocking
or non-blocking, depending on whether the application has
to stop execution during checkpoint, or the checkpoint pro-
cess executes along with the application. A comparison

between the two approaches can be found elsewhere [14].
A compromise between those two types of checkpointing,
called semi-blocking checkpoint [15] requires the application
to reach a synchronization point, after which the check-
point runs asynchronously with the application.

When it comes to generate a global checkpoint, the
amount of data stored can differ according to what is
included in the checkpoint [16]. In a system-level checkpoint,
the whole state of the machine (including the complete
address space of processes, CPU registers, file descriptors)
is to be saved. This mechanismmakes the application oblivi-
ous of the checkpoint. BLCR [17] is a library that implements
this abstraction. Conversely, application-level checkpoint
makes the application an active participant of the checkpoint
process. The user must write a checkpoint function and
decide what to store in a checkpoint. That way, the amount
of data to checkpoint may be dramatically reduced. Addi-
tionally, the knowledge of the programmer is used to insert
the checkpoint calls at appropriate places. SCR [18] is a
library that implements this method. The migratable-objects
model encourages runtime-based checkpoint [19], where the
runtime system provides an interface for the programmer to
write the checkpoint methods. The runtime system may also
participate more actively in deciding when to trigger a
checkpoint. The migratable-objects model can work with
transparent checkpoints. Checkpoint transparency and
migratability are two orthogonal dimensions.

A global checkpoint of the system, obtained with any of
the mechanisms above, used to be stored only in the file
system. This was a natural place to store the checkpoint,
since the file system would survive the crash of a node.
However, the file system bandwidth cannot easily cope
with the increasing size of the supercomputers and the
data size that needs to be checkpointed. The file system
quickly becomes a bottleneck during checkpoint. Various
alternatives have been explored to solve this problem. One
popular choice is to store the checkpoint in local storage
(either main memory, disk or solid-state drive). One such
protocol is called double in-memory checkpoint/restart [19].
In this method, a PE stores copies of its checkpoint in its
own memory and in the memory of a buddy PE. Fig. 4a
illustrates the memory footprint of this approach. PEs A
through D contain several objects each. The system uses a
cyclic buddy assignment, where PE B is the buddy of A, C
is the buddy of B, and so on. At worst, this mechanism tri-
ples the memory requirements of the application, but it is
able to checkpoint rapidly, scale to large systems and it is
applicable for a wide range of HPC applications [20].
Extensions of this basic protocol drastically reduce the
memory footprint [21].

Double in-memory checkpoint/restart tolerates a failure
by using spare PEs to substitute for the failed ones. For
example, in Fig. 4a, if PE C fails, a replacement PE will
receive the checkpoint from PE D and the system can con-
tinue execution. However, the migratable object model
empowers this scheme in several ways. First of all, depicted
in Fig. 4b is the scenario where spare PEs are not available.
In such circumstances, there is no replacement for the failed
PE C. The adaptive runtime system solves this situation by
distributing the objects of C into the rest of the system. For
this particular case, all the objects that were on C are moved
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to D. The buddy assignment is updated and the checkpoint
placement corresponds to this new assignment. Other data
structures have to be adjusted as well, such as the spanning
trees for collectives. For a more detailed discussion on how
to update those structures, we refer the reader to Section 3.

The second way in which migratable objects improves
this approach is by offering a load balancing framework in
the case of no spare PEs. Once a failure hits the system and
PEs are lost as a result, the system can even the burden if a
PE ends up with a much higher load than the average.
Finally, migratable objects provides the right environment
for serialization methods to be written in a simple way.
The runtime system naturally handles migration of the
objects, because that is an intrinsic characteristic of the
model.

An implementation of double in-memory checkpoint and
other asynchronous checkpoint methods can be found in the
CHARM++ system [10]. These protocols also work for MPI
applications through the AMPI extension. Specific versions
of these protocols are also available for a version of the run-
time system specific to systems with multicore nodes [22].

5 MESSAGE LOGGING

Although checkpoint/restart is a very popular alternative in
HPC to provide fault tolerance, it embodies a fundamental
disadvantage. It requires a global rollback: all PEs have to
roll back to the latest checkpoint in case of a failure. That
downside becomes critical in an extreme-scale system; mil-
lions of PEs would have to roll back if one of them fails,
resulting in a massive waste of time and energy.

Message logging is a technique that avoids global roll-
back by saving the messages an application sends and only
rolls back the failed PE. It then requires only a local rollback
and saves energy by having the rest of the system idle or
making progress on their own [23]. It may save time too,

because messages have no delay or contention during
recovery. Additionally, it allows the checkpoint to be either
coordinated or uncoordinated. In case of a failure of PE A,
all other PEs that have stored messages to A will re-send
those messages upon PE A’s failure. To catch up with the
rest of the system, PE A will sort the re-sent messages and
process them. To provide a correct recovery, message log-
ging requires storing information about non-deterministic
events. Message reception is, in general, non-deterministic.
Thus, every time a non-deterministic event occurs, a determi-
nant is generated. A determinant will contain all informa-
tion required to ensure recovery reaches a consistent global
state. This mechanism is based on the piece-wise deterministic
assumption (PWD) [24], which states that logging determi-
nants is enough to guarantee a consistent recovery. For
example, a determinant could be formed by the tuple
hsender; receiver; ssn; rsni. Both sender and receiver repre-
sent objects. The send sequence number (ssn) is a unique iden-
tifier for each message, assigned by the sender. The receiver
will generate a receive sequence number (rsn) upon reception
of the message. The rsn totally orders the reception of the
message and provides a strict sequence in which messages
have to be processed during recovery. There are several
message-logging protocols [25] that differ in the way they
handle determinants. Causal message-logging makes the
determinants travel with the messages that causally depend
on them. More specifically, determinants are piggybacked
on application messages until they are safely stored. A spe-
cific protocol in this family, called simple causal message-
logging [26] has demonstrated scalability and low overhead.
Strategies to decrease the memory overhead of the message
log can be found elsewhere [27].

Fig. 5 illustrates how message logging works. Using the
same scenario as in Fig. 2a, we see a portion of the execution
of an application. Every message is stored at the sender PE.
Each message reception generates a determinant and that

Fig. 5. How message logging and parallel recovery work.

Fig. 4. Memory footprint and failure recovery in double in-memory checkpoint/restart. Circles represent objects in application, rhombi are local check-
points and squares are remote checkpoints.
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determinant has to be stored on at least one PE, aside from
the one that generated it. For instance, messagem1 generates
determinant d1 at PEC. The next message leavingC,m2, car-
ries d1. Eventually, d1 gets stored in PE D and the acknowl-
edgement message is sent from D to C. Upon the reception
of the ACK message, PE C stops piggybacking that determi-
nant. After m3 is received, its determinant, d3, has to be
stored somewhere else. Consequently, message m4 piggy-
backs d3. Fig. 5 presents the failure of PE C and the loss of all
objects on that PE. The checkpoint buddy of C, PE D, pro-
vides the latest checkpoint of objects z and h to the replace-
ment of PE C, named PE C0. We assume a pool of spare PEs
for this protocol. During restart, PE C0 receives the determi-
nants stored in other PEs. These determinants will guarantee
that subsequent messages are processed in the same order as
before the crash. Once all determinants have been collected
and it has been verified there are no missing determinants,
PE C0 resumes execution by processing the messages re-sent
from all other PEs. Once PE C0 starts processing the mes-
sages, the PWD assumption ensures PE C0 will send the
same messages PE C sent before the crash. This means, mes-
sages m2 and m4 will be sent again. The receiver of those
messages will detect they are duplicate messages and will
avoid processing them. Detecting duplicate messages is
straightforward since the send sequence number uniquely
identifies each message. A duplicate message is simply a
message with an ssn that has been processed before. There
are different types of messages in Fig. 5. The first type are the
regular application messages. Second, the resent messages are
those resent as part of the recovery process by PEs that did
not crash. The third type are the duplicate messages that are
messages sent during recovery from the PE that crashed.
Finally, protocol messages are the additional messages required
to provide a consistent fault tolerant scheme. This category
includes checkpoint messages, determinant messages and
acknowledgements.

5.1 Parallel Recovery

Themigratable-objectsmodel provides a fundamental advan-
tage for message logging. A key observation, concerning
manyHPCapplications, is thatmost codes are tightly coupled
and if one PE fails, the rest of the systemwill remain idle until
the failed PE catches up with the execution of the application.
Instead of waiting idle, surviving PEs can help accelerate
recovery by receiving objects from the failed PE and perform
what we call parallel recovery [28]. Objects living on a failed PE
are distributed among other PEs for a speedup in recovery.
Fig. 5 also shows the parallel recovery in the same base sce-
nario. The difference appears when object h does not return to
PE C0 but gets distributed to PE B. Therefore, objects z and h

are effectively recovered in parallel on PEs C and B, respec-
tively. The distribution of objects for recovery will create
some messages to change their source or destination. Note
message m3 was originally resent to object h and has to be
redirected to PE B. The same is true for determinants. In this
example, determinant d3 must be forwarded to PEB. Message
m4 now comes from PEB instead of PEC because it is sent by
object h.

The distribution of objects to achieve parallel recovery
creates a transient load imbalance. Imagine the distribu-
tion of objects in Fig. 5 provides an even load among the

PEs. After PE C crashes, object h is migrated to PE B to
be recovered in parallel with object z on PE C0. Once the
recovery is finished, object h does not return immediately
to PE C0, but waits until the next checkpoint. During this
time period, between the completion of recovery and the
next checkpoint, the system suffers a load imbalance.
More precisely, PE C0 will be underloaded, whereas PE B
will be overloaded.

Parallel recovery empowers message logging by increas-
ing the progress rate during recovery. If failures are com-
mon, parallel recovery is able to recover faster and make
progress even in the case where the MTBF is smaller than
the checkpoint period. Parallel recovery is one of the signa-
ture features of fault tolerant CHARM++. It has been imple-
mented and tested with several different message-logging
protocols. A comparison of the implementation of those
protocols in CHARM++, and which represent a better oppor-
tunity for parallel recovery, can be found elsewhere [26].

6 EXPERIMENTAL EVALUATION

6.1 Setup

We ran our experiments on Ranger, Lonestar, and Stampede
supercomputers at Texas Advanced Computing Center
(TACC). Ranger is a 579-teraFLOPS machine with a total
of 62,976 compute cores. Each node contains a 16-way
SMP processor and 32 GB of memory. Lonestar is 300-ter-
aFLOPS computer with 22,656 cores. Each node has a 12-
way SMP processor and 24 GB of memory. Stampede is a
10-petaFLOPS machine with more than 96,000 cores
divided into 6,400 nodes. Each node contains 32 GB of
memory. All supercomputers feature a fat-tree network
topology on an Infiniband interconnect.

We chose a set of CHARM++ and AMPI programs to evalu-
ate the different fault tolerance techniques. The first CHARM++
program isWave2D, which runs a finite difference method to
compute pressure information on a two-dimensional grid.
Jacobi3D is a seven-point stencil that computes the transmis-
sion of heat on a three-dimensional space. The last CHARM++
code is LeanMD, a mini-application that emulates the commu-
nication pattern in NAMD [29]. It computes the interaction
forces between particles in a three-dimensional space and this
computation is based on the Lennard-Jones potential. We
included various MPI programs in our evaluation. We
adapted the NAS Parallel Benchmarks suite (NPB) to AMPI
with migratableMPI threads. The NPB is a collection of linear
algebra numerical methods [30]. We focused our experiments
on four benchmarks fromNPB: block-tridiagonal (BT), conju-
gate gradient (CG), multi-grid (MG) and scalar pentadiagonal
(SP). Finally, we also ran Sweep3D, a mini-application that sol-
ves a neutron transport problem. Sweep3D uses discrete ordi-
nates in a three-dimensional space. Table 1 summarizes the
most important characteristics of the applications we used in
the experiments.

All the fault tolerance strategies discussed in this paper
were implemented in the CHARM++ runtime system. For pro-
active fault tolerance, the preventive evacuation mechanism
moves away the objects from a particular PE. Although we
did not use a failure predictor, we provide an interface to
plug a failure prediction module into the runtime system. To
evaluate our evacuation framework, we used a mechanism
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to inject a warning into the system. This warning informs
the system about the impending crash of a particular PE.
The double in-memory checkpoint/restart mechanism seri-
alizes all the objects in the system every time the check-
point call is made. These function calls have to be
introduced into the code by the programmer. Identifying
those synchronization points is fundamental to guarantee a
consistent recovery. The same applies to the implementa-
tion of message logging. To simulate a crash, the failure
injection mechanism allows the user to specify any number
of crashes and the wall time at which each failure will
occur. The runtime system will simulate a crash by making
a particular PE unresponsive. Then, the failure detection
mechanism (implemented through a pair-wise heartbeat)
will raise a flag and the restart process will begin. This fail-
ure detection mechanism is scalable since it has a constant
overhead for each PE. For all the experiments on reactive
fault tolerance we assumed there were replacement PEs in
the system.

6.2 Proactive Fault Tolerance

One of the most important features of an effective proactive
fault tolerance approach is to provide a quick response
mechanism. We investigated how rapidly a PE is evacuated
by running Jacobi3D with 2,048 cores on Stampede. Table 2
presents the evacuation time when the data size per core
ranges from 16 to 512 MB. The total time to migrate away
all the objects on a PE can be measured in milliseconds and
linearly depends on the data size. There are two data sets in
the table, representing two important events in evacuation.
The local confirmation stands for the moment when the fail-
ing PE has released all the objects. The remote confirmation
represents the time when the failing PE has received a con-
firmation from all the destinations of the objects. A remote
confirmation is expected to increase the local confirmation
by a roundtrip through the network and the processing of
the objects, which can be seen as the constant difference
between the two datasets. The real evacuation time lays
somewhere between the two, and it is constant regardless of
the system size.

The ideal complement to a fast evacuation mechanism is a
load balancing framework. Once a PE is evacuated, the
additional objects assigned to the receiving PEs may cause
load imbalance. To even out the load in the collection of
PEs, a load balancer looks for a redistribution of the objects
to decrease the load excess on any PE. Fig. 6 shows the
interaction of evacuation and load balancing in NPB-BT
multi-zone with 256 cores on Ranger. This benchmark has
an initial load imbalance that is later solved by calling a
load balancer right before iteration 20. The effect of the
load balancer is dramatic. The average iteration time is
drastically reduced, providing a speedup of 2:65. Then, at
iteration 70 the system receives a warning of an impending
failure and evacuates a PE. That creates a load imbalance
in the system, which increases the iteration time by 22 per-
cent. Finally, that loss in performance is solved by apply-
ing the load balancer once again and bringing down the
iteration time to a level similar to the one before the evacu-
ation (little over 1 percent overhead).

6.3 Checkpoint/Restart

To illustrate the full potential of the migratable-objects
model in reducing the checkpoint overhead to a small
level, we show the results of checkpoint and restart with
two different types of applications. For weak-scaling, we
use Jacobi3D and for strong-scaling LeanMD. LeanMD
computes the forces between particles in an iterative fash-
ion. By placing the checkpoint calls at synchronization
points between iterations, we manage to checkpoint only
the fundamental data: the position of particles. All other
intermediate data structures are not stored as part of
the checkpoint. In doing that, the size of a checkpoint
drastically decreases. Similarly, Jacobi3D only stores the
necessary data structures in the checkpoint. All other
temporary data structures are not included. The top part
of Fig. 7 presents the checkpoint time for the two applica-
tions on Stampede. These results show the time to check-
point is fast (measured in milliseconds) and that the
checkpoint framework scales well. The bottom part of
Fig. 7 shows the restart time, that includes notifying
all the system about the crash, synchronizing the rollback
of all PEs and retrieving the checkpoint of the failed PE.
The total restart time is constant for the weak-scaling
experiment. The strong-scaling case shows that the restart
time is initially dominated by the checkpoint transmis-
sion, but later the synchronization cost prevails.

TABLE 2
Fast Evacuation Time with Different Data Sizes

Data Size (MB) 16 32 64 128 256 512

Local ACK (ms) 11 26 50 105 206 428
Remote ACK (ms) 530 542 582 647 761 1054

TABLE 1
Main Features of the Programs Used in Experiments

Program Language Domain Problem
Size

Virt.
Ratio

Wave2D Charm++ Physics 327682 4
Jacobi3D Charm++ Physics 2� 20483 8
LeanMD Charm++ Molecular

Dynamics
256 K

particles
28

NPB MPI Linear Algebra class D,E 1,4
Sweep3D MPI Physics 2503 4

Fig. 6. Effect of evacuation and load balancing on performance.
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6.4 Message Logging

Message logging can be seen as an improvement of check-
point/restart that prevents it from rolling back all PEs after
a crash. If only the crashed PE is required to roll back and
restart, important energy savings can be obtained [23].
However, message logging needs some metadata to be man-
aged. In particular, determinants must be generated, piggy-
backed and properly handled to guarantee a consistent
recovery. That imposes some overhead. Fig. 8 shows the
execution-time overhead in different applications with
1,024 cores on Ranger. The range of message-logging over-
head varies from 0:8 to 10:0 percent. There are many varia-
bles that determine how high the overhead of message
logging will be. Extremely relevant are the communication
characteristics and the computation/communication ratio
of the application. An application that sends many mes-
sages with high frequency will require many determinants
to be generated and processed. This is the case of NPB-SP
and Sweep3D. Conversely, if the application features a high
amount of computation, the communication overhead can
be hidden to a certain degree. This is the situation with
Wave2D, LeanMD and NPB-MG. Also, if the application is
communication bound, the additional burden of
determinants will impact the performance more drastically.
NPB-CG is a good example of this scenario. Jacobi3D and
NPB-BT have a relatively dense communication graph that
increases message-logging overhead.

We measured how message logging scales in both weak-
scaling and strong-scaling settings on Ranger. Jacobi3D was

used to run a weak-scaling test, whereas LeanMD served as
the test code for a strong-scaling experiment. Several runs
were executed and average time is reported. Fig. 9 shows the
results for the weak-scaling experiment. The overhead is
approximately constant throughout the whole spectrum and
it is close to 5 percent. The strong-scaling experiment of
Fig. 9 shows an interesting story.We ran two differentmolec-
ular systems to test the effect of a larger problem size.
The 256K-particle case provides evidence of how a commu-
nication-bound scenario affects message logging. When the
computation/communication ratio is small, the overhead of
message logging cannot be hidden by the computation in the
application. A different situation occurs when a larger prob-
lem size is used. The 1M-particle case shows how message
logging scales better and has an overhead around 3 percent.

Migratable objects enhance message logging by allowing
parallel recovery. If objects from the failed PE are distrib-
uted across other PEs to be recovered in parallel, then
recovery time can be reduced to a fraction. Additionally,
migratable objects allow overlapping the latency of the
determinant-acknowledgment cycle with computation for
other objects. Fig. 10 presents a progress diagram, which
shows the progress of an application (using an application-
specific metric) versus time. In an iterative application, the
number of completed iterations can be used as a progress
value. A progress diagram is a useful visualization device,
because it allows the viewer to focus on what really matters
in a fault-tolerance strategy for HPC: progress rate. Not
only is it important for a fault tolerance method to have low

Fig. 7. Fast checkpoint and restart time.

Fig. 8. Execution-time overhead of message logging.

Fig. 9. Strong and weak scaling of message logging.

Fig. 10. Progress rate diagram and recovery.
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overhead (a small increment in the slope of the curve in a
progress diagram), but also to provide a fast recovery. We
ran Jacobi3D with 256 cores on Ranger and compared the
progress rate of checkpoint/restart and message logging.
Fig. 10 shows the two approaches and the recovery time
(shaded region below the curve) when a failure is intro-
duced at second 50 of the execution. The run executes a total
of 200 iterations and checkpoints at iterations 40 and 160.
Even when message logging incurs an overhead of 5 per-
cent, it manages to recover the work lost in a failure much
faster than traditional checkpoint/restart. Whereas check-
point/restart takes more than 30 seconds to recover, parallel
recovery manages to bring down that time to less than 5 sec-
onds. In this particular test, eight PEs helped in the recovery
of a failed PE.

The more PEs are available to help in recovery, the faster
the failed PE can catch up with the rest of the system. Table 3
shows this effect. Using the same scenario as Fig. 10, we
changed the number of PEs helping to recover, from 1 (no
parallel recovery) to 8. It is important to mention the super-
linear effect in Table 3. Message logging alone can recover
faster than normal execution. The reason is that for this par-
ticular test, during recovery only one PE is executing. It
receives the messages it needs to keep making progress all
at once. Recovery then becomes computation bound, even if
the application is otherwise not computation-intensive. Net-
work latency becomes roughly zero and there is no synchro-
nization delay of any kind.

7 PERFORMANCE MODEL

To predict the performance of the different fault tolerance
approaches presented in the previous sections, we devel-
oped a model to estimate the total execution time for each
approach under different circumstances. Table 4 presents a
list of the parameters of the model along with a short
description for each. A parallel application requires W time
units to finish execution in a particular system that has a
mean-time-between-failures of M. Proactive fault tolerance
requires three parameters (k, p and r). Reactive fault toler-
ance requires three parameters for checkpoint (d, t and R)
and 5 more for message logging with parallel recovery (m,
P , s, �, and k).

The main goal of the performance model is to predict the
total execution time for an application that runs on a faulty
system. The model requires all parameters in Table 4 as
inputs, with the exception of two: the checkpoint period
and the total execution time. The checkpoint period t will
be set by the model. Part of the goals of this model is to find
the value of the checkpoint period that minimizes the total
execution time. The output of the model is T , the total exe-
cution time. A fundamental insight provided by this model
is to predict the potential advantage of different methods
under different circumstances. Fig. 11 presents the

execution assumptions in the model. The system periodi-
cally performs a global coordinated checkpoint with
duration d. Then, it executes for t time units. This pat-
tern is repeated until a failure disrupts it. The figure
shows PE C failing and being replaced by a spare PE.
The failure occurs t time units after the last checkpoint.
The system must recover those t time units of execution.
In checkpoint/restart all PEs must rollback to the previ-
ous checkpoint. In the case of message logging, only the
crashed PE rolls back. If parallel recovery is used, only
the crashed PE rolls back, but other PEs help during
recovery.

An important guideline in the model is that checkpoint/
restart is assumed as the basic fault tolerance infrastructure.
This base will be augmented with the different approaches
we discuss in this paper. We first present the model for a
checkpoint/restart mechanism that also has a failure predic-
tor and can proactively migrate objects before the PE they
reside in crashes. After that, we present a model for check-
point/restart enhanced with parallel recovery. Finally, we
describe a comprehensive model that includes both proac-
tive evacuation and parallel recovery.

7.1 Checkpoint/Restart

The frequency of checkpoints has an important impact on
the performance of checkpoint/restart. If the system check-
points too often, the overhead of dumping the state of the
system may be high enough to make it impractical. Con-
versely, if the system checkpoints too seldom, chances are
that a failure will make the system re-execute a huge portion

TABLE 3
Recovery Speedup (s) as Parallelism Level (P )

Increases

P 1 2 4 8
s 2.53 3.65 4.99 7.26

TABLE 4
Parameters of the Performance Model

Parameter Description

W Time to solution in a fault-free scenario
M Mean-time-to-interrupt of the system
T Total execution time
d Checkpoint time
t Optimum checkpoint period
R Restart time
k Evacuation/migration cost
p Precision of failure predictor
r Recall of failure predictor
m Message-logging slowdown
P Available parallelism during recovery
s Parallel recovery speedup
� Parallel recovery slowdown

Fig. 11. Execution framework in the performance model.
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of the already completed work. Clearly, a sweet spot must
be found to optimize the use of checkpoint/restart.

An early analytical model to determine the optimum
checkpoint period was developed by Young [31]. This
model was later extended by Daly [32] to provide a higher-
order estimate. The parameters of the model appear in the
first section of Table 4. Essentially, this basic model defines
the components of the total execution time T :

T ¼ TSolve þ TCheckpoint þ TRestart þ TRecover; (1)

where TSolve stands for the computation time to solve the prob-
lem, TCheckpoint is the overhead of dumping the state of the sys-
tem, TRestart is the time spent on setting up the system to
resume execution after a failure (which includes the time to
obtain the latest checkpoint), and TRecover represents the time
to recover the lost work. Using the input parameters, the basic
model transforms Equation (1) into the following:

T ¼ W þ W

t
� 1

� �
dþ T

M
Rþ T

M

t þ d

2

� �
: (2)

It is possible to analytically compute an expression for the
optimum checkpoint period t using Equation (2). However,
a simple expression for t that is usually applied as a rule-of-

thumb is [32]: t ¼
ffiffiffiffiffiffiffiffiffiffi
2dM

p
� d.

7.2 Checkpoint/Restart with Evacuation

We can extend the performance model above to include
proactive evacuation of PEs. This new model assumes an
imperfect failure predictor. A failure successfully predicted
will be proactively avoided by evacuation. However, there
may be failures that will not be predicted and then the sys-
tem will reactively rollback and resume execution. Also,
there might be false alarms if the predictor incorrectly raises
a warning flag about a failure that never occurs. Thus, the
accuracy of the failure predictor will impact the whole per-
formance of the fault tolerance framework. To capture the
efficiency of the failure predictor and better model the per-
formance of a proactive approach, we will introduce three
new parameters. First, k will stand for the evacuation cost.
Regardless of the final result on a failure prediction, this
will always be the cost of evacuating one PE. Second, we
will define two traditional terms in information retrieval,
precision and recall, to measure the accuracy of the predictor
[7]. Precision and recall will be denoted by p and r, respec-
tively. The formulas for both of them are presented below:

p ¼ T P

T P þFP
r ¼ T P

T P þ FN
;

where symbols T P ;FP and FN represent true positives,
false positives and false negatives, respectively. These quan-
tities are commonly used in statistical hypothesis testing.
The subscripts P and N represent the prediction of the fail-
ure predictor, whereas T and F stand for the correctness in
the prediction. For example, T P is the number of correctly
predicted failures (they were positively detected as failures
and the prediction was true) and FN is the number of
missed failures.

To accommodate the new parameters for proactive fault
tolerance in the basic checkpoint/restart model, we extend

Equation (1) to include evacuation time:

T ¼ TSolve þ TCheckpoint þ TEvacuate þ TRestart þ TRecover: (3)

To factor in the possibility of the failure predictor to be
wrong, we include parameters k, p and r:

T ¼ W þ W

t
� 1

� �
dþ T

M

r

p
kþ T

M
ð1� rÞR

þ T

M
ð1� rÞ t þ d

2

� �
;

(4)

where the fraction r
p
represents the ratio of number of

warnings with respect to the number of failures. If we mul-

tiply this quantity times T
M (the expected number of fail-

ures in an execution), we will end up with the total
number of warnings raised by the failure predictor
(including false positives).

7.3 Checkpoint/Restart with Parallel Recovery

The checkpoint/restart model of Equation (2) can be
extended to use message logging and parallel recovery.
Table 4 contains the list of necessary parameters to incorpo-
rate parallel recovery. First of all, m stands for the perfor-
mance overhead introduced by the message-logging
protocol (message copying, but especially determinant han-
dling). To allow a recovery in parallel, we introduce P , that
stands for the maximum parallelism that can be achieved
during recovery. This number depends on the virtualization
ratio of the application. In general, we should not expect P
to be higher than virtualization ratio. Parameter s captures
the actual speedup achieved by recovering in parallel [28].
This speedup applies only to the first t time units after the
crash (see Fig. 11). Once the crashed PE catches up with the
rest of the system, all PEs resume execution until the next
checkpoint is reached. The last t � t time units of the check-
point period are executed with a load imbalance, since
some PEs have received additional objects. Parameter �
accounts for that slowdown. The following checkpoint will
return the migrated objects to the original PE and solve the
load imbalance (k). The extended equation to include paral-
lel recovery considerations is the following:

T ¼ Wmþ Wm

t
� 1

� �
dþ T

M
ðRþ kÞ

þ T

M

t

t þ d

t

2s
þ t

2
ð�� 1Þ

� �
þ d

t þ d

t

s
þ d

2

� �� �
:

(5)

7.4 Comprehensive Approach

Finally, since both proactive evacuation and parallel recov-
ery are not mutually exclusive, we can merge the two in one
single approach. We call this strategy comprehensive fault
tolerance. Combining Equations (4) and (5), we obtain:

T ¼ Wmþ Wm

t
� 1

� �
dþ T

M

r

p
kþ T

M
ð1� rÞðRþ kÞ

þ T

M
ð1� rÞ t

t þ d

t

2s
þ t

2
ð�� 1Þ

� �
þ d

t þ d

t

s
þ d

2

� �� �
:

(6)
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7.5 Large-Scale Projections

The major goal of the performance model is to provide a
prediction for large-scale executions. We use the analytical
framework developed in this section to estimate the total
efficiency of a system. In this context, efficiency is defined as
the ratio of useful work over total execution time. In other
words, efficiency is W

T . To obtain good estimates for the
parameters in the model, we examined the relevant litera-
ture [7], [33], [34] and used a projection from the values
obtained in Section 6. Table 5 summarizes the baseline val-
ues we used to obtain the projections in this section. The
value for M (MTBF of the system) depends linearly on the
number of sockets. We use a MTBF per socket (MS) equal to
10 years. Then, we assume the time between failures follows
an exponential distribution. Additionally, we assume fail-
ures are independent. Thus, the total MTBF of the system is
an exponentially distributed random variable. The value for
M can be computed by dividing MS among the total num-
ber of sockets in the system.

Equation (2) can be used to model several kinds of
checkpoint/restart protocols. For instance, a higher value
of d will represent a shared file system checkpoint
scheme, whereas a smaller value of d will stand for a dou-
ble in-memory checkpoint mechanism. We estimate d ¼ 2
minutes will be a feasible value for double in-memory
checkpoint. However, if the checkpoints were to be stored
in a network file system (NFS), then that value would
increase significantly. To model checkpoint/restart on
NFS we use a value of d ¼ 20 minutes.

Fig. 12a presents the value of efficiency obtained at dif-
ferent system sizes. We scale the system to 256 K sockets
(the expected number of sockets at exascale is at least
200 K). The higher the socket count, the higher the failure
rate. Then, it is natural to see all curves dropping as the
socket count increases. The traditional NFS-based check-
point/restart will not reach exascale. With an efficiency of 0
at exascale, NFS-based checkpoint restart will not make

progress, as all the time will be spent rolling back and redo-
ing the work lost in failures. Using in-memory checkpoint/
restart will improve efficiency and reach exascale with
58 percent efficiency. Having either proactive evacuation or
parallel recovery will fetch an additional 7 percent increase
in efficiency, for a combined improvement of 14 percent.

The benefit of dodging failures with proactive evacuation
comes from the fact that it is much faster to migrate objects
from a failing PE than to recover from that failure. In the
case of parallel recovery, failures are recovered faster. In
either case, checkpoint period is longer than in the check-
point/restart case. Fig. 12b presents the checkpoint period
(t in the model) for each technique. Even when the benefit
in efficiency of both proactive evacuation and parallel
recovery is about the same, the size of the checkpoint period
is longer in parallel recovery.

The different parameters of the model have different
impacts on efficiency. A complete sensitivity analysis is out
of the scope of this paper [27], but it is insightful to under-
stand how the values of precision and recall affect effi-
ciency. The heatmap in Fig. 13 shows that increasing both
recall and precision improve efficiency. The model predicts
that recall has a higher impact on efficiency (but it is harder
to improve in real life). From a starting point of ð0:5; 0:5Þ, an
increase of precision to ð0:9; 0:5Þ only increases efficiency by
1 percent, whereas the same increase in recall to ð0:5; 0:9Þ
gains 14 percent in efficiency. If precision is really small
(lower than 0.1), there is a negligible benefit in increasing
recall. Therefore, precision must have an acceptable value
(greater than 0.3).

TABLE 5
Baseline Values of Parameters in the Model

Parameter W MS d R p r
Value 24 h 10 years 120 s 30 s 0.7 0.4
Parameter m P s � k
Value 1.05 8 8 Pþ1

P
d
P

Fig. 12. Efficiency and checkpoint period of fault tolerance schemes at different scales.

Fig. 13. Effect of precision and recall on efficiency.
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The level of available parallelism also has an impact on
efficiency. Table 6 shows how different values of P in the
model affect efficiency. Clearly, more parallelism is better,
but there are diminishing returns as P increases beyond 32.

7.6 Model Validation

The performance model was validated against the fault tol-
erance strategies presented in this paper. The experiments
used 256 cores on Lonestar and emulated a run (W ¼ 3;600
s, d ¼ 10 s) with exponentially distributed random failures
(M ¼ 120 s). Table 7 shows the close match between model
and experiment in the total execution time.

8 RELATED WORK

CoCheck [35] is a tool that explored the parallel between
task checkpointing and task migration in the MPI model.
It provided disk checkpoint and dynamic migration of
MPI ranks. As opposed to evacuation in the migratable-
objects model, task migration in CoCheck was synchro-
nous with the execution of the system, i.e., before an MPI
rank could be migrated, CoCheck had to make sure all
communicating ranks would hold back messages until the
rank was at its new location. Similar tools have recently
used process-level live migration in MPI applications [36],
[37], [38]. Those tools combine health monitoring of nodes
with live migration to provide proactive fault tolerance.
The migration of an MPI rank is called live because it
occurs concurrently with the execution of the application.
Therefore, the set of dirty pages of the migrating rank
have to be sent before the migration process is complete.
The system enforces a consistent state [13] in which all in-
flight messages are stored and all processes freeze until
the migrating rank completes the migration.

A comparative study about checkpoint versus migration
[39] introduced an analytical model to contrast the two.
That study predicted that migration is more beneficial in
the short term and will eventually tie with checkpoint as
larger systems become available. However, the model
assumes a perfect failure predictor. In this paper, we
removed that restriction by having different values of preci-
sion and recall in our performance model of Section 7. A dif-
ferent model that incorporated both proactive migration
and checkpoint is FT-Pro [40]. It uses a stochastic model to
adaptively schedule checkpoints and migrate processors
when impending failures are detected.

Replication may be a viable alternative to tolerate failures
at exascale [41]. If every rank in an MPI application gets
replicated, the system recovers very fast. Should a node go
down, the replicas of the lost ranks may replace them and
execution continues with almost no cost in restart and
recovery. Each rank and its replica must be synchronized
for this approach to be correct. That continuous synchroni-
zation mechanism has an impact on the performance of the
application. Moreover, replication will always have an

efficiency cost higher than 50 percent of the system. In the
minimal replication case (duplication), at least half of the
resources are dedicated to run redundant ranks. Replica-
tion could only be effective if failures are very frequent
and the synchronization cost can be kept low. Replication
can be used in the migratable-objects model. The smart
runtime system could even achieve partial replication and
decide which objects get replicated. The replication ratio
could be adjusted as the execution develops.

Hierarchical schemes in checkpoint/restart provide differ-
ent levels of checkpoints during the execution of the applica-
tion. The SCR library [18] implements three types of
checkpoints. Each level has different reliability features and
different costs. An associated stochastic model computes the
optimum checkpoint interval for each level. Similarly, the
FTI library [42] provides a multilevel checkpoint scheme. FTI
uses Reed-Solomon encoding to tolerate failures that may
include multiple nodes. It also uses dedicated threads to per-
form the checkpoint and different storage devices to store the
checkpoints. Hierarchical schemes are completely compatible
with migratable objects.

Reducing the performance overhead of message log-
ging has been tackled by exploring deterministic commu-
nication patterns in applications [43]. For instance, a send
deterministic application will always send the same
sequence of messages regardless of the order of reception
of previous non-causally related messages. This property
has been used to develop faster message-logging proto-
cols. These protocols can be used in the migratable-objects
model with parallel recovery.

9 CONCLUSIONS AND RECOMMENDATIONS

The major contributions of the migratable-objects model to
enhancing fault tolerance techniques are:

� Havingmigratable objectsmakes a proactive approach
work smoothly during the execution of the applica-
tion. Evacuating a PE is no different than migrating
all the objects living on it. All the necessary features
to provide such ability are already contemplated in
themodel.

� Writing checkpoint methods for reactive protocols is
easier with the migratable-objects model. Check-
pointing an object can be seen as a migration of the
object to storage. Moreover, the interface exported
by the runtime system and the expertise of the pro-
grammer can significantly reduce the size of the
checkpoint.

� Since the migratable-objects model does not directly
depend on the number of physical PEs used for com-
putation, the system can adapt to the loss of a PE
and continue execution on a shrunk system.

TABLE 6
Effect of Parallelism in Recovery

P 2 4 8 16 32 64
Efficiency 0.55 0.65 0.73 0.78 0.81 0.83

TABLE 7
Model Estimates and Experimental Results

Estimate (s) Run (s) Error(%)

Proactive F.T. (§3) 3639 3647 0.2
Checkpoint/R. (§4) 5792 6005 3.68
M. Logging (§5) 4694 4843 3.18
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� To accelerate recovery with message logging, objects
in the failed PE can be migrated to other locations
and be recovered in parallel. This distribution of
objects organically attaches to the computational
model.

In spite of its breadth, the collection of fault tolerance
techniques presented in this paper is not meant to be
exhaustive. There may still be many other fault tolerance
techniques that can be enhanced by the migratable-objects
model. Fundamentally, this model provides a flexible mech-
anism to dynamically shift computations from one part of
the system to another, enabling the implementation of a
large variety of methods to handle faults during execution
on a large system.

The future of HPC will bring larger and faster machines
at the cost of higher failure rates. We make the following
recommendations to provide resilience at extreme scale:

� Automatic restart is imperative. An important frac-
tion of the total turnaround time of a job is the wait
time in a queue of the scheduler. Having the system
detecting and restarting the job as nodes crash will
save precious time that is spent in that queue. We
believe it is essential to make a coordinated effort in
the HPC community to bring about an interface to
run through failures without relaunching (especially
manually) the job after a crash.

� A smart implementation of the checkpoint function-
ality is fundamental in bringing down the cost of
checkpointing and scaling rollback-recovery mecha-
nisms further. Migratable objects are a good means
to provide such functionality. Our thinking is that
fast checkpoint mechanisms must be made available
to HPC applications.

� We envision future systems using failure predictors
that raise few false alarms and capture most of the
failures. Fast migration mechanisms, such as migrat-
able-objects, empower accurate failure prediction.

� The ability to shorten recovery time is indispensable
for the success of rollback-recovery mechanisms.
Parallel recovery uses an over-decomposed app-
lication to get high degrees of parallelism during
recovery. We recommend the exploration of over-
decomposition to improve the efficiency of a system
in the future.
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