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Abstract 

GH plays a major role in the regulation of lipid metabolism and alterations in GH axis elicit major changes in fat 

distribution and mobilization. For example, in patients with GH deficiency (GHD) or in mice lacking the GH 

receptor, the percentage of fat is increased. In addition to the direct actions of GH on lipid metabolism, current 

evidence indicates that ghrelin, a stomach-derived peptide hormone with potent GH secretagogue action, increases 

lipogenesis in white adipose tissue (WAT) through a hypothalamic-mediated mechanism. Still, the mechanism by 

which GH tone modulates ghrelin actions on WAT remains unclear. Here we investigated the effect of central ghrelin 

administration on lipid metabolism in lipogenic tissues (liver and WAT) in the absence of GH, by using a model for 

the study of GHD, namely the spontaneous dwarf rat, which shows increased body fat. Our data demonstrate that 

central chronic ghrelin administration regulates adipose lipid metabolism, mainly in a GH-independent fashion, as a 

result of increased mRNA, protein expression, and activity levels of fatty acid metabolism enzymes. On the contrary, 

central ghrelin regulates hepatic lipogenesis de novo in a GH-independent fashion but lipid mobilization in a GH-

dependent fashion because carnitine palmitoyltransferase 1 was decreased only in wild-type Lewis rats. These 

findings suggest the existence of a new central nervous system-based neuroendocrine circuit, regulating metabolic 

homeostasis of adipose tissue. Understanding the molecular mechanism underlying the interplay between GH and 

ghrelin and their effects on lipid metabolism will provide new strategies for the design and development of suitable 

drugs for the treatment of GHD, obesity, and its comorbidities. 
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The metabolic processes controlled by GH are multiple and complex, and its effects on body 

composition and intermediary metabolism have been known for many years. GH plays a major role in the 

regulation of lipid metabolism, and alterations in GH axis elicit major changes in fat distribution and 

mobilization. This is the reason that patients with GH deficiency (GHD) display increased percentage of 

fat, which has been recognized as a clinical hallmark that rapidly disappears during the early months of 

treatment with GH. The adverse lipid profile in subjects with GHD and the mortality associated with this 

altered lipid profile is the risk factor that has probably attracted most attention in recent years. GHD is 

associated with conditions related to hyperlipidemia, increased body weight, abnormal body composition, 

and fat accumulation, and GH replacement in these patients has demonstrated beneficial on 

cardiovascular risk factors (1–7). 

 

Ghrelin is a 28-residue peptide hormone from the stomach and acts as the endogenous ligand to GH 

secretagogue receptor (GHS-R) (8–11), which is expressed in the brain and peripheral tissues (12). In 

addition to its role as a stimulator of GH release, ghrelin promotes feeding in humans and rodents, which 

results in increased body weight and adiposity (11, 13–16). The effects of ghrelin on feeding behavior are 

believed to be mediated at the level of the hypothalamus by a mechanism involving hypothalamic AMP-

activated protein kinase (AMPK), lipid metabolism (Fig. 1A), uncoupling protein-2, and neuropeptide 

gene expression (17–19). In addition, recent evidence has demonstrated that central administration of 

ghrelin directly increases adiposity by stimulation of the lipogenic program in the white adipose tissue 

(WAT), via the sympathetic nervous system, in a food intake-independent fashion (16, 20). More 

specifically central ghrelin administration induced the mRNA expression of various fat storage-promoting 

enzymes in WAT, such as lipoprotein lipase, acetyl-CoA carboxylase (ACC)-α, fatty acid synthase 

(FAS), and stearoyl-CoA desaturase (SCD)-1, whereas that of the rate-limiting step in fat oxidation, 

carnitine palmitoyltransferase 1 (CPT1), was decreased (16). This evidence indicates that central ghrelin 

action is of physiological relevance in the control of adipocyte metabolism and suggests that ghrelin could 

trigger meal preparation processes in the central nervous system (CNS), preparing metabolic pathways 

that would lead to a more efficient storage of calories. 

 
 

 
Fig. 1 Squematic representation of the synthesis and oxidation of fatty acids, ACL: ATP-

citrate lyase (A), hepatic mRNA (B), protein (C and D), and activity levels (E) of lipid 

metabolism-related enzymes in fed and fasted rats. Values are means ± sem of eight 
animals per group. *, **, ***, P < 0.05, 0.01, and 0.001, respectively, vs. fed. #, ##, ###, 

P < 0.05, 0.01, and 0.001, respectively, vs. wild-type Lewis. ACL, ATP-citrate lyase. 

 

 

  



Despite this evidence that links GH axis and ghrelin to lipid metabolism, the relevance of the GH tone 

on the lipogenic effect of ghrelin remains unclear. Although several studies in GH-deficient rats have 

demonstrated that weight gain and adiposity caused by ghrelin are independent of its ability to modulate 

GH secretion (11, 13, 15, 21), GH receptor deficiency blunts the stimulatory effects of ghrelin on feeding 

in mice (22). The aim of this study was to investigate the effect of central ghrelin administration on lipid 

metabolism in major lipogenic tissues, such as liver and adipose tissue, in absence of GH. We used the 

spontaneous dwarf rat, which is a classical model for the study of GHD (23, 24). Our data show that 

central ghrelin regulates adipocyte lipid metabolism in a GH-independent fashion, whereas central ghrelin 

regulates hepatic lipid mobilization in a GH-dependent fashion. These findings suggest the existence of a 

new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue. 

Materials and Methods 

Animals 

We used two male rat models, wild-type (controls) and GH-deficient (spontaneous dwarf rat) Lewis 

rats (2–3 months old; body weight 365 g ± 4 and 222 g ± 5 g, respectively; Harlan, Bicester, UK). Rats 

were housed in a temperature-controlled room, with a 12-h light, 12-h dark cycle (lights from 0800 to 

2000 h). All experiments and procedures involved in this study were reviewed and approved by the Ethics 

Committee of the University of Santiago de Compostela, in accordance with European Union Normative 

for the use of experimental animals. 

Fasting experiment 

To study hepatic and fat metabolism in a natural situation with high levels of ghrelin and 

absence/presence of GH, wild-type and GH-deficient rats were fasted during 48 h. 

Infusion of ghrelin into lateral ventricle in wild-type and GH-deficient Lewis rats 

To assess chronic effects of intracerebroventricular (ICV) ghrelin on epididymal WAT and hepatic 

metabolism in presence and absence of GH, normal and GH-deficient rats were infused with saline as 

vehicle (controls) or acyl-ghrelin, 20 μg/d for 8 d. 

Implantation of intracerebroventricular (ICV) cannulae 

Chronic ICV cannulae were implanted under ketamine/xylazine anesthesia as previously described 

(17, 25). The correct location of the cannulae in the lateral ventricle was confirmed by methylene blue 

staining. Animals were individually caged and allowed to recover for 1 wk before the experiment. During 

the postoperative recovery period, the rats were handled regularly under nonstressful conditions. 

Chronic ghrelin treatment 

Brain infusion cannulae were stereotaxically placed into the lateral ventricle as described above. A 

catheter tube was connected from the brain infusion cannulae to an osmotic minipump flow moderator 

(model 2001D or 2ML2; Alzet Corp., Palo Alto, CA). An sc pocket on the dorsal surface of the animal 

was created using blunt dissection, and the osmotic minipump was inserted. The incision was closed with 

sutures, and the rats were kept warm until fully recovered. The rats were then infused with either vehicle 

alone (saline) or vehicle containing acyl-ghrelin (Bachem, Bubendorf, Switzerland; catalog no. H-4864), 

the pumps released the solutions at a rate of 1 μl/h and 20 μg ghrelin/d. Animals were treated during 8 d. 



Acute ghrelin treatment 

To study the influence of the acylation state on food intake, wild-type rats were treated with a single 

ICV injection of 5 μl of either saline or 5 μg acyl-ghrelin and/or 5 μg desacyl-ghrelin (Bachem; catalog 

no. H-5946). Food intake was measured during 6 h. 

Tissue dissection 

Rats were killed by cervical dislocation and trunk blood was extracted. The following tissues were 

dissected and weighed: liver, brown adipose tissue, and visceral, retroperitoneal, omental, and epididymal 

WAT and somatic index were calculated. Samples were stored at −80 C until further processing and 

parameters measurement. 

Plasma measurements 

Plasma total ghrelin and insulin levels were measured by RIA as described previously (17, 25) using 

reagents provided in commercial kits (catalog no. GHRT-89K and RI-13K, respectively; Linco Research 

Inc., St. Charles, MO). Plasma glucose and triglyceride levels were assessed using a commercial kit based 

on a colorimetric method (Glucose and Triglyceride Spinreact, Spain). 

Real-time quantitative PCR 

Expression of mRNA levels of ACCα, CPT1M (muscle type isoform), and CPT1L (liver type 

isoform), FAS, SCD-1, and malonyl-CoA decarboxylase (MCD) in liver and epididymal WAT were 

studied by using real-time PCR (TaqMan; Applied Biosystems, Foster City, CA) by using specific 

primers and probes (supplemental Table S1). All reactions were carried out using the following cycling 

parameters: 50 C for 2 min, 95 C for 10 min followed by 40 cycles of 95 C for 15 sec, 60 C for 1 min (17, 

25). For data analysis, the input value of the target gene was standardized to the 18S value for each 

sample. Data were expressed in comparison with the average value for the vehicle treated rats (control 

group). We used eight rats per group. 

Western blotting 

Total protein lysates from liver (20 μg) and epididymal WAT (15 μg) were subjected to SDS-PAGE, 

electrotransferred on a polyvinylidene difluoride membrane and probed with the indicated antibodies: 

ACC, phospho-ACC-Ser79 (pACC), AMPKα1 and AMPKα2 (Upstate, Lake Placid, NY); phospho-

AMPKα-Thr172 (pAMPKα) (Cell Signaling, Danvers, MA); β-actin (Abcam, Cambridge, UK); CPT1M, 

FAS, and CPT1L (Santa Cruz Biotechnology, Santa Cruz, CA). For protein detection we used horseradish 

peroxidase-conjugated secondary antibodies and chemiluminescence (Amersham Biosciences, Little 

Chalfont, UK). We used eight rats per group and the protein levels were normalized to β-actin for each 

sample. 

Enzyme assays 

Tissue samples were homogenized in 10 volumes (liver) or four volumes (adipose tissue) ice-cold 

buffer: 20 mm Tris-HCl (pH 7.4), 250 mm sucrose, 1 mm EDTA, 1 mm dithiothreitol, 100 mm NaF, and 

protease inhibitor cocktail (Roche, Stockholm, Sweden). Enzyme activities of FAS, MCD, CPT1, 

glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were 

determined by spectrophotometry using a microplate reader (Tecan, Sunrise, Switzerland). The reactions 

were started by the addition of homogenates (30 μl) and substrates (20 μl, omitted in controls) to the 

reaction mixture (final volume 0.25 ml) and allowing the reactions to proceed at 37 C for preestablished 

times (5–15 min). FAS (26), G6PDH, 6PGDH (27, 28), CPT1 (17, 25, 29, 30), and MCD (31) activities 

were measured using methods previously described. ACC activity was assayed using an isotopic method 

(32) by 
14

co2 fixation to acid-stable products. 
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Malonyl-CoA assay 

Malonyl-CoA levels were assessed radioenzymatically by a modification of the method of McGarry et 

al. (33) as described previously (17, 34). 

Statistical analysis 

Date were expresses as percentage of wild-type fed rats or wild type infused with saline (control 

groups). Data were expressed as mean ± sem. Statistic significance was determined by two-way ANOVA 

and post hoc Tukey test. P < 0.05 was considered significant. 

Results 

Effects of fasting on plasma levels 

Plasma parameters are shown in supplemental Table S2. In 48-h-fasted wild-type Lewis rats, plasma 

ghrelin levels increased by 80% when compared with the fed group, whereas in the dwarf group, the 

levels were increased by just 40%. In the fed normal state, plasma insulin levels in dwarf rats were lower 

than in normal rats; GH-deficient rats exhibited normoglycemia compared with wild-type Lewis. After 48 

h of fasting, plasma insulin, glucose, and triglyceride levels diminished in both animal models. 

Effects of fasting on liver lipid metabolism 

Gene expression, protein, and activity levels of key enzymes involved in the regulation of lipid 

metabolism in liver of fed and food-deprived Lewis and dwarf rats are shown in Fig. 1, B–E. As 

expected, fasting markedly diminished mRNA levels of the fat storage-promoting enzymes, such as 

ACCα, FAS, and SCD-1 and enhanced mRNA levels of those involved in fatty acid degradation, such as 

CPT1L and MCD, which were higher in fed dwarf rats compared with fed normal Lewis rats (Fig. 1B). 

After 48 h of fasting, the protein levels of pAMPKα, pACCα, ACCα, CPT1L, and FAS significantly 

diminished in normal and GH-deficient rats; however, protein levels of AMPKα1 and AMPKα2 

significantly diminished only in the dwarf group. Protein levels of ACCα and FAS were higher in fed 

dwarf rats, whereas protein levels of CPT1L were lower in this model compared with their controls (Fig. 

1, C and D). In normal and GH-deficient rats, FAS, G6PDH, and 6PGDH activities decreased after 

fasting, whereas the activities of enzymes involved in fatty acid degradation were enhanced. Anew the 

activity of enzymes related with lipogenesis, such as FAS and 6PGDH, was increased in fed dwarf rats 

compared with their controls (Fig. 1E). 

Effects of fasting on WAT lipid metabolism 

We studied the fasting-induced effect on key enzymes of lipid metabolism in wild-type and GH-

deficient Lewis rats. The results are shown in Fig. 2, A–D. As expected, food deprivation clearly 

diminished mRNA levels of ACCα, FAS, CPT1M, SCD-1, and increased mRNA levels of MCD (Fig. 

2A). After fasting, protein levels of pAMPKα and AMPKα1 significantly diminished in GH-deficient rats 

but not normal rats, whereas protein levels of ACCα, pACCα, FAS, and CPT1M significantly diminished 

in both models of rats, although the decrease was more striking in dwarf rats. In all cases the protein 

levels of these enzymes were higher in fed dwarf rats compared with their controls (Fig. 2, B and C). 

FAS, G6PDH, 6PGDH, CPT1, and MCD activities were lower after 48 h of food deprivation in both 

animal models, although in normal rats only FAS and G6PDH activities decreased significantly. The 

activity of FAS, CPT1, and MCD was higher in fed dwarf rats compared with their controls (Fig. 2D). 
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Fig. 2 Epididymal WAT mRNA (A), protein (B and C), and activity levels (D) 

of lipid metabolism-related enzymes in fed and fasted Lewis rats. Values are 
expressed as mean ± sem. *, **, ***, P < 0.05, 0.01, and 0.001, respectively, 

vs. fed. #, ##, ###, P < 0.05, 0.01, and 0.001, respectively, vs. wild-type Lewis. 

Effects of central ghrelin treatment on food intake and body weight gain in wild-type Lewis rats 

To throw some light on the mechanism involved in fasting-induced changes in lipid metabolism in 

normal and GH-deficient rats, we assessed the central effects of ghrelin in both experimental models. As 

expected chronic ICV ghrelin treatment increased food intake (Fig. 3, A and B), body weight gain (Fig. 

3C), and food efficiency (Fig. 3D) as well as percent omental and visceral WAT (Fig. 3E) during the 8-d 

experimental period in wild-type Lewis rats in comparison with their saline-treated controls. 

 

 
 

 
Fig. 3 Effect of an 8-d ICV ghrelin treatment on cumulative food intake (A), cumulative daily food 
intake (B), body weight gain (C), food efficiency (D), somatic index (E), and sum of retroperitoneal, 

omental, epididymal, and visceral adipose tissue (F) in wild-type Lewis rats. Values are expressed as 

mean ± sem. *, **, ***, P < 0.05, 0.01, and 0.001, respectively, vs. saline. Somatic index was 
calculated as the ratio between tissue weight and body weight and was expressed as a percentage. 

Food efficiency was calculated as the ratio between body weight gain over the 8-d experimental 

period and cumulative food intake and was expressed as a percentage.



Effects of central ghrelin treatment on plasma parameters in wild-type Lewis rats 

As previously reported (16), ICV ghrelin administration elicited an increase in plasma ghrelin levels 

in wild-type Lewis rats (supplemental Table S3). On the other hand, plasma insulin, glucose, and 

triglyceride levels were unchanged in wild-type Lewis rats (supplemental Table S3). 

Effects of central ghrelin treatment on liver lipid metabolism in wild-type Lewis rats 

To assess the central effect of ghrelin on hepatic lipogenesis, mRNA, protein, and activity levels of 

enzymes involved in synthesis and oxidation of lipids were measured in wild-type Lewis rats (Fig. 4, A–

D). Chronic ICV ghrelin infusion significantly increased SCD-1 mRNA levels (Fig. 4A). Protein levels of 

AMPKα1, AMPKα2, pACCα, and ACCα were also significantly increased after the ghrelin treatment 

(Fig. 4, B and C). Similar results were seen in transcript and protein levels of FAS, although it did not 

reach statistical significance. However, the treatment induced an increase in FAS, G6PDH, and 6PGDH 

activities, suggesting an increased lipogenesis de novo (Fig. 4D). On the contrary, CPT1 protein and 

activity levels were reduced by ghrelin infusion (Fig. 4, B–D). In keeping with, the high levels of FAS 

activity, malonyl-CoA was decreased in ghrelin-treated rats (Fig. 4E). 

 
 

 
Fig. 4 Effect of an 8-d ICV ghrelin treatment on hepatic and WAT mRNA (A and 

F), protein (B and C and G and H) and activity levels (D and I) of lipid 

metabolism-related enzymes and malonyl-CoA levels (E and J) in wild-type 
Lewis rats. Values are expressed as mean ± sem. *, **, ***, P < 0.05, 0.01, and 

0.001, respectively, vs. saline. 
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Effects of central ghrelin treatment on WAT lipid metabolism in wild-type Lewis rats 

To study the effects of chronic ICV ghrelin treatment on WAT lipid metabolism, mRNA, protein, and 

activity levels of the enzymes involved in both synthesis and lipid oxidation were assessed. Ghrelin 

treatment markedly enhanced mRNA levels of the fat storage-promoting enzymes as ACCα, FAS, and 

SCD1 as well as MCD expression (Fig. 4F). These results were confirmed by Western blotting, with ICV 

ghrelin infusion enhancing protein levels of ACCα, pACCα, FAS, and CPT1M (Fig. 4, G and H). The 

activity of those enzymes, as well as G6PDH and 6PGDH, was significantly increased in ghrelin-treated 

rats (Fig. 4I), suggesting a higher lipogenesis rate, which is also supported by increased triglyceride 

content in the WAT of ghrelin-treated animals (vehicle: 110.12 ± 8.52 μmol/g tissue vs. 229.64 ± 15.16 

μmol/g tissue: P < 0.001). In line with the increased FAS and MCD activities in ghrelin-treated rats, 

malonyl-CoA levels were markedly decreased (Fig. 4J), which consequently increased CPT1 activity in 

ghrelin-treated rats (Fig. 4I). 

Effects of central ghrelin treatment on food intake and body weight gain in GH-deficient Lewis rats 

As it happened in normal rats, chronic ICV ghrelin treatment increased food intake (Fig. 5, A and B), 

body weight (Fig. 5C), and food efficiency (Fig. 5D) during the 8-d experimental period in dwarf rats 

when compared with their saline-treated controls. However, ghrelin did not change the total adipose 

tissue mass of dwarf rats (Fig. 5, E and F). 

 
 

 
Fig. 5 Effect of an 8-d ICV ghrelin treatment on cumulative food intake (A), cumulative daily food intake (B), 

body weight gain (C), food efficiency (D), somatic index (E), and sum of retroperitoneal, omental, epididymal, 

and visceral adipose tissue (F) in dwarf rats. Values are expressed as mean ± sem. *, **, ***, P < 0.05, 0.01, and 
0.001, respectively, vs. saline. 

Effects of central ghrelin treatment on plasma parameters in GH-deficient Lewis rats 

ICV ghrelin administration elicited an increase in plasma ghrelin, insulin and glucose levels in GH-

deficient Lewis rats. However, triglyceride levels diminished in these animals after ghrelin treatment 

(supplemental Table S3); these findings agree with other published results (16). 
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Effects of central ghrelin treatment on liver lipid metabolism in GH-deficient Lewis rats 

To assess the central effect of ghrelin on hepatic lipogenesis in absence of GH, mRNA, protein, and 

activity levels of enzymes involved in synthesis and oxidation of lipids were measured in GH-deficient 

Lewis rats (Fig. 6, A–D). Chronic ICV ghrelin infusion significantly increased mRNA levels for SCD1 

(Fig. 6A). Similarly to normal rats, central ghrelin treatment also induced an increase in the protein levels 

of AMPKα1, pACCα, ACCα, and FAS (Fig. 6, B and C) as well as an increase in the activity of ACC, 

FAS, G6PDH, and 6PGDH (Fig. 6D). Overall, these data suggest that central ghrelin action on hepatic 

lipid metabolism is independent of GH tone. On the other hand, CPT1 protein and activity (Fig. 6, B–D) 

and malonyl-CoA content (Fig. 6E) did not change in dwarf rats after ghrelin administration. 

 
 

 
Fig. 6 Effect of an 8-d ICV ghrelin treatment on hepatic and WAT mRNA (A and F), 

protein (B and C and G and H), and activity levels (D and I) of lipid metabolism-related 
and malonyl-CoA levels (E and J) in dwarf rats. Values are expressed as mean ± sem. *, 

**, ***, P < 0.05, 0.01, and 0.001, respectively, vs. saline. 

  



Effects of central ghrelin treatment on WAT lipid metabolism in GH-deficient Lewis rats 

To study the effects of central ghrelin treatment on adipose lipid metabolism in absence of GH, 

mRNA, protein, and activity levels of the enzymes involved in both synthesis and lipid oxidation were 

assessed in GH-deficient rats (Fig. 6, F–I). Ghrelin treatment enhanced mRNA levels of the fat storage-

promoting enzymes as ACCα, FAS, and SCD1 (Fig. 6F). In GH-deficient rats, ICV ghrelin infusion 

enhanced protein levels of AMPKα1, ACCα, pACCα, and FAS (Fig. 6, G and H). The activity levels of 

these enzymes, G6PDH and 6PGDH as well as CPT1 and MCD, significantly increased in ghrelin-treated 

rats (Fig. 6I); in keeping with these observations, triglyceride levels in the adipose tissue of dwarf rats 

treated with ghrelin have shown a tendency to be up-regulated (vehicle: 300.42 ± 39.71 vs. 401.06 ± 

69.71 μmol/g tissue: P = 0.1). Finally, malonyl-CoA levels did not change after central ghrelin treatment 

in dwarf rats. 

Discussion 

GH plays a major role in the regulation of lipid metabolism, and impairment in the GH axis elicits 

major changes in glucose and lipid metabolism. GH-deficient patients (35) and GH receptor knockout 

mice (GHR-KO) (36–40) display increased insulin sensitivity, insulin secretion, and fasting glucose 

concentrations and increased fat mass. On the contrary, in conditions of GH excess, such as acromegaly 

(41) and after GH administration in GH-deficient adults (42, 43), insulin antagonistic actions of GH are 

well described. The present study shows that in GH-deficient rats, lipogenic enzymes are enhanced 

compared with normal Lewis rats, consistent with the hypothesis that GH decreases adipose tissue 

accretion (44). Our results provide for first time a clear demonstration that chronic central ghrelin 

treatment provokes GH-independent up-regulation of fat storage-promoting enzymes in liver and WAT. 

However, the activity of CPT1, the key enzyme modulating fatty acid oxidation, is enhanced after central 

ghrelin infusion in a GH-independent fashion in WAT. However, activation of the central ghrelin system 

specifically decreases hepatic CPT1 activity in wild-type Lewis rats but not the liver of dwarf rats, 

suggesting GH dependency. Furthermore and contrary to the hypothalamus (17), the present findings 

indicate that in peripheral tissues the increased ghrelin levels during food deprivation do not mediate the 

effects of fasting. In these tissues, starvation downregulates the expression of lipogenic enzymes and 

activates (in liver) or down-regulates (in WAT) CPT1, which are opposite effects to those observed after 

the ghrelin treatment. 

 

Our results show that after 48 h of fasting, the levels of mRNA, protein, and activity of enzymes 

related to lipid synthesis were reduced in both liver and WAT. A reduction in the pentose phosphate 

pathway (based on 6PDGH and G6PDH) was also observed, in accordance with the reduction in the de 

novo lipogenesis (45, 46). To further investigate the role of GH on lipid metabolism, we assayed the 

levels of AMPK. Our data demonstrate that the hepatic levels of pAMPK are decreased after food 

deprivation in wild-type Lewis rats, whereas in GH-deficient rats the levels of both active and total 

protein drop in liver and WAT after 48 h of food deprivation. There are many studies linking food 

deprivation/restriction and AMPK, and the data are controversial. Several reports have shown that AMPK 

is increased by fasting and decreased by refeeding (47, 48). Contrary, Foretz et al. (49) observed that the 

overexpression of a constitutively active form of AMPK in liver markedly attenuates increases in the 

mRNA of lipogenic enzymes, but they did not find a decrease in AMPK activity during refeeding. When 

mice overexpressing GH and mice lacking GH receptor were subjected to long-term caloric restriction, 

protein levels of pAMPK were unaffected (40, 50). Other studies reported a down-regulation of pAMPK 

induced by caloric restriction in rat liver, no change in the fed-fasted cycle in normal and transgenic 

dwarf rats (51) and AMPK activation in rat liver in normal rat fasted by 24 h (52). The exact reasons for 

these discrepancies between the present study and those previous reports are unclear, although we 

hypothesize that the phosphorylation of AMPK may be dependent on time, age, species, and duration of 

the fasting. Further studies are needed to clarify this hypothesis. 

 

Ghrelin is an orexigenic gastrointestinal peptide (19, 53–56) that potently induces GH release (57). 

Ghrelin binds to the GH secretagogue receptor, which is present in not only the hypothalamus and the 

pituitary gland but also many other organs and tissues, indicating that ghrelin may also elicit peripheral, 

GH-independent effects (58). Recent evidence has highlighted that ghrelin acts in the hypothalamus 

modulating lipid metabolism in peripheral tissues, particularly in the WAT (16). There are several studies 

highlighting the importance of GH signaling on the effect of ghrelin on metabolism. Although some data 

from GH-deficient rats have demonstrated that weight gain and adiposity caused by ghrelin are 



independent of its ability to modulate GH secretion (11, 13, 15, 21), ICV ghrelin treatment did not 

increase food intake in GH receptor gene-deficient mice (22), and ghrelin failed to increase the expression 

of GH secretagogue receptor in the hypothalamic arcuate nucleus of dwarf rats (59). Our aim was to 

determine whether ghrelin’s chronic effects on food intake, body weight, and synthesis and oxidation 

pathways of lipids are GH independent. Our data show that central ghrelin treatment enhanced body 

weight, food intake, and food efficiency and increased transcript, protein, and activity levels of enzymes 

related with lipid synthesis in WAT and to a lesser extent in liver. In previous papers it has been reported 

that central ghrelin infusion enhances transcript levels of lipogenic enzymes in adipose tissue and liver, 

but no activity data were shown in those studies (16, 60). Here we demonstrated that in addition to 

mRNA and protein levels, the activity of lipogenic enzymes was increased in both liver and WAT after 

central ghrelin treatment in a GH-independent fashion. Furthermore, the results obtained for activity 

G6PDH and 6PGDH support an increased lipogenesis by ghrelin treatment because they produce 

oxidation of nicotinamide adenine dinucleotide phosphate, which is considered an essential element in de 

novo lipogenesis by supplying reducing power (46). 

 

Central ghrelin effects are particularly intriguing in the case of AMPK, CPT1, and malonyl-CoA 

levels. Preceding studies demonstrated that peripheral and central administration of ghrelin to rats affects 

AMPK activity in a tissue-specific manner. AMPKα is activated in the brain and heart, whereas it is 

inhibited in liver and adipose tissue, and no effect is detected on skeletal muscle (17, 54, 60–63). Our data 

show for first time that chronic ghrelin treatment enhanced protein levels of AMPKα and pAMPKα. ACC 

activity was enhanced after central ghrelin infusion in liver and WAT, but the levels of its product, 

malonyl-CoA, were decreased in both tissues of wild-type Lewis rats. A reasonable explanation for this is 

that central ghrelin treatment increased the activities of FAS (liver and WAT) and MCD (only in WAT), 

leading to an increase of malonyl-CoA turnover. Malonyl-CoA acts as negative mediator of fatty acid 

oxidation by inhibiting CPT-1 and blocking entry of fatty acids into the mitochondria for β-oxidation 

(64). Interestingly, our results suggest that hepatic CPT1 is regulated in a GH-dependent manner because 

we observed that chronic infusion of ghrelin directly into the CNS decreased protein and activity levels of 

CPT1 only in the liver of wild-type Lewis rats and not in dwarf rats. This result suggests that the potential 

of central ghrelin to promote hepatic lipids storage is higher in a GH-dependent- (favoring lipid 

deposition and decreasing lipid mobilization) than in a GH-independent manner (favoring only lipid 

deposition). Contrary to what happens in liver, central ghrelin infusion increased CPT1 protein and 

activity levels in WAT, independent of GH levels. Nevertheless, activation of the central ghrelin system 

may increase lipid oxidation in WAT, and our data indicate that fat mass and fat storage enzymes were 

also stimulated by ghrelin. Thereby, our data suggest that the enhanced β-oxidation in WAT after central 

ghrelin infusion might be a compensatory mechanism and is a GH-independent effect. 

 

Another important observation in the present study is that continuous ICV ghrelin infusion resulted in 

hyperinsulinemia and hyperglycemia only in dwarf rats, although in wild-type Lewis rats, a trend to 

increase was observed for both parameters. The effects of ghrelin on insulin secretion in experimental 

animals are inconsistent. It has been shown to either inhibit or stimulate insulin secretion, depending on 

dose and experimental conditions (65–68). However, systemic action of exogenous ghrelin to elevate 

blood glucose levels has been well documented in humans and rodents (69–71). Several studies have 

demonstrated that the ghrelin system is actively involved in the control of insulin sensitivity and glucose 

metabolism in situations of high-fat diet, GH, and leptin deficiency (72–74). In addition, the ghrelin 

knockout (Ghrl
−/−

) mice on a high-fat diet showed improved levels of insulin, glucose, and lipids 

compared with wild-type mice on this diet and exhibited greater glucose tolerance (75). Our results 

suggest that ghrelin is more important in the control of insulin sensitivity in situations that produce 

metabolic stress, such as the GH deficiency exhibited by spontaneous dwarf rats. Finally, we observed 

that plasma total ghrelin levels were increased in ICV ghrelin-treated rats independently of 

presence/absence of GH. 

 

This increase could be due to an altered ghrelin clearance and/or gastric ghrelin synthesis, a 

phenomenon reported previously by others (16, 73). However, in our opinion, the possibility that increase 

peripheral ghrelin levels contributed to the observed effects was excluded for several reasons. In a recent 

work describing the effects of central ghrelin on adipose lipid metabolism, a pair-fed (animals given the 

same amount of food as consumed by vehicle-treated rats) ghrelin-treated group was included to 

differentiate between ghrelin effects per se from those related to increased food intake. The results 

showed that plasma levels of acyl-ghrelin were increased in the ICV ghrelin-ad libitum group, whereas 

such an increase was absent in the ICV ghrelin pair-fed group. However, despite those differences in 

plasma values, the ghrelin effects on lipid (and glucose) metabolism occurred independently from 



ghrelin-induced hyperphagia, discarding a possible interference of peripheral ghrelin action (16). 

Moreover, in the same study, rats were treated peripherally with the same amount of ghrelin that was 

given ICV to exclude any potential effect of leaking from the cephalospinal fluid (CFS) after central 

ghrelin treatment. Under these conditions, no effects on feeding, body weight, adiposity, or lipid and 

glucose metabolism were detected. Overall, these data exclude and make improbable the existence of 

leaking from the CFS to the blood and instead suggest the existence of a central pathway modulating 

ghrelin action on peripheral lipid metabolism. Moreover, in the plasma it is known that acylated ghrelin is 

quickly deacylated (76). In the CFS this fact is not demonstrated, but to avoid a possible degradation to 

deacylated ghrelin, we infused acyl-ghrelin directly into the brain continuously. Still, the possibility that 

the effects here reported are exerted by des-acyl ghrelin, generated after ghrelin infusion, remains open. 

Further studies assessing the role of nonacylated ghrelin, as well as other peptides generated from the 

ghrelin, are needed. 

 

In summary, our study indicates that: 1) the effects on lipid metabolism in liver and WAT caused by 

starvation are independent of ghrelin, 2) central ghrelin treatment favors lipid storage in a GH-

independent mode in WAT and liver, and 3) ghrelin induces changes in lipid oxidation in a GH-

independent fashion in WAT and in a GH- dependent fashion in liver (decreasing only in normal rats). 

We propose that ghrelin favors energy stores to minimize negative effects in periods of food scarcity. 

During fasting, increased ghrelin levels stimulate appetite and favor the recuperation when the food is 

again available by triggering biological responses that modulate the efficiency of energy storage. 

However, in situations as GH deficiency or diets rich in fat, which contribute a further increase in positive 

energy balance and fat mass (77, 78), the ghrelin’s actions may constitute a harmful mechanism because 

it enhances adipose tissue accretion and/or insulin resistance. Although the role of circulating ghrelin 

levels are not clearly established, (79–81), it has been found that ghrelin levels are decreased in GH-

deficient patients treated with GH (82). The decreased ghrelin levels are correlated with changes in fat 

mass and fat-free mass. The present study suggests that central ghrelin effects can mediate such changes 

in fat metabolism. 

 

Whether a suppression of ghrelin could be useful in controlling adiposity in human obesity associated 

with GH deficiency remains to be established. In any event, understanding the molecular mechanism 

underlying the interplay between GH and ghrelin on lipid metabolism will show new strategies for the 

design and development of suitable drugs for the treatment of GH-deficiency, obesity, and its 

comorbidities. 

Acknowledgments 

Address all correspondence and requests for reprints to: Susana Sangiao-Alvarellos, Ph.D., Department of Medicine, 

School of Health Science, University of A Coruñ̃a, A Coruñ̃a, Spain, and Department of Physiology, School of 

Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain. E-mail: ssangiao@udc.es; 

Miguel Ló́pez, Ph.D., Department of Physiology, School of Medicine, University of Santiago de Compostela and 

CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn),S.Franciscos/n,15782SantiagodeCompostela(A 

Coruñ̃a), Spain. E-mail: m.lopez@usc.es; or Professor Carlos Dié́guez, M.D., Ph.D., Department of Physiology, 

School of Medicine, University of Santiago de Compostela and CIBER Fisiopatología de la Obesidad y Nutrició́n 

(CIBERobn), S.Franciscos/n, 15782 Santiago de Compostela (A Coruñ̃a), Spain. E-mail: carlos.dieguez@usc.es. 

 

This work was supported by Grants PGIDIT06PXIB208063PR (to C.D.) and GRC2006/66 (to M.L.) from Xunta de 

Galicia, Grants PI061700 (to M.L.) and PI051024 and PI070413 (to F.C.) from the Fondo Investigationes Sanitarias, 

Grants BFU2008 (to C.D.) and RyC-2007-00211 (to M.L.) from the Ministerio de Educacion y Ciencia; European 

Union Grant Health-F2-2008-223713 (to C.D.), and Grants DK-19514 and DK-67509 (to A.K.S.) from the U.S. 

Public Health Service. Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición is an 

initiative of Instituto de Salud Carlos III (ISCIII). 

Disclosure Summary: The authors have nothing to disclose. 

  



Abbreviations: 

ACC, Acetyl-CoA carboxylase; AMPK, AMP-activated protein kinase; CFS, cephalospinal fluid; CNS, central 

nervous system; CPT1, carnitine palmitoyltransferase 1; CPT1L, CPT1 liver type isoform; CPT1M, CPT1 muscle 

type isoform; FAS, fatty acid synthase; GHD, GH deficiency; G6PDH, glucose-6-phosphate dehydrogenase; ICV, 

intracerebroventricular; MCD, malonyl-CoA decarboxylase; pACC, phospho-ACC-Ser79; pAMPKα, phospho-

AMPKα-Thr172; 6PGDH, 6-phosphogluconate dehydrogenase; SCD, stearoyl-CoA desaturase; WAT, white adipose 

tissue.  

References 

1. van der Lely AJ 2004 Justified and unjustified use of growth hormone. Postgrad Med J 80:577–580  

2. van der Lely AJ 2004 Growth hormone and glucose metabolism: the model of the GH-receptor antagonists. Ann 

Endocrinol (Paris) 65: 81–83  

3. Ghigo E, Arvat E, Giordano R, Broglio F, Gianotti L, Maccario M, Bisi G, Graziani A, Papotti M, Muccioli G, 

Deghenghi R, Camanni F 2001 Biologic activities of growth hormone secretagogues in humans. Endocrine 

14:87–93  

4. Jørgensen JO, Vestergaard E, Gormsen L, Jessen N, Nørrelund H, Christiansen JS, Møller N 2005 Metabolic 

consequences of GH deficiency. J Endocrinol Invest 28:47–51  

5. Christiansen JS, Vahl N, Norrelund H, Jørgensen JO 2002 Effects of GH replacement in young patients with 

childhood onset GH deficiency. Int J Clin Pract Suppl 32–36  

6. Christiansen JS, Jørgensen JO 1991 Beneficial effects of GH replacement therapy in adults. Acta Endocrinol 

(Copenh) 125:7–13  

7. Ghigo E, Aimaretti G, Corneli G 2008 Diagnosis of adult GH deficiency. Growth Horm IGF Res 18:1–16  

8. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K 1999 Ghrelin is a growth-hormone-releasing 

acylated peptide from stomach. Nature 402:656–660  

9. Kojima M, Hosoda H, Kangawa K 2001 Purification and distribution of ghrelin: the natural endogenous ligand for 

the growth hormone secretagogue receptor. Horm Res 56(Suppl 1):93–97  

10. Kojima M, Hosoda H, Matsuo H, Kangawa K 2001 Ghrelin: discovery of the natural endogenous ligand for the 

growth hormone secretagogue receptor. Trends Endocrinol Metab 12:118–122  

11. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S 2001 A role for ghrelin in 

the central regulation of feeding. Nature 409:194–198  

12. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK 2006 Expression of ghrelin receptor mRNA in the rat and 

the mouse brain. J Comp Neurol 494:528–548 

13. Tschöp M, Smiley DL, Heiman ML 2000 Ghrelin induces adiposity in rodents. Nature 407:908–913 

14. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR 2001 

Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86: 5992–5995  

15. Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, Batterham RL, Taheri S, Stanley SA, Ghatei 

MA, Bloom SR 2001 Ghrelin causes hyperphagia and obesity in rats. Diabetes 50:2540– 2547 

16. Theander-Carrillo C, Wiedmer P, Cettour-Rose P, Nogueiras R, Perez-Tilve D, Pfluger P, Castaneda TR, Muzzin 

P, Schu ̈rmann A, Szanto I, Tschöp MH, Rohner-Jeanrenaud F 2006 Ghrelin action in the brain controls 

adipocyte metabolism. J Clin Invest 116:1983– 1993  

17. López M, Lage R, Saha AK, Pérez-Tilve D, Vázquez MJ, Varela L, Sangiao-Alvarellos S, Tovar S, Raghay K, 

Rodriguez-Cuenca S, Deoliveira RM, Castan ̃eda T, Datta R, Dong JZ, Culler M, Sleeman MW, Alvarez CV, 

Gallego R, Lelliott CJ, Carling D, Tschöp MH, Diéguez C, Vidal-Puig A 2008 Hypothalamic fatty acid 

metabolism mediates the orexigenic action of ghrelin. Cell Metab 7:389–399  

18. Anderson KA, Ribar TJ, Lin F, Noeldner PK, Green MF, Muehlbauer MJ, Witters LA, Kemp BE, Means AR 

2008 Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab 7:377–388  

19. Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, Tschöp MH, Shanabrough M, Cline 

G, Shulman GI, Coppola A, Gao XB, Horvath TL, Diano S 2008 UCP2 mediates ghrelin’s action on NPY/AgRP 

neurons by lowering free radicals. Nature 454:846–851  

20. Wren AM SC, Thomas EL, Abbott CR, Ghatei MA, Bell JD, Bloom SR, Continuous subcutaneous administration 

of ghrelin results in accumulation of adipose tissue, independent of hyperphagia or body weight gain. Proc 23rd 

Joint Meeting of the British Endocrine Societies, Brighton, UK, 2004, (Abstract OC35)  

21. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, 

Ghatei MA, Bloom SR 2000 The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone 

secretion. Endocrinology 141:4325–4328  

22. Egecioglu E, Bjursell M, Ljungberg A, Dickson SL, Kopchick JJ, Bergstro ̈m G, Svensson L, Oscarsson J, 

Törnell J, Bohlooly-Y M 2006 Growth hormone receptor deficiency results in blunted ghrelin feeding response, 

obesity, and hypolipidemia in mice. Am J Physiol Endocrinol Metab 290:E317–E325  

23. López M, Seoane LM, Tovar S, Nogueiras R, Diéguez C, Señarís R 2004 Orexin-A regulates growth hormone-

releasing hormone mRNA content in a nucleus-specific manner and somatostatin mRNA content in a growth 

hormone-dependent fashion in the rat hypothalamus. Eur J Neurosci 19:2080–2088  

24. Charlton HM, Clark RG, Robinson IC, Goff AE, Cox BS, Bugnon C, Bloch BA 1988 Growth hormone-deficient 

dwarfism in the rat: a new mutation. J Endocrinol 119:51–58  



25. Vázquez MJ, González CR, Varela L, Lage R, Tovar S, Sangiao-Alvarellos S, Williams LM, Vidal-Puig A, 

Nogueiras R, López M, Diéguez C 2008 Central resistin regulates hypothalamic and peripheral lipid metabolism 

in a nutritional-dependent fashion. Endocrinology 149:4534–4543  

26. Saggerson ED, Greenbaum AL 1970 The regulation of triglyceride synthesis and fatty acid synthesis in rat 

epididymal adipose tissue. Effects of altered dietary and hormonal conditions. Biochem J 119: 221–242  

27. Tian WN, Braunstein LD, Apse K, Pang J, Rose M, Tian X, Stanton RC 1999 Importance of glucose-6-phosphate 

dehydrogenase activity in cell death. Am J Physiol 276:C1121–C1131  

28. Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC 1998 Importance of glucose-6-

phosphate dehydrogenase activity for cell growth. J Biol Chem 273:10609–10617  

29. Karlic H, Lohninger S, Koeck T, Lohninger A 2002 Dietary l-carnitine stimulates carnitine acyltransferases in the 

liver of aged rats. J Histochem Cytochem 50:205–212  

30. Shin ES, Cho SY, Lee EH, Lee SJ, Chang IS, Lee TR 2006 Positive regulation of hepatic carnitine palmitoyl 

transferase 1A (CPT1A) activities by soy isoflavones and L -carnitine. Eur J Nutr 45:159–164 

31. Antinozzi PA, Segall L, Prentki M, McGarry JD, Newgard CB 1998 Molecular or pharmacologic perturbation of 

the link between glu- cose and lipid metabolism is without effect on glucose-stimulated insulin secretion. A re-

evaluation of the long-chain acyl-CoA hypothesis. J Biol Chem 273:16146–16154  

32. Gao S, Kinzig KP, Aja S, Scott KA, Keung W, Kelly S, Strynadka K, Chohnan S, Smith WW, Tamashiro KL, 

Ladenheim EE, Ronnett GV, Tu Y, Birnbaum MJ, Lopaschuk GD, Moran TH 2007 Leptin activates 

hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc Natl Acad Sci USA 104:17358–17363  

33. McGarry JD, Stark MJ, Foster DW 1978 Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured 

using a simple radioisotopic assay. J Biol Chem 253:8291–8293  

34. López M, Lelliott CJ, Tovar S, Kimber W, Gallego R, Virtue S, Blount M, Vázquez MJ, Finer N, Powles TJ, 

O’Rahilly S, Saha AK, Diéguez C, Vidal-Puig AJ 2006 Tamoxifen-induced anorexia is as- sociated with fatty 

acid synthase inhibition in the ventromedial nu- cleus of the hypothalamus and accumulation of malonyl-CoA. 

Diabetes 55:1327–1336  

35. Bougneres PF, Artavia-Loria E, Ferre P, Chaussain JL, Job JC 1985 Effects of hypopituitarism and growth 

hormone replacement ther- apy on the production and utilization of glucose in childhood. J Clin Endocrinol 

Metab 61:1152–1157  

36. Zhou Y, He L, Baumann G, Kopchick JJ 1997 Deletion of the mouse GH-binding protein (mGHBP) mRNA 

polyadenylation and splicing sites does not abolish production of mGHBP. J Mol Endocrinol 19:1–13  

37. Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ 2003 Deletion, but not antagonism, 

of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like 

growth factor I level sand increased life span. Endocrinology 144:3799–3810  

38. Hauck SJ, Bartke A 2001 Free radical defenses in the liver and kidney of human growth hormone transgenic 

mice: possible mecha- nisms of early mortality. J Gerontol A Biol Sci Med Sci 56:B153–B162  

39. Hauck SJ, Hunter WS, Danilovich N, Kopchick JJ, Bartke A 2001 Reduced levels of thyroid hormones, insulin, 

and glucose, and lower body core temperature in the growth hormone receptor/binding protein knockout mouse. 

Exp Biol Med (Maywood) 226:552–558  

40. Al-Regaiey KA, Masternak MM, Bonkowski M, Sun L, Bartke A 2005 Long-lived growth hormone receptor 

knockout mice: inter- action of reduced insulin-like growth factor i/insulin signaling and caloric restriction. 

Endocrinology 146:851–860  

41. Hansen I, Tsalikian E, Beaufrere B, Gerich J, Haymond M, Rizza R 1986 Insulin resistance in acromegaly: 

defects in both hepatic and extrahepatic insulin action. Am J Physiol 250:E269–E273  

42. Bramnert M, Segerlantz M, Laurila E, Daugaard JR, Manhem P, Groop L 2003 Growth hormone replacement 

therapy induces in- sulin resistance by activating the glucose-fatty acid cycle. J Clin En- docrinol Metab 

88:1455–1463  

43. Rosenfalck AM, Maghsoudi S, Fisker S, Jørgensen JO, Christiansen JS, Hilsted J, Vølund AA, Madsbad S 2000 

The effect of 30 months of low-dose replacement therapy with recombinant human growth hormone (rhGH) on 

insulin and C-peptide kinetics, insulin secretion, insulin sensitivity,glucose effectiveness, and body composition 

in GH-deficient adults. J Clin Endocrinol Metab 85:4173–4181  

44. Saltiel AR, Kahn CR 2001 Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–

806  

45. Kersten S 2001 Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2:282–286  

46. Salati LM, Amir-Ahmady B 2001 Dietary regulation of expression of glucose-6-phosphate dehydrogenase. Annu 

Rev Nutr 21:121– 140  

 


