VERA ISABEL BARROS ALFAMA

AVALIAÇÃO DOS PERIGOS GEOLÓGICOS NA ILHA BRAVA (CABO VERDE): IMPLICAÇÕES PARA O PLANEAMENTO DE EMERGÊNCIA

DEPARTAMENTO DE GEOCIÊNCIAS UNIVERSIDADE DOS AÇORES 2016

VERA ISABEL BARROS ALFAMA

AVALIAÇÃO DOS PERIGOS GEOLÓGICOS NA ILHA BRAVA (CABO VERDE): IMPLICAÇÕES PARA O PLANEAMENTO DE EMERGÊNCIA

TESE APRESENTADA À UNIVERSIDADE DOS AÇORES PARA A OBTENÇÃO DO GRAU DE DOUTOR NO RAMO DE GEOLOGIA, ESPECIALIDADE DE VULCANOLOGIA

ORIENTAÇÃO CIENTÍFICA DE:

DOUTORA MARIA GABRIELA PEREIRA DA SILVA QUEIROZ INVESTIGADORA PRINCIPAL DA UNIVERSIDADE DOS AÇORES

PROFESSOR DOUTOR JOÃO LUIS ROQUE BAPTISTA GASPAR PROFESSOR ASSOCIADO COM AGREGAÇÃO DA UNIVERSIDADE DOS AÇORES

DEPARTAMENTO DE GEOCIÊNCIAS UNIVERSIDADE DOS AÇORES 2016

Aos meus pais, à Celisa e à Kyra

ÍNDICE

LISTA DE FIGURAS	Ι
LISTA DE TABELAS	IX
AGRADECIMENTOS	XI
RESUMO	XV
ABSTRACT	XIX

CAPÍTULO 1. INTRODUÇÃO

1.1.	Enquadramento geográfico	3
1.1.1	O Arquipélago de Cabo Verde	3
1.1.2	A Ilha Brava	5
1.2.	Estudos anteriores	7
1.2.1.	Os trabalhos pioneiros	8
1.2.2.	Os trabalhos clássicos	12
1.2.3.	Os trabalhos contemporâneos	16
1.2.4.	Monitorização sismovulcânica e a avaliação de perigos	21
1.3.	Enquadramento do presente trabalho	25
1.3.1.	Contexto do projeto	25
1.3.2.	Objetivos do trabalho	27
1.3.3.	Área de estudo	28
1.3.4.	Estrutura organizacional	30

CAPÍTULO 2. ANÁLISE MORFOESTRUTURAL DA ILHA BRAVA

2.1. Enquadramento geomorfológico da ilha Brava	35
2.2. Formas e estruturas vulcânicas	40
2.2.1. Caracterização morfométrica	40
2.2.1.1. Metodologia	40
2.2.2. Formas e estruturas vulcânicas da ilha Brava	41
2.2.2.1. Caldeira vulcânica	41
2.2.2.2. Maars (S.L.)	43
2.2.2.3. Cones de escórias	50
2.2.2.4. Domos	52
2.2.2.5. Escoadas lávicas	57
2.2.2.6. Filões	61
2.3. Estruturas tectónicas	62
2.4. Rede hidrográfica	66
2.5. Orla Costeira	69
2.6. Cicatrizes e depósitos de movimentos de vertente	72
2.7. Carta morfoestrutural	76

CAPÍTULO 3. AVALIAÇÃO DO PERIGO SÍSMICO

3.1.	Nota prévia	81
3.2.	Sismicidade histórica	86
3.2.1.	Sismicidade associada a erupções vulcânicas	88
3.2.1.1	. Erupção de 1847	89
3.2.1.1	.1. Relatos históricos	89
3.2.1.1	.2. Actividade sísmica associada	90
3.2.1.1	.3. Análise	91
3.2.1.2	2. Erupção de 1951	91
3.2.1.2	2.1. Relatos históricos	91
3.2.1.2	2.2. Actividade sísmica associada	93
3.2.1.2	2.3. Análise	94
3.2.1.3	B. Erupção de 1995	95
3.2.1.3	3.1. Relatos histórico	95
3.2.1.3	3.2. Actividade sísmica associada	96
3.2.1.3	3.3. Análise	97
3.2.2.	Sismos associados a fenómenos vulcanotectónicos	98
3.2.2.1	. Actividade sísmica de Fevereiro de 1944	99
3.2.2.1	.1. Relatos históricos	99
3.2.2.1	.2. Análise	99
3.2.2.2	2. Crise sísmica de 1963	99
3.2.2.2	2.1. Relatos históricos	99
3.2.2.2	2.2. Análise	100
3.2.2.3	3. Crise sísmica de Julho de 1985	101
3.2.2.3	3.1. Relatos históricos	101
3.2.2.3	3.2. Análise	101
3.2.2.4	Actividade sísmica de 2006	102
3.2.2.4	1. Relatos históricos	102
3.2.2.4	.2. Análise	102
3.3. Si	smicidade instrumental	103
3.3.1.	Redes sismológicas na ilha Brava	103
3.3.1.1	. Rede sismológica de Portugal	103
3.3.1.2	2. Rede sismológica temporária durante a crise sísmica de 1981	105
3.3.1.3	8. Campanha sismológica de 1994	106
3.3.1.4	. Rede de monitorização vulcânica permanente (VIGIL)	107
3.3.1.5	5. Campanha sísmica da missão do navio alemão M62/3 R/V Meteor	109
3.3.1.6	5. Campanha sísmica CV-Plume, 2008	110
3.3.1.7	7. Projecto MIAVITA, de Junho de 2009 a Novembro de 2012	113
3.3.1.8	8. Projecto MAKAVOL, de Maio de 2008 a Novembro de 2012	114
3.3.1.9	0. Rede geofísica de Cabo Verde, desde 2011	115
3.4 .	Discussão	118

CAPÍTULO 4. AVALIAÇÃO DOS PERIGOS VULCÂNICOS

4.1. Nota prévia	121
4.2. Perigos vulcânicos	121
4.2.1. Escoadas lávicas	123
4.2.2. Piroclastos de queda	124
4.2.3. Piroclastos de trajectória balística	126
4.2.4. Escoadas piroclásticas	127
4.2.5. Surges	128
4.2.6. Lahars	130
4.2.7. Gases vulcânicos	131
4.3. Depósitos vulcânicos da Brava	133
4.3.1. Metodologia	133
4.3.1.1. Cortes geológicos	133
4.3.1.2. Recolha de amostras	135
4.3.1.3. Análise granulométrica	135
4.3.2. Cortes geológicos	137
4.3.2.1. Corte 1	139
4.3.2.2. Corte 2	141
4.3.2.3. Corte 3	144
4.3.2.4. Corte 4	146
4.3.2.5. Corte 5	148
4.3.2.6. Corte 6	151
4.3.2.7. Corte 7	153
4.3.2.8. Corte 8	155
4.3.2.9. Corte 9	157
4.3.2.10. Corte 10	161
4.3.2.11. Corte 11	163
4.3.2.12. Corte 12	165
4.3.3. Caracterização dos grupos litológicos da ilha Brava	167
4.3.3.1. Depósitos piroclásticos de fluxo	167
4.3.3.1.1. Características gerais que definem a litologia	167
4.3.3.1.2. Depósitos piroclásticos de fluxo na Brava	169
4.3.3.1.2.1. Depósitos piroclásticos de fluxo soldados ou ignimbritos	169
4.3.3.1.2.2. Depósitos piroclásticos de fluxo não soldados	173
4.3.3.1.2.3. Depósitos piroclásticos de fluxo com estratificação entrecruzada	
ou <i>surges</i>	175
4.3.3.2. Depósitos piroclásticos de queda	177
4.3.3.2.1. Características gerais que definem a litologia	177
4.3.3.2.2. Depósitos piroclásticos de queda na Brava	178
4.3.3.2.3. Depósitos piroclásticos de queda com estratificação planar	178
4.3.3.2.4. Depósitos piroclásticos de queda sem estratificação	180
4.3.3.3. Depósitos piroclásticos e de escoadas lávicas basálticos	181
4.3.3.3.1. Características gerais que definem a litologia	181

242

4.3.3.3.2. Depósitos piroclásticos e de escoadas lávicas basálticos na Brava	182
4.3.3.4. Depósitos piroclásticos e de escoadas lávicas carbonatíticos	184
4.3.3.3.1. Características gerais que definem a litologia	184
4.3.3.3.2. Depósitos piroclásticos e de escoadas lávicas carbonatíticos na Brava	184
4.3.3.5. Domos fonolíticos	187
4.3.3.3.1. Características gerais que definem a litologia	187
4.3.3.3.2. Domos fonolíticos na Brava	187
4.4. Caracterização dos estilos eruptivos na ilha Brava	189
4.4.1. Nota prévia	189
4.4.2. Erupções havaianas	190
4.4.3. Erupções estrombolianas	192
4.4.4. Erupções pliniana e subplinianas	192
4.4.5. Erupções surtseianas	194
4.4.6. Erupções hidrovulcânicas	195
4.5. Perigos vulcânicos na ilha Brava	197
4.5.1. Nota prévia	197
4.5.2. Escoadas lávicas	197
4.5.3. Escoadas piroclásticas e <i>surges</i>	198
4.5.4. Piroclastos de queda	199
4.5.4.1. Lapilli e cinzas de queda	199
4.5.4.2. Projéteis de trajectória balística	200
4.5.5. Lahars	200
4.5.6. Gases vulcânicos	201
4.6. Avaliação da susceptibilidade à queda de piroclastos	205
4.6.1. Nota prévia	205
4.6.2. Modelação de piroclastos de queda	206
4.6.3. Modelação da susceptibilidade de queda de piroclastos na ilha Brava	210
4.6.3.1. Selecção do modelo de simulação	210
4.6.3.2. Caracterização e determinação dos parâmetros utilizados	211
4.6.3.3. Apresentação e discussão dos resultados para a queda de piroclastos	219
4.6.3.3.1. Estação húmida	219
4.6.3.3.2. Estação seca	224
5. VULNERABILIDADES	
5.1. Nota prévia	233
5.2. Caracterização geral dos elementos de vulnerabilidade na ilha Brava	233
5.2.1. População	234
5.2.2. Edificado	235
5.2.2.1. Metodologia de trabalho	235
5.2.3. Infraestruturas básicas	238
5.2.3.1. Redes de transportes	238
5.2.3.1.1. Terrestre	238
5.2.3.1.2. Marítimo	241

5.2.3.1.3. Aéreo

5.2.3.2. Redes de distribuição	242
5.2.3.2.1. Rede de água	242
5.2.3.2.2. Rede de energia	244
5.2.3.3. Redes de telecomunicações	244
5.2.3.4. Estruturas de saúde	245
5.3. Vulnerabilidade do edificado ao perigo sísmico	246
5.3.1. Nota prévia	246
5.3.2. Vulnerabilidade do edificado	248
5.3.2.1.Metodologia	248
5.3.2.2. Resultados obtidos	253
5.3.2.3. Discussão dos resultados	260
5.4. Vulnerabilidade aos perigos vulcânicos	262
5.4.1. Vulnerabilidade da população	262
5.4.2. Vulnerabilidade das infraestruturas	264
5.4.3. Vulnerabilidade do edificado	266
5.4.3.1. Nota prévia	266
5.4.3.1.1. Escoadas lávicas	268
5.4.3.1.2. Piroclastos de queda	268
5.4.3.1.3. Escoadas piroclásticas e surges	270
5.4.3.1.4. Lahars	271
5.4.3.1.5. Gases vulcânicos	271
5.4.3.2. Metodologia	271
5.4.3.3. Apresentação dos resultados	272
5.4.3.3.1. Telhado	272
5.4.3.3.1.1.Tipo de material de suporte do telhado	272
5.4.3.3.1.2. Inclinação do telhado	274
5.4.3.4. Discussão dos resultados	275

6. PLANEAMENTO DE EMERGÊNCIA

6.1. Proteção civil: aspectos gerais do planeamento de emergência	281
6.2. Caracterização do Sistema Nacional de Proteção Civil	284
6.2.1. Constituição	284
6.2.2. Enquadramento legal	287
6.2.3. Estrutura do Sistema Nacional de Proteção Civil e Bombeiros	290
6.2.3.1. Direção e coordenação da política de proteção civil	290
6.2.3.2. Conselho Nacional de Proteção Civil	291
6.2.3.3. Execução da política de proteção civil	293
6.2.3.4. Serviço Nacional de Proteção Civil e Bombeiros (SNPCB)	293
6.2.3.5. Serviço Municipal de Proteção Civil (SMPC)	297
6.2.3.6. Serviço Municipal de Proteção Civil na Ilha Brava	301
6.3. Planeamento de emergência	303
6.3.1. Elaboração de planos de emergência	304
6.3.2. Plano de emergência da ilha Brava	308

6.4.	Capacidade de resposta	310
6.4.1.	Nota prévia	310
6.4.2.	Capacidade de resposta na ilha Brava	312
6.4.3 I	Planeamento de emergência durante a erupção vulcânica de 2014 na ilha	
do Fog	<u>go</u>	313
6.4.3.1	. Cronologia da Erupção vulcânica de 2014 na ilha do Fogo	313
6.4.3.2	2. Capacidade de resposta do Serviço Nacional de Protecção Civil	316
6.4.3.3	3. Considerações	322
7. CO	ONSIDERAÇÕES FINAIS	329

BIBLIOGRAFIA

341

ANEXOS

ANEXO I - Parâmetros morfométricos das estruturas vulcânicas da ilha Brava	A-1
ANEXO II – Notícias sobre a ocorrência de sismos na ilha brava - Trechos de consultados, impressos e <i>online</i>	jornais A-7
ANEXO III - Eventos Sísmicos ocorridos na ilha Brava	A-21
ANEXO IV - Análises granulométricas	A-37
ANEXO V – Escala Macrossísmica Europeia 1998	A-43
ANEXO VI Derêmetres erítiges a considerer para cada fonémena vulcênica	n oro o

ANEXO VI - Parâmetros críticos a considerar para cada fenómeno vulcânico para a análise de vulnerabilidade, de carácter geral A-47

ÍNDICE DE FIGURAS

Capítulo I

Figura 1.1. Localização geográfica do arquipélago de Cabo Verde.	3
Figura 1.2. Distribuição das ilhas de Cabo Verde nos três pedestais.	4
Figura 1.3. Relevo e batimetria do Arquipélago de Cabo Verde (Ramalho, 2009).	5
Figura 1.4. Localização geográfica da Ilha Brava e dos Ilhéus Secos ou Rombo no Arquipélago de Cabo Verde.	6
Figura 1.5. Imagem 3D das ilhas do Fogo e Brava vista de sudeste, baseada na batimetria obtida no cruzeiro M (Masson <i>et al.</i> , 2008).	[62/3 6
Figura 1.6. Mapa da parte sul da ilha de Santiago desenhado pela tripulação do Beagle e legendado por Darwin (2009).	Vala, 11
Capítulo II	
Figura 2.1. Exemplos que representam o contraste geomorfológico que existe entre as ilhas de Cabo Verde.	36
Figura 2.2. Morfologia da Ilha Brava vista da ilha do Fogo.	37
Figura 2.3. Mapa hipsométrico da ilha Brava.	37
Figura 2.4. Perfis topográficos da ilha Brava: a) perfil N-S e b) perfil W-E.	38
Figura 2.5. Carta de declives da Ilha Brava.	39
Figura 2.6. Dimensões de um cone de escórias segundo a) (Settle, 1979); b) (Wood, 1980a).	41
Figura 2.7. Esboço da caldeira de Campo Baixo.	42

Figura 2.8.

Caldeira de Campo Baixo: a) lados norte e este, vistos do lado Sul da ilha; b) lado este visto do lado Oeste da ilha; c) Lados norte e oeste vistos do lado sul da ilha; d) lado sul visto de Mato Grande, também se observa a escarpa do Vigia. 43

Figura 2.9.

Esquema simplificado da morfologia dos diferentes tipos de *maars* (s.l.) (adaptado de Cas e Wright, 1987 *in* Queiroz, 1997). 44

Figura 2.10.Secção de um maar assimétrico com características mistas de maar (s.s) (1), anel de tufos (2) e cone de tufos (3) (Ficher e Schmincke, 1984).45
Figura 2.11.Esboço dos maars (s.l.) cartografados na ilha Brava.46
Figura 2.12.Aspeto de alguns maars (s.l.): a) Covoada vista do Miradouro de Mato Grande; b) Cova Joana vista deMato; c) Panorâmica do Fundo Baixo vista do Monte Fontainhas.47
Figura 2.13.Diagrama Wcr vs Dcr para os maars da ilha Brava.49
Figura 2.14.Esboço do cone de escórias existente na ilha Brava.51
Figura 2.15.Cone de escórias do Monte Alcatraz, visto do Monte Largo (a) e visto do Monte Miranda (b).51
Figura 2.16.Esboço dos domos fonolíticos existentes na ilha Brava.54
Figura 2.17. Domos fonolíticos: a) Morro das Pedras (localizado no flanco sul da ilha); b) Morro Figueiral (F) (perto de Fajã d'Água); c) Monte Miranda (Cachaço); d) Domos desmantelados pela erosão costeira, como são o caso de Ponta Cajau Grande (G), à direita, e Monte Pesqueiro (G), à esquerda (perto de Fajã d'Água).
Figura 2.18.Diagrama Hco vs Wco para os domos da ilha Brava.56
Figura 2.19. Afloramentos de escoadas lávicas basálticas na localidade de Furna. a) Lavas intercaladas e cobertas por escoadas piroclásticas; e b) Escoada lávica por cima de depósitos de areia da praia. 58
Figura 2.20. Escoadas lávicas com disjunção prismática: a) Lombo de Porco/Vigia visto de Monte Grande; b) Escoadas lávicas com disjunção colunar vistas de Porto de Ancião; c) com disjunção prismática em Portete e d) Lombo de Porco/Vigia visto de Palhal.
Figura 2.21.Lavas submarinas: a) Lavas submarinas, Portete; b) Lavas submarinas, Esparadinha.60
Figura 2.22. Escoadas lávicas carbonatíticas, a) na estrada do Cachaço associada a uma camada de piroclastos carbonatíticos; b) junto ao reservatório de água do Cachaço. 61
Figura 2.23. Afloramentos de hialoclastitos cortados por filões: a) Filões expostos (Fajã d'Água); b) Filões cortando depósitos de hialoclastitos (estrada Fajã d'Água); c) e d) Redes filonianas, Fajã d'Água e Portete. 62
Figura 2.24.Esboço de estruturas tectónicas da ilha Brava.63

Figura 2.25. Caixas de falhas de pequena escala observadas na estrada para Fajã d'Água. **a)** Afloramento de plano de falha exposto pela erosão na estrada para Fajã d'Água (fraturas a cortar uma série piroclástica freatomagmáticas da unidade superior); **b)** caixas de falha com material muito fraturado e caótico. 64

65

72

Figura 2.26.

Escarpa de falha do Vigia.

Figura 2.27.

Modelo digital de terreno representando a rede de drenagem da Brava. . Cicatrizes de movimentos de vertentes provocados por elevada precipitação e por instabilidade gravitacional: a) Fajã d'Água; b) Fajã d'Água; c) Mato Grande e d) Estrada para Fajã d'Água. 66

Figura 2.28.

Vista geral das principais ribeiras da ilha Brava: a) Ribeira de Aguada; b) Ribeira de Ferreiros; c) Ribeira de Fajã d'Água e d) Ribeira dos Moinhos. 67

Figura 2.29.

Captações de água de nascentes: a) nascente do Vinagre e b) galeria de captação de água na nascente do Vinagre. 69

Figura 2.30.

Arribas costeiras: a) Arribas alcantiladas em Ferreiros; b) Vista geral das arribas costeiras da Fajã d'Água; c) Depósitos de antigos níveis de cascalheira de praia, Fajã d'Água; e d) Depósitos de antigos níveis de cascalheira de praia por cima de hialoclastitos na estrada de Fajã d'Água. 70

Figura 2.31.

Litoral na ilha Brava: a) praias de areias, Ilhéus; b) Praias de calhaus rolados, arribas costeiras íngremes, Furna; c) Praias de calhaus rolados, arribas costeiras íngremes e vale terminal, Ancião; d) praias de calhaus rolados em Fajã d'Água. 71

Figura 2.32.

Litoral no Ilhéu Grande com praias (c e d) e arribas (a e b).

Figura 2.33.

Cicatrizes de movimentos de vertentes provocados por elevada precipitação e por instabilidade gravitacional: a) Fajã d'Água; b) Fajã d'Água; c) Mato Grande e d) Estrada para Fajã d'Água. 73

Figura 2.34.

Movimentos de massa observados na região de Fajã d'Água (canto superior direito projeção estereográfica das fraturas da arriba a norte da Baía da Fajã d'Água e no canto superior esquerdo localização da área representada no mapa da ilha). 74

Figura 2.35.

Depósitos de vertente na zona de Fajã d'Água: a) Depósitos de vertentes intercalados com depósitos de fluxo e b) evidências de desabamentos de rochas. 75

Figura 2.36.

Movimentos de massa descritos na região de Portete-Tantum (canto superior direito a figura indica a localização da área representada no mapa da ilha). 75

Figura 2.37.

Carta morfoestrutural da ilha Brava com estruturas vulcânicas e tectónicas. 77

Capítulo III

Figura 3.1.

Sismicidade instrumental registado na região do arquipélago de Cabo Verde tendo em conta dados do ISC para o período de 1900-2012 (NEIC – ISC Bulletin). 83

Figura 3.2.

Informação macrossísmica no arquipélago de Cabo Verde, para o período de 1941-1954 (Matias *et al.*, 1997). 84

Figura 3.3.

Intensidades máximas observadas entre 1947 e 1954 disponíveis para as ilhas Fogo, Brava, Santo Antão e S. Vicente (Anuário Sismológico de Portugal; Ferreira, 1956; Mendes, 1956). 104

Figura 3.4.

A crise sísmica de 1981: carta de isossistas, área epicentral e localização das estações (Matias et al., 1997 adaptado de Pires e Neves, 1981). 106

Figura 3.5.

Rede de monitorização vulcânica permanente das ilhas do Fogo e Brava (VIGIL) (Heleno, 2003). 107

Figura 3.6.

Distribuição dos epicentros dos eventos do primeiro grupo (pontos vermelhos). Os pontos pretos referemse a eventos registados anteriormente a Março de 2001. As circunferências (cor de laranja) centradas em BCCH e de raios iguais à distância epicentral média dos eventos do segundo grupo, respectivamente 6,5 e 11,5 Km (*in* Faria, 2010). 109

Figura 3.7.

Batimetria da faixa mapeada pelo Meteor R/V: os pontos vermelhos marcam os sismos locais registados e o ponto verde representa o epicentro do evento (Grevemeyer *et al.*, 2009). 110

Figura 3.8.

Localização das estações BB instaladas no âmbito da campanha CVPLUME (Vales et al., 2010). 111

Figura 3.9.

Distribuição epicentral dos sismos registados durante a campanha CVPLUMME (Vales et al., 2010). 112

Figura 3.10.

Detalhe da distribuição epicentral (zona sudoeste, ilhas Brava e Fogo) dos sismos registados durante a campanha CV-PLUME (Vales *et al.*, 2010).

Figura 3.11.

Mapa da rede de monitorização sísmica do vulcão do Fogo, indicando igualmente a rede de telemetria entre Brava, Fogo e Santiago. 114

Figura 3.12.

Localização geográfica das estações sísmicas da sub-rede Fogo e Brava (Faria & Fonseca, 2014).

Figura 3.13.

Aspecto geral (a) e detalhe (b) da distribuição epicentral dos sismos registados na ou perto da Brava entre Setembro de 2011 e Maio de 2013. Projecção dos hipocentros num corte de direcção S-N (c); e num corte de direção W-E (d) (*in* Faria e Fonseca, 2014). 117

116

Capítulo IV

Figura 4.1.

i igui u iiii			
Medição da espessura dos níveis	que compõem um depósite	o de queda no interior d	a caldeira Campo Baixo.
			134

Figura 4.2.

Localização dos cortes geológicos realizados na ilha Brava.	
Figura 4.3. Aspeto geral do depósito do corte 1: a) Esquema do corte 1; b) Sequência de depósitos no corte 1.	141
Figura 4.4.	

Aspeto geral do depósito do corte 2: a) Esboço do corte; b) Sequência de depósitos no corte 2. 144

Figura 4.5. Aspeto geral do depósito do corte 3: a) Esboço do corte; b) Sequência de depósitos no corte 3.	146
Figura 4.6. Aspeto geral do depósito do corte 4: a) Esboço do corte; b) Sequência de depósitos no corte 4.	148
Figura 4.7. Aspeto geral do depósito do corte 5: letras a) Esboço do corte; b) Sequência de depósitos no corte 5.	151
Figura 4.8. Aspeto geral do depósito do corte 6: a) Esquema do corte 6; b) Sequência de depósitos no corte 6.	153
Figura 4.9. Aspeto geral do depósito do corte 7: a) Esquema do corte 7; b) Sequência de depósitos no corte 7.	155
Figura 4.10. Aspeto geral do depósito do corte 8: a) Esquema do corte 8; b) Sequência de depósitos no corte 8.	157
Figura 4.11. Aspeto geral do depósito do corte 9: a) Esquema do corte 9; b) Sequência de depósitos no corte 9.	159
Figura 4.12. Histogramas de análises granulométricas: a) amostra BRS-8; b) amostra BRS-9; c) amostra BRS-10.	161
Figura 4.13. Aspeto geral do depósito do corte 10: a) Esquema do corte 10; b) Sequência de depósitos no corte 10.	163
Figura 4.14. Aspeto geral do depósito do corte 11: a) Esquema do corte 11; b) Sequência de depósitos no corte 11.	164
Figura 4.15. Histograma da análise granulométrica da amostra BRS-14.	165
Figura 4.16.	

Aspeto geral do depósito do corte 12: a) Esquema do corte 12; b) Sequência de depósitos no corte 12. 166

Figura 4.17.

Depósitos de Ignimbrito da Furna (ao logo da estrada Furna – Nova Sintra. a) Aspecto geral de um depósito; b) Pormenor do tamanho dos líticos; c) Pormenor de líticos com dimensões e composição diferente; d) Unidades maciças; e) Unidades estratificadas com ondulações; e f) Pormenor da escoada piroclástica de cor amarelada cortada por uma falha. 170

Figura 4.18.

Depósitos de Ignimbrito da Porca: a) Aspecto estratificado dos depósitos, na estrada para Cachaço entre os cortes C3 e C4; b) *Fumarolic pipes*, na estrada para Cachaço entre os cortes C3 e C4; c) aspecto muito compacto de um depósito, na estrada para Cachaço à frente do corte C4; d) presença de cristais de anfibolas ou piroxenas, na estrada para Fajã d'Água; e) Depósitos de surges associados, na estrada para Cachaço no corte C3; f) Depósitos localizados na vertente sul da caldeira de Campo Baixo. 172

Figura 4.19.

Histogramas da análise granulométrica da amostra BRS-18. 173

Figura 4.20.

Depósitos de escoadas piroclásticas: a) Depósitos de escoadas piroclásticas observadas na base do domo Cachaço, próximo do Corte C3; b) Visão geral das escoadas piroclásticas em bancadas, na estrada para Fajã d'Água; c) Pormenor de uma escoada onde observam-se líticos grandes e escuros, na estrada para Fajã d'Água; d) Falha a cortar os depósitos, na estrada para Fajã d'Água junto à localidade de Figueiral; e) Aspeto geral dos depósitos de fluxo piroclástico com *lag brecchia*, na estrada para Fajã d'Água; f) Pormenor do material dos *lag brecchia*, na estrada para Fajã d'Água. 175

Figura 4.21.

Depósitos de *surges*: a) visão global dos depósitos na estrada para Fajã d'Água; b) pormenor dos depósitos de níveis de cinzas e lapilli estratificados com grandes líticos escuros, Fajã d'Água; c) depósitos de *surges* na base de ignimbritos, Campo da Porca (corte C3); d) Lapilli de acreção associados a *surges*, estrada para Fajã d'Água; e) depósitos de surges associados a lapilli de queda com figuras de carga, estrada para Fajã d'Água; e f) pormenor de *surges* compactados na estrada Furna-Nova Sintra. 176

Figura 4.22.

Depósitos piroclásticos de queda com níveis de cinzas e lapilli estratificados: a) Aspeto geral dos depósitos, na caldeira do Campo Baixo, corte C9; b) Presença de *grain flow* em alguns depósitos, na estrada para Fajã d'Água; c) Depósitos pomíticos de queda associados a depósitos de surges, na estrada para Fajã d'Água; d) Figuras de carga em depósitos de queda, na estrada para Fajã d'Água; e) Lapilli de acreção, na estrada para Fajã d'Água; f) Pormenor do solo e dos níveis de cinzas e lapilli pomíticos, na estrada para Palhal, corte 11.

Figura 4.23.

Depósitos piroclásticos de queda sem estratificação: a) Aspecto geral de um depósito, na estrada para Cachaço, corte C7; b) Pormenor de líticos poligenéticos de dimensões variáveis, na estrada para Cachaço, corte C7; c) Depósito com lítico de dimensões métricas a destacar-se, na estrada para Cachaço, corte C7; d) Níveis de solos a intercalar níveis pomíticos, na estrada para Cachaço, corte C2; e) Presença de falhas a cortar depósitos, na estrada para Cachaço nas proximidades do corte C7; f) Presença de material remobilizado na base do depósito, na estrada para Cachaço nas proximidades do corte C7. 181

Figura 4.24.

Depósitos basálticos: a) Depósitos de *surges* basálticos, Campo da Porca (corte C3); b) Figuras de carga de natureza basáltica, Campo da Porca (corte C3); c) Nível de areias basálticas finas, Campo da Porca (corte C3); d) Depósitos piroclásticos basálticos, na estrada para Cachaço (corte C8); e, e) Depósitos basálticos de origem hidromagmática, nas proximidades do corte C11 na parede oeste da caldeira do Campo Baixo em Tomé Barrás.

Figura 4.25.

Depósitos carbonatíticos que ocorrem na Ilha Brava: a) Aspeto geral do depósito de piroclastos carbonatíticos, estrada para Mato Grande. b) Pormenor do depósito com líticos de natureza e dimensão variada, mesmo afloramento, estrada para Mato Grande; c) Escoada lávica carbonatítica, Santa Bárbara; d) Vista geral do depósito carbonatítico na base do domo Cachaço; e) Aspecto da provável escoada lávica, base do domo Cachaço; f) Pormenor do lapilli carbonatítico, base do domo Cachaço. 186

Figura 4.26.

Domos fonolíticos: a) Domo Cachaço ou Mamana, na parte sul da ilha; b) Aspeto do domo Morro Figueiral, lado oeste da ilha; c) Aspeto geral dos *crumble breccia* observados nos flancos do domo Morro Largo, na parte sul da ilha; b) Pormenor dos *crumble breccia* observados no topo do Morro Largo. 188

Figura 4.27.

Classificação da atividade vulcânica proposta por Walker (1973) *in* Cas e Wright (1988). 190

Figura 4.28.

Mapa de distribuição espacial da emissão de CO₂ difuso para a ilha Brava com as estruturas vulcânicotectónicas definidas por Madeira *et al.* (2010) (Dionis *et al.*, 2015). 203

Figura 4.29.

Rosas-dos-ventos para a estação seca para altitudes de 25km, 15km e 5Km.	216
--	-----

Figura 4.30.

Rosas-dos-ventos para a estação húmida para altitudes de 25km, 15km e 5Km. 218

Figura 4.31.

Cenários de queda de piroclastos na ilha Brava, a partir de uma erupção pliniana de VEI 4, para a estação húmida tendo em conta os valores de 0,1Km³ de volume e 10.000m de altura da coluna eruptiva. 220

Figura 4.32.

Cenários de queda de piroclastos na ilha Brava, a partir de uma erupção pliniana de VEI 4, para a estação húmida tendo em conta os valores de 0,1Km³ de volume e 25.000m de altura da coluna eruptiva. 221

Figura 4.33.

Cenários de queda de piroclastos na ilha Brava, a partir de uma erupção pliniana de VEI 4, para a estação húmida tendo em conta os valores de 1Km³ de volume e 10.000m de altura da coluna eruptiva. 222

Figura 4.34.

Cenários de queda de piroclastos na ilha Brava, a partir de uma erupção pliniana de VEI 4, para a estação húmida tendo em conta os valores de 1Km³ de volume e 25.000m de altura da coluna eruptiva. 223

Figura 4.35.

Cenários de queda de piroclastos na ilha Brava, a partir de uma erupção pliniana de VEI 4, para a estação seca tendo em conta os valores de 0,1Km³ de volume e 10.000m de altura da coluna eruptiva. 225

Figura 4.36.

Cenários de queda de piroclastos na ilha Brava, a partir de uma erupção pliniana de VEI 4, para a estação seca tendo em conta os valores de 0,1Km³ de volume e 25.000m de altura da coluna eruptiva. 226

Figura 4.37.

Cenários de queda de piroclastos na ilha Brava, a partir de uma erupção pliniana de VEI 4, para a estação seca tendo em conta os valores de 1Km³ de volume e 10.000m de altura da coluna eruptiva. 227

Figura 4.38.

Cenários de queda de piroclastos na ilha Brava, a partir de uma erupção pliniana de VEI 4, para a estação seca tendo em conta os valores de 1Km³ de volume e 25.000m de altura da coluna eruptiva. 228

Capítulo V

Figura 5.1.	
Mapa de freguesias da Ilha Brava.	234
Figura 5.2	
Mapa do levantamento do edificado feito nos maiores povoados da ilha Brava.	236
Figura 5.3.	
Quantidade de edifícios, por categoria, em cada localidade.	238
Figura 5.4.	
Rede viária proposta na Planta de Ordenamento e distâncias de cada estrada e caminho (PDM Bra	iva, 2013) 240
Figura 5.5.	
Ficha-tipo do inquérito para as vulnerabilidades do edificado.	250
Figura 5.6.	
Percentagem de edifícios existentes no concelho de acordo com as diferentes classes de vulnes definidas.	rabilidade 253
Figura 5.7.	
Distribuição do edificado segundo as classes de vulnerabilidade ao perigo sísmico nas localidades na ilha Brava.	estudadas 256
Capítulo VI	
Figura 6.1.	

Esquema do ciclo das catástrofes (Anderson, 2006).

282

Figura 6.2.

Etapas da elaboração de um plano de emergência.

Figura 6.3.

Imagens da erupção de 2014-15 na ilha do Fogo: a) Aspecto da erupção nas primeiras horas; b) Aspeto do avanço das lavas na localidade de Portela. 314

Figura 6.4.

Aspecto das escoadas lávicas que destruíram as localidades de Portela e Bangaeira: a) Aspeto das escoadas de lavas junto à Adega Chã em Portela; b) Aspecto da destruição ocorrida e Bangaeira. 315

Figura 6.5

Escoada lávica em Ilhéu de Losna: a) Aspecto da fluidez da lava; f) Aspecto da destruição provocada pelas escoadas lávicas neste povoado. 316

Figura 6.6.

Evacuação da população de Chã das Caldeiras.

317

304

ÍNDICE DE TABELAS

Capítulo II

Tabela 2. 1.Características fisiográficas das ilhas de Cabo Verde (Bebiano, 1932)	35
Tabela 2. 2.Parâmetros morfométricos dos maars (s.l.) na ilha Brava	48
Tabela 2. 3.Parâmetros morfométricos dos domos	54
Capítulo III	
Tabela 3. 1. Classificação e frequência anual mundial de sismos com diferentes magnitudes (Lee e Stewart, 1981; Gomes, 2003).	81
Tabela 3.2Exemplos de sismos devastadores da história da humanidade(<u>http://earthquake.usgs.gov/earthquakes/eqarchives/</u>).	82
Capítulo IV	
Tabela 4.1. Frequência e distâncias atingidas pelos diferentes perigos vulcânicos diretos (adaptado de Blong, 1984).	123
Tabela 4.2. Coordenadas geográficas dos cortes geológicos realizados na Brava.	133
Tabela 4.3.Correlação entre as amostras e os cortes.	135
Tabela 4.4.Resultados da amostragem da concentração de CO_2 na ilha Brava.	202
Tabela 4.5. Dados dos ventos, para cada parâmetro necessário, da estação seca.	215
Tabela 4.6.Dados dos ventos, para cada parâmetro necessário, da estação húmida.	216
Capítulo V	
Tabela 5.1.Número de edifícios segundo a respetiva categoria.	237
Tabela 5.2. Tabela de medições de reservatórios de água na ilha Brava (tabela cedida pela empresa Água Brava através do seu representante na ilha Brava em 2010).	243
Tabela 5.3. Descrição das tipologias das habitações para cada uma das classes de vulnerabilidades definida para a ilha Brava (adaptado de Gomes, 2003).	251

Tabela 5.4. Correspondência entre o tipo de intervenção a efetuar e os níveis de danos definidos pela EMS-98 (adaptado de Gomes, 2003).	252
Tabela 5.5. Discriminação, por localidade, dos edifícios pertencentes a cada classe de vulnerabilidade	254
Tabela 5.6. Número de habitações em cada freguesia que podem sofrer danos provocados por um sismo de grau V considerando dois cenários (EMS-98).	257
Tabela 5.7. Número de habitações em cada localidade que podem sofrer danos provocados por um sismo de grau VII considerando dois cenários (EMS-98).	259
Tabela 5.8. Danos em edifícios associados a perigos vulcânicos (Blong, 1984; Pomonis <i>et al.</i> , 1999).	267
Tabela 5.9. Efeitos da queda de piroclastos de algumas erupções nos edifícios.	269
Tabela 5.10. Descodificação dos parâmetros da ficha-tipo utilizada no inquérito para o levantamento das vulnerabilidades do edificado.	272
Tabela 5.11. Quantidade de edifícios relativamente ao tipo de material de suporte do telhado para cada uma das localidades em estudo.	273
Tabela 5.12. Quantidade de edifícios relativamente à inclinação do telhado para cada uma das localidades em estudo.	274
Tabela 5.13. Quantidade de edifícios relativamente à inclinação do telhado para valores diferentes em cada uma das localidades em estudo.	275

AGRADECIMENTOS

A conclusão do doutoramento proporcionou-me um enriquecimento ímpar do conhecimento tanto em termos intelectuais como pessoais. Por isso agradeço a Deus todas as oportunidades de aprendizagem que pude experimentar, inclusive as mais duras provações de ordem pessoal.

A concretização deste trabalho dependeu do sacrifício daqueles que me rodeiam, alguns dos quais dependem de mim. Por isso, antes de mais, as minhas palavras são para eles, por todo o esforço que lhes exigi, as minhas desculpas pelos transtornos causados e pelas horas subtraídas ao convívio familiar. Um especial agradecimento aos meus pais, filha e irmãos, pelo apoio incondicional, incentivo, paciência e confiança que sempre depositaram em mim. Foram, são e serão sempre o meu "*porto de abrigo*".

No entanto, não posso deixar de agradecer pessoas e instituições que tiveram um papel importante na elaboração deste trabalho:

- À Prof^a. Doutora Gabriela Queiroz, Orientadora Científica deste trabalho, exprimo a minha gratidão pelo incentivo, atenção, paciência, disponibilidade, sobretudo pela sua deslocação a Cabo Verde para me acompanhar nos trabalhos de campo, suas valiosas sugestões para a organização e conteúdo deste trabalho, partilha de conhecimentos, apoio, amizade e carinho que sempre demonstrou e pela criação de todas as condições para a concretização deste trabalho enquanto Directora do Centro De Vulcanologia e Avaliação de Riscos Geológicos;

- Ao Prof. Doutor João Luís Gaspar, Coorientador Científico desta dissertação, pela ajuda nos trabalhos de campo, debate de ideias, sugestões, disponibilidade, e em especial pela amizade e carinho com que sempre me acolheu;

- À Professora Doutora Teresa Ferreira, pela criação de todas as condições para a concretização deste trabalho, cedência de bibliografia e em especial pela amizade e carinho demonstrados;

- Ao Prof. Doutor José Pacheco pela ajuda e disponibilidade na campanha de campo em 2013, pela ajuda em todas as questões e dúvidas sobre o programa de simulação de queda de cinzas VORIS, pelas explicações e dicas relativas ao VORIS, pela cedência de bibliografia, pela revisão do texto e pelo carinho e amizade demonstrados;

XI

 Aos docentes e aos funcionários do Departamento de Geociências e do Centro de Vulcanologia e Avaliação de Riscos Geológicos pelo apoio e carinho com que me acolheram;

- Aos colegas do Departamento de Geociências e do Centro de Vulcanologia e Avaliação de Riscos Geológicos pelo apoio e amizade demonstrados;

- À Ana Rita Mendes pela amizade, pelo apoio incondicional que sempre demonstrou com o programa de simulação de queda de cinzas VORIS e em Sistemas de Informação Geográfica, pela ajuda preciosa nos trabalhos de laboratório e na revisão e organização do texto;

- À colega e amiga Ana Gomes pelo carinho e amizade, pelo apoio e inúmeras ajudas particularmente na revisão do texto e cedência de bibliografia;

- Aos colegas Jeremias Cabral, Ana Rita Hipólito, Rita Carmo, Nuno Cabral e Adriano Pimentel, colegas de gabinete, pela amizade, pelo apoio, cedência de bibliografia e apoio na elaboração do inquérito;

- À Catarina Goulart e José Medeiros pela ajuda nas questões relacionadas com os Sistemas de Informação Geográfica;

- Ao Carlos Primo pelo apoio, carinho e amizade demonstrados e pela paciência em resolver todos os problemas informáticos que foram surgindo no decorrer deste trabalho, alguns inclusive à distância;

- À Patrícia Raposo, Crisálida Rego e Rui Correia pelo carinho com que me acolheram,
 e por cuidarem tão bem dos assuntos administrativos e burocráticos;

- Aos amigos dos Açores como a Helena Primo (pela amizade, carinho, motivação e pelas nossas conversas e noites de cinema), D. Inácia, Manel, Fernanda Pereira, António Barros, Maria Natal Navarro (pelo acolhimento e amizade), Rose Emília (pela amizade, força e por ter ouvido as minhas lamúrias sempre que precisava), São Quental (pelo acolhimento e amizade);

- Aos amigos cabo-verdianos que fizeram a vida nos Açores ter um cheirinho da minha terra: Ruth Lopes, Kátia Soares, Adilson Tavares, Ermelindo Varela;

- Aos meus amigos e colegas pelo apoio, amizade e incentivo demonstrados, nomeadamente Elyane Dias, Sandra Freire, Nadir Cardoso, Marise Carvalho, Adilson Semedo, Sónia Victória, José Manuel Pereira, Carmem Almada, Ana Maria Hopffer, Sílvia Monteiro, António Fortes, Jair Rodrigues, Cristina Fernandes e Sheila Semedo, Sandra Tavares (amizade e acolhedora receção aquando das estadias em Lisboa) e Vital Santos (pela amizade e cedência de documentação sobre a aviação cabo-verdiana);

AGRADECIMENTOS

- À população da ilha Brava, que sempre recebem com amabilidade os seus visitantes, especialmente à Sandra Andrade e Paulina Delgado (amizade e atenção durante as estadias na Brava), ao Zito (pela ajuda preciosa durante a realização do inquérito), ao Anselmo (pela ajuda nos trabalhos de campo); aos meus tios Danilo e Didi e primos Chico, Lalá, Manuel, Djony, Karen e Isa pelo excelente acolhimento e atenção durante as estadias na Brava e à Câmara Municipal da Brava, nas pessoas do seu presidente Sr. Orlando Bala e do Vereador Francisco Tavares, pela atenção que sempre demonstraram;
- Não poderei também esquecer, todos aqueles cujos nomes, quer pessoas quer instituições, não podemos mencionar, pelo limitado espaço, a simpatia com que se dispuseram prontamente a fornecer importantes referências, documentos e contactos a partir dos quais pude ter acesso às fontes de informação essenciais para o meu trabalho.

Este trabalho foi financiado pelo Protocolo entre o Governo da República de Cabo Verde e o Governo Regional dos Açores através da Direção Regional da Ciência e Tecnologia para a atribuição de Bolsas de Doutoramento, incluído no "Subprograma de Projectos de investigação científica e tecnológica em domínios específicos" do Plano Integrado para a Ciência e Tecnologia (PICT).

XIII

RESUMO

O arquipélago de Cabo Verde é frequentemente afetado pela ocorrência de sismos e erupções vulcânicas, o que o torna um laboratório de excelência para o estudo de perigos associados a estes eventos geológicos. Neste contexto, foi selecionada a ilha Brava, caracterizada pela ocorrência frequente de sismos sentidos pela população local e pela existência de vulcanismo considerado ativo, apesar de não ter ocorrido nenhuma erupção histórica desde o seu povoamento. Com este trabalho pretendeu-se contribuir para o estudo da avaliação dos perigos sísmico e vulcânicos numa perspetiva de planeamento de emergência.

Foi feita a caracterização geomorfológica da ilha incidindo-se sobre as estruturas vulcânicas e tectónicas, bem como o estudo da rede hidrográfica, das cicatrizes de movimentos de vertente e da orla costeira, o que culminou com a elaboração da carta morfoestrutural da Brava.

Desde o povoamento da ilha, no século XV, que existem relatos da ocorrência de eventos sísmicos sentidos pela população, que causaram, em alguns casos, danos materiais. Neste trabalho procedeu-se à avaliação do perigo sísmico com base na análise da sismicidade histórica e instrumental. No caso da sismicidade instrumental foi feito o levantamento e análise de documentação histórica, tendo-se procedido à seleção de alguns casos. Utilizando-se a Escala Macrossísmica Europeia-1988 fez-se o estudo macrossísmico dos casos seleccionados. No que respeita à sismicidade instrumental recorreu-se à informação disponível quer de estudos anteriores como oriundos das redes sismológicas que operaram em Cabo Verde, e, em particular, na ilha Brava. Os sismos registados na ilha Brava são de natureza vulcanotectónica ou associados à atividade vulcânica da vizinha ilha do Fogo. Da análise da sismicidade histórica existente constatou-se que a intensidade máxima histórica para a região em estudo foi de VII (EMS-98). Por outro lado, a análise de dados instrumentais, mais concretamente desde 1914, permitiu verificar a ocorrência de eventos de magnitude máxima de 4.2, localizados na plataforma da ilha Brava.

A evidência de diferentes estilos eruptivos e os consequentes perigos vulcânicos foi inferida pelo estudo dos depósitos e morfologias resultantes das erupções ocorridas num

passado geológico recente. Para tal, foram efetuados cortes geológicos que permitiram a definição de grupos litológicos, que possibilitaram a identificação dos estilos eruptivos que ocorreram na Brava. Foram, assim identificados depósitos vulcânicos representativos de erupções tanto submarinas (surtseianas) como subáreas (havaianas, estrombolianas, subplinianas, plinianas e hidromagmáticas). Para cada estilo eruptivo foram analisados os diferentes perigos vulcânicos associados. Com base nos dados recolhidos fez-se um estudo sobre a suscetibilidade à queda de piroclastos na ilha Brava, tendo-se efetuado a abordagem aos modelos de simulações de queda de piroclastos existentes. Atendendo aos diversos parâmetros aferidos e necessários para a modelação optou-se pelo modelo probabilístico VORIS (VOlcanic Risk Information System).

De modo a analisar os elementos de vulneráveis aos perigos sísmico e vulcânicos procedeu-se à listagem da população, do edificado e das infraestruturas básicas. Para este trabalho optou-se pelo estudo mais aprofundado da vulnerabilidade do edificado, tendo-se realizado um inquérito sobre a qualidade das construções existentes na Brava. Para a vulnerabilidade do edificado ao perigo sísmico foi feita uma classificação das habitações segundo diferentes classes de vulnerabilidade de acordo com a EMS-98, sendo que a classe A é a mais vulnerável e a D a menos vulnerável. Constatou-se que 60% das casas edificadas na ilha pertencem à classe B e 24% da classe C. As classes de maior (A) e menor (D) vulnerabilidade têm menor representatividade na ilha, sendo 15% no caso da classe A e apenas 1% na classe D. Neste contexto, se ocorrer um evento que afete a ilha com intensidade VII (EMS-98), é de esperar que: 14,8% a 15,2% das habitações colapsem; entre 14,9% a 57% sofram sérios danos e que entre 25% e 76,5% dos edificios poderão precisar de pequenas reparações.

Para o estudo da vulnerabilidade ao perigo vulcânico optou-se por usar os resultados das simulações efetuadas para a susceptibilidade à queda de piroclastos. Foram, então utilizados os fatores que afetam a vulnerabilidade do edificado para este perigo vulcânico (tipo de material de suporte do telhado e inclinação do telhado). Os resultados obtidos indicam que das localidades estudadas, a mais afetada será a de Nossa Senhora do Monte porque o edificado neste povoado apresenta maior vulnerabilidade à queda de piroclastos. Nesta localidade 54,5% de casas possuem telhados cujo material de suporte é de madeira e 52% dos telhados não possuem inclinação, pelo que em ambos os casos os telhados poderão colapsar.

As abordagens utilizadas neste estudo da avaliação dos perigos estudados e da vulnerabilidade do edificado a tais perigos foram orientadas para a vertente do planeamento de emergência. Foram obtidos mapas que poderão constituir uma boa base de trabalho para o planeamento de emergência e a produção de cenários eruptivos passíveis de serem utilizados no âmbito de exercícios de proteção civil.

ABSTRACT

The Cape Verde archipelago is frequently affected by the occurrence of earthquakes and volcanic eruptions, which makes it an excellent lab for the study of hazards associated with these geological events. In this context, It has been selected the Island of Brava, which is characterized by the existence of active volcanism, and for frequently occurring earthquakes felt by the local people, despite of not occurring any historical eruption since its settlement. This work aims to contribute to the study of the assessment of seismic and volcanic hazards in an emergency planning perspective.

To this end, we initially proceeded to the geomorphological characterization of the island focusing on the volcanic and tectonic structures as well as the characterization of the hydrographic network, the scars and landslides and coastal cliffs. This characterization led to the production of the morphostructural map of Brava Island.

Since the settlement of the island in the fifteenth century, there are reports of the occurrence of earthquakes felt by the population which in some cases has caused property damage. A seismic hazard assessment was made based on the analysis on the historical and instrumental seismicity. For historical seismicity, the analysis was based on the information provided by the historical documentation and using the European Macroseismic Scale-1988 for macroseismic study a number of cases were selected. For the analysis of instrumental seismicity it was used the existing information based on previous studies carried out and the existence of seismological networks which have operated on Cape Verde, in general, and in Brava Island, in particular. The earthquakes occurred on Brava Island are volcanotectonic nature or otherwise are associated with volcanic activity of the nearby Fogo Island. From the existing historical seismicity it was verified that the historical maximum intensity (EMS-98) for the region under study was VII. On the other hand, the recent data analysis more precisely the instrumental seismicity since 1914 until the present date, allows to conclude on the occurrence of earthquakes from maximum magnitude of 4.2.

The study of the assessment of volcanic hazards started with the characterization of the existing volcanic deposits on the island, since there were no historical eruptions on the island. Therefore, the evidence for the various eruptive styles and the resulting volcanic hazards are

provided by the study of the deposits and morphologies result from eruptions in a recent geological past. To this end were carried out field works which allowed the elaboration of geological measure sections and the identification and description made of the existing volcanic lithology. Based on the description of the lithological groups carried out, it allowed the identification of eruptive styles that have occurred in Brava which have originated these deposits. The evaluated volcanic deposits represent both submarine eruptions (surtseyan) and subaerial (Hawaiian, Strombolian, Subplinian, Plinian and Hydromagmatic). Thereafter, the volcanic hazards deriving from eruptive styles presented are: lava flows, tephra fallout, pyroclastic flows, *surges, lahars* and volcanic gases. To complete the assessment of the volcanic hazards, it was conducted a study of the susceptibility to the tephra fallout through modeling. The approach of the existing models of tephra fallout simulations was taken to explain the model chosen to Brava Island, measured according to several parameters such as necessary for the modeling. Considering to different measured parameters required for the modeling it was chosen the probabilistic model VORIS (Volcanic Risk Information System).

In order to analyze the vulnerabilities to seismic and volcanic hazards we proceeded to assemble of exposed elements (population, buildings and basic infrastructure). For the purpose of this work it was decided to conduct a further study of the buildings vulnerability. An inventory was conducted on the quality of existing buildings in Brava Island. It was chosen the more detailed study of the vulnerability of buildings and was conducted an investigation concerning the quality of the existing constructions on Brava. For buildings vulnerability to seismic hazard it was done a classification of the households using different classes (A to D), and it was verifying that 60% of homes edified on the island belong to the class B, followed by class C with 24%. Higher (A) and lower (D) classes of vulnerability exist in smaller amounts in the island and is 15% to 1%, respectively. In this context, if there is an earthquake with intensity of VII (EMS-98), it is expected that: (1) 14.8% to 15.2% of the buildings may require small repairs.

As for the volcanic hazards vulnerability, it was decided to use the results of the simulations carried out for susceptibility to tephra fallout by using the aspects that affect the vulnerability of the buildings for this volcanic hazard: type of roof support materials and roof pitch. The results obtained indicates that from the localities analyzed, the most affected will be Nossa Senhora do Monte because the buildings in this town stands more vulnerable to tephra fallout.

From the survey carried out the results indicate that this town possesses 54.5% of houses with roofs which the support material is made of wood and 52% of roofs do not have slope in both cases the roofs may collapse.

The approaches used in this study of the evaluation analysis of the hazards and the vulnerability of buildings to those hazards employed in this paper have been oriented towards aspects of emergency planning. In this study it has been obtained maps which might be a good working basis for emergency planning and the production of eruptive scenarios that could be used within the context of civil protection exercises.