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8) x<y implies x+z<y+z

9) x<y and y<z implies that x<z

10) for x,yER exactly one of the following is true: x<y,

two methods for constructing the real numbers. Why the reals?

. In mathematics, we are always told that when there are two

methods for doing some problem, they will always yield the same

results. In this paper, I will see if this is true when using

Well, the reals have always been difficult for me to grasp. You

can ask your mother for 1/2 a piece of bread or any other

rational piece of bread. But try asking her for ~ pieces of

bread and she won't know what to give you.

The real numbers are defined by the following 12 axioms.

There are functions +:RxR--)R and .:RxR--)R and a relation < on R

such that V x,y,z ~R, where R is the set of real numbers, and the

following are true:

. 1) <x+y) +z = x+<y+z); <x. yh z = x. <y.z);

2) x+y = y+x; x.y = y.x;

3) x.<y+z) = <x.y) + <xez);

4) 3! 0 E R such that O+x=x Vx E R;

5) For each xER, ~!yfR such that x+y=O, and we write y=-x

6) 3! 1 E R such that x.1=x Vx£R; and 14=0;

7) For each xER with xfO, 3! y€R such that x.y=l, and we

write y=x-I or y=l/x;

y<x, x=y;

.
11) x<y and z)O implies that xz<yz.



. 12) Every nonempty set of real numbers that is bounded from

above has a least upper bound.

So now we shall construct the real numbers based on these 12

axioms. We will do this first by using Dedekind cuts, which we

must first define.

Definition: A Dedekind cut is a set D(,cQsuch that

(i) oc is nonempty

(i1) 0. =t=Q

(ii1) if af «.and b€Q and b<a then b € ~.

(iv) ~ does not contain a largest member.

To visualize what a cut is look at the following example:

. Example 1: ~={pEQ:p<2} is a Dedekind cut.

(i) d is nonempty because 1<2 so 1E«.

(i 1) (j.4Q because 2£Q but 2~2 so 2~iJ(.

(iii) Let aE~, then a<2, now let b~Q with b<a, then b<2 so bf~.

(iv) Let aE« then a<2 so 2a<a+2, a«a+2)/2 anda+2<4,

(a+2)/2<2 so a«a+2)/2<2, obviously (a+2)/2€Q so

(a+2)/2ea. So ~ has no largest member.

I now claim that the set of all Dedekind cuts is R, the set

of real numbers. In order to show this we will prove the 12

axioms are true for the set of all Dedekind cuts. For the next

few pages the sumbol R will represent the set of all Dedekind

.
cuts.
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. First we define + in R. Let fX.,~E.Rthen define ex.+ f3 =

{a+b:aE«,b~~}. But is OC+~eR? Let's see. (i)OC+~ is nonempty

since oc and
~

are nonempty. (ii) Since ~ and~ are cuts neither

equal Q. SO 3a, bEQ with a~<X.and b4~. Then if c 6:G(and dE~1 c<a

and d<b otherwise a' otand b E{!>which we know is not true.

Therefore, for V c~«. and dE{!>c+d<a+b so a+b4 d..+f3so ol."ftQ. (iit)

Let cE~+~ then c=a+b for some aea, b~P. Now suppose d<c then

d<a+b so d-b<a so d-b€a. Then d=(d-b)+bE d..+p. (iv) Let ac(.(and

bEt->then since d. and
~

are cuts there is c € G( and dc.f'with a<c and

b<d so a+b<c+d and c+d€ O(+~ so d..+fhas no largest member.

Therefore we have shown that ~+P is indeed an element of R.

Now since we know addition in Q is associative we can easily

.
Because (~+~)+~={(a+b)+c:a€«, b~~, CE~}

and ol+(~+~ )={a+(b+c): a€o(, b€~, c€~}. So now we have that R

satisifes half of axiom 1. To get the other half we need to

define · in R, but before doing so we need to establish the <

relationship in R.

First rJ..=
~

iff every element of ol is an element of
~ I and

every element of p is an element of 0{
. Then define a. <

~
iff 0( C

f>

and eX +~. Now let 8={rEQ:r<O} which is obviously an element ot R.

Then also define -~. -a={r€Q:3s such that s~oc and r<-s}. It can

be shown fairly easi ly that - {)( is also a cut. So now we can

define. in R in the following manner with ~,6~R:
/

. (j.'fJ =-[<X..(-~)]

eX · f =- [ (- a.)
· ~

]

if d. ~8, ~ <8

if 0(<8, ~~e

(3)



In order to show that ~o~ is a cut, we need only show it for

the case when c(>8 and
~
>8. (i) Since we know that 8 is nonempty,~o~

is nonempty. (i 1) Now since 0(.and
(J are cuts there are a 4 exand b 1./3

with a>O and b>O since ~>8 and ~>8.
Then for c € ~ and d~(3 wi th

c~O and d ~O then c<a and d<b which means cd<ab and ab
4"-0<.0(3 so

fX..ltfJ'4:.Q~iii)Now let a.bE.olof, and
c'Q with c<a.b and with a>O and

b>O. Then if c<O cE8 so cE C\op. If c=O then c E ~0f3because

..>Sand
p >8. And if c>O then c/a<b and obviously c/aEQ and is

therefore an element of I . Then c=(c/a)oaEai.0jJ. (iv) Let a.bE.O(ofB

wi th aE«, b~1- then since eX and f are cuts there is c Eo( and d €
f&

such that a<c and b<d so ab<cd and cd € c(.
f. So OlofJ has no

. largest member. Therefore, of.
fi is an element of R.

We also just need to show the associative law is true for

the case where 0(.>8 and
p >8. Then forC(,p,~,"R (a...~)ol( =

{(a.b)cc: a,b,c~O, a€a.btf.Cf~}U8 and ~.(~'~)={a.(b~c) :a,b.c,~O,

aEQ.btp,ce~}U8 which are obviously equal since. is associative

in Q. Therefore R satisfies the first axiom.
Also from our

definitions of + and
·

it is clear that oc.+~=f+a and a.op= p,qSince

+ and · are commutative in Q. SO R also satisfies axiom 2.

Now we need to show that
· is distributive in R. Let oC)

!,l$€R, and take the case d.~e, p ~e, and tS~e. Now let. s look at «..

(~+~) and (o{o~)+(Q(...IS).
a:o(~+~)=d'{b+c:bE~,CE'}= {a,(b+c):

(4)



the definition of ' includes the union of 8 we know that «'w'O(.

. Now let aE«with a~O. Then there is b€ 0(such that a<b, so O(a/b<l

and so a/bE'/.). Then a=b. (a/b)E~. U so C:(~It
·
t.J, therefore c(.iJ= 0< for

. c>"O, aEO(, bt~ ,c€ g }u8. With a little thought it is obvious that

these two are indeed equal and therefore R satisfies axiom 3.

Earlier we defined 8={r~Q:r<O}, we can see that 8+«={a+r:

aE~, re8}={a:aE~}=~. This is intuitively clear since 8 cannot

add a positive number to the members of a. But we need to know

that 8 is unique. Assume ~ER with ~+~=~ then ~+«={a+r:a£~,r~~}.

If ~+({= Iithen every r must be less than zero so that ~+«lo{, but

if the r's do not approach 0 ~+~<~. Therefore ~={r€Q:r(O} so ?=8

and 8 is unique and R satisfies axiom 4.

Previously we also defined - oC.in terms of 0( with G(+(-O() _

{r+(-s) :rEd, -sE-a(} where -lX={reQ:3s such that s40( and r(-s}. Now

let r€o<.and s'-~. Then r<-s so r+s<O. Therefore o(+(-d)~8. But

. we need to know that this is equal, not just less than or equal.

So now suppose u<O. And since ~ is a cut we can find tt~, so

then for rEo( r<t. Let v=t-r. Then there 3nEJ such that n(-u/2) ~v.

Now since G( is a cut and rE«and r+n(-u/2)~o{ (this is true since

r+n(-u/2)~t and t~o() we can find mEJ such that m'n-l and

r+m(-u/2)~~ and r+(m+l)(-u/2),~.Then obviously -(r+(m+2)(-u/2»E-a.

Then r+m(-u/2)+(-(r+(m+2)(-u/2»=u€~+(-a). Since u(O, u~8, thus

It is also clear that this - 0(

must be unique so R satisfies axiom 5.

Now let~£ R defined byl..>={rEQ: r<l} and 008, then obviously

if aEO(, with a1-0 and w£t.)a.w~a since w<1. So a"wE£( Then since

(5)



. oI.}8. By definition of., if ~ =8, oi..b) = 8.w=8=d.

have ~.iJ=-(-C(.t.U)=-(-I1)=d.,by the definition of

Then when d<8 we

It is also

clear that ~ is unique and therefore R satisfies axiom 6.

The proof of axiom 7 is quite long but can be done. We will

-Ijust state how to define 0( when ~ >8 and leave it up to the

-I Jreader to prove if he wishes. Define ol ={rE.Q:r>O and 3s£Q, s'to(

such that s<l/r}uSu{O}.

Earlier we defined < in R. Letd..,~,-g€R witho«~, then there

exists bEp such that V aE~, a<b then let c(~, since these are

elements of Q a+c<c+b thUS~+~<~+~, and axiom 8 is satisfied.

.
Now let ~,~,~ER with o«p,~<~. Then from the definition of <

in Ro(CP and~c'l(. By the laws of sets this means thatO(C~, but

since < in R says that 0(+~, we also have as sets Q(+~ and

therefore d.. f~. So ~< ~when 0(
<P and p < t! in R. So R also

satisfies axiom 9.

Now if 0(<# then by definitiono( f{3. If 0( <P and
~
<0{, then pc 0(

andaC~, so # = £Xby the laws of sets, but this contradicts 0(<{5 and

!J<o<, finally if c(=~ then by definition~~o(. So we have shown

that for two cuts 0( and
~ only one of the following can be true

But for axiom 10 we need to know that for «,~'R

one of these is true. Assume thatoC~p ando(t~. Theno(tpas sets.

Therefore 3a€Q with a E c(but a~ p, let bE%. So b<a since a~p. So

bE.ce.,and therefore ~'(( as sets so p </:(. Thus R satisfies axiom

10.

.
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non-empty set of cuts, wi th an upper bound ~. Then (5 is also a

cut and d..l,~ vAeA. Now let 0( =U 0(
A We must show first that ex

..lEA.

is a cut. 1) since S is non-empty 3O<JES and O{J ~;Xand since lXA is

Now we will show that a is the least upper bound of S. Let

~be an upper bound of S, then as:;sume ~<«. Then 3pE ~with pfP, but-
some A~.A. so for VbE.~since p Eo( then by definition of eX p , 0(

Afor

i v) If P EO( then p E 0(,1, for some AE.A. Since O(A is a cut 3q ~ ot"

. Now we need to look at multiplication using inequalities.

Let ~,~,~ER with ~<p. Then there exists bE~ such that Va€~, a<b.

Then let 'if)8 then 3c E~ such that c) 0, so since we are in Q again

we see that ac<bc. Now obviously if any aE«is positive then the

b we have chosen is also postive so these terms do show up in ~,~

and ~. 'if. Since ac E 0(..
t and bc E p. ~ wi th ac< bc, cX.''6 c ~. '6 and (}\' '6

+ ~. '6

as sets, so ~.~<~.~. Therefore R satisfies axiom 11.

Now we have the final axiom to prove. Let S={~A IAfA} be a

.
a cut dA is not empty and therefore ~ is not empty. ii) Since j5

is a cut f t=Q and since
~

is an upper bound of S -:;, fP so ex =l=Q. ii1)

Given pE~and qeQ with q<p we know since pEc<and(i= Uoc.A' that pEo<.,
..If./\. ..,

for some Af.!\.. Then since 0(" is a cut q<p imiplies that q € 0(..1so

with p<q. Since qE~, qE«, so« has no largest member.

Therefore a is indeed a cut, and since ~ = U
r.<...\

0( is an upper
AU\.

bound of S.

b<p, and therefore
~ is not an upper bound of S. Therefore ~~~

for all
~

an upper bound of S, thus ~ is the least upper bound of

S. And finally we have shown that indeed the set R of all

.
(7)



completing the rational number using Cauchy sequences. To do

4It Dedekind cuts satisfies all 12 axioms, and thus defines the real

numbers.

Now that we have found the real numbers as defined by

Dedekind cuts, we shall derive the reals again, but this time by

this we need some definitions.

Definition: A valuation of rank 1 of a field k is a mapping, II,

from k into an ordered field such that for all a,bEk:

i) :a:~O' and =0' iff a=O, where zero is the identity

element of k and 0' is the identity element of the

ordered field.

i1) :ab: = :a: :b:

ii1) :a+b: ~ :a: + :b:

Obviously the absolute value function satisfies the three

requirements, so we will use the absolute value function as our

valuation on Q. We also need to know exactly what a Cauchy

sequence is.

Definition: The sequence {an} is called a Cauchy sequence in a

field k with respect to the valuation I I
I I, if for any £ >0, there

exists an integer N such that :an -am: <f for all n,m~N.

When using these Cauchy sequences we will need to speak of

their limits.

Definition: Let k be a field and :: a valuation on k. Let {an}

be a sequence of elements of k. The sequence {a"} is said to

(8)



. converge to the element aEk <and a is said to be a 1imi t of

{a.,} , denoted by lim an =a, or an --)a) if, for every real number

E >O~ there exists an integer N such that :a,,-a: < £ for all n~N.

Defini tion: The field k is called complete with respect to the

valuation I I if every Cauchy sequence of k with respect to I I hasI I I I

a 1imi t in k.

sequences. Let {a,,} and {bn} be Cauchy sequences of Q with

respect to I I Then define addition and multiplication as:I I.

{an } + {bn } = {an+ bn } and {an } e {b n
} = {an b,,}.

not complete. For example, the sequence 1,1.4,1.41,1.414,... in

Finally, before we complete Q we need to know what exactly

it means for a field to be complete.

From the definition of complete it is clear that Q is indeed

Q, this sequence is Cauchy but it is not convergent in Q,

. therefore Q is not a complete field.

Now we will find it useful to define some algebra of Cauchy

With one more definition we may begin completing Q.

Definition: A null sequence with respect to the valuation::, is

a sequence, {a rt
}, which satisfies '1£)0, '3N€J such that :a..,: < E

An example of a null sequence in Q is {l/n}:~1 .

.
For the remainder of the completion we will let A represent

the set of Cauchy sequences of Q. Within A it is obvious that



Next we need to show that <M,+> <to be called M from now on)

4It is a maximal ideal of A. Choose {an H A, with {an}
4 M. Then 3£ >0

and '3NEJ such that :an: ~E Vn>N. If this were not true then YE.>O

and YNEJ 3n>N such that :an: <f. But since {an}( A 3NE:J such

inverses are present. Now consider {an}EM and {bn}EA. Since

4It multiplication is associative and distributive and that <A,+> is

an abelian group, therefore A is a ring. The zero element of A

is the Cauchy sequence 00

{O}",:.1. .

Let M represent the set of all null sequences. Then <M,+>

is an additive subgroup of A because + is associative, M contains

'"
()P

the zero element {O}I\::,
'

and if {a", }n-:'I is a null sequence then

60
{-an}~~1 obviously is a null sequence, so all the elements

{bo} is a Cauchy sequence, :bn: ~ k Yn€J for some k. Then

But {: a.,:k}, {k: an :} E M, so

<M,+> is an ideal of A.

that :am-an: <£. Y n, m >N.

and Y m>N which implies that {ah} is a null sequence which is the

opposite of what we assumed. Therefore if {an} e: A but {a",}f. M 3 £

>0 and 3N€J such that :an: ~E Yn>N. V £ *>0

J such that Define {bn} as

~
0 for n.$. N

{bn} =
L

l/a for n > N

(10)



. Now suppose I is an ideal of A and I~M, with {a~} ~ I. Then

{an} {bn }={O,0, . . . , 0, 1, 1, . . . }
=

{1, 1, . . . } - {1, 1, . . . , 1, 0, 0, . . .
} € I .

But {cn}={l,l,... ,1,0,0, ...}E1 because it is a null sequence.

Then {an}{bn}+{cn}={l,l,.. .}£1 because <1,+) is a subgroup of A.

Therefore I=A because I contains the multiplicative identity of

A. Therefore M is a maximal ideal of A, and that means A/M is a

field by a Theorem from Abstract Algebra.

Now we need to show that A/M is the completion of Q and

consequently the set of Real Numbers. We will begin by showing

that A/M satisfies the axioms for the real numbers. Since A/M is

a field, we already know that it satisfies axioms 1 through 7.

An element in A/M looks like {an}+M, where {an}£A. We

. define + in A/M as if d.,#€A/M then O<+~ = {an}+M+{b",}+M={af\+b,,}+M

and · in A/M as d.P =( {an}+M). ({bn}+M)={an' b,,}+M.

Now we must look into the ordering of the field A/M. Let

~l~£A/M, then we say a=# if and only if :an - bn: --) 0. Then

define 0( <P by oC<P if and only if 3NE J such that an < bl) Vn:? N

and at}. Now let c( ,p ,~£ A/M with 0« ~. Then we know 3 NO such

that an < bo Vn ~ N. Now look at 0<.+~ and
~ +~ , clearly the terms

wi th n ) N look like an + cn < bf\+ Cn so that o{+" <
~

+ 't. So

axiom 8 is satisfied by A/M.

Now suppose that C«
~ and p < ~ , then we have that for some

N€J an < bn and b~ < c~ and since these are rational numbers it

.
is obvious that an < c" for n ) Nand 0(+ ~ . Therefore d. < g which

is axiom 9.

(11)



NEJ such that for n ~N a t\< b n and:! M~J such that for m ~M

bl)< an Let N' = max {N,M} then for n 1- N' we have that

an < b(\ and b f\.< an Since these are rational numbers we know

. Now if c« ~then by definitiono(=I=f. If c<< rand
#

<6 then 3

that these two inequalities can not be true at the same time. So

this contradicts our assumption of do.<
f>

and
~ < 0(. Finally if 0(=~

by definition we know that ~ *« so we have just shown that for two

elements of A/M only one of the following can be true: ri..< # I ~ <<<,

or Ii..=p. It can be shown that for ot..'P€A/M exactly one of the

previous conditions is always true. Therefore A/M also satisfies

axiom 10.

.
Now let d. <f1and <S) M then we know that 3 N€J such that for

n ~ Nan < bn . Now we also know that 3 f) 0 and 3 N'€ J such that

cn >.,£ for Vn ~ N' from an earlier proof and the fact that ~ ) H .

the elements of the sets using N' '= max {N,N'}. Then obviously

for n ~ N' I we know that an cn< bnc~. Now we see that

:a/lc" And since we know that

b,,: ~ O. Then since £ )0 we know that

:an cn - bnc(\: + 0 so by definition 0(~
+ ~ '6. Therefore d~<

fi
'6 and

A/M satisfies axiom 11.

Now all we need to do is prove axiom 12. To do this we must

first show that Q is dense in A/M up to a ring isomorphism. Let

qEQ and define f:Q--)A/M by f(q)={q}+M where {q} is the Cauchy

. sequence q, q, .... Obviously f is one to one and onto, but it

must also satisfy the following: if q,r Q then f(q+r)=f(q)+f(r)



that I I is indeed a valuation. t) :a:: >., M and = M iff «= M. ThisI I

is true because we showed earlier that if {an} + M t= M then

:an: ~Efor some E > 0. Vn ).N for some NeJ. which means the only

isomorphism of Q onto Q.={{q}+M:q~Q}. and Q. C A/M.

. and f(qr)=f(q)f(r). Let q.r€Q then f(q+r) = {q+r}+M = ({q}+M) +

({r}+M) = f(q)+f(r) and f(qr)={qr}+M=({q}+M)({r}+M)=f(q)f(r).

Furthermore if q<r then f(q) = {q} + M < {r} + M = f(r) by the

definition of < in A/M. Therefore f is an order preserving

Now let 0( ={an}+M E A/M. choose ~ >0. then : art\-an: < E. for

n.m>N. For a fixed m satisfying this let# ={am.am.am }+MEQ.

Then ~ + (-<X.)={atrtt aP'l. . . . }+M+{-an}+M={am+-an}+M. Therefore in A/M

we have Therefore Q. is dense in A/M.

The final axiom says that every nonempty set of real nu~bers

that is bounded from above has a least upper bound. If we could

show that A/M is complete with respect to a valuation::. this. final axiom would be satisfied. First we define the valuation ::

on A/M by. ifo(EA/M then :0(:= {:an:}+M. Since: :a",: :ant::

"
:a~ -am: and {an} is a Cauchy sequence. then {:ao:} is a Cauchy

sequence and therefore : 0( :€ A/M. Since we know A/M is an ordered

field. the proposed valuation is into an ordered field.

Next we must show that :: is well defined. Let {al\} + M =

{bn}+M. then from the definition of a residue class we know that

{:bn:}+M. Therefore :: is well-defined. Lastly we must show

. time :.x: = M is when(/(= M. it) Let~={bn}+M then :~: =<:bn:}+M

(I))



. I d..' I
~I so :d.~ : = 'a" ~I iiU d.. +~: = {: an+ bfl: } + M~I I I I, t I I I.

{:ao: + : bn:} + M = (C anD + M) + ({:b.,:) + M = : c( : + '~' soI '.

:rA+~: ~:oc: + I
~' Therefore I I as defined is a valuation ofI I. I I

A/M. Finally we must show that A/M is complete.

<E.
, -I - Cqm - q~: }~I + M < {f} + M where {c}+M>M.

Let ri. ={oc. . £Xz , . . .} be a Cauchy sequence in A/M where each c(~ E:

Q'. In other words aj ={q. ,q .}+M with qj € Q. Then :ar: =

Let ~ = then since V£>O 3N£J such that for n,m>N

for Vi > N. Therefore lim ci.=
~
and ~

EoA/M.

Now let 0(= {c(..lit } be an arbitrary Cauchy sequence in

A/M. with Then since {dn} is a Cauchy sequence

. the sequence {En} must be a null sequence. Then since we know

that Q' is dense in A/M 3 q,,' € Q' C A/M such that : q,,' - 0(,,: < £"'.

Also since ell is a Cauchy sequence. for V£>M 3N' such that

:~~ - oln: <1/3£ for n, m>N' and an N" such that tp<1/3f for p>N".

Then let N = max(N' ,N' ') so that for n, m, p > N. :qffl' - ~M:,

: o(m - O<n:. and : c(n - qn': are all <1/3 E . Then : q (n'

Thus

{qi
'
}i7.is a Cauchy sequence in Q' and there is ~ = {q"}~, + M as

above with lim {q'j"} =~ . Therefore since {qo' - ~n} was shown

to be a null sequence for each 0('1'1 in eX, limci..=~EA/M. Therefore

A/M is complete and satisfies all 12 axioms of the real numbers.

So both of the methods say they have found the real numbers.. And since it has been shown that if a set satisfies the 12 axioms

given at the beginning of this paper, it is the set of real

(14)
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numbers, I conclude that both methods must work.

however, solve the dilemma of ~ pieces of bread.

This does not,

does a lot of other things for me, so if she can't give me ~
But my mother

pieces of bread, I guess I will just have to get it for myself.

(15)
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	two methods for constructing the real numbers. 
	Why the reals? 
	In mathematics, we are always told that when there are two 
	methods for doing some problem, they will always yield the same 
	results. 
	In this paper, I will see if this is true when using 
	Well, the reals have always been difficult for me to grasp. You 
	can ask your mother for 1/2 a piece of bread or any other 
	rational piece of bread. 
	But try asking her for ~ pieces of 
	bread and she won't know what to give you. 
	The real numbers are defined by the following 12 axioms. 
	There are functions +:RxR--)R and .:RxR--)R and a relation < on R 
	such that V x,y,z ~R, where R is the set of real numbers, and the 
	following are true: 
	1) <x+y) +z = x+<y+z); <x. yh z = x. <y.z); 
	2) x+y = y+x; x.y = y.x; 
	3) x.<y+z) = <x.y) + <xez); 
	4) 3! 0 E R such that O+x=x Vx E R; 
	5) For each xER, ~!yfR such that x+y=O, and we write y=-x 
	6) 3! 1 E R such that x.1=x Vx£R; and 14=0; 
	y<x, x=y; 
	11) x<y and z)O implies that xz<yz. 
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	12) Every nonempty set of real numbers that is bounded from 
	above has a least upper bound. 
	So now we shall construct the real numbers based on these 12 
	axioms. 
	We will do this first by using Dedekind cuts, which we 
	must first define. 
	Definition: A Dedekind cut is a set D(,cQ such that 
	(i) oc is nonempty 
	(i1) 0. =t= Q 
	(ii1) if af «. and b•Q and b<a then b • ~. 
	(iv) ~ does not contain a largest member. 
	To visualize what a cut is look at the following example: 
	Example 1: ~={pEQ:p<2} is a Dedekind cut. 
	(iii) Let aE~, then a<2, now let b~Q with b<a, then b<2 so bf~. 
	(iv) Let aE« then a<2 so 2a<a+2, a«a+2)/2 anda+2<4, 
	(a+2)/2<2 so a«a+2)/2<2, obviously (a+2)/2•Q so 
	(a+2)/2ea. 
	So ~ has no largest member. 
	I now claim that the set of all Dedekind cuts is R, the set 
	of real numbers. 
	In order to show this we will prove the 12 
	axioms are true for the set of all Dedekind cuts. 
	For the next 
	few pages the sumbol R will represent the set of all Dedekind 
	cuts. 
	(2 ) 
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	Now since we know addition in Q is associative we can easily 
	Because (~+~)+~={(a+b)+c:a•«, b~~, CE~} 
	and ol +(~+~ )={a+(b+c): a•o(, b•~, c•~}. 
	So now we have that R 
	satisifes half of axiom 1. 
	To get the other half we need to 
	define · in R, but before doing so we need to establish the < 
	relationship in R. 
	First rJ.. = ~ iff every element of ol is an element of ~ I and 
	every element of p is an element of 0{ . 
	Then define a. < ~ iff 0( C f> 
	and eX +~. 
	Now let 8={rEQ:r<O} which is obviously an element ot R. 
	Then also define -~. 
	-a={r•Q:3s such that s~oc and r<-s}. 
	It can 
	be shown fairly easi ly that - {)( is also a cut. 
	So now we can 
	(3) 
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	In order to show that ~o~ is a cut, we need only show it for 
	the case when c( >8 and ~ >8. 
	(i) Since we know that 8 is nonempty,~o~ 
	is nonempty. 
	(i 1) Now since 0(. and (J are cuts there are a 4 ex and b 1./3 
	with a>O and b>O since ~>8 and ~>8. 
	Then for c • ~ and d~(3 wi th 
	b>O. 
	Then if c<O cE8 so cE C\op. 
	If c=O then c E ~0f3 because 
	..>Sand p >8. 
	And if c>O then c/a<b and obviously c/aEQ and is 
	largest member. 
	Therefore, of. fi is an element of R. 
	We also just need to show the associative law is true for 
	the case where 0(. >8 and p >8. 
	Then forC(,p,~,"R (a...~)ol( = 
	in Q. 
	Therefore R satisfies the first axiom. 
	Also from our 
	Now we need to show that · is distributive in R. 
	Let oC) 
	(4) 
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	. c>"O, aEO(, bt~ ,c• g }u8. 
	With a little thought it is obvious that 
	these two are indeed equal and therefore R satisfies axiom 3. 
	Earlier we defined 8={r~Q:r<O}, we can see that 8+«={a+r: 
	aE~, re8}={a:aE~}=~. This is intuitively clear since 8 cannot 
	add a positive number to the members of a. But we need to know 
	that 8 is unique. 
	Assume ~ER with ~+~=~ then ~+«={a+r:a£~,r~~}. 
	and 8 is unique and R satisfies axiom 4. 
	then for rEo( r<t. Let v=t-r. Then there 3nEJ such that n(-u/2) ~v. 
	Now since G( is a cut and rE«and r+n(-u/2)~o{ (this is true since 
	It is also clear that this - 0( 
	must be unique so R satisfies axiom 5. 
	Now let~£ R defined byl..> ={rEQ: r<l} and 008, then obviously 
	if aEO(, with a1-0 and w£t.) a.w~a since w<1. So a"wE£( 
	Then since 
	(5) 
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	Then when d<8 we 
	It is also 
	clear that ~ is unique and therefore R satisfies axiom 6. 
	The proof of axiom 7 is quite long but can be done. We will 
	such that s<l/r}uSu{O}. 
	But for axiom 10 we need to know that for «,~'R 
	10. 
	(6) 
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	i v) If P EO( then p E 0(,1, for some AE.A. Since O(A is a cut 3 q ~ ot" 
	we see that ac<bc. Now obviously if any aE«is positive then the 
	b we have chosen is also postive so these terms do show up in ~,~ 
	Now we have the final axiom to prove. Let S={~A IAfA} be a 
	with p<q. Since qE~, qE«, so« has no largest member. 
	AU\. 
	bound of S. 
	(7) 
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	completing the rational number using Cauchy sequences. 
	To do 
	4It Dedekind cuts satisfies all 12 axioms, and thus defines the real 
	numbers. 
	Now that we have found the real numbers as defined by 
	Dedekind cuts, we shall derive the reals again, but this time by 
	this we need some definitions. 
	Definition: A valuation of rank 1 of a field k is a mapping, 
	from k into an ordered field such that for all a,bEk: 
	i) :a:~O' and =0' iff a=O, where zero is the identity 
	element of k and 0' is the identity element of the 
	ordered field. 
	i1) 
	:ab: = :a: :b: 
	ii1) 
	:a+b: ~ :a: + :b: 
	Obviously the absolute value function satisfies the three 
	requirements, so we will use the absolute value function as our 
	valuation on Q. 
	We also need to know exactly what a Cauchy 
	sequence is. 
	Definition: The sequence {an} is called a Cauchy sequence in a 
	field k with respect to the valuation 
	if for any £ >0, there 
	exists an integer N such that :an -am: <f for all n,m~N. 
	When using these Cauchy sequences we will need to speak of 
	their limits. 
	Definition: Let k be a field and :: a valuation on k. 
	Let {an} 
	be a sequence of elements of k. 
	The sequence {a"} is said to 
	(8) 
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	not complete. 
	For example, the sequence 1,1.4,1.41,1.414,... in 
	Finally, before we complete Q we need to know what exactly 
	it means for a field to be complete. 
	From the definition of complete it is clear that Q is indeed 
	Q, this sequence is Cauchy but it is not convergent in Q, 
	therefore Q is not a complete field. 
	Now we will find it useful to define some algebra of Cauchy 
	With one more definition we may begin completing Q. 
	Definition: A null sequence with respect to the valuation::, is 
	a sequence, {a rt }, which satisfies '1£)0, '3N•J such that : a..,: < E 
	An example of a null sequence in Q is {l/n}:~1 . 
	For the remainder of the completion we will let A represent 
	the set of Cauchy sequences of Q. 
	Within A it is obvious that 
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	inverses are present. 
	Now consider {an}EM and {bn}EA. 
	Since 
	4It multiplication is associative and distributive and that <A,+> is 
	an abelian group, therefore A is a ring. 
	The zero element of A 
	is the Cauchy sequence 
	Let M represent the set of all null sequences. 
	Then <M,+> 
	is an additive subgroup of A because + is associative, M contains 
	{bo} is a Cauchy sequence, :bn: ~ k Yn•J for some k. 
	Then 
	But {: a.,: k}, {k: an : } E M, so 
	<M,+> is an ideal of A. 
	that : am-an: < £. Y n, m >N. 
	and Y m>N which implies that {ah} is a null sequence which is the 
	opposite of what we assumed. 
	Therefore if {an} e: A but {a",} f. M 3 £ 
	>0 and 3N•J such that :an: ~E Yn>N. 
	V £ *>0 
	J such that 
	Define {bn} as 
	(10) 
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	Now suppose I is an ideal of A and I~M, with {a~} ~ I. 
	Then 
	{an} {bn } = {O, 0, . . . , 0, 1, 1, . . . } = {1, 1, . . . } - {1, 1, . . . , 1, 0, 0, . . . } • I . 
	But {cn}={l,l,... ,1,0,0, ...}E1 because it is a null sequence. 
	Then {an}{bn}+{cn}={l,l,.. .}£1 because <1,+) is a subgroup of A. 
	Therefore I=A because I contains the multiplicative identity of 
	A. Therefore M is a maximal ideal of A, and that means A/M is a 
	field by a Theorem from Abstract Algebra. 
	Now we need to show that A/M is the completion of Q and 
	consequently the set of Real Numbers. 
	We will begin by showing 
	that A/M satisfies the axioms for the real numbers. 
	Since A/M is 
	a field, we already know that it satisfies axioms 1 through 7. 
	An element in A/M looks like {an}+M, where {an}£A. We 
	Now we must look into the ordering of the field A/M. Let 
	is obvious that an < c" for n ) Nand 0( + ~ . 
	Therefore d. < g which 
	is axiom 9. 
	(11) 
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	Now if c« ~then by definitiono(=I=f. 
	If c< < rand # <6 
	then 3 
	previous conditions is always true. 
	Therefore A/M also satisfies 
	axiom 10. 
	Now let d. < f1 and <S) M then we know that 3 N•J such that for 
	n ~ Nan < bn . 
	Now we also know that 3 f) 0 and 3 N'• J such that 
	cn >., £ for Vn ~ N' from an earlier proof and the fact that ~ ) H . 
	the elements of the sets using N' '= max {N,N'}. 
	Then obviously 
	for n ~ N' I we know that an cn< bnc~. 
	Now we see that 
	:a/lc" 
	And since we know that 
	b,,: ~ O. 
	Then since £ ) 0 we know that 
	Now all we need to do is prove axiom 12. 
	To do this we must 
	first show that Q is dense in A/M up to a ring isomorphism. Let 
	qEQ and define f:Q--)A/M by f(q)={q}+M where {q} is the Cauchy 
	. sequence q, q, .... 
	Obviously f is one to one and onto, but it 
	must also satisfy the following: if q,r Q then f(q+r)=f(q)+f(r) 
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	isomorphism of Q onto Q.={{q}+M:q~Q}. and 
	Q. C A/M. 
	and f(qr)=f(q)f(r). 
	Let q.r•Q then f(q+r) = {q+r}+M = ({q}+M) + 
	({r}+M) = f(q)+f(r) and f(qr)={qr}+M=({q}+M)({r}+M)=f(q)f(r). 
	Furthermore if q<r then f(q) = {q} + M < {r} + M = f(r) by the 
	definition of < in A/M. 
	Therefore f is an order preserving 
	Now let 0( ={an}+M E A/M. choose ~ >0. then : art\-an: < E. for 
	we have 
	Therefore Q. is dense in A/M. 
	The final axiom says that every nonempty set of real nu~bers 
	that is bounded from above has a least upper bound. 
	If we could 
	show that A/M is complete with respect to a valuation::. this 
	final axiom would be satisfied. 
	First we define the valuation :: 
	on A/M by. ifo(EA/M then :0(: = {:an:}+M. 
	Since: :a",: 
	: ant:: " 
	:a~ -am: and {an} is a Cauchy sequence. then {:ao:} is a Cauchy 
	sequence and therefore : 0( : • A/M. 
	Since we know A/M is an ordered 
	field. the proposed valuation is into an ordered field. 
	Next we must show that :: is well defined. 
	Let {al\} + M = 
	{bn}+M. then from the definition of a residue class we know that 
	{:bn:}+M. 
	Therefore :: is well-defined. 
	Lastly we must show 
	. time :.x: = M is when(/(= M. 
	it) Let~={bn}+M then :~: =<:bn:}+M 
	(I)) 
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	< E. 
	Cqm - q~: }~I + M < {f} + M where {c}+M>M. 
	Let ri. = {oc. . £Xz , . . .} be a Cauchy sequence in A/M where each c(~ E: 
	Q'. In other words aj ={q. ,q .}+M with qj • Q. Then :ar: = 
	Let ~ = 
	then since V£>O 3N£J such that for n,m>N 
	for Vi > N. 
	Therefore lim ci. = ~ and ~ Eo A/M. 
	Now let 0(= {c(.. lit } be an arbitrary Cauchy sequence in 
	A/M. with 
	Then since {dn} is a Cauchy sequence 
	the sequence {En} must be a null sequence. 
	Then since we know 
	that Q' is dense in A/M 3 q,,' • Q' C A/M such that : q,,' - 0(,,: < £"'. 
	Also since ell is a Cauchy sequence. for V£>M 3N' such that 
	:~~ - oln: <1/3£ for n, m>N' and an N" such that tp<1/3f for p>N". 
	Then let N = max(N' ,N' ') so that for n, m, p > N. :qffl' - ~M:, 
	: o(m - O<n:. and 
	: c(n - qn': are all <1/3 E . 
	Then : q (n' 
	Thus 
	{qi ' }i7. is a Cauchy sequence in Q' and there is ~ = {q" }~, + M as 
	above with lim {q'j"} = ~ . 
	Therefore since {qo' - ~n} was shown 
	to be a null sequence for each 0('1'1 in eX, limci..=~EA/M. 
	Therefore 
	A/M is complete and satisfies all 12 axioms of the real numbers. 
	So both of the methods say they have found the real numbers. 
	(14) 
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	numbers, I conclude that both methods must work. 
	however, solve the dilemma of ~ pieces of bread. 
	This does not, 
	does a lot of other things for me, so if she can't give me ~ 
	But my mother 
	pieces of bread, I guess I will just have to get it for myself. 
	(15) 
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