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In mathematics, we are always told that when there are two
methods for doing some problem, they will always yield the same
results. ‘In this paper, I will see if this is true when using
two methods for constructing the real numbers. Why the reals?
Vell, the reals have always been difficult for me to grasp. You
can ask your mother for 1/2 a piece of bread or any other
rational piece of bread. But try asking her for +2 pieces of

bread and she won't know what to give you.

The real numbers are defined by the following 12 axioms.
There are functions +:RxR-->R and ¢:RxR-->R and a relation < on R
such that V x,y,z €R, where R is the set of real numbers, and the

following are true:

D (xty)+z = x+(y+z); (Keydez = xelyez);

2) Xty = y+X; Xey = yex;

3) Xelyt+tz) = (xey) + (xez);

4> 3t 0 €R such that O+x=x Vx € R;

5) For each x€R, H!yER such that x+y=0, and we write y=—x

6> 3!1 € R such that xe¢l=x Vx€R; and 140;

7) For each x€R with x$0, 3! y€R such that xey=1, and we
write y=x~! or y=1/%;

8) x<y implies x+z<{yt+z

9) x<{y and y<z implies that x<z

10> for x,y€R exactly one of the following is true: x<y,
y<{x, x=y;

11> x<y and z>0 implies that xz<yz.




‘ 12> Every nonempty set of real numbers that is bounded from

above has a least upper bound.

So now we shall construct the real numbers based on these 12

axioms. We will do this first by using Dedekind cuts, which we

must first define.

Definition: A Dedekind cut is a set £¢cQ such that
(i> & is nonempty

11> 4 ¥ Q

(iii)> 1if a€ A and bEQ and b<a then b €X,

(iv) & does not contain a largest member.
To visualize what a cut is look at the following example:
. Example 1: &={p€Qi!p<2} is a Dedekind cut.

(1) d is nonempty because 1<2 so 1€,
(11> &4Q because 2€Q but 2{2 so 2¢«.

S

(1iii> Let a¢d, then a<2, now let beQ with b<a, then b<2 so beq,

(iv) Let a€x then a<2 so 2aca+2, a<(a+2)/2 and a+2<4,
(at+2)/2<{2 so a<l(a+2)/2<2, obviously (a+2)/2€Q so

(a+2) /26X, So & has no largest member.

I now claim that the set of all Dedekind cuts is R, the set
of real numbers. In order to show this we will prove the 12
axioms are true for the set of all Dedekind cuts. For the next

few pages the sumbol R will represent the set of all Dedekind

cuts.,
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First we define + in R. Let ,B&R then define & +p =
{a+b:a€a.bﬁﬁ). But is O +fEéR? Let's see,. (i)dﬂﬁ is nonempty
since &« andﬁ are nonempty. (ii) Since & and /3 are cuts neither
equal Q. So 3 a,b€Q with a#OL and béﬁ Then if ced and deﬁ, ca
and d<b otherwise a¢A and beﬂ which we know is not true.
Therefore, for ¥ ce« and déﬁ c+d<at+b so a+bq‘.o(+,6 =Te] 0(-?”"7‘:Q. (iiid
Let c€a+ﬁ then c=a+b for some a€d, bﬂg. Now suppose d<c then
d<a+b so d-b<a so d-béd. Then d=<d—b)+b€¢x+ﬁ. (iv) Let aéd and
b€/$ then since o andﬁ are cuts there is céd and dGIS with a<c and
b<d so atb<c+d and c+d€wd+ﬂ so d+ﬁ has no largest member.

Therefore we have shown that o(+lB is indeed an element of R.

Now since we know addition in Q is associative we can easily
see that (A+p)+¥=d+(p+Y>. Because (d+p>+§={(a+bi+ciaca, bep, ce¥)
and¢i+(ﬁ+5)={a+(b+c): a€x, beﬂ, c€¥). So now we have that R
satisifes half of axiom 1. To get the other half we need to
define * in R, but before doing so we need to establish the <

relationship in R.

First d= & iff every element of & is an element of @ , and
every element of /S is an element of . Then define d<(} iff X C,@
andd+ﬁ. Now let 6={reQi!r<0} which is obviously an element of R.
Then also define -d. -dA={réQi!ids such that s¢o¢ and r<-s}. It can
be shown fairly easily that - & is also a cut. ©So now we can

define ¢+ in R in the following manner with a,f¢R:
i

o+ B ={r.s|ry0, s30, reéd, seﬂwe. 1fd>e,'8>,e
o(op =—£oc-<~p)] 1fa>e.‘6<e

A B=—t(-02:p1 1if i<8,pre
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o(-p ={ <—ot>e<—p>] if o(<e,,6<e

In order to show that a-p is a cut, we need only show it for
the case when o >8 and P)B. (1> Since we know that 8 is nonempty,ob/s
is nonempty. (11) Now since & and IB are cuts there are aio( and b¢,6
with a>0 and b>0 since o>8 and ﬁ)S. Then for c €«dand dGIB with
c20 and d 20 then c<a and d<b which means cd<ab and ab¢ K'ﬁ so
«*ﬂ'-ﬁ@.(iii) Now let aobed-ﬁ and ceQ with c<a+b and with a>0 and
b>0. Then 1if c<0 ceB so cé€ 0('!6. If ¢c=0 then c¢ d-ﬁbecause
d)Gand.P)G. And 1if ¢>0 then c/a<b and obviously c/a€Q and is
therefore an element of/5 Then c= (c/a)-aeafﬂ (iv) Let a-beo(-ﬁ
with a€d, béf then since « andﬁ are cuts there is ceo and deg
such that a<c and b<d so ab<cd and cdéd‘,g. So u-ﬁ has no

largest member. Therefore, o(-/@ is an element of R.

Ve also just need to show the associative law is true for
the case where o >0 andﬁ>8. Then for oc,ﬂ,xeR <oz-/3>-x =
{Casblec! a,b,c0, aea.bep.ce!)ue and do(ﬁ»5)={a-(b~c):a,b,c,}O,
aéd,beﬂ,cet)ue which are obviously equal since « is associative
in Q. Therefore R satisfies the first axiom. Also from our
definitions of + and s it is clear that ot+?=P+d and daﬁ=ﬁedsince

+ and * are commutative in Q. So R also satisfies axiom 2.

Now we need to show that ¢ is distributive in R. Let o,
/5.56 R, and take the case d )0, ﬂ 20, and ¥ »8. Now let’'s look at A
(P+¥> and Cospd+(oked)d. Ole (p+8)=ds(btcibef, ceX)= (as(bto) |
230,b+c0, a€4, bEL, c€¥IuB. Then (Aef) + (A:¥) = {asb : a%0, b0,

aGd,bé‘,B)ue * faecc ! a)0,030,2€d,c€8)08 = ((asb)+(asc) | ao, b0,
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ozo,aéd,béﬁ,cnix }¢B. VWith a little thought it is obvious that

these two are indeed equal and therefore R satisfies axiom 3.

Earlier we defined 6={r€Qir<0}, we can see that 6+6={a+r'
a€d, redl)={alacdr=4«. This is intuitively clear since B cannot
add a positive number to the members of a. But we need to know
that 8 is unique. Assume ¢6R with ¢+d=d then ¢+d={a+r:a€d,r€¢).
If g+d=d then every r must be less than zero so that ¢+d}d, but
if the r’'s do not approach 0 g+d<d. Therefore P={r€Qir<0) so g=6

and 8 is unique and R satisfies axiom 4.

Previously we also defined -« in terms of o with o+(-0) =
{r+(~-s) ired,-s€¢€-A) where -d={reQ:!ds such that s¢0(and r<-s}. Now
let reXand sé-d. Then r<-s so r+s<0. Therefore A+(~-dgB. But
we need to know that this is equal, not just less than or equal.
So now suppose u<0. And since & is a cut we can find tfd, so
then for r€d r<t. Let v=t-r. Then there 3n€J such that n{-uw/2Xv.
Now since & is a cut and reéd« and r+n(-u/2)>¢ & (this is true since
r+n(-u/2>2t and téa) we can find meJ such that m{n-1 and
r+m(-u/2> €4« and r+(m+1)(—u/2)¢d.Then obviously —<(r+{m+2)<(-~u/2)>€-4,
Then r+m(-u/2)+(-(r+(m+2) (-u/2))=u€A+(-A&>). Since u<(, ued, thus
8£d+(-%>), and therefore B=d+(—d). It is also clear that this -&

must be unique so R satisfies axiom 5.

Now let @€ R defined by ={r€Qir<1l} and «>8, then obviously
if a€a, with a0 and weéw arwa since w<l. So arwé« Then since
the definition of ¢ includes the union of 8 we know that add{«,
Now let aédwith a»0. Then there is béA such that a<b, so 0<as/bK1

and so a/béw. Then a=be(a/bléd+s W sod{d:w, thereforedi=« for
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o>8. By definition ofe, if A =8, o'W = B-w=6B=d. Then when d<B we
have Acp=—(— A=~ (- =d, by the definition of « . It is also

clear that & is unique and therefore R satisfies axiom 6.

The proof of axiom 7 is quite long but can be done. Ve will
just state how to define lJ(~| when o >8 and leave it up to the
reader to prove if he wishes. Define o(-'={r€Q:r>O and 3s€Q, s#d

such that s<1/r)uvBuy{03l.

Earlier we defined < in R. Let ot,f&,xeR with o(<f§, then there
exists béﬁ such that ¥V a€d, a<b then let c€¥, since these are

elements of Q a+c<c+b thus 0(+K<ﬁ+x, and axiom 8 is satisfied.

Now let d,p,KeR with d(ﬁ,ﬁ(l{. Then from the definition of <
in Ro(Cﬁ andﬁc X. By the laws of sets this means that“cx. but
since < in R says thatO(ﬂg, we also have as setsd#lg and
therefore & $¥. So o< ¥ when 0(<ﬁ and ﬁ(){ in R. So R also

satisfies axiom 9.

Now 1fo(<ﬂ then by definitiond +/5. Ifo(<IB andp«x , thench o
anddcﬁ. soﬁ=0( by the laws of sets, but this contradicts d(lg and
5(0(, finally if o(=ﬁ~ then by definitionﬁ{d . So we have shown
that for two cuts« andﬁ only one of the following can be true
0(</g,ﬂ<0( ora(=ﬁ\. But for axiom 10 we need to know that for O(,ﬁGR
one of these is true. Assume that d*ﬁ and & #ﬂ. Thend*ﬁas sets.
Therefore 3a€Q with a€d but aép. let bEﬂ. So b<a since a#ﬁ. So
beéd, and therefore g,éo( as sets so p(d. Thus R satisfies axiom

10.
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Now we need to look at multiplication using inequalities.
Let d,ﬁ,XGR with d(ﬁ. Then there exists bé_,B such that Vaed, a<b.
Then let ¥ >68 then Jc€¥ such that c>0, so since we are in Q again
we see that ac<bc. Now obviously if any a €& is positive then the
b we have chosen is also postive so these terms do show up in X«¥
andﬁ' ¥. Since ac €*°¥and be 65‘6 with ac<bc, &+ ¥C ﬁ'x and Oﬂ‘x#‘g'x

as sets, so K% <f)*x. Therefore R satisfies axiom 11.

Now we have the final axiom to prove. Let S={&) |l€A) be a
non-empty set of cuts, with an upper boundﬂ. Then /8 is also a
cut and ddéls VYAEA. Now letaj&_ X) . Ve must show first that &
is a cut. 1) since S is non-empty H“AGS and O(AQ& and since Q) is
a cut dA is not empty aﬁd therefore o is not empty. 1ii> Since /8
is a cut/3¢‘Q and sinceﬁ is an upper bound of S QSIH so A #Q. iidid
Given p€& and q€Q with gq<p we know since p€&and&=AgA°¢,‘, that p eo(/‘
for some A€A. Then since X, is a cut g<p imiplies that q€d,; so
q€X. 1v> If p€X then p€d,;, for some A€A. Since X, is a cut Qqeog\
with p<q. Since g€, qéc?, so & has no largest member.

Therefore & is indeed a cut, and since & = tej_/\r_u , & is an upper

bound of S.

Now we will show that & is the least upper bound of S. Let ,3
be an upper bound of S, then assume ﬁ<¢;(- Then 3p€0‘(with p¢p, but
since peathen by definition of X p €A for some A€A so for VbGﬂ
b<p, and therefore 5 is not an upper bound of S. Therefore ;(\<’B

for allﬁ an upper bound of S, thus X is the least upper bound of

S. And finally we have shown that indeed the set R of all
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‘ Dedekind cuts satisfies all 12 axioms, and thus defines the real

numbers.

Now that we have found the real numbers as defined by
Dedekind cuts, we shall derive the reals again, but this time by -
completing the rational number using Cauchy sequences. To do

this we need some definitions.

Definition: A valuation of rank 1 of a field k is a mapping, i1

from k into an ordered field such that for all a, bék:

i +ai 20’ and =0' 1ff a=0, where zero is the identity
element of k and O’ is the identity element of the
ordered field,.

"’ iid iab! = lailib!

iidd ilatb! £ tatl + bl

Obviously the absolute value function satisfies the three
requirements, so we will use the absolute value function as our
valuation on Q. Ve also need to know exactly what a Cauchy

sequence is,.

Definition: The sequence {3a,) is called a Cauchy sequence in a
field k with respect to the valuation !!, if for any €£€>0, there

exists an integer N such that 'a, —-a,! <€ for all n,m)N.

When using these Cauchy sequences we will need to speak of

their limits.

. Definition: Let k be a field and !! a valuation on k. Let {ap}

be a sequence of elements of k. The sequence {ap} is said to
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converge to the element a€k <(and a is said to be a limit of
{an}, denoted by lim ap=a, or ap —-—->a) 1if, for every real number

€20, there exists an integer N such that !ap-a! <& for all n)N.

Finally, before we complete Q we need to know what exactly

it means for a field to be complete.

Definition: The field k is called complete with respect to the

valuation i if every Cauchy sequence of k with respect to !! has

a limit in k.

From the definition of complete it is clear that Q is indeed
not complete. For example, the sequence 1,1.4,1.41,1.414,... in
Q, this sequence is Cauchy but it is not convergent in Q,

therefore Q is not a complete field.

Now we will find it useful to define some algebra of Cauchy
sequences. Let {a,} and {b,) be Cauchy sequences of Q with
respect to ii. Then define addition and multiplication as:

{ap } + {bp > = {apt by > and {ay > ¢ (b, ) = {aybpl.
With one more definition we may begin completing Q.

Definition: A null sequence with respect to the valuation !i, is
a sequence, {ap }, which satisfies V€>0, 3IN€J such that lan! < &

¥n2N.

o

An example of a null sequence in Q is {1/n)n=|

For the remainder of the completion we will let A represent

the set of Cauchy sequences of Q. Within A it is obvious that
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‘ multiplication is associative and distributive and that <A, +> is
an abelian group, therefore A is a ring. The zero element of A

is the Cauchy sequence {0},

n=31 °

Let M represent the set of all null sequences. Then <M, +>
is an additive subgroup of A because + 1s associative, M contains
the zero element {O}:n , and if {an}ﬁ:|is a null sequence then
{—anﬁﬁ, obviously is a null sequence, so all the elements
inverses are present. Now consider {a,}€M and {bp}€A. Since
{bp} is a Cauchy sequence, byl kK ¥n€J for some k. Then
tapbpi £ tapik and ibga,! £ kiani. But {lanik}), {kilapi)€ M, so

<{M,+> is an ideal of A.

Next we need to show that <M,+> (to be called M from now on)
' is a maximal ideal of A. Choose {a,}€A, with {an)¢ M. Then J€>0
and IN€J such that !'a,! %€ ¥n>N. If this were not true then VE>O
and ¥N€J In>N such that lapnl <€ But since {a,}€A I NeJ such
that iam~—an! <& V n,m >N. Then lawi & lagl + lam—a,! <2& ¥E>0
and ¥V m>N which implies that {an} is a null sequence which is the
opposite of what we assumed. Therefore if {a,}€ A but {an}¢ M 3¢

>0 and IN€J such that lap! 2€ ¥n>N. Since {anl € A, VE X>0 IME

J such that ia4—ay: <EXE® for all m,n>M. Define {bp} as

O for n & N

{bpr = l7/a for n > N

Then {b,) € A because if m,n>max {M,N) then iba=bmi = 1l/a,— 1/au!

= 1 A, apn) /8,80 € 'an— a) /e < € X,
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Now suppose I is an ideal of A and I2M, with {an} € I. Then

{a4}{bp3={0,0,...,0,1,1,...2=41,1,...2~-41,%,...,1,0,0,...%€l,
But {c4r={1,1,...,1,0,0,...2€] because it is a null sequence.
Then {anp){bn}t{cn)={1,1,...}€l because <I,+> is a subgroup of A.

Therefore I=A because I contains the multiplicative identity of
A. Therefore M is a maximal ideal of A, and that means A/M is a

field by a Theorem from Abstract Algebra.

Now we need to show that A/M is the completion of Q and
consequently the set of Real Numbers. We will begin by showing
that A/M satisfies the axioms for the real numbers. Since A/M is

a field, we already know that it satisfies axioms 1 through 7.

An element in A/M looks like {a,}+M, where {a,}€A. Ve
define + in A/M as if d,ﬁeA/M then¢i+ﬂ== {apn)+M+{by}+M={a,+bn}+M

and ¢« in A/M as d-/@=<{an}+m>-<{bn}+M>={anob..>+M.

Now we must look into the ordering of the field A/M. Let
ggﬁeA/M, then we say‘d=ﬂ if and only if ta, - bn! ——> 0. Then
define o <p by o(<p if and only if IJN€J such that apn< by ¥n » N
andd#lg.NDw let Of,ﬂ JSE€A/M with o(<p . Then we know 3 N€J such
that apn < by ¥n > N. Now loock at & +X% and.ﬁ+5 , clearly the terms
with n > N look like ap+ cq < bat+ cn so that o+ <f3+x. So

axiom 8 is satisfied by A/M.

Now suppose that K<ﬂ and £<K s, then we have that for some
N€J an < by and b, < ¢, and since these are rational numbers it
is obvious that a, < cy for n > N andA#§ . Therefore d< ¥ which

is axiom 9.
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Now 1f o < B then by definitiono(ai:fo. 1f 4<f and f<8, then 13
N€J such that for n 2 N apn < b andijMéJ such that for m 3 M
by < an . Let N' = max {(N,M} then for n N’ we have that
an < by and bp < a, . Since these are rational numbers we know
that these two inequalities can not be true at the same time. So
this contradicts our assumption ofo(<ﬂ; and ﬁ<0( . Finally if«& =ﬂ
by definition we know thatﬁ{dso we have just shown that for two
elements of A/M only one of the following can be true:d'iﬁ, ﬁ(d,
cn*d==ﬁ. It can be shown that for d,ﬁﬁA/M exactly one of the
previous conditions is always true. Therefore A/M also satisfies

axiom 10.

Now let d<pp and §> M then we know that IN€J such that for
n %»Nay< bp . Now we also know that 3€ > 0 and IN'€J such that
ch > € for ¥n » N’ from an earlier proof and the fact that ¥ >M .

Then o¢«¥ = {an-cn) + M and ﬁt! = {bp*cp} + M, then we can look at

the elements of the sets using N’''= max {(N,N'). Then obviously
for n » N'’ we know that a, c,< bpc,. Now we see that
lagcqy = bacyt = lcpla,— bydi 2 g€iaz~ bpi. And since we know that

d#ﬁ, we know that !a, — by! %> 0. Then since £>0 we know that
tapcy— bpcal 7~ 0 so by definition ¥ +(BZS Therefore d&<ﬁ2§ and

A/M satisfies axiom 11.

Now all we need to do is prove axiom 12. To do this we must
first show that Q is dense in A/M up to a ring isomorphism. Let
q€Q and define f:Q-->A/M by f(g)={q}+M where {q) is the Cauchy
sequence q,q,.... Obviously f is one to one and onto, but it

must also satisfy the following: if q,r Q then f(q+r)=f (P +£(rD
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and f(gr)=£(q)f<r). Let q,r€Q then f(q+r) = {q+r)+M = ({q)+M) +
({r3+M) = £(+f(r) and figr)={gqri+M=C({q)+M) ({r}+M=£f(q)f(r.
Furthermore if q<r then f(q) = {q)} + M < {r} + M = f(r) by the
definition of < in A/M. Therefore f is an order preserving

isomorphism of Q onto Q'={{q)}+Miq€Q), and Q C A/MNM.

Now let & ={apn)+M€ A/M, choose £>0, then !am-an! < £ for
n, m>N. For a fixed m satisfying this 1etf3={am,am,am,...}+M€Q’.
Then B+(-0)={am am, ... )+ M+ {-a ) +M=(an+-an,}+M. Therefore in A/M

we have i{apt-a,}+M! < € for n>N. Therefore Q' is dense in A/M.

The final axiom says that every nonempty set of real numbers
that is bounded from above has a least upper bound. If we could
show that A/M is complete with respect to a valuation !!, this
final axiom would be satisfied. First we define the valuation !!
on A/’M by , if A€EA/M then ! = {la,i}+M. Since !ian! — !am!! XY
iapn —ami and {ap} is a Cauchy sequence, then {ian!} is a Cauchy

sequence and therefore | i€A/M. Since we know A/M is an ordered

field, the proposed valuation is into an ordered field.

Next we must show that !|! is well defined. Let {a,} + M =

{bn}+M, then from the definition of a residue class we know that

ran—bni ——>0 and therefore {lap! — ibpil ——> 0 so {iani} + M =
{ibni}+M., Therefore i! is well-defined. Lastly we must show
that ! is indeed a valuation. 1) td! ) M and = M iff &= M. This

is true because we showed earlier that if {a,) + M # M then
i8ni 2 E for some £> 0, ¥n > N for some NeJ, which means the only
time X! = M is whendo= M. ii) Leth={ba)+M then !f! ={ibni)+M

then :dﬁ: = {!anbn!}+M={!an::bh:}+M=({}an1}+M)-({2bn:) + M =
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iiipl, so lapi = iaiifi. 111) P+ fi = Clagt bold + Mg
Clap! + ibaid + M = (Llapid + M + (bg!d + W= tol! + ifi, so
:d+p: L tai o+ :ﬁ:. Therefore !|! as defined is a valuation of

A/7M. Finally we must show that A/M is complete.

Let o ={&,,0;,...) be a Cauchy sequence in A/M where each &: €

Q'. In other words d;={q;,q:,...>+M with q; € Q. Then ;! =

P
{igei,iqyt,.. o) + M and {q;}ﬁ’must be a Cauchy sequence in. Q.
y + M, then since V€>0 3N€J such that for n,m>N
L

'Qm—Qn! <& tdm—p 1 = {igm - qiido+ M < {€) + M where {E)+MDM,

for ¥i > N. Therefore 1imd=pandﬁ€A/M.

Now let o= {d,,d;,...) be an arbitrary Cauchy sequence in
A/M, with " R =En- Then since {9n) is a Cauchy seguence
the sequence {f,) must be a null sequence. Then since we know

that Q' is dense in A/M :3qn’€ Q'C A/M such that 1Qp’ —dnt <En.
Also since dis a Cauchy sequence, for VE>M 3IN' such that
1w — &ni <1/8€ for n,m>N’ and an N such that £p<1/3€ for p>N",
Then let N = max(N’,N’’') so that for n, m, p > N, i1qm" - %!,
tdm - dnt, and 1dn - q,'! are all <1/3€ . Then iqm’ - ga'! <
'qm’ — Amitidm—dp! + i1dn - g,'! <1/3€ +1/3€ +1/3€ =f . Thus
{q:’}ﬁzis a Cauchy sequence in Q' and there is ﬁ== {q“}ﬁ, + M as
above with lim {q;’}==ﬁ . Therefore since {q,' - %)} was shown
to be a null sequence for each dn ind, 1lim 0§=ﬁ€A/M. Therefore

A/M is complete and satisfies all 12 axioms of the real numbers.

So both of the methods say they have found the real numbers.
And since it has been shown that if a set satisfies the 12 axioms

'given at the beginning of this paper, it is the set of real
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numbers, I conclude that both methods must work. This does not, Y
however, solve the dilemma of ~Z2 pieces of bread. But my mother
does a lot of other things for me, so if she can’t give me <2

pieces of bread, I guess I will just have to get it for myself.
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