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1. Introduction

Graph theory is a part of mathematics that has many practical appli-

cations. The study of graph theory began in 1736 with Leonard Euler's work

on the Konigsberg bridge problem. Konigsberg was a city built on a river

with two islands and seven bridges. The question was posed as to whether

you could start anywhere, cross each bridge exactly once and end up at the

starting point. Other problems that arise include scheduling routes for

transportation systems that meet certain requirements such as distance,

time, places stopped, and profits; and choosing the best times for replace-

ment of equipment and the best type to use -- what brand, new or used -- to

make operations most efficient.

The focus of this paper will be on algorithms used for optimizing

problems. It will cover the uses of these algorithms and why they are

used as well as touching on how each one works.
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2. Tree Algorithms

Tree algorithms can be divided into two groups: spanning tree

algorithms and maximum branching algorithms. Spanning tree algorithms

are used when the object of the problem is to get all the vertices of a.

graph connected; for example, a company having several buildings must

construct passageways between them, with no constraints on how they connect

the buildings. A problem of possible interest to the company n1ay be how

to connect the buildings with sidewalks using the least amount of pavement.

Spanning Trees

The spanning tree algorithm examines each edge of the graph to deter-

mine if it is needed to connect the vertices. If it adds a new vertex to

the graph, it is kept; if it is redundant, it is not kept. The algorithm

stops when all the vertices in the graph are connected or there are no more

edges to be considered. The algorithm is easily adapted to find the maximum

and minimum spanning trees by examining each edge in descending or ascending

order respectively, rather than arbitrarily examining any edge.

This algorithm is very efficient, because it examines each edge at most

once, and may stop before examining all of the edges. It is also a very

easy algorithm to implement. It requires only one decision per edge, with

the arcs being sorted by value for a maximizing or minimizing problem.

Maximum Branching Algorithm

Maximum branching algorithms are used in cases where the direction of

movement along an edge is to be considered. When the edge is directed it

is called an arc. A special kind of spanning tree is called an arborescence.

In an arborescence each vertex has at most one arc going into it, but it may

have several coming out. An example of this would be the chain of command
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in a company. The president is in charge of the divisional vice presidents,

who each send orders to their managers, who tell their workers what to do.

'I'hegeneral maximum branching algorithm examines each vertex in an

arbitrary order. For each vertex, the arc of maximum value that enters it

is added to the graph, if such an arc exists. This process continues

until there is no longer a branching. When a circuit is formed, it is

considered a single unit, given a name, and a new weight is calculated for

it. This process continues until all of the vertices in the original graph

have been considered. Next the circuits are expanded to their original

state and the appropriate arc is deleted from each circuit to make it a

branching. This maximum branching will also be the maximum spanning

arborescence, if one exists. Hinimum branchings are found by using the

negative of each arc weight and following the same algorithm.

. To root a maximum spanning arborescence at a specific vertex, a false

vertex is created, and one arc is added from this vertex to the root vertex.

The value of this arc is arbitrary. Since no arcs enter the false vertex,

the arborescence, if it exists, will be rooted there. After performing the

algorithm, simply disregard the false vertex and its arc.

Because of the directional requirement, this algorithm requires more

computation. Although this algorithm requires reexamining the vertices in

a circuit, it is efficient because it adds vertices one at a time until

they have all been considered. Once added, a vertex is never removed from

the tree.

Tree algorithms are based on the same structure as a tree in that the

whole thing must be connected, but no branch splits into parts and later

rejoins any of the branches from which it split. By consistently taking

. the largest possible arc and maintaining a branching, a maximum branching
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is ensured. This will span the graph if possible; anything less would not

be a maximum.

'.



shortest path from there to each of the other vertices, the shortest of

which it connects. Then it continually takes the vertex nearest the ini-

tial vertex and connects it until the final vertex is connected. In choos-
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3. Shortest Path Algorithms

Shortest path algorithms are used in problems where there are several

alternatives, and the object is to choose the one requiring the least amount

of time or expense. For example, if a person wanted to drive from Chicago

to DeKalb, what would be the shortest route? A more generalized form would

be the Kth shortest route. For example, if the traveler wanted to return

to Chicago by bus, he may want to find the fastest route. Also, in-case

there is no more room on that trip, he would also like to know which is the

second fastest route.

Dijkstra Algorithm

The Dijkstra algorithm begins at the initial vertex and chooses the

ing the shortest path, the Dijkstra algorithm considers both the distance

directly from the initial vertex and the distance from the initial vertex

through other connected vertices. This finds the shortest path from the

initial vertex to the final vertex.

This algorithm is efficient in that one vertex is added at each
'

iteration until the shortest path is found, but it requires calculating

the distance for each vertex until it is connected. The Dijkstra algorithm

must be modified if any of the arc lengths are negative. The Ford algor-

ithm does this by reconsidering .the connected vertices each time, and

changing the shortest distance if one is found, but this requires more

calculations and more steps.
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Floyd Algorithm

The Floyd algorithm begins by setting up an initial mQtrix whose ~le-

ments are the lengths of the shortest arc between each pair of vertices in

the graph. Each iteration consists of choosing the minimum distance from:

the previous matrix or the first vertex to Eha second via a given vertex.

These values make up the new matrix. The process is then repeated until

every vertex has been considered as an intermediate vertex.

The Floyd algorithm is advantageous in that it calculates the short-

est path from each vertex to every other vertex in the graph, whereas the

Dijkstra algorithm finds the shortest path from one given vertex to another

given vertex. Because of its matrix format this algorithm is easier to

implement on a computer uhan a graph format algorithm such as Dijkstra's.

The Dantzig algorithm also has a matrix format.

Dantzig Algorithm

The Dantzig algorithm works much like the Floyd algorithm except that

in the Floyd algorithm the shortest path can be modified in each iteration

when a new vertex is considered as' an intermediate vertex. In the Dantzig

algorithm the initial matrix is a one by one matrix. In each iteration a

row and a column are added to the matrix and the shortest path through any

intermediate vertex is considered. In this case, the shortest paths are

not modified. Essentially the Floyd and Dantzig algorithms require the

same operations in a different order.

Kth Shortest Paths

Kth shortest routes, as mentioned previously, are often of interest

as alternatives. One method of finding the Kth shortest path is the

.

Double Sweep algorithm, which finds the Kth shortest path from any given
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. vertex to every other vertex in the graph. The Generalized Floyd and the

Generalized Dantzig algorithms also find the Kth shortest paths. For these

algorithms a vector is substituted for each element in the matrix, and a

generalized minimization and addition are defined and used. These algorithms

solve for the shortest through the Kth shortest paths from each vertex to

every other vertex in the graph.

The main advantage of the generalized Floyd and Dantzig algoritl~s

is that they solve for the Kth shortest path between all pairs of vertices.

Except when the Kth shortest path from only one destination is of interest,

the double sweep algorithm is less efficient, because it D1ust be repeated

once for each additional initial vertex of interest.

While shortest path problems can be solved using a matrix format, the

idea of the shortest path problem is much like a map. It shows many alter-

. native routes from one destination to another, and from them the best route

must be chosen. The path need not be direct, but it must follow existing

roads.

.
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. 4. I'low l,lgor ithms

Flo1:1algorithms can be considered as two major types of problems. The

first is when the amount of flow through a network needs to be maximized.

The second is when a set amount of flow must be moved through a network,

and the object is to minimize the cost.

Maximum Flo1:1Algorithm

The maximum flow algorithm begins with a network in which each arc has

a given capacity. The first step is to choose any path from the source, or

beginning point, to the sink, or final destination, and send as many units

of flow through that path as possible without violating a capacity. Each

successive new path found may consist of any unused flow capacity in the

direction of the arc, and any used flow capacity in the opposite direction.

. ~ihen all possible paths are found, any time a backwards flow was used, two

paths were crossed. The crossed segments are removed, and the beginning of

each path is connected to the end of the other. This algorithm can be modi-

fied to accomodate several sources and sinks. This is done by connecting a

"false" vertex with infinite arc capacity to each source, and a second

"false" vertex to each sink.

Minimum Cost Flow Algorithm

The minimum cost flow algorithm is useful for problems in which a given

amount of material must be shipped from source to sink over routes that may

have limited capacities. The object is to ship the goods at a minimal cost.

This algorithm begins by giving each vertex an initial value of zero. It

then operates in the same way as the maximum ~low algorithm with the addi.

. tional constraint that the difference between the numbers ~ssigned to two



vertex that has not yet been added is increased by one. By repeating this

process, the algorithm finds first, all paths with cost zero, then cost one,

cost two, and so forth until either the given number of flows has been found
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vertices_ must equal the arc cost. In the next step, the value of each

or the maximum flow is reached. Since non-zero bounds are not permitted in

this algorithm, another algorithm may sometimes be needed.

Out-Of-Kilter Algorithm

The Out-Of-Kilter algorithm is used when non-zero lower bounds exist

as long as there are no negative circuits of infinite capacity. The algo-

rithm begins by choosing an arbitrary set of flows from source to sink.

For each arc, a number based on the principle of complementary slackness,

and the difference between the. actual flow and the minimum and maximum

capacities must be calculated. From these figures a kilter number, or

measure of how much the situation is out of kilter, is assigned to each

arc. For each out of kilter arc, the algorithm searches for a flow that

will improve the kilter situation without worsening the kilter situation of

any other arc. This is repeated until no more flows can be sent from source

to sink. Then.tbe vertices are renumbered and the process is repeated until

everything is in kilter, or no feasible flow exists.

Dynamic Flow Algorithms

Dynamic flow algorithms are used when there is a time constraint in a

flow problem. Besides having a flow capacity, the time to travel from one

vertex to another along each arc is known. Given a constraint of n units

of time, these problems can be expanded by expanding each vertex into n

vertices to represent the units of time. Corresponding arcs a~e drawn from

one ,vertex to another moving to the appropriate time spot on the vertex.
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. The new graph can be solved with standard flow algorithms. Expanded graphs

do not require new algorithms, but they can become very inefficient as the

graph gets bigger with each additional vertex and longer time constraint.

Haximum Dynamic Flow Algoritb.m

The maximum dynamic flow algorithm utilizes the minimum cost flow

algorithm by using the travel time of the arc as the cost. The final flow

from this algorithm is broken down into paths, and a new flow is sent down

each path for each unit of time until a flow sent would not reach the sink

before the time constraint was reached.

Earliest Arrival Flow Algorit~~

Another type of dynamic flow concerns the earliest and latest departure

and arrival times. The earliest arrival flow algorithm also uses the minimum

. cost flow algorithm. It works in the same way as the maximum dynamic flow

algorithm with the additional condition that earlier arrivals are done

first; that is, the algoritb.m first considers flows with arrival time zero,

then those with arrival time one, and so forth, until the given number of

flows or the maximum flow is reached. Latest departure flows can also be

calculated by reversing the arcs in the graph and using the earliest arrival

flow algorithm. Latest arrivals, unfortunately, are much more complicated,

because they involve holdovers at vertices along the path.

Flows With Gains Algorithm

Finally, another type of flow problem is encountered when the amount

of flows are allowed to be changed along the way. An example of this is an

investment problem, where an investment may acquire either a gain or loss

. along a particualr arc, and the new amount must be investe~ in the next arc

along the path.
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In these types of problems, each arc in the graph has a gain factor.

If all gain factors are one, the probleQ can be solved with the out-of-

kilter algorithm. If the problem contains absorbing or generating cycles,

where losses or gains occur, the flows with gains algorithm must be used.

This algorithm begins by finding a set of flow values and dual values that

form a feasible solution in which there is complementary slackness. This

set may contain fewer than the required number of flows to be dispatched

from the source. The algorithm then searches for additional flows that will

still satisfy the original conditions. When this is no longer possible,

the dual values are then altered to stay within the conditions and allow

more flows to go through the network. The algorithm continues to alternate

between these two steps until the given number of flows have been found, or

the maximum number of flows has been reached.

Although flow problems are more diverse in their variations than short-

est path problems, they also work much like a map. But in the case of flow

problems, capacity rather than distance is the main factor. The algorithms

look for many paths through the network rather than the shortest path.
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5. Conclusion

Graph theory is useful in many types of problems in many different

fields. Often it is used for linear programming problems where algorithms

such as the simplex algorithm will work, but are not as efficient. The

algorithm used to solve such a problem depends on the type of problem.

In some situations, more than one algorithm is available. In these cases

.
the choice may depend on the conditions of the problem, which may make one

algorithm more efficient than another.
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	row and a column are added to the matrix and the shortest path through any 
	intermediate vertex is considered. In this case, the shortest paths are 
	not modified. Essentially the Floyd and Dantzig algorithms require the 
	same operations in a different order. 
	Kth Shortest Paths 
	Kth shortest routes, as mentioned previously, are often of interest 
	as alternatives. One method of finding the Kth shortest path is the 
	Double Sweep algorithm, which finds the Kth shortest path from any given 
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	vertex to every other vertex in the graph. The Generalized Floyd and the 
	Generalized Dantzig algorithms also find the Kth shortest paths. For these 
	algorithms a vector is substituted for each element in the matrix, and a 
	generalized minimization and addition are defined and used. These algorithms 
	solve for the shortest through the Kth shortest paths from each vertex to 
	every other vertex in the graph. 
	The main advantage of the generalized Floyd and Dantzig algoritl~s 
	is that they solve for the Kth shortest path between all pairs of vertices. 
	Except when the Kth shortest path from only one destination is of interest, 
	the double sweep algorithm is less efficient, because it D1ust be repeated 
	once for each additional initial vertex of interest. 
	While shortest path problems can be solved using a matrix format, the 
	idea of the shortest path problem is much like a map. It shows many alter- 
	roads. 
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	4. 
	I'low l,lgor i thms 
	Flo1:1 algorithms can be considered as two major types of problems. The 
	first is when the amount of flow through a network needs to be maximized. 
	The second is when a set amount of flow must be moved through a network, 
	and the object is to minimize the cost. 
	Maximum Flo1:1 Algorithm 
	The maximum flow algorithm begins with a network in which each arc has 
	a given capacity. The first step is to choose any path from the source, or 
	beginning point, to the sink, or final destination, and send as many units 
	of flow through that path as possible without violating a capacity. Each 
	successive new path found may consist of any unused flow capacity in the 
	direction of the arc, and any used flow capacity in the opposite direction. 
	each path is connected to the end of the other. This algorithm can be modi- 
	fied to accomodate several sources and sinks. This is done by connecting a 
	"false" vertex with infinite arc capacity to each source, and a second 
	"false" vertex to each sink. 
	Minimum Cost Flow Algorithm 
	The minimum cost flow algorithm is useful for problems in which a given 
	amount of material must be shipped from source to sink over routes that may 
	have limited capacities. The object is to ship the goods at a minimal cost. 
	This algorithm begins by giving each vertex an initial value of zero. It 
	then operates in the same way as the maximum ~low algorithm with the addi. 
	tional constraint that the difference between the numbers ~ssigned to two 
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	vertices_ must equal the arc cost. In the next step, the value of each 
	or the maximum flow is reached. Since non-zero bounds are not permitted in 
	this algorithm, another algorithm may sometimes be needed. 
	Out-Of-Kilter Algorithm 
	The Out-Of-Kilter algorithm is used when non-zero lower bounds exist 
	as long as there are no negative circuits of infinite capacity. The algo- 
	rithm begins by choosing an arbitrary set of flows from source to sink. 
	For each arc, a number based on the principle of complementary slackness, 
	and the difference between the. actual flow and the minimum and maximum 
	capacities must be calculated. From these figures a kilter number, or 
	measure of how much the situation is out of kilter, is assigned to each 
	arc. For each out of kilter arc, the algorithm searches for a flow that 
	will improve the kilter situation without worsening the kilter situation of 
	any other arc. This is repeated until no more flows can be sent from source 
	to sink. Then.tbe vertices are renumbered and the process is repeated until 
	everything is in kilter, or no feasible flow exists. 
	Dynamic Flow Algorithms 
	Dynamic flow algorithms are used when there is a time constraint in a 
	flow problem. Besides having a flow capacity, the time to travel from one 
	vertex to another along each arc is known. Given a constraint of n units 
	of time, these problems can be expanded by expanding each vertex into n 
	vertices to represent the units of time. Corresponding arcs a~e drawn from 
	one ,vertex to another moving to the appropriate time spot on the vertex. 

	Tables
	Table 1
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	The new graph can be solved with standard flow algorithms. 
	Expanded graphs 
	do not require new algorithms, but they can become very inefficient as the 
	graph gets bigger with each additional vertex and longer time constraint. 
	Haximum Dynamic Flow Algoritb.m 
	The maximum dynamic flow algorithm utilizes the minimum cost flow 
	algorithm by using the travel time of the arc as the cost. The final flow 
	from this algorithm is broken down into paths, and a new flow is sent down 
	each path for each unit of time until a flow sent would not reach the sink 
	before the time constraint was reached. 
	Earliest Arrival Flow Algorit~~ 
	Another type of dynamic flow concerns the earliest and latest departure 
	and arrival times. The earliest arrival flow algorithm also uses the minimum 
	first; that is, the algoritb.m first considers flows with arrival time zero, 
	then those with arrival time one, and so forth, until the given number of 
	flows or the maximum flow is reached. Latest departure flows can also be 
	calculated by reversing the arcs in the graph and using the earliest arrival 
	flow algorithm. Latest arrivals, unfortunately, are much more complicated, 
	because they involve holdovers at vertices along the path. 
	Flows With Gains Algorithm 
	Finally, another type of flow problem is encountered when the amount 
	of flows are allowed to be changed along the way. An example of this is an 
	investment problem, where an investment may acquire either a gain or loss 
	along a particualr arc, and the new amount must be investe~ in the next arc 
	along the path. 
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	In these types of problems, each arc in the graph has a gain factor. 
	If all gain factors are one, the probleQ can be solved with the out-of- 
	kilter algorithm. If the problem contains absorbing or generating cycles, 
	where losses or gains occur, the flows with gains algorithm must be used. 
	This algorithm begins by finding a set of flow values and dual values that 
	form a feasible solution in which there is complementary slackness. This 
	set may contain fewer than the required number of flows to be dispatched 
	from the source. The algorithm then searches for additional flows that will 
	still satisfy the original conditions. When this is no longer possible, 
	the dual values are then altered to stay within the conditions and allow 
	more flows to go through the network. The algorithm continues to alternate 
	between these two steps until the given number of flows have been found, or 
	the maximum number of flows has been reached. 
	Although flow problems are more diverse in their variations than short- 
	est path problems, they also work much like a map. But in the case of flow 
	problems, capacity rather than distance is the main factor. The algorithms 
	look for many paths through the network rather than the shortest path. 
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	5. Conclusion 
	Graph theory is useful in many types of problems in many different 
	fields. Often it is used for linear programming problems where algorithms 
	such as the simplex algorithm will work, but are not as efficient. The 
	algorithm used to solve such a problem depends on the type of problem. 
	In some situations, more than one algorithm is available. In these cases 
	the choice may depend on the conditions of the problem, which may make one 
	algorithm more efficient than another. 
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