
Jeff Goldberg
Dr. Domina
CSCI 465
Honors Paper
Submitted 4/19/88

Goldberg, Jeff

20015

The 1985 COBOL Standard

)

The Common Business Oriented Language. COBOL. will celebrate

its 30th anniversary in April of next year. The new standard

for COBOL compilers. hereafter called COBOL 85. was announced in

few people could understand it enough to be productive. When the

September of 1985 after seven years of deliberation. This new

version of the world's most popular language presents many new

improvements which will serve to further promote the efficiency

of COBOL's data processing capabilities. However. nothing can be

gained without sacrifice. By improving the progranming

efficiency this new standard had to give up complete upward

compatibility.

In 1959. most programming tasks were written 1n machine

codes. This proved to be very tine consuming and costly; also

assemblers cane out, it marked the beginning of highly productive

programming. However. there still existed another major problem:

an assembly language program is machine specific. Programmers

had to learn almost completely different languages to work with

different conputers. For this purpose. and a couple of other

reasons. a conference was organized. The goal of this

conference. held on the canpus of the University of Pennsylvania.

was to recomnend to the Departnent of Defense to have a series of

neetings to cone up with a. "connon business language."

The following year. the Conference on Data Systens

Languages. CODASYL. was held. The result was COBOL 60. the first

COBOL 85 - The new standard Page 2

published standard of COBOL. The goal was to create a standard

for COBOL compilers that would satisfy three main problems. The

first was the problem of complicated programming. COBOL provided

ease of programming, readability, and understanding to people in

the computer field by using open ended English-type statements.

The second problem was that of upward compatibility. In other

words, the COBOL language provided for easy modifications, and

programs written for an earlier compiler would be able to be

compiled on the new compiler. The third and final problem to be

solved was transferability. By publishing a COBOL standard, the

authors wanted to be able to take a program compiled on one brand

of computer and be able to compile and execute the same source

code on a different computer. Thus, COBOL was officially born.

The United States of America Standards Institute, USASI,

which became ANSI, merged with CODASYL to come up with COBOL 68.

Since then the two groups have published COBOL 74 and COBOL 85.

The International Standards Organization, ISO, has accepted ANS

CO~OL versions as international standards.

The rapid acceptance and continued growth in the use of

COBOL had its roots in a changing programming environment. At

the time of the introduction of COBOL, CPU time was relatively

expensive, moreso than programmer time. As a result of this,

programmers made painstaking efforts to make their programs more

efficient, with little concern for the time it took to accomplish

the coding task. Since that time, the roles have switched. Now,

CPU time is considered cheap, and program efficiency has given

01 FIELDS.

02 DISPLAY-ITEM PIC 59(5) USAGE IS DISPLAY.

02 PACKED-- ITEM PIC 59(5) USAGE IS PACKED-DECIMAL.

02 BINARY-ITEM PIC 59(5) USAGE IS BINARY.

COBOL 85 - The new standard Page 3

way to better documentation and ease of modification. COBOL

standards have continually adjusted to this change with more

descriptive reserved words and easier to incorporate modularity.

The differences between COBOL 85 and COBOL 74, the current

accepted standard, are too broad for complete coverage. This new

version brings with it new feature~, changes in old features, and

deletion of obsolete features. The scope of this paper covers

only the major differences that will make programming in COBOL

more efficient and productive. The topics covered by this paper

cut across two circles of interest; better readability of

source code, and easier implementation of structured logic.

Simple things that make reading a COBOL program a little

easier make up one advantage this standard has to offer. With

the forty-nine new reserved words, two of them serve only to

lmprove source code readability. When programming under COBOL 74

and describing data items as packed decimal or binary, the USAGE

clause must be used with COMPUTATIONAL or COMPUTATIONAL-3.

However, with COBOL 85 there are better ways to show the more

efficient use of a data item. The new reserved words are

PACKED-DECIMAL and BINARY. Now, data items can be declared as

follows:

However, even though writing out BINARY or PACKED-DECIMAL

OCCURS 5 TIMES.

OCCURS 5 TIMES.

OCCURS 5 TIMES.

OCCURS 5 TIMES.

OCCURS 5 TIMES.

OCCURS 5 TIMES.

OCCURS 5 TIMES.

PIC 9(5) _08 DATA-. I'rEM

creates better readability for debugging, the new compilers will

still accept CaMP and COHP-3. Eventually the latter two reserved

words will be eliminated from the published COBOL standard.

Another new advantage is the number of levels a table can

have. Past COBOL standards have had a limit of three levels of

subscripting, while COBOL 85 has the capacity for an additional

four levels. A table may be described as follows:

01 NEW-TABLE-TYPE.

02 LEVEL-1

03 LEVEL-2

04 LEVEL-3

05 LEVEL-4

at:) LEVEL-5

0'1 LEVEL-6

08 LEVEL-7

When a program is designed to produce a report that will be

seen by upper level management, which may be easily impressed by

small details, little things such as the date become important.

With COBOL 74 the compiler can return the date. and with some

minor coding the date can be written in a a form management

will like. Under COBOL 74. the date can be obtained by way of

the MOVE statem~nt and could be printed in the form 09/15/88. If

a month table is included, the date could be put in the form of

September 15. 1988. This form looks good to management. but

COBOL 85 adds a new level to the aesthetics of the date, the DAY-

WORKING-STORAGE SECTION.

01 DAYS-'fABLE

02 DAYS-DEFINED.

03 PIC X(9) VAl.UE IS "MONDAY
03 PIC X(9) VALUE IS "TUESDAY
03 PIC X(9) VALUE IS "WEDNESDAY".
03 PIC X(9) VALUE IS "THURSDAY
03 PIC X(9) VALUE IS "FRIDAY
03 PIC X(9) VALUE IS "SATURDAY
03 PIC X(9) VALUE IS "SUNDAY

02 DAY--NAHE-TABLE REDEFINES DAYS-DEFINED.

CUBOL 85 - The new standard Page 5

OF-~EEK reserved word. ~hen DAY-OF-WEEK is used with the ACCEPT

statement, the compiler returns a one digit character that stands

for:

1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday
7 Sunday

This digit could be used as a subscript to access a day table.

03 DAY-NAME PIC X(9) OCCURS 7 TIMES.

77 DAY-CODE.

ACCEPT DAY-CODE FROM DAY-OF-WEEK.

DISPLAY "GOOD MORNING, TODAY IS " DAY-NAHE(DAY-CODE).

An experienced COBOL 74 programmer would immediately notice

the absence of the FILLER reserved word. Another one of COBOL

85"s improvements over COBOL 74 is its more versatile use of the

FILLER key word. In previous versions FILLER could not be used

COBOL 74 . COBOL 85 :

01 HEADER-LINE 01 HEADER-LINE.

02 FILLER PIC XXXX. 02 FILLER.

02 F[LLER PIC XXXX. 03 PIC XXXX.

02 TOTALS PIC 9999. 03 PIC XXXX.

02 FILLER PIC XXXX. 03 1'OT ALS PIC 9999.

03 PIC XXXX.

COBOL 85 - The new standard Page 6

at the group level. Also included in FILLER"s new role is

optionability. FILLER is an optional word, and if it is omitted

the compiler assumes its presence. Compare the following

examples.

This new feature adds better readability for the programmers,

and it eliminates the need to type FILLER over and over again for

a program with many headers and detail lines. Since the word

FILLER will be absent from the field definition, the referenceable

elements will be easier to recognize.

As every programmer knows, when dealing with a program that

makes use of tables of accumulators, it is necessary to use an

out-of-flow loop just to initialize the fields to zero. COBOL 85

has managed to overCOme this inconvenience. With this new

standard, the VALUE clause can be placed on elements under an

OCCURS ~lause. This provides a simple method to initialize a

table of values to any number, as shown here:

COBOL 85 - The new standard Page 7

01.

02 EMPLOYEE-WAGE-TOTALS OCCURS 100 TIMES.

03 EMPLOYEE-WAGES-TO-DATE PIC S9(8)V99

VALUE IS O.

The features described so far have all resided within the

circle of better readability. These small changes will lIlake

progralll lIlaintenance an easier task, and in the long run, this

will save valuable programllling tillle. There is still another area

to cover: better illlplelllentationof structured logic. COBOL 85

brings with it two new powerful features never before offered by

COBOL. These features are nested progralllsand instream loops.

The first feature, nested programs, 1S very easy to

implement and provides a wonderful way to use different modules

created by melllbersof a programllling team. The format is

conceptually, and actually, rather simple. The idea of nested

prograllls is illustrated here:

"
,

R
, ," ' " ".....................................

,.....................~.., ,

Main Program
f"" "

"..." " ".." " " ".."" " 1

Inner Program I
" " " " """ "... 1

Inner Progralll Ia I
1 1

r }

I Inner Program Ib i

I
L 1

i

I : : " " ,.1

r.."..'.." " " "" ".." " ,

Inner Program II
1 , , , "." 1

'.., "................"..."" ""."...".."" " ""." "" ".." ".."..." ".."" " ""."" ".1

CuBOL 85 - The new standard P ag e 8

COBOL skeleton as follows:

This conceptual figure can easily be transforned into a

IDENTIFICATION DIVISION.
PROGRAM ID. HAIN-PROGRAH.

IDENTIFICATION DIVISION.
PROGRAH ID. 1NNER-PROGRAH-I.

IDENTIFICATION DIVISION.
PROGRAM ID. INNER-PROGRAH-IA.

END PROGRAM INNER-PROGRAH-IA.

IDENTIFICATION DIVISION.
PROGRAH 1D. INNER-PROGRAM-IB.

END PROGRAM INNER-PROGRAM-IB.

END PROGRAM INNER-PROGRAM-I.

IDENTIFICATION DIVISION.
PROGRAM ID. INNER-PROGRAH-II.

END PROGRAM INNER-PROGRAH-II.

END PROGRAM HAIN-PROGRAM.

,.." "............... ,

,

"....................

...........................

1

1

1

1
I
I
I
I
I
I
J

J

COBOL 85 - The new standard Page 9

The next new feature of COBOL 85 is probably the single

greatest inprovenent over the previous standards. This addition

is the new and inproved functions of the PERFORM verb. In past

COBOL standards, there was no way to process loops instrean. The

flow of control can be illustrated as follows:

, ~...~ ,...............

Main Segment
h

, ~

I"
..............-.........................

1

, o...................................

Next Segment
.-.........................-..

I.. 1.............................

" ~ ,....-...

Stnts. in Loop

"

"..w....

I... 1

However, with COBOL 85 the flow of control can be instream:

"............

Main Segment
...-.....

" ",..

Stnts. in Loop
, "

" ,..-.....

"

'..............

Next Segment
...-..-..

This difference can be seen clearly in the illustrations.

All of the details of the new PERFORM statement do not need to be

discussed at this time. The major aspects of the new PERFORM

COBOL 85 - The new standard
Page 10

verb can be seen with the following two examples.

PERFORM 5 TIMES

DISPLAY ITEM(SUBSCRIPT)

SUBSCRIPT = SUBSCRIPT + 1

END-PERFORM.

PERFORM UNTIL EOF-HAS-OCCURRED

ADD NUMBER TO SUB-TOTAL

READ IN-FILE AT END MOVE 'Y' TO EOF

END-PERFORM.

The last two features fill up the em~ty space 1n the realm

of implementing structured logic. For small routines this will

improve efficiency, and readability, and it will conform to

structured logic. Branching to another paragraph can be

eliminated, so visually the COBOL source code's flow of execution

will be easier to follow, resulting in quicker program

maintenance.

COBOL 85 brings with it the already mentioned features and

many others, but it also has eliminated some of the old features.

The list of the "obsolete" features is too long to list 1n its

entirety, yet there is a good example of the theory behind this.

In the IDENTIFICATION DIVISION there are many paragraphs that

serve only as documentation. The reserved words; AUTHOR,

INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and SECURITY will no

longer be accepted by COBOL compilers. The COBOL 85 authors'

CUJ:3ULEY-

theory behind this comes from compiler time efficiency. The

compiler could save time by only having to process the necessary

paragraphs. If progr~mers want the previously mentioned

documentation in their program, they can add a comment card.

Other streamlining of the compiler has taken place in the new

COBOL standard.

With all of the new features, changes in old features, and

the canceling of obsolete features, converting programs written

for COBOL 74 to COBOL 85 is not an easy task, if it can be done at

all. One of the forementioned purposes of COBOL was upward

compatibil~ty. This basic fundamental of the COBOL language has

been put on the road to oblivion. The converting of present

programs to COBOL 85 would take many expensive programmers long

labor hours.

Most firms will not take the time to convert their old

programs; thus they are faced with a tough decision. The choices

for each company are (1) keep programming with a COBOL 74

compiler and ignore the new standard, (2) keep COBOL 74 and also

start new programs under COBOL 85, or (3) convert COBOL 74 to

COBOL 85 and code all new programs for COBOL 85. This decision

is one that will be coming up very shortly in all COBOL

programming environments.

The problem~ of converting source code to COBOL 85 from

COBOL 74 appears to have the same difficulty as converting PL/I to

any version of COBOL. This similarity throws a new light on the

coding decision. Firms may wish to treat COBOL 85 as a

COBOL 85 - The new standard Page 12

completely separate language from COBOL 74 and let each

peacefully coexist in the programming environment. At the

present time, this decision appears to be the most reasonable

one.

Unlike preV10US versions of COBOL, COBOL 85 will not be

rapidly implemented into mainstream programming. It may take

well into the 1990's before the upgrade is finally made to be an

efficient alternative to programming under COBOL 74. The slow

change may cause COBOL to lose some of its popularity to newer,

faster, and more powerful languages. Only time will tell.

For now, programming 1n COBOL will remaln almost entirely

under the 1974 standard. The future holds promising news for

COBOL programmers in the way of new features and improvements of

old features. The new standard of COBOL programming exists, yet

it will be some time before the accepted standard becomes COBOL

85. Even though COBOL 85 brings with it instream logic, better

defined verbs, and better documentation, COBOL 74 still stands

alone at the top of the programming hill.

Works Consulted

Brown, P. R. and Gwillim V.. User"s Guide to COBOL 85. Halsted
Press: New York, New York. 436p. 1985.

Garfunkel, Jerome. The COBOL 85 Example BQ.Q.k..John Wiley & Sons:
New York, New York. 322p. 1987.

I.B.H. IBK VS COBOL for OS/VS. release 2. International
Business Machines: San Jose, California. 544p. 1986.

Nirmal, Barry K.. ~ramming StandaLds and Guidelines: COBOL Edition.
Pren tice-Hall. 226p. 1987 .

	page 1
	Images
	Image 1
	Image 2

	Titles
	Goldberg, Jeff
	20015
	The 1985 COBOL Standard

	page 2
	Images
	Image 1
	Image 2

	Titles
	few people could understand it enough to be productive.
	When the
	September of 1985 after seven years of deliberation. This new
	version of the world's most popular language presents many new
	improvements which will serve to further promote the efficiency
	of COBOL's data processing capabilities.
	However. nothing can be
	gained without sacrifice.
	By improving the progranming
	efficiency this new standard had to give up complete upward
	compatibility.
	In 1959. most programming tasks were written 1n machine
	codes.
	This proved to be very tine consuming and costly; also
	assemblers cane out, it marked the beginning of highly productive
	programming.
	However. there still existed another major problem:
	an assembly language program is machine specific.
	Programmers
	had to learn almost completely different languages to work with
	different conputers.
	For this purpose. and a couple of other
	reasons. a conference was organized. The goal of this
	conference. held on the canpus of the University of Pennsylvania.
	was to recomnend to the Departnent of Defense to have a series of
	neetings to cone up with a. "connon business language."
	The following year. the Conference on Data Systens
	Languages. CODASYL. was held. The result was COBOL 60. the first

	Tables
	Table 1

	page 3
	Images
	Image 1
	Image 2

	Titles
	COBOL 85 - The new standard
	Page 2
	published standard of COBOL. The goal was to create a standard
	for COBOL compilers that would satisfy three main problems. The
	first was the problem of complicated programming. COBOL provided
	ease of programming, readability, and understanding to people in
	the computer field by using open ended English-type statements.
	The second problem was that of upward compatibility.
	In other
	words, the COBOL language provided for easy modifications, and
	programs written for an earlier compiler would be able to be
	compiled on the new compiler. The third and final problem to be
	solved was transferability. By publishing a COBOL standard, the
	authors wanted to be able to take a program compiled on one brand
	of computer and be able to compile and execute the same source
	code on a different computer. Thus, COBOL was officially born.
	The United States of America Standards Institute, USASI,
	which became ANSI, merged with CODASYL to come up with COBOL 68.
	Since then the two groups have published COBOL 74 and COBOL 85.
	The International Standards Organization, ISO, has accepted ANS
	CO~OL versions as international standards.
	The rapid acceptance and continued growth in the use of
	COBOL had its roots in a changing programming environment. At
	the time of the introduction of COBOL, CPU time was relatively
	expensive, moreso than programmer time. As a result of this,
	programmers made painstaking efforts to make their programs more
	efficient, with little concern for the time it took to accomplish
	the coding task. Since that time, the roles have switched. Now,
	CPU time is considered cheap, and program efficiency has given

	page 4
	Images
	Image 1
	Image 2

	Titles
	COBOL 85 - The new standard
	Page 3
	way to better documentation and ease of modification. COBOL
	standards have continually adjusted to this change with more
	descriptive reserved words and easier to incorporate modularity.
	The differences between COBOL 85 and COBOL 74, the current
	accepted standard, are too broad for complete coverage. This new
	version brings with it new feature~, changes in old features, and
	deletion of obsolete features. The scope of this paper covers
	only the major differences that will make programming in COBOL
	more efficient and productive. The topics covered by this paper
	cut across two circles of interest; better readability of
	source code, and easier implementation of structured logic.
	Simple things that make reading a COBOL program a little
	easier make up one advantage this standard has to offer. With
	the forty-nine new reserved words, two of them serve only to
	lmprove source code readability. When programming under COBOL 74
	and describing data items as packed decimal or binary, the USAGE
	clause must be used with COMPUTATIONAL or COMPUTATIONAL-3.
	However, with COBOL 85 there are better ways to show the more
	efficient use of a data item. The new reserved words are
	PACKED-DECIMAL and BINARY. Now, data items can be declared as
	follows:
	However, even though writing out BINARY or PACKED-DECIMAL

	Tables
	Table 1

	page 5
	Images
	Image 1
	Image 2
	Image 3

	Titles
	08 DATA-. I'rEM
	creates better readability for debugging, the new compilers will
	still accept CaMP and COHP-3. Eventually the latter two reserved
	words will be eliminated from the published COBOL standard.
	Another new advantage is the number of levels a table can
	have. Past COBOL standards have had a limit of three levels of
	subscripting, while COBOL 85 has the capacity for an additional
	four levels. A table may be described as follows:
	01 NEW-TABLE-TYPE.
	02 LEVEL-1
	03 LEVEL-2
	04 LEVEL-3
	05 LEVEL-4
	at:) LEVEL-5
	0'1 LEVEL-6
	08 LEVEL-7
	When a program is designed to produce a report that will be
	seen by upper level management, which may be easily impressed by
	small details, little things such as the date become important.
	With COBOL 74 the compiler can return the date. and with some
	minor coding the date can be written in a a form management
	will like. Under COBOL 74. the date can be obtained by way of
	the MOVE statem~nt and could be printed in the form 09/15/88. If
	a month table is included, the date could be put in the form of
	September 15. 1988. This form looks good to management. but
	COBOL 85 adds a new level to the aesthetics of the date, the DAY-

	Tables
	Table 1

	page 6
	Images
	Image 1

	Titles
	CUBOL 85 - The new standard
	Page 5
	OF-~EEK reserved word. ~hen DAY-OF-WEEK is used with the ACCEPT
	statement, the compiler returns a one digit character that stands
	for:
	1 Monday
	This digit could be used as a subscript to access a day table.
	03 DAY-NAME
	PIC X(9) OCCURS 7 TIMES.
	77 DAY-CODE.
	ACCEPT DAY-CODE FROM DAY-OF-WEEK.
	DISPLAY "GOOD MORNING, TODAY IS " DAY-NAHE(DAY-CODE).
	An experienced COBOL 74 programmer would immediately notice
	the absence of the FILLER reserved word. Another one of COBOL
	85"s improvements over COBOL 74 is its more versatile use of the
	FILLER key word. In previous versions FILLER could not be used

	Tables
	Table 1

	page 7
	Images
	Image 1

	Titles
	COBOL 85 - The new standard
	Page 6
	at the group level. Also included in FILLER"s new role is
	optionability. FILLER is an optional word, and if it is omitted
	the compiler assumes its presence. Compare the following
	examples.
	This new feature adds better readability for the programmers,
	and it eliminates the need to type FILLER over and over again for
	a program with many headers and detail lines. Since the word
	FILLER will be absent from the field definition, the referenceable
	elements will be easier to recognize.
	As every programmer knows, when dealing with a program that
	makes use of tables of accumulators, it is necessary to use an
	out-of-flow loop just to initialize the fields to zero. COBOL 85
	has managed to overCOme this inconvenience. With this new
	standard, the VALUE clause can be placed on elements under an
	OCCURS ~lause. This provides a simple method to initialize a
	table of values to any number, as shown here:

	Tables
	Table 1

	page 8
	Images
	Image 1

	Titles
	COBOL 85 - The new standard
	Page 7
	01.
	02 EMPLOYEE-WAGE-TOTALS
	OCCURS 100 TIMES.
	03 EMPLOYEE-WAGES-TO-DATE
	The features described so far have all resided within the
	circle of better readability. These small changes will lIlake
	progralll lIlaintenance an easier task, and in the long run, this
	will save valuable programllling tillle. There is still another area
	to cover: better illlplelllentation of structured logic. COBOL 85
	brings with it two new powerful features never before offered by
	COBOL. These features are nested prograllls and instream loops.
	The first feature, nested programs, 1S very easy to
	implement and provides a wonderful way to use different modules
	created by melllbers of a programllling team. The format is
	conceptually, and actually, rather simple. The idea of nested
	prograllls is illustrated here:
	" ,
	R , ," ' " ".....................................
	,.....................
	Main Program
	" " " " """ "... 1
	r }
	I L 1 i
	r.."..'.." " " "" ".." " ,
	1 , , , "." 1
	'.., "................
	"..."" ""."...".."" " ""." "" ".." ".."..." ".."" " ""."" ".1

	page 9
	Images
	Image 1

	Titles
	CuBOL 85 - The new standard
	P ag e 8
	COBOL skeleton as follows:
	This conceptual figure can easily be transforned into a
	END PROGRAM INNER-PROGRAH-IA.
	END PROGRAM INNER-PROGRAM-IB.
	END PROGRAM INNER-PROGRAM-I.
	END PROGRAM INNER-PROGRAH-II.
	END PROGRAM HAIN-PROGRAM.
	,.." "...............
	"....................

	1

	page 10
	Images
	Image 1

	Titles
	COBOL 85 - The new standard
	Page 9
	The next new feature of COBOL 85 is probably the single
	greatest inprovenent over the previous standards. This addition
	is the new and inproved functions of the PERFORM verb. In past
	COBOL standards, there was no way to process loops instrean. The
	flow of control can be illustrated as follows:
	, ~...~ ,...............
	Main Segment
	h , ~
	I"
-.........................
	, o...................................
	Next Segment
-.........................-..
	I..

	" ~ ,....-...
	Stnts. in Loop
	" "..w....
	I...
	However, with COBOL 85 the flow of control can be instream:
	"............
	Main Segment
	...-.....
	" ",..
	Stnts. in Loop
	, " " ,..-.....
	" '..............
	Next Segment
	...-..-..
	This difference can be seen clearly in the illustrations.
	All of the details of the new PERFORM statement do not need to be
	discussed at this time. The major aspects of the new PERFORM

	page 11
	Images
	Image 1

	Titles
	COBOL 85 - The new standard
	Page 10
	verb can be seen with the following two examples.
	PERFORM 5 TIMES
	DISPLAY ITEM(SUBSCRIPT)
	SUBSCRIPT = SUBSCRIPT + 1
	END-PERFORM.
	PERFORM UNTIL EOF-HAS-OCCURRED
	ADD NUMBER TO SUB-TOTAL
	READ IN-FILE AT END MOVE 'Y' TO EOF
	END-PERFORM.
	The last two features fill up the em~ty space 1n the realm
	of implementing structured logic. For small routines this will
	improve efficiency, and readability, and it will conform to
	structured logic. Branching to another paragraph can be
	eliminated, so visually the COBOL source code's flow of execution
	will be easier to follow, resulting in quicker program
	maintenance.
	COBOL 85 brings with it the already mentioned features and
	many others, but it also has eliminated some of the old features.
	The list of the "obsolete" features is too long to list 1n its
	entirety, yet there is a good example of the theory behind this.
	In the IDENTIFICATION DIVISION there are many paragraphs that
	serve only as documentation. The reserved words; AUTHOR,
	INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and SECURITY will no
	longer be accepted by COBOL compilers. The COBOL 85 authors'

	page 12
	Images
	Image 1
	Image 2

	Titles
	CUJ:3ULEY-
	theory behind this comes from compiler time efficiency. The
	compiler could save time by only having to process the necessary
	paragraphs.
	If progr~mers want the previously mentioned
	documentation in their program, they can add a comment card.
	Other streamlining of the compiler has taken place in the new
	COBOL standard.
	With all of the new features, changes in old features, and
	the canceling of obsolete features, converting programs written
	for COBOL 74 to COBOL 85 is not an easy task, if it can be done at
	all. One of the forementioned purposes of COBOL was upward
	compatibil~ty. This basic fundamental of the COBOL language has
	been put on the road to oblivion. The converting of present
	programs to COBOL 85 would take many expensive programmers long
	labor hours.
	Most firms will not take the time to convert their old
	programs; thus they are faced with a tough decision. The choices
	for each company are (1) keep programming with a COBOL 74
	compiler and ignore the new standard, (2) keep COBOL 74 and also
	start new programs under COBOL 85, or (3) convert COBOL 74 to
	COBOL 85 and code all new programs for COBOL 85. This decision
	is one that will be coming up very shortly in all COBOL
	programming environments.
	The problem~ of converting source code to COBOL 85 from
	COBOL 74 appears to have the same difficulty as converting PL/I to
	any version of COBOL. This similarity throws a new light on the
	coding decision. Firms may wish to treat COBOL 85 as a

	page 13
	Images
	Image 1

	Titles
	COBOL 85 - The new standard
	Page 12
	completely separate language from COBOL 74 and let each
	peacefully coexist in the programming environment. At the
	present time, this decision appears to be the most reasonable
	one.
	Unlike preV10US versions of COBOL, COBOL 85 will not be
	rapidly implemented into mainstream programming.
	It may take
	well into the 1990's before the upgrade is finally made to be an
	efficient alternative to programming under COBOL 74. The slow
	change may cause COBOL to lose some of its popularity to newer,
	faster, and more powerful languages. Only time will tell.
	For now, programming 1n COBOL will remaln almost entirely
	under the 1974 standard. The future holds promising news for
	COBOL programmers in the way of new features and improvements of
	old features. The new standard of COBOL programming exists, yet
	it will be some time before the accepted standard becomes COBOL
	85. Even though COBOL 85 brings with it instream logic, better
	defined verbs, and better documentation, COBOL 74 still stands
	alone at the top of the programming hill.

	page 14
	Images
	Image 1

	Titles
	Works Consulted

