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We studied numerically external field induced memory effects in randomly perturbed nematic liquid crystals. Random anisotropy
nematic-type lattice model was used. The impurities imposing orientational disorder were randomly spatially distributed with the
concentration 𝑝 below the percolation threshold. Simulations were carried for finite temperatures, where we varied 𝑝, interaction
strength between LCmolecules, and impurities and external field𝐵. In the {𝐵, 𝑇} planewe determined lines separating short range—
quasi long range and quasi long range—long range order. Furthermore, crossover regime separating external field and random field
dominated regime was estimated. We calculated remanent nematic ordering in samples at 𝐵 = 0 as a function of the previously
experienced external field strength 𝐵.

1. Introduction

Impact of weak disorder on statistical properties in phases
exhibiting continuous symmetry breaking is of interest for
different branches in physics [1–3]. Such systems are of partic-
ular interest due to memory effects which they can exhibit [2,
4, 5]. Pioneering studies have been done in magnetic systems
[1, 6]. Lately it has been shown that various liquid crystal (LC)
phases are extremely adequate for such studies [7]. Namely,
LCs are relatively easily experimentally accessible, they dis-
play rich diversity of different configurations, and there exists
plenty of different means how qualitatively different types
of disorder could be imposed to LCs. Consequently, LCs
are ideal testing ground to investigate fundamental problems
related to impact of weak disorder on phases reached via a
symmetry breaking phase transition. In addition, randomly
perturbed LCs are also technologically relevant, specially due
to their unique combination of liquid character, softness,
and optical anisotropy. Randomly perturbed LCs could be
exploited for various devices, particularly related to elec-
trooptic applications.

Uniaxial nematic phase represents the simplest LC con-
figuration exhibiting only orientational ordering [8]. At
mesoscopic level this ordering is commonly described by

the nematic director field ⃗𝑛 and the scalar nematic order
parameter 𝑆 [8]. The unit pseudovector ⃗𝑛 points along local
average uniaxial LC orientational ordering, exhibiting head-
to-tail symmetry (i.e., states ± ⃗𝑛 are physically equivalent). On
the other hand 𝑆 measures extent of fluctuations about ⃗𝑛.
Absence of thermal fluctuations in local orientational order
are fingerprinted in 𝑆 = 1. In bulk equilibrium nematic phase
is spatially homogeneous where ⃗𝑛 is aligned along a single
symmetry direction. In thermotropic LCs, to which we
restrict our study to, nematic long range ordering (LRO)
is obtained via the first-order phase transition from the
isotropic phase, by decreasing temperature. The latter phase
corresponds to ordinary liquid ordering, where 𝑆 = 0.

There are several different ways how random-type disor-
der could be experimentally imposed to LCs [7]. For such
purposes LCs are either immersed in various porous mate-
rials (e.g., aerogels, Vycor glasses, Russian glasses, controlled
pore glasses, and millipore membranes. . .) or by mixing
them with different nanoparticles. In the latter case aerosil
nanoparticles are commonly used [9]. Namely, by changing
their concentration, three qualitatively different types of
disorders could be realized [10].

Resulting randomly perturbed nematic structures
depend on disorder strength. According to the Imry-Ma
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theorem [1, 6], one expects that weak random field-type
disorder stabilizes a domain-type pattern characterized by
a single length 𝜉𝑑 obeying the scaling law 𝜉𝑑 ∼ 𝐷

−2/(4−𝑑).
Here 𝐷 stands for the disorder strength and 𝑑 is the space
dimensionality. The resulting phase should possess short
range order (SRO). However, several subsequent studies
suggest that the quasi long range order (QLRO) or even LRO
might be established [2] instead.

In general, randomly perturbed nematic structures pos-
sessing SRO or QLRO exhibit glassy features [2]. Namely,
strong enough disorder could stabilize enormous large vari-
ety of differentmetastable structures in free energy landscape.
Recent experimental and simulation studies in different
randomly perturbed nematics support this expectation [4, 9,
11–13]. For example, in LC-aerosil mixtures, it was demon-
strated that LCs couldmemorize external electric ormagnetic
field induced orientation [4, 5, 14, 15]. Note that systems
exposed to relatively strong disorder are known to exhibit
several universalities, independent of systems’ microscopic
details [2]. However, in case of relatively weak disorder
system, specific details are expected to emerge, which further
increases diversity of potentially possible phenomena. In
addition, glassy features in nematics could be apparently
different with respect to magnetic analogues due to nematic
head-to-tail symmetry, which is not observed in magnetism.
Consequently, perturbed nematics structures in general dis-
play complex tangles of topologically stable line disclinations
characterized by winding number 𝑚 = −1/2 [5]. On the
contrary, line defects could not be topologically stabilized in
magnetic systems. Namely, local magnetization could exhibit
only line defects with winding number 𝑚 = 1, which could
avoid singularity in orientational ordering by escaping in
“third dimension.” Furthermore, in LCs, thermal fluctuations
play relatively important role due to their soft character.
Consequently, energy barriers in free energy landscape could
be relatively overcrossed easier with respect to magnetic
analogues.

In the present paper we study disorder enabled memory
effects in randomly perturbed LCs. Of our particular interest
is external field drivenmemorization.Our study is numerical,
where we use lattice version of modified RandomAnisotropy
Nematic model [16–18]. The plan of the paper is as follows.
In Section 2 we present the model. In Section 3 results of our
simulations are presented. In the last section we summarize
results. Some technical details related to numerical method
and mesoscopic interpretation of results are collected in two
appendices.

2. Model and Numerical Approach

We use lattice-type simulations where the cubic simulation
box of volume 𝐿3 contains 𝑁 = (𝐿/𝑎0)

3 sites. Lengths 𝐿 and
𝑎0 represent the characteristic linear size of a system and the
shortest distance between adjacent lattice sites, respectively.
Typically, we set 𝐿/𝑎0 = 70. Nematic LC orientational order
at each lattice site is presented by the unit vector ⃗𝑠𝑖, to
which we henceforth refer to as a nematic spin. The so-called
head-to-tail symmetry ± ⃗𝑠𝑖 is considered to mimic typical

nematic LC behavior at the mesoscopic level. In addition,
we suppose that each site might be populated by a rod-like
object with probability𝑝.Their local quenched orientations ⃗𝑒𝑖
are determined randomly, exhibiting isotropic orientational
distribution, where the head-to-tail symmetry and | ⃗𝑒𝑖| = 1 are
imposed. We refer to these pseudovectors as impurity spins.
Note that sites occupied by impurities are not accessible to
nematic spins.

Using random number generator we first set static impu-
rity positions and their orientations. For such initial con-
figurations we then determine fixed point configurations of
nematic spins, corresponding to metastable or globally stable
structures.

2.1. Hamiltonian. The interactions within a system are
described by the following Hamiltonian [5, 11, 19, 20]:

𝐻 = −
1

2
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𝑖,𝑗
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𝑒 𝑖)
2

.

(1)

The first part of (1) describes short range interaction among
nematic spins, where 𝐽𝑖𝑗 = 𝐽 > 0 for neighboring spins
(each site has 6 first neighbors) and otherwise 𝐽𝑖𝑗 = 0.
The factor 1/2 is added in order to avoid double counting
of pair-interaction contributions. The second term takes
into account presence of a global uniform field 𝐵⃗ = 𝐵 ⃗𝑒𝐵,
which we align along the 𝑥-axis of the Cartesian coordinate
system {𝑥, 𝑦, 𝑧}. The last term takes into account short range
interaction between an impurity at a site 𝑖 and a nematic spin
at a site 𝑗 of strength 𝑊 > 0. Therefore, if impurity is not
present at a site 𝑖 then𝑊𝑖𝑗 = 0. For such choice of interactions
a nematic spin tends to be oriented parallel to a neighboring
nematic or impurity spin. Furthermore, a finite external
field tends to align nematic spins parallel to its direction. A
resulting configuration compromises couplings represented
by interaction strengths 𝐽, 𝐵, and 𝑊. Simulation details are
described in Appendix A.

In simulations we use three qualitatively different
histories of systems. We imposed either temperature-
quenched history (TQH), field-quenched history (FQH), or
temperature-annealed history (AH). The first two of these
limits represent extreme histories encountered in typical
experimental studies. In case of TQH (FQH) we quench
system from isotropic initial distribution (homogeneously
alignment along 𝐵⃗) of nematic spins. In case of AH we
calculate a fixed point configuration { ⃗𝑠𝑖} at a given tem-
perature originating from an initial fixed point nematic
structure which was calculated at a slightly different
temperature. Simulations were repeated 𝑁rep ∼ 10 times for
a given set of parameters (i.e., 𝑊, 𝑝, and a chosen initial
condition).

2.2. Monitored Quantities. From obtained fixed point config-
urations we calculate the global order parameter 𝑄(𝑔) and
local order parameter tensor 𝑄(𝑙). They estimate a global and
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local degree of orientational ordering, respectively.We define
them as follows:

𝑄
(𝑔)
=
1

𝑁
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where the index 𝑖 runs over the lattice sites occupied by
nematic spins, 𝑗 runs over all the neighbours (their number
is 𝑁𝑛𝑛) of a site 𝑖, 𝐼 is the identity tensor, and ⊗ marks the
tensor product. The average local scalar order parameter 𝑠 is
defined as the largest eigenvector of 𝑄(𝑙). On the other hand
the average global scalar order parameter 𝑆 is defined as the
largest eigenvector of 𝑄(𝑔).

We further define the orientational two-point correlation
function as [11]:

𝐺 (𝑟) = ⟨3 ( ⃗𝑠𝑖 ( ⃗𝑟𝑖) ⋅ ⃗𝑠𝑗 ( ⃗𝑟𝑖 + ⃗𝑟𝑖𝑗))
2

−
1

2
⟩ , (3)

where ⟨⋅ ⋅ ⋅ ⟩ is the statistical average of the scalar products of
nematic spin pairs separated by a distance 𝑟 = | ⃗𝑟𝑖𝑗| = | ⃗𝑟𝑖 − ⃗𝑟𝑗|.
In case of short range order (SRO) or quasi long range order
(QLRO), it holds 𝐺(𝑟 → ∞) → 0. In case of long range
order (LRO), it follows 𝐺(𝑟 → ∞) → 𝐺∞ ∼ 𝑆

2. In general,
one expects an exponential decay towards a saturated value
of 𝐺(𝑟) on increasing 𝑟 for both LRO and SRO. On the other
hand, for QLRO, algebraic decay of correlations is expected;
that is, 𝐺(𝑟) ∝ 𝑟

−𝛼.
In order to obtain structural details from 𝐺(𝑟) for a finite

system the correlation function is fitted using the empirical
ansatz [11]:

𝐺
(1)
(𝑟) =

𝑎𝑒
−𝑘𝑟

𝑟𝛼
+ 𝑏, (4)

where 𝑎, 𝑏, 𝑘, and 𝛼 are adjustable parameters. The quantity
𝑘 estimates an average linear size 𝜉 = 1/𝑘 of relatively well-
correlated regions, referred to as domains.

Note that, in case of QLRO, the decay of correlations with
distance is relatively weak, and finite-size effects are expected
to be important. Consequently, the power law coefficient 𝛼
determining algebraic decay of correlations is estimated by
the following equation [11, 21, 22]:

𝑆 ∝ 𝐿
−𝛽
, (5)

where 𝛽 ∼ 𝛼/2, see (4). In case of SRO and LRO, one expects
𝛽 ∼ 3/2 and 𝛽 ∼ 0, respectively, and QLRO is fingerprinted
by 0 < 𝛽 < 3/2 [11, 23].

3. Results

We calculated fixed point configurations of nematic spins on
varying parameters {𝑊, 𝑝, 𝑇, 𝐵} and histories of systems in
three-dimensional systems. We limited to concentrations of
impurities below the percolation threshold, corresponding to
the critical concentration 𝑝𝑐 ∼ 0.3 [14]. Of particular interest

is impact of external field 𝐵 on degree of ordering and
memory effects.

In Figure 1 we plot a typical temperature evolution of
average degree of ordering 𝑠(𝑇) in a temperature loop using
AH absence of external field. We started simulations at a
relatively high temperature𝑇 = 𝑇𝑖 > 𝑇IN, where nematic spins
exhibit essentially isotropic ordering. Here 𝑇IN marks the
isotropic-nematic phase transition temperature of a bulk
sample. In our simulations we obtain 𝑇IN ∼ 1.21 which is in
line with existing simulation results using similar modelling
[11]. Then we were gradually decreasing temperature until
the temperature 𝑇𝑓 = 0.5 was reached, corresponding to
conditions deep in the nematic phase. Afterwards, we were
gradually increasing temperature till 𝑇 = 𝑇𝑖. The plot 𝑠(𝑇)
reveals that, for example, for {𝑊, 𝑝} = {0.25, 0.1}, the system
displays thermal hysteresis, suggesting first-order phase tran-
sition.Therefore, the effective disorder imposed by impurities
is below the critical value (see Appendix B), above which
the first-order phase transition between isotropic (or parane-
matic) and nematic phase is replaced by a gradual evolution
of ordering on varying temperature. Furthermore, one sees
that, for {𝑊, 𝑝} = {1, 0.1}, the hysteresis is almost totally
suppressed indicating gradual evolution of nematic ordering
on varying temperature [17]. Therefore, for this choice of
parameters, the effective disorder is supercritical.

Next, we consider impact of 𝐵 on nematic ordering.
We first demonstrate impact of 𝐵 on range of ordering. In
Figure 2, we plot 𝐺(𝑟) dependencies using parameter set
{𝑝,𝑊, 𝑇} = {0.1, 3, 0.5}, for (i) 𝐵 = 0, (ii) 𝐵 = 0.5, and (iii)
𝐵 = 0.5 and both histories FQH and TQH.The parameter set
{𝑝,𝑊, 𝑇} was chosen in such a way that SRO is realized for
(i) 𝐵 = 0. In the case (ii) the external field is strong enough
to replace SRO with QLRO. For still stronger fields, see (iii);
LRO is realized. The range of order was obtained via finite
size analysis, using (5). For example, in Figure 3(a), we show
the finite size analysis for TQH. For (i) 𝐵 = 0 (Figure 3(a)),
we obtain 𝛾 = 1.54±0.05 fingerprinting SRO. For (ii) 𝐵 = 0.5,
(Figure 3(b)) simulations yield 𝛾 = 0.34 ± 0.05, suggesting
QLRO. On the other hand for (iii) 𝐵 = 1.5, we get 𝛾 = 0.00 ±
0.02, indicating LRO (Figure 3(c)). In Table 1 we summarize
simulation results for 𝛾 on varying 𝐵 for extreme histories
TQH and FQH.

Next, we consider impact of 𝐵 on characteristic linear
length 𝜉 of the system. The following behavior is expected.
For relatively weak external field strengths, the impurity
imposed disorder dominantly influences nematic structure.
According to Larkin-Imry-Ma theoremone expects a domain
pattern characterized by 𝜉𝑑 ∼ 𝐷

−2/(4−𝑑), where 𝐷 measures
the disorder strength. Our mean-field estimate shown in
Appendix B suggests𝐷 ∝ 𝑊√𝑝 (see (B.6)). On the contrary,
for relatively large external fields, one expects that the
external field coherence length 𝜉𝐵 ∝ 1/𝐵 characterizing the
impact of 𝐵 in bulk LC system would be observed. Using
our simulations we estimate 𝜉 by fitting 𝐺(𝑟) dependences,
calculated from fixed point configurations, with (4), where
𝜉 ∼ 1/𝑘. Characteristic dependencies 𝜉(𝐵) are shown in
Figure 4. One indeed observes tendency 𝜉 ∼ 𝜉𝐵 ∝ 1/𝐵

(𝜉 ∼ 𝜉𝑑, roughly independent of 𝐵) for relatively strong
(weak) external field 𝐵. We refer to regimes where 𝜉 ∼ 𝜉𝐵
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Figure 1: Temperature evolution of the degree of nematic ordering on decreasing and decreasing temperature. (a) 𝑠(𝑇) and (b) Δ𝑠 = 𝑠(up) −
𝑠
(down), where 𝑠(up) and 𝑠(down) refer to nematic ordering obtained on increasing and decreasing temperature, respectively. 𝑝 = 0.1 and𝑁 = 70.
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Figure 2: Variation of 𝐺(𝑟) as a function of temperature 𝑇 for (a) FQH and (b) TQH. 𝑝 = 0.1,𝑊 = 3, 𝑇 = 0.5, and 𝐿 = 70.

and 𝜉 ∼ 𝜉𝑑 are external field dominated regime and disorder
dominated regime, respectively. We estimate crossover values
𝐵 = 𝐵𝑐, which roughly separate both regimes, via intersection
of linearized 𝜉(𝐵) dependencies obtained in limiting regimes
𝐵 ∼ 0 and 𝐵 ≫ 10.

Different regimes are indicated in Figure 5 in the {𝐵, 𝑇}
plane for the parameter set {𝑊, 𝑝} = {3, 0.1}. Here full sym-
bols refer to FQHand empty symbols to TQH. Squares (trian-
gles) indicate the line separating SRO-QLRO (QLRO-LRO)
regimes. On the other hand spheres indicate crossover regime
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Figure 3: Finite size analysis of structures for TQH using different external field strengths. In all figures we used 𝑝 = 0.1,𝑊 = 3, 𝑇 = 0.5,
and 𝐿 = 70. (a) SRO: 𝛾 = 1.54 ± 0.05 and 𝐵 = 0; (b) QLRO: 𝛾 = 0.34 ± 0.05 and 𝐵 = 0.5; (c) LRO: 𝛾 = 0.0 ± 0.02 and 𝐵 = 1.5.

Table 1: Finite size analysis data obtained from (A.2). Values of 𝛾 reveal range of order within nematic structures. We used different histories
of samples (FQH and TQH) and different values of the external field 𝐵. Values 𝛾 = 0, 0 < 𝛾 < 1.5, and 𝛾 = 1.5 reveal LRO, QLRO, and SRO,
respectively.𝑊 = 3, 𝑝 = 0.1, and 𝑇 = 0.5.

𝐵 0 0.5 1 2
TQH 𝛾 = 1.54 ± 0.05 𝛾 = 0.34 ± 0.05 𝛾 = 0.08 ± 0.07 𝛾 = 0.0 ± 0.02
FQH 𝛾 = 1.51 ± 0.08 𝛾 = 0.23 ± 0.08 𝛾 = 0.03 ± 0.04 𝛾 = 0.0 ± 0.01

separating external field and disorder dominated regime. We
determine the respective crossover fields by 𝐵(QLRO)

𝑐
, 𝐵𝑐, and

𝐵
(LRO)
𝑐

, corresponding to SRO-QLRO transition, disorder-
external field dominance crossover, and QLRO-LRO transi-
tion, respectively.With increasing temperature these lines are
pushed towards larger values of 𝐵. Namely, due to increased
thermal fluctuations, higher external fields are needed to
reach regime exhibiting qualitatively stronger degree of
ordering.

Finally, we analyzed external field controlled memory
effects in systems. We performed the following 𝐵-loops.
(i) Initial configurations were obtained for a given parameter
set {𝑝,𝑊, 𝑇} via TQH for 𝐵 = 0. (ii) Then we switched on
the external field of strength 𝐵, for which we calculated a
fixed point configuration. (iii) Afterwards we switched the
field off and calculated the corresponding fixed point nematic
structure. We refer to respective configurations as the (i) ref-
erence, (ii) field-on, and (iii) field-off structures, respectively.
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𝑝 = 0.1 and𝑊 = 3.

In Figure 6, we plot the average degree of orientational order
𝑆 obtained from 𝑄

(𝑔) on increasing 𝐵 for different anchoring
strengths deep in the nematic phase for 𝑊 = 3. For
this anchoring strength the reference structures exhibit SRO,
yielding 𝑆 = 0 within numerical error. One sees that in field-
on state the degree of ordering is substantially enhanced due
to external field induced preference alignment. In field-off
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Figure 6: Average degree of ordering for switched-on and after-
wards switched-off external ordering field 𝐵 for different values of
𝑝. Full symbols: 𝐵 is switched on. Empty symbols: 𝐵 is switched off.
TQH,𝑊 = 3, 𝑇 = 05, and 𝐿 = 70.

structures finite degree of ordering is preserved providing𝑃 <
0.2. We refer to the resulting ordering as remanent order 𝑆𝑟.
In Figure 6 one sees that 𝑆𝑟(𝐵) displays two different regimes.
In the weak field regime 𝑆𝑟(𝐵) monotonously increases with
𝐵 until the saturation regime is entered, in which 𝑆𝑟(𝐵)
variations are relatively small on varying 𝐵.
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4. Conclusions

We study numerically memory effects using modified Ran-
dom Anisotropy Nematic-type lattice model [16, 17]. In our
model impurities are randomly spatially distributed enforcing
to nearby nematic spins quenched randomly chosen orienta-
tion. In simulations we varied concentration 𝑝 of impurities,
coupling strength 𝑊 between nematic spins and impurities,
temperature, and external field strength 𝐵. Furthermore, in
most simulations we used two extreme histories of nematic
spins, namely, field quenched history (FQH) and temperature
quenched history (TQH). Using them, we gain informa-
tion on memory capabilities of systems of interest. We
calculated fixed point nematic configurations, revealing inter-
play between nematic interactions, local disordering, and
global ordering fields. From fixed point configurations we
calculated two-point orientational correlation function 𝐺(𝑟)
and average local and global nematic order parameter. From
calculated 𝐺(𝑟) profiles we determined characteristic length
𝜉 of the system. Furthermore, using finite size analysis, we
determine range of orientational ordering for a given set of
parameters.

Key results of our study are as follows. We determined
regimes exhibiting LRO, QLRO, or SRO orders as a function
of temperature and external ordering field 𝐵. The range
of order was determined from values of 𝛾 using finite
size analysis. Note that the Lakrin-Imry-Ma [1, 6] theorem
predicts SRO in absence of 𝐵. The theorem was derived for
random-field type disorder. However, we used slightly differ-
ent type of disorder, which is closer to random-bond type
imposed frustrations. In simulations we obtained SRO only
for strong enough disorder. Furthermore, our simulations
confirm that range of order strongly depends on history of
samples. In particular, we demonstrate that strong enough
applied field 𝐵 could change range of order. In the {𝐵, 𝑇}
plane we estimate critical line separating SRO-QLRO and
QLRO-LRO for different histories of samples. Histories play
significant role revealing glass-type properties of the systems.
Furthermore, we determined impact of 𝐵 on characteristic
linear correlation length 𝜉 within samples. We distinguish
between disorder dominated and external field dominated
regime. In the first regime impact of 𝐵 is negligible. On the
other hand in the second regime 𝜉 is roughly proportional
with 1/𝐵.We roughly determined crossover region separating
these regimes for different temperatures. We also study
impact of temporarily present field 𝐵 on remanent average
nematic ordering 𝑆𝑟. For this purpose we used parameter for
which 𝑆𝑟 = 0 (within numerical order) in the reference state
obtained in absence of 𝐵. We determined magnitude of 𝑆𝑟 as
a function of 𝐵. Our simulations reveal that 𝑆𝑟 monotonously
increases with 𝐵 until saturation region is reached.

Displayedmemory capabilities could be of use for various
external field driven memory devices. Modelled systems
mimic to some extent LCs confined to various porous matri-
ces or mixtures of nematic LCs with appropriate nanoparti-
cles (e.g., aerosils). In our future studies we intend to explore
in more detail analogies between our model and random
magnets and spin glasses.

Appendices

A. Brownian Dynamics-Type
Numerical Simulation

We consider the following Hamiltonian:

𝐻
∗
= 𝐻 +∑

𝑖

𝜆𝑖 ( ⃗𝑠𝑖 ⋅ ⃗𝑠𝑖 − 1) , (A.1)

where𝐻 is given by (1) and 𝜆𝑖 are Lagrangemultipliers taking
into account the normalization constraint | ⃗𝑠𝑖| = 1. Within a
sweep the orientations of all nematic spins are updated using
the following equations:

⃗𝑠
(new)
𝑖

= ⃗𝑠
(old)
𝑖

− 2
𝐷Δ𝑡

𝑘𝐵𝑇

󳨀⇀
𝑅
(old)
𝑖

+ Δ ⃗𝑠
(𝑇)

𝑖
. (A.2)

Here ⃗𝑠
(old)
𝑖

and ⃗𝑠
(new)
𝑖

represent orientations of nematic spins
before and after the sweep, Δ𝑡 measures the time step of
each sweep, 𝐷 is the representative LC rotational diffusion
constant, 𝑘𝐵 is the Boltzmann constant,

󳨀⇀
𝑅 𝑖 =

1

2

𝜕𝐻

𝜕 ⃗𝑠𝑖
= ∑

𝑗

(𝐽𝑖𝑗
󳨀⇀
𝑔 ( ⃗𝑠𝑖, ⃗𝑠𝑗) +𝑊𝑖𝑗

󳨀⇀
𝑔 ( ⃗𝑠𝑖, ⃗𝑒𝑖))

+ 𝐵
2󳨀⇀
𝑔 ( ⃗𝑠𝑖, ⃗𝑒𝐵)

(A.3)

is the so called residuum, and the quantity 󳨀⇀𝑔 is defined in
terms of unit vectors 󳨀⇀V 1 and

󳨀⇀V 2 as follows:

󳨀⇀
𝑔 (
󳨀⇀V 1,

󳨀⇀V 2) = (
󳨀⇀V 1 ⋅

󳨀⇀V 2) [(
󳨀⇀V 1 ⋅

󳨀⇀V 2)
󳨀⇀V 1 −

󳨀⇀V 2] . (A.4)

The first term on the right side of (A.2) corresponds to a
mechanical elastic torque tending to rotate the nematic spin
towards a local energy minimum. The second term Δ ⃗𝑠

(𝑇)

𝑖

mimics random thermal fluctuations.
In simulations we use the dimensionless time step Δ𝑡∗

and dimensionless temperature 𝑇∗ defined as follows:

Δ𝑡
∗
=
Δ𝑡𝐷

𝐽
, 𝑇

∗
=
𝑘𝐵𝑇

𝐽
. (A.5)

Note that when the residuum drops to zero (i.e., it is small
enough with respect to equilibrium-like fluctuations), the
system reaches a fixed point configuration reflecting either a
metastable or globally stable nematic configuration.

To calculate a thermal fluctuation vector Δ ⃗𝑠
(𝑇)

𝑖
, we first

consider rotation of a nematic spin in its eigen frame,
within which the local 𝑧-axis points along the spin direction.
Therefore, only rotations of the spin about perpendicular local
𝑥- and 𝑦-axes are relevant and we set that both rotations are
mutually independent. We express the corresponding rota-
tional energy contribution as follows:

Δ𝑊
(rot)

=
𝑐1𝐽

2
(Ω𝑥
2
+ Ω𝑦
2
) . (A.6)

Here Ω𝑥 and Ω𝑦 are the corresponding rotation angles and
𝑐1 is the appropriate dimensionless parameter which enables
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phenomenological tuning of thermal fluctuations. Assuming
the canonical distribution, we express the infinitesimal prob-
ability for the range of angles within the phase-space element
𝑑Ω𝑥𝑑Ω𝑦 as follows:

𝑑𝑃 = 𝐶 exp[−
𝑐1𝐽 (Ω𝑥

2
+ Ω𝑦
2
)

2𝑘𝐵𝑇
]𝑑Ω𝑥𝑑Ω𝑦, (A.7)

where𝐶 is the normalization constant. By expressing (A.6) in
the two-dimensional polar coordinate system it follows

𝑑𝑃 = 𝐶 exp[−𝑐1Ω
2

2𝑇∗
]Ω𝑑Ω𝑑𝜓. (A.8)

Here Ω is the magnitude of the vector (Ω𝑥, Ω𝑦) and the
angle Ψ defines its direction with respect to the local 𝑥-axis.
Therefore, we mimic thermal fluctuations by the rotational
kinetic free energy with two independent components of the
angular velocity 𝜔𝑥 and 𝜔𝑦. Within a sweep, each spin is
rotated by the angleΩ about the axis that is perpendicular to
the local 𝑧-axis and makes the angle Ψ with the local 𝑥-axis.
The distribution of Ψ is uniform in the interval (0, 2𝜋) and
the probability distribution function forΩ is given by 𝑝(Ω) =
𝐶 exp[−𝑐1Ω

2
/2𝑇
∗
]Ω. After the thermal rotation of the spin in

its own frame is calculated the rotated spin is transformed to
the laboratory system using the following transformation:

Δ ⃗𝑠
(𝑇)

𝑖
=

[
[
[
[
[
[
[
[

[

𝑠𝑥𝑠𝑧

√1 − 𝑠𝑧
2

−
𝑠𝑦

√1 − 𝑠𝑧
2

𝑠𝑥

𝑠𝑦𝑠𝑧

√1 − 𝑠𝑧
2

𝑠𝑥

√1 − 𝑠𝑧
2

𝑠𝑦

−√1 − 𝑠𝑧
2 0 𝑠𝑧

]
]
]
]
]
]
]
]

]

[

[

sin𝜓 sinΩ
− cos𝜓 sinΩ

cosΩ
]

]

.

(A.9)

B. Phenomenological Estimates

In the appendix we present estimates on phase and structural
LC behavior in presence of impurity spins, where we assume
that the system exhibits a domain-type pattern characterized
by a single characteristic length. Randomly distributed impu-
rities are assumed to produce randomfield-type disturbances.
Impurities are homogeneously distributed within the sample
of volume 𝑉 with the volume concentration 𝑝 = 𝑁imVim/𝑉.
Here Vim determines the volume of an impurity and𝑁im is the
total impurity number inside 𝑉.

We estimate the nematic ordering at mesoscopic level by
the uniaxial tensor order parameter 𝑄 = 𝑆( ⃗𝑛 ⊗ ⃗𝑛 − 𝐼/3). The
quantity ⃗𝑛 is the nematic director field and 𝑆 is the uniaxial
orientational order parameter. The corresponding total free
energy is given by

𝐹 =∭(𝑓𝑐 + 𝑓𝑒) 𝑑
3
⃗𝑟 +∬𝑓𝑖𝑑

2
⃗𝑟. (B.1)

The first integral is carried over the LC volume, and the
second one over LC-impurity interfaces.

The condensation (𝑓𝑐), elastic (𝑓𝑒), and interfacial (𝑓𝑖)
terms are expressed as follows:

𝑓𝑐 =
3

2
𝑎 (𝑇 − 𝑇

∗
)Tr𝑄2 − 9

2
𝑏Tr𝑄3 + 9

4
𝑐 (Tr𝑄2)

2

, (B.2a)

𝑓𝑒 =
𝐿𝑛

2

󵄨󵄨󵄨󵄨󵄨
∇𝑄
󵄨󵄨󵄨󵄨󵄨

2

, (B.2b)

𝑓𝑖 = −
𝑊

2
⃗𝑒𝑖 ⋅ 𝑄 ⃗𝑒𝑖. (B.2c)

The latter contribution is describing interaction between LC
molecules and impurities.We took into account only themost
essential contributions. Here 𝑎, 𝑏, 𝑐, and 𝑇∗ are material
constants,𝐿𝑛 is the representative nematic elastic constant,𝑊
is a positive anchoring strength, and ⃗𝑒𝑖 represents the locally
impurity preferred orientation, | ⃗𝑒𝑖| = 1. We assume that
impurities are essentially homogeneously distributed with
concentration 𝑝 and that orientational probability distribu-
tion of ⃗𝑒𝑖 is spatially isotropic.

We adopt the Larkin-Imry-Ma picture in which the
disorder breaks the system into domains of characteristic size
𝜉. Our aim is to express it in terms of system parameters.
For this purpose we considered the mean free energy of
a single domain of volume 𝑉𝑑 ∼ 𝜉

3, within which there
are 𝑁(𝑑)im impurities possessing surface area 𝑎im. Within each
domain the nematic director is regarded to be on average
aligned along a single symmetry breaking direction. The
corresponding free energy penalty within a domain volume
is estimated by

󳵻𝐹𝑑 ∼ (𝑎 (𝑇 − 𝑇
∗
) 𝑠
2
− 𝑏𝑠
3
+ 𝑐𝑠
4
+
𝐿𝑛𝑆
2

2𝜉2
)𝑉𝑑

−
1

3
𝑁
(𝑑)

im𝑊𝑠 ⟨𝑃2⟩ 𝑎im.

(B.3)

Here ⟨𝑃2⟩ = (1/2)⟨3( ⃗𝑛 ⋅ ⃗𝑒𝑖)
2
− 1⟩ is the mean value of the

second Legendre polynomial of ( ⃗𝑛⋅ ⃗𝑒𝑖)within the domain.The
penultimate term evaluates approximately the effect of the
gradient term. The final term in (B.3) comes from evaluating
𝑓𝑖 over the domain. The final term can be expressed in terms
of 𝜉 as follows. We assume the isotropic orientational distri-
bution of orientations ⃗𝑒𝑖. In an infinitely large domain one
expects ⟨𝑃2⟩ = 0. In a finite volume the cancellation is only
partial. According to the central limit theorem one expects
⟨𝑃2⟩ ∼ (𝑁

(𝑑)

im )
1/2

. The number of impurities and the charac-
teristic impurity separation 𝑙im are related by𝑁(𝑑)im ∼ (𝜉/𝑙im)

3,
where 𝑙im ∼ (Vim/𝑝)

1/3. An expression for 𝜉 is obtained by bal-
ancing the 𝜉 -dependent elastic and interface contributions in
Δ𝐹𝑑. It follows

𝜉 ∼
9𝐿
2

𝑛
𝑆
2

4𝑝𝑊2

Vim
𝑎2im
. (B.4)

On the other hand, the Larkin-Imry-Ma prediction for 𝜉 is
given by
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𝜉 ∼ 𝐷
−2/(4−𝑑)

, (B.5)

where 𝐷 measures the disorder strength and 𝑑 is the space
dimensionality. For 𝑑 = 3, it follows

𝐷 ∼
2√𝑝𝑊𝑎im

3𝐿𝑛𝑠√Vim
. (B.6)

We next consider the phase behavior.We neglect temperature
dependence of 𝜉 and introduce the following new-scaled
variables: the scaled order parameter 𝑞 = 𝑠/𝑠0, where
𝑠0 = 𝑠(𝑇 = 𝑇NI; 𝑝 = 0); the dimensionless temperature
𝜏 = (𝑇 − 𝑇

∗
)/(𝑇NI − 𝑇

∗
), where 𝑇NI = 𝑇

∗
+ 𝑏
2
/(4𝑎𝑐),

denotes the bulk isotropic-nematic phase transition; 𝜉(0)
𝑛

=

√𝐿𝑛/(𝑎(𝑇NI − 𝑇
∗)) is the nematic order parameter correla-

tion length calculated at 𝑇 = 𝑇NI; 𝑑
(0)

𝑒
= 𝐿𝑛𝑠

2

0
/𝑊𝑠0 is the

nematic surface extrapolation length likewise calculated at
𝑇 = 𝑇𝑁𝐼. Using this scaling we rewrite the free energy in non-
dimensional form as follows:

𝑓 =
Δ𝐹𝑑

𝑉𝑑𝑎 (𝑇NI − 𝑇
∗) 𝑠2
0

= 𝑞
2
𝜏eff − 2𝑞

3
+ 𝑞
4
− 𝑞𝜎, (B.7)

where 𝜎 = (√𝑝/3)(𝑎im/√Vim)(𝜉
(0)2

𝑛
/𝑑
(0)

𝑒
𝜉
3/2
) and 𝜏eff =

𝜏 + 𝜉
(0)2

𝑛
/2𝜉
2 play roles of dimensionless field and effective

dimensionless temperature, respectively. In the limit of strong
enough anchoring, where 𝜉 ∼ 𝑙im ∼ (Vim/𝑝)

1/3, and for
spherical impurities of radius 𝑟, one obtains

𝜎 =
𝑝𝜉
(0)2

𝑛

𝑑
(0)

𝑒 𝑟
. (B.8)

It is now possible to link this model to the theory of nematics
in a constant external field. According to it the 1st order
phase transition exists at critical temperature corresponding
to 𝜏eff = 1 + 𝜎 as long as 𝜎 < 𝜎𝑐 ≡ 0.5. For 𝜎 > 𝜎𝑐 one obtains
gradual evolution of ordering on varying temperature.
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