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Summary 

The purpose of this thesis is to analyze the application of machine learning methods, 

including linear regression, feedforward neural network and recurrent neural network in 

the prediction of blood pressure with ECG and PPG signals input. 

The thesis is composed of chapters, each of them dealing with different aspects. Chapter 

One introduces and defines the relationship among ECG, PPG and blood pressure, starting 

from the description of existing pulse transit time based blood pressure measurement 

methods and covers the existing machine learning researches on pulse transit time based 

blood pressure measurement method.  

Chapter Two describes the preparation before application of machine learning 

methodology, including the data extraction from MIMIC II database, the data smoothening 

and the extraction of the useful information from the raw data (feature engineering). 

Chapter Three describes the theorems and general applications of machine learning 

methodologies, including Linear Regression, Neural Network and Recurrent Neural 

network. 

Chapter Four concentrates on the results and evaluations of the machine learning 

methodologies mentioned above. 

Conclusions are drawn in Chapter Five. The main aim of the thesis is to evaluate the 

performance of typical machine learning methods and find the suitable algorithm for blood 

pressure measurement with ECG and PPG signals. 
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Chapter 1 Introduction 

1.1 Background 

In recent studies, chronic hypertension is one major factor of increasing the risk of 

cardiovascular morbidity and mortality. Hence, it is critical to monitor blood pressure to 

reduce cardiovascular disease’s risk. At the meantime, blood pressure is a critical indicator 

for patient and is essential to monitor patient’s health status, therefore continuous blood 

pressure measurement method is desired in medical system. 

People have been constantly seeking for methods to measure blood pressure efficiently. 

Direct blood pressure measurement, which is also called invasive blood pressure 

measurement, is considered as the most accurate method. However, the invasive method is 

associated with blood stream infections and local thrombotic events [1]. Hence people 

prefer to apply non-invasive blood pressure measurement method to avoid these risks.  

Two typical non-invasive blood pressure measurements are oscillometric method and 

auscultatory method. Slight difference is that the auscultatory method is associated with 

greater blood pressure than oscillometric method [2]. The significant advantages of these 

methods are accurate and no obvious side-effect compared with the invasive method. 

Unfortunately, both methods cannot meet continuous measurement requirement as both 

take time to get the reading of blood pressure. Another disadvantage of these two methods 

is that both exert a force on the body. Patients will feel uncomfortable with long-term and 

frequent monitoring.  For these reasons, it is not practical to apply either method in long-

term continuous patient blood pressure monitoring. One innovative method, which is called 
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pulse transit time method, offers one new way to measure blood pressure continuously. 

This paper presents the method based on pulse transit time method using machine learning 

algorithms to measure blood pressure. Pulse transit time is a time interval calculated from 

ECG and PPG waves, which will be illustrated further in Section 1.4. 

In PTT-based blood pressure measurement, certain formulas were deduced based on 

Moens[3] and Korteweg[4] equation. The main difficulties for PTT-based algorithms are 

how to determine the coefficients in these formulas and how to maintain the accuracy for 

long term. People usually use traditional blood pressure measurement methods, including 

oscillometric and auscultatory methods, to calibrate the coefficients in the formulas in the 

initial stage. The number of times required for blood pressure measurement during 

calibration stage varies according to the requirement of formulas. After the calibration, the 

formulas could be applied to calculate real-time blood pressure with Pulse transit time 

value. However, there is no clear winner among PTT-based formula candidates, as different 

formulas need to be applied under different circumstances, such as resting, during exercise, 

post-exercise, etc.  

Moreover, PTT-based formulas cannot be applied to long-term monitoring because the 

circumstance of the blood vessel could be changed by time, and the formulas could not 

trace this kind of changes. Therefore, re-calibration is required frequently in PTT-based 

methods, in order to trace the change of coefficients.  

In previous researches, people have known that pulse wave velocity(PWV) is an 

important parameter to analyze the behavior of arterial tree [5]. However, it is difficult to 
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measure pulse wave velocity directly. But it can be extracted from pulse transit time. Many 

researches revealed that pulse transit time has a correlation with arterial blood pressure 

[6][7][8]. Meanwhile, R.A.Rayne declared that pulse transit time is not reliable to be the 

surrogate of systolic blood pressure [9]. According to R.A.Rayne’s research, systolic blood 

pressure is dependent on both vascular function and ventricular contraction. It is 

inappropriate to only use PTT as a predictor of systolic blood pressure in all persons, as in 

some people the relationship remains unaffected while the others change due to vasoactive 

drugs.  Other parameters should also be considered. 

1.2 Introduction of Electrocardiogram 

Electrocardiogram, which is abbreviated as ECG, represents the electrical activity of the 

heart. The electrical activity of heart is mediated by the constant flows of ions. The flow of 

sodium ions into the cell depolarizes the cell membrane and characterized by extracellular 

negativity and intracellular positivity [10]. 
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Figure 1 ECG Wave[10] 

As shown in Figure 1, ECG contains P wave, QRS complex and T wave [10]. 

    In practical cases, some of the features are not that apparent as in Figure 1. This could 

be due to the noise in the measurement, inappropriate electrode attachment, etc. The easiest 

detectable peak is R peak, and it is often used in pulse transit time method as the mark of 

starting one period of heart activity. 

1.3 Introduction of Photoplethysmogram (PPG) 

PPG signal is a noninvasive circulatory signal. It represents the change of volume of 

blood vessel. PPG is often measured by a pulse oximeter. The pulse oximeter illuminates 

the skin and measures the quantity of light absorption. The reflected optical density from 

skin is increased by the pulse of blood, which makes it possible to measure PPG signal 
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through optical light intensity [11]. The detector can be placed on the fingertip and will 

continuously record reflected light.            

 

Figure 2 Features of the pulsatile component of the PPG[12] 

      As shown in Figure 2, within one cycle of heart activity, PPG signal has one peak, 

which corresponds to the moment when the blood vessel volume is maximum in one cycle 

of heart activity [12].      

1.4 Pulse Transit Time  

    One popular definition of pulse transit time is the time interval from R peak of ECG to 

the 50%(max-min) value of PPG signal wave point [13], as shown in Figure 3[14]: 
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Figure 3 The common definition of pulse transit time[14] 

   Pulse arrival time is factor related to pulse transit time. J.Muehlsteff et al[14] defined 

pulse arrival time as: 

𝑃𝐴𝑇 = 𝑃𝐸𝑃 + 𝑃𝑇𝑇  (1.1) 

Where PEP is the pre-ejection period, the duration of the iso-volumetric ventricle 

contraction up to the aortic valve opening. In some papers, researchers used the term pulse 

arrival time (PAT) to refer PTT [15]. 

  The popular definitions of PTT are: 

PTTf: Time interval from R peak of ECG to the foot of the PPG signal 

PTTp: Time interval from R peak of ECG to the peak of the PPG signal 

PTTs: Time interval from R peak of ECG to the maximum slope point of the PPG 

signal 
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   In this research, we use PTTf and PTTp to estimate the blood pressure. In Figure 4, the 

detailed definitions of various PTT are shown. As previous explaination, PAT refers to 

PTT in Figure 4.  

 

Figure 4 PAT Measured between R peak of ECG and a particular point of PPG [16] 

1.5 Existing PTT-based Method 

    In 1968, M.Anliker and W.E.moritz from Stanford proposed that the effective Young’s 

modules of the blood vessel could be estimated by Moens-Korteweg equation [17]. 

𝑉2 =
𝐸ℎ

2𝜌𝑓𝛼
  (1.2) 

    Where V is wave speed, E is Young’s modules of the blood vessel, h is the wall thickness, 

𝛼 is the radius of the vessel and 𝜌𝑓 is the blood density. An experiment on dogs was set up 

and it found that the carotid seems to be more elastic in the axial than in the circumferential 

direction. With this conclusion, it can be assumed that the change of elasticity of blood 

vessel is not significant. 
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    In 1981, L.A.Geddes,M.H. Voelz, et al from Purdue University proved that the pulse 

transit time can be related to carotid diastolic pressure. The research showed that there is 

non-linear decrease in pulse-transit time and diastolic pressure in the dog [18]. 

    C.P.Chua and C.Heneghan [19] declared that the features generated from ECG and PPG 

signals, including pulse transit time, PPG amplitude, T-wave amplitude and heart rate, have 

useful information to predict blood pressure. The conclusion was based on the experiment 

on human, which was conducted in various positions, including supine with paced 

breathing, supine, spontaneous breathing and standing, spontaneous breathing. C.P.Chua 

and C.Heneghan had chosen PPG amplitude and pulse transit time as the inputs in their 

blood pressure prediction formula: 

𝐵𝑃[𝑖] = 𝑏0 + 𝑏1𝑃𝑃𝐺[𝑖] + 𝑏2𝑃𝐴𝑇[𝑖] + 𝑏3𝑃𝑃𝐺[𝑖 − 1] + 𝑏4𝑃𝐴𝑇[𝑖 − 1]  (1.3) 

    Where i indicates beat-by-beat samples, BP represents blood pressure, PAT represents 

pulse arrival time, PPG represents the amplitude of PPG signal.  

    Other researchers mainly focused on the relationship among pulse transit time, heart rate, 

and blood pressure. Fabio A.Ferreira Marques and his fellows proposed that systolic blood 

pressure and diastolic blood pressure should be considered in two different formulas: 

𝐵𝑃𝑠𝑦𝑠 = [𝑘𝑠× (
1

𝑃𝑇𝑇
)

𝑖

2

] + 𝑘𝑠𝑦𝑠_𝑐𝑎𝑙   (1.4) 

𝐵𝑃𝑑𝑖𝑎 = [𝑘𝑑× (
1

𝑃𝑇𝑇
)

𝑖

2

] + [𝑘𝐻𝑅×𝐻𝑅𝑖] + 𝑘𝑑𝑖𝑎_𝑐𝑎𝑙   (1.5) 

    Where k are constants from calibration. 
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     In addition to pulse transit time, heart rate was also considered as one indicator of blood 

pressure [20]. 

    The research team of W.Chen from Soka University treated initial calibrated blood 

pressure as the base and traced the difference between current pulse transit time and initial 

calibrated pulse transit time, trying to recover the blood pressure from the change of PTT: 

𝐵𝑃𝑒 = 𝐵𝑃𝑏 −
2

𝛾𝑃𝑇𝑇𝑏
∆𝑃𝑇𝑇  (1.6) 

Where 𝐵𝑃𝑒 is the estimated blood pressure, BPb is the calibrated blood pressure, PTTb is 

the base pulse transit time, 𝛾 is the constant coefficient from 0.016 to 0.018 and ∆𝑃𝑇𝑇 is 

the change of pulse transit time compared with the base pulse transit time [21]. The author 

admitted that the estimation accuracy falls when the calibration interval is long. Re-

calibration is required in long-term monitoring as the elastic module of blood vessel varies 

over the time. 

S.Mottaghi,M.H.Moradi, and L.Roohisefat had similar idea but added ∆𝐻𝑅  to their 

formula. 

𝐵𝑃 = 𝐴×(∆𝑃𝑇𝑇) + 𝐵×∆𝐻𝑅 + 𝐶×𝐵𝑃𝑖−1 + 𝐷  (1.7) 

∆𝑃𝑇𝑇 = 𝑃𝑇𝑇𝑖 − 𝑃𝑇𝑇𝑖−1  (1.8) 

∆𝐻𝑅 = 𝐻𝑅𝑖 − 𝐻𝑅𝑖−1  (1.9) 

    Where A, B, C, D are the constants from calibration. 
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    The correlation between ∆𝑃𝑇𝑇, ∆𝐻𝑅 and systolic blood pressure is 0.691, of diastolic 

blood pressure is 0.578, which are higher than the correlation between PTT, HR and blood 

pressure, which are 0.645 and 0.512 respectively [22]. 

    Parry Fang, Guy Dumont et al had simpler model. According to their research, the 

estimation of blood pressure is: 

BP =
𝐴

𝑃𝑇𝑇2 + 𝐵  (1.10) 

Where A is: 

A = (0.6×ℎ𝑒𝑖𝑔ℎ𝑡)2×
𝜌

1.4
  (1.11)     

𝜌 is the blood density. B is the constant from calibration. The PTT defined here is the 

time interval from ECG R peak to the maximum inclination in the PPG [23]. The sample 

experimental result is shown in Figure 5: 
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Figure 5 Comparison between systolic blood pressure by PTT and invasive systolic blood 

pressure from a single patient[23] 

Unlike Fabio, who thought that blood pressure is inversely linear with pulse transit time, 

Federico S.Cattivelli from University of California, Los Angeles and Harinath Garudadri 

from Qualcomm thought that blood pressure has a linear relationship with heart rate and 

pulse arrival time. They deduced that the pulse transit time could be indirectly measured 

through pulse arrival time, which is considered as one of main inputs in their formula. 

Therefore, their formula is: 

𝐵𝑃𝑆 = 𝑎1×𝑃𝑇𝑇 + 𝑏1×𝐻𝑅 + 𝑐1  (1.12) 

𝐵𝑃𝐷 = 𝑎2×𝑃𝑇𝑇 + 𝑏2×𝐻𝑅 + 𝑐2  (1.13) 
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Where a1, b1, c1, a2, b2, c2 are constants calculated from calibration. BPs is systolic blood 

pressure. BPD is diastolic blood pressure. PTT is pulse transit time. HR is heart rate. 

For initial stage, several times of direct blood pressure measurement (oscillometric or 

auscultatory method) are required to calculate constants in the formula. After the initial 

calibration, recalibration is required for the following monitoring. Their result indicated 

that for each calibration, the accuracy of the algorithm could last for 1 hour 20 minutes 

[16]. 

1.6 Existing Machine Learning Method 

Besides the existing PTT-based method, people have also tried machine learning way to 

find out if more complex relationship exists among them. 

For linear regression, several fitting equations were tested by Simi Susan Thomas et al , 

as shown in Table 1 [24]. 

Fitting Eq.No: Equations 

1 y=ax+b 

2 y=ax2+bx+c 

3 y=ax2+b 

4 y=axb+c 

5 y=aebx 

Table 1  Different fitting used for training by Simi Susan Thomas[24] 

    Where y is blood pressure, x is 
𝑑

𝑃𝑇𝑇
 and d is the distance from heart to the wrist and is 

calculated as 50% of the height of the individual. a, b and c are constant [25]. 
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    This training was repeated for both systolic and diastolic blood pressure on 11 healthy 

subjects. Table 2 and Table 3 are 95% confidence interval of root mean square 

error(RMSE), which means there is a 95% probability that the root mean square error lies 

in the intervals stated in tables of corresponding fitting functions and postures.  

Fitting Function: 95% confidence intervals for different postures in mmHg 

Supine Sitting  Standing 

1 [-16.837,16.971] [-19.240,19.410] [-20.045,20.214] 

2 [-16.760,16.759] [-19.284,19.416] [-19.691,19.836] 

3 [-16.908,16.933] [-19.292,19.454] [-19.995,20.154] 

4 [-17.232,17.495] [-20.555,21.208] [-20.546,21.020] 

5 [-18.137,17.815] [-19.749,19.675] [-22.917,22.410] 

Table 2  95% confidence intervals for RMSE of SBP estimates [24] 

 

Fitting Function: 95% confidence intervals for different postures in mmHg 

Supine Sitting Standing 

1 [-13.120,13.133] [-13.003,13.142] [-15.340,15.408] 

2 [-12.938,12.936] [-13.112,13.169] [-15.148,15.199] 

3 [-13.102,13.112] [-12.997,13.133] [-15.303,15.371] 

4 [-13.626,13.939] [-14.705,15.355] [-17.248,18.330] 

5 [-13.312,13.234] [-13.376,13.517] [-15.415,15.551] 

Table 3  95% confidence intervals for RMSE of DBP estimates[24] 

    Enric Monte-Moreno did some research about using machine learning techniques on 

blood-pressure estimation. He collected 410 individuals’ data and applied multiple 
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methods including linear regression, neural network, support vector machine(SVM), 

classification and regression tree, random forest. More than 15 features, including personal 

details like BMI, weights, height, etc, were applied in linear regression in this research. For 

neural network, the structure of one hidden layer with one output layer was selected. To 

avoid stuck in local minima for neural network, multi-starting scheme was selected in the 

experiment. Besides, linear regression and random forest were applied to list the usefulness 

of the features and SVM was applied to detect the presence of irrelevant features [26]. 

    Mohamad Kachuee et al did more detailed research on applying neural network and 

SVM to estimate blood pressure [27]. They used Neural Network with one hidden layer of 

5 to 15 neurons and one output layer. They have extracted different features from PPG 

signal, as Figure 6 illustrated: 

Figure 6 Extraction of PPG signal feature [27] 
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1.7 Implemented Machine Learning Methods in this thesis 

    To increase the accuracy of PTT-based machine learning method, relatively more 

complicated machine learning structures were tested in this thesis, compared to the 

mentioned algorithms in Section 1.6. In addition, to test the adaptability of machine 

learning algorithms in clinical situation, a patient database was tested in this thesis.  

In this thesis, linear regression, feed-forward neural network and recurrent neural 

network(RNN) were implemented based on features extracted from ECG and PPG signals.  

    Unlike linear regression tested by Simi Susan et al [24], a more general form of linear 

regression was applied. 

    In this research, neural networks have multiple hidden layers with different number of 

neurons in each hidden layer were tested. According to Jeff Heaton, one hidden layer can 

approximate any function that contains a continuous mapping from one to finite space to 

another. The number of hidden layers should exceed 2 to represent any arbitrary decision 

boundary to arbitrary accuracy with rational activation functions and can approximate any 

smooth mapping to any accuracy [28]. Therefore, more complicated neural network 

structures should be tested compared to the models compared to the models mentioned in 

Section 1.6. 

    In addition, recurrent neural network was tested to show if it has better performance in 

time-sequence related prediction problem.  The recurrent neural network structure was 

revised from feed-forward neural network and the back propagation through time method 

was selected as training algorithm for recurrent neural network. 
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The performances of the selected algorithms, including the error percentage, the capacity 

of tracking the change of blood pressure, were compared in this thesis in Chapter 4. 

Table 4 shows the main selected models in this research and comparable models in 

Section 1.6. 

Author Selected Model Description 

Simi Susan Thomas Linear Regression Simple form (shown in 

Table1) 

Enric Monte-Moreno Neural Network 1 hidden layer 

Mohamad Kachuee Neural Network 1 hidden layer (5 to 15 

hidden neurons in one 

layer) 

This research Linear Regression Complicated form (shown 

in Equation 3.3) 

This research Neural network Multiple hidden layers(5) 

with multiple hidden 

neurons in each layer(1 to 

30) 

This research Recurrent neural network Multiple hidden layers(5) 

with multiple hidden 

neurons in each layer 

Table 4 Related Model Comparison 
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1.8 Thesis structure 

Chapter One introduces the background of the research, including the definitions of ECG, 

PPG and PTT, the existing PTT-based algorithms and existing machine learning algorithms 

for blood pressure measurement. 

Chapter Two describes the methodology adapted in this study, including the extraction 

of the data from MIMIC II Online databases, preprocessing of the data, and the feature 

engineering for this study. 

Chapter Three describes the theorem of machine learning algorithms, including linear 

regression, neural network and recurrent neural network.  

Chapter Four describes the testing results of machine learning algorithms, and compared 

the results from different perspectives, including error percentage, the tracing capability 

and the performance in the extreme cases. 

Chapter Five draws the conclusion of this study.  
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Chapter 2 Methodology 

    The proposed cuff-less BP estimation method consists of the following steps: 

i) Extraction of data from MIMIC II online databases 

ii) Preprocessing the data for smoothening 

iii) Feature engineering 

iv) Machine Learning  

v) Evaluation  

    This chapter will cover the first three parts: extraction of data from MIMIC II online 

databases, preprocessing the data for smoothening and feature engineering. 

2.1 Extraction of data from MIMIC online databases 

    All data used in this research are from MIMIC II online databases [29]. The MIMIC II 

(Multiparameter Intelligent Monitoring in Intensive Care) online Databases contain the 

vital signs obtained from hospital medical information system for ICU patients. The 

databases don’t contain some of the valuable parameters such as height, age, which can 

potentially be used to improve the model accuracy. The data selected for this research are 

from MIMIC II Waveform Database, version 3 part 5(mimic2wdb/35) and all data were 

exported as CSV file, which is convenient for data processing. According to the databases’ 

description, the sampling rate of ECG/PPG/Blood pressure is 125Hz. Therefore, the time 

interval between each record is 0.008 second. With invasive blood pressure measurement 

result in the databases, we are able to test the accuracy of implemented machine learning 

algorithms and compare the estimated blood pressure with the actual result. 
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    WFDB toolkit is required to export records from MIMIC II online databases 

automatically. Not all patients in MIMIC database have blood pressure/ PPG/ECG signal 

records simultaneously, therefore we need to manually pick those who have these three 

types of records. 

After manual selection, 71 patients’ records with continuous blood pressure waveform, 

continuous ECG and PPG signals, were extracted from MIMIC II online databases. But 

not all extracted data were used in this research as some exhibit too much abnormality, i.e. 

blood pressure remains in low level (less than 50) for long duration. 

The time label in MIMIC II online databases is not in standard 24-hour format. The time 

label only contains hour, minute and second information. Hence if the record length is 

greater than 24 hours, the label of hour will become larger than 24. This is not allowed in 

standard Python library. With customized time library in Python, we can transfer the 

irregular time label into standard time label format in order to calculate PTT and other 

features.    

From Figure 7 it can be observed that not all time current data records are available. This 

exception was handled by skipping the empty data records in algorithms. 
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Figure 7 The csv example from Patient 3501007 

    In the csv file, ‘II’ represents ECG signal, ‘PLETH’ represents PPG, and ‘ABP’ 

represents blood pressure. Other signals will not be used in this research.  

    From S.Mottaghi’s research, the correlation between pulse transit time and systolic 

blood pressure is greater than the correlation between pulse transit time and diastolic blood 

pressure[22]. This implies that the model based on PTT potentially has better performance 

on systolic blood pressure estimation rather than diastolic blood pressure estimation.  For 

this reason, this research focused on non-invasive systolic blood pressure measurement. To 

stretch the systolic blood pressure, one script was used to detect the highest value in each 

period of heart cycle. In MIMIC II online databases, some signals may have distortion 

phenomenon in short period, illustrated in the Figure 8: 
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Figure 8 Patient 3501007 Record from MIMIC II Online Database 

Figure 8 is part of the waveform record from MIMIC II Online Databases. The last line 

is the waveform blood pressure record. As shown in Figure 8, blood pressure waveform 

has distortion. Thus, the next step is to smoothen the signals, find out the value of the 

systolic blood pressure during each heart cycle, the max/min value of ECG/PPG signals 

and the corresponding time. Same as the exported csv file, in waveform databases, ECG 

signal is labeled as II, PPG signal is labeled as PLETH, blood pressure is labeled as ABP. 
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2.2 Preprocessing the data to smoothen 

    Two different versions of extracted features were prepared for this study. The First 

version contains only PTTp and heart rate with corresponding systolic blood pressure value. 

The Second version contains PTTp, PTTf, heart rate, time interval from ECG peak to ECG 

min, time interval from ECG min to ECG peak. More details will be covered in Section 

2.3. 

For both versions, it is important to find the time labels of the peak/valley in each 

signal(BP/ECG/PPG) for all cycles of heart activity. However, as described in Figure 8, 

one heart activity cycle may contain several small peaks in some signals due to distortion. 

Hence, we want to find the highest point and the lowest point for each signal(BP/ECG/PPG) 

in each cycle of heart activity. Those data points will be used for features engineering in 

Section 2.3. 

As shown in Figure 8, multiple local peaks may appear in one heart cycle data record. 

They all will be labeled as peaks with genuine library and will lead to inaccurate pulse 

transit time calculation. To avoid label multiple peaks in one heart cycle, the algorithms 

shown in Figure 9 was used. It was discovered that the normal PTTp value (from R peak 

of ECG to PPG peak) is from 0.6 to 0.7 second. Hence the minimum time interval between 

each peak should be greater than 0.5 second, which is 63 data records (125Hz sampling 

rate). The peak should have the maximum value within 63 continuous data records. The 

similar algorithms are used to determine the max/min value in PPG/ECG in order to extract 

accurate time label for R peak of ECG, time label of min point of ECG, time label of peak 
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of PPG, time label of min point of PPG, value of blood pressure for each heart activity 

cycle. 

 

Figure 9 Pseudo code for find peak in signal 

In Figure 10 and Figure 11, we compared the peak detection using genuine peak 

detection algorithm and peak detection using Pseudo code illustrated algorithm. In Figure 

10, the blue circles are the detected peaks positions with filter. In Figure 11, the green 

circles are the detected peaks. It is clear that peaks detection with filter has better results. 

Figure 10 Peaks detection with filter 
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Figure 11 Peak detection result without filter 

 

2.3 Feature Engineering 

    In this study, we prepared two versions of features to test. The first version contains 

PTTp, HR. The second version is an expanded version, including PTTp, PTTf, HR, the 

time interval from R peak to ECG min, the time interval from ECG min to R peak, 5 

features in total. 

2.3.1 1st Version extracted features: PTTp and HR 

    In existing PTT-based method, PTT and HR are two common features selected to 

estimate blood pressure. PTTp was selected in this study instead PTTs because it is hard to 

calculate PTTs as it requires finding the maximum slope point in PPG, which is difficult 
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when PPG signal has distortion. HR was calculated as the inversed value of time interval 

between ECG peaks.  

    This version is an early stage version in this study. This version was tested only on linear 

regression algorithm. 

    The estimation result is covered in Section 4.1. The result is largely biased and not 

accurate. One possible reason is the curse of dimensionality. The normal PTTp range is 

from 0.6 second to 0.7 second, and the normal HR range is from 60-90. Due to the 

limitation of sampling frequency (125Hz), we often observed that same HR and PTTp 

values were associated with different blood pressure value in the training dataset. This 

confused the algorithm and led to inaccurate prediction. 

2.3.2 2nd Version extracted features 

    To avoid the curse of dimensionality, we redid the feature engineering and added more 

features to improve the prediction accuracy. 

    Three common PTT definitions are mentioned in Chapter 1: PTTp, PTTf and PTTs. We 

selected PTTp and PTTf as features because it is easier to detect the peak and the minimum 

point for ECG and PPG in each heart activity cycle. In addition, we included heart rate, 

time interval from ECG peak to ECG min and ECG Peak to Min as features. In total we 

selected 5 features, 4 of them are shown in Figure 12 (exclude HR). 
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Figure 12 The Features extracted from ECG and PPG 

The features were calculated from the smoothened data in Section 2.2. It should be noted 

that for machine learning algorithms, the input with more features requires more memory 

and time for training. Hence it is trivial that for linear regression, the required memory and 

time for training of 1st version features are less than 2nd version features. Besides, it is likely 

to cause over-fitting problem if the model has too many features as input.  



27 
 

Chapter 3 Machine learning theorems 

3.1 Linear Regression 

3.1.1 Theorem 

    In classical statistical linear regression analysis, the dependent variable is denoted as y 

and the other variables as explanatory variables are denoted by xi. The relationship between 

the dependent variable and the explanatory variables is given by: 

𝑦𝑖 = ∑ 𝑥𝑖𝜃𝑖𝑖 + 𝜃0  (3.1) 

    In equation 3.1, 𝜃𝑖 is the coefficient corresponding to the explanatory variables and 𝜃0 

is the bias [30].  

Inspired by traditional PTT-based blood pressure measurement method, we noticed that 

Federico’s research [16] and Fabio’s research [20] considered pulse transit time and heart 

rate as important factors to predict blood pressure. Different from the models proposed by 

Simi et al [24], we didn’t restrict linear regression model into certain simple forms. Instead, 

we mixed the possible forms and used ridge regression to train the model.  

As mentioned in Section 2.3, we have prepared two versions of features to test in linear 

regression. The linear regression formula for 1st version features, PTT and HR, is given by: 

𝑦𝑖 = 𝜃0 + 𝜃1𝑃𝑇𝑇𝑖 + 𝜃2𝑃𝑇𝑇𝑖
2 + 𝜃3

1

𝑃𝑇𝑇𝑖
+ 𝜃4

1

𝑃𝑇𝑇𝑖
2 + 𝜃5 log(𝑃𝑇𝑇𝑖) + 𝜃6𝐻𝑅𝑖 …  (3.2) 

If the item has no strong correlation with blood pressure, the 𝜃 will become smaller and 

the impact of this item will be negligible. 
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The iteration times was set as 20000, the gradient learning rate was set as 10-6, and the 

ridge regression coefficient was set as 0.01. The choice of these parameters will be 

elaborated in the later section. 

After testing linear regression with HR and PTT, we tested linear regression with 2nd 

version features. 

We applied the following linear regression model: 

𝑦 = 𝜃1𝑥1 + 𝜃2𝑥1
2 + 𝜃3

1

𝑥1
+ 𝜃4

1

𝑥1
2 + 𝜃5𝑒𝑥1 + 𝜃6𝑥2 + ⋯ + 𝜃0 (3.3) 

Where x1, x2, x3 .. are features, 𝜃1, 𝜃2,… are coefficients calculated from training process, 

𝜃0 is the bias.  

Compared with the equation 3.2, log(x) was removed in the equation 3.3 because after 

the first version test, we found that the coefficient with log(x) is small in general. We added 

the form ex
  as Simi et al[24] included it in their models. 

The gradient learning rate was set as 10-17. The iteration times was set as 20000 and the 

ridge regression coefficient was set as 0.01. This setting sacrificed training speed in order 

to let model converge for most patients’ data. The choice of these parameters will be 

elaborated in Section 3.1.3. The setting for two linear regressions are shown in Table 5. 

 Features Iteration 

times 

Learning rate Ridge 

coefficient(𝜆) 
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Linear Regression 

1 (PTTp, HR) 

PTTp, HR 20000 10-6 0.01 

Linear Regression 

2 (5 features) 

PTTp, PTTf, HR, 

ECGpeak-ECGmin, 

ECGmin-ECGpeak 

20000 10-17 0.01 

Table 5 Linear Regression Setting 

3.1.2 Normalization 

    When different feature data varies widely in range, normalization, also called feature 

scaling, is required. For linear regression, normalization will accelerate convergence and 

reduce the iteration times for training. Normalization is compulsory for neural network and 

recurrent neural network because they are not using gradient descent and the different 

scales of features have large impact on the accuracy of the models.     

The features selected in this study are in wide range. Normalization is a necessary 

preparation step for both 1st version features and 2nd version features. 

There are three common methods to scale the data [31]: 

1. Scaling by variance 

2. Scaling by domain 

3. Scaling to min, max 

    In this study, we used the method of scaling by variance. Every data in the training 

dataset will be applied in the following formula: 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋𝑟𝑎𝑤−𝑋𝑎𝑣𝑒

𝜎
  (3.4) 
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Where xraw is the raw data of the feature, xave is the average value of the feature in the 

training dataset. 𝜎 is the standard deviation of the feature in the training dataset. 

Blood pressure should also be normalized in training dataset. The average value and 

standard deviation of the features and blood pressure in the training dataset should be noted. 

These values are required to scale down the features and scale up the estimated blood 

pressure in the test dataset.  

3.1.3 Gradient descent 

    After normalization, we should calculate the constant values, 𝜃0 , 𝜃1 ,… in linear 

regression formula. 

In linear regression, gradient descent is a standard way to find the most suitable linear 

regression formula that fits best to the actual outcomes. The procedure of finding the 

suitable linear regression formula is called training. The evaluation process is called testing. 

For this study, 70% of dataset was used for training, 30% of dataset was used for testing.  

    The goal of training is to adjust the parameters 𝜃 in order to reduce the square sum 

between the estimation result and actual result. Let’s say we have training data (x1, y1), (x2, 

y2)…(xN, yN) where xi is a vector of features and yi is the actual result. The parameters 𝜃 

should minimize the residual sum of squares: 

𝑅𝑆𝑆(𝜃) = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))2𝑁
𝑖=1   (3.5) 
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    With more variables into the formula, the outcome will be more accurate, but it also 

becomes easier to cause overfitting. Overfitting means that the algorithm has too many 

explanatory variables and it does not generalize well to new data [32].  

To avoid overfitting problem in linear regression, people imposed a penalty term 𝜆 in 

residual sum of squares, and this type of regression is called Ridge regression [33]. The 

gradient descent is proposed to find the parameters 𝜃 that minimize the penalized residual 

sum of squares in training data [34].  In some materials, it is called penalized linear 

regression. 

The formula of the penalized residual sum of squares is: 

𝑅𝑆𝑆𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑(𝜃) = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))2𝑁
𝑖=1 + 𝜆 ∑ 𝜃𝑗

2𝑝
𝑗=1   (3.6) 

    The equation 3.6 is also called cost function for ridge regression. The value of cost 

function is simply called the cost.     

    When we use ridge regression, instead of simply minimizing RSS(𝛽), we are going to 

choose 𝜃 that can meet the following criteria: 

𝜃𝑟𝑖𝑑𝑔𝑒 = argmin
𝜃

{∑ (𝑦𝑖 − 𝑓(𝑥𝑖))2𝑁
𝑖=1 + 𝜆 ∑ 𝜃𝑗

2𝑝
𝑗=1 }  (3.7) 

    This method was used in this work. There is another penalized linear regression method 

called Lasso shrinkage, where the formula is: 

𝜃𝑙𝑎𝑠𝑠𝑜 = argmin
𝜃

{∑ (𝑦𝑖 − 𝑓(𝑥𝑖))2𝑁
𝑖=1 + 𝜆 ∑ |𝜃𝑗|𝑝

𝑗=1 }  (3.8) 
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Ridge and Lasso are both regularized linear regressions. Between these two, the gradient 

descent for ridge regression is faster to compute and easier to implement for large scale 

data. Ridge regression is selected for faster training process. 

Here 𝜆, the ridge coefficient, is a parameter to control the amount of shrinkage. The 

larger the 𝜆, the larger the shrinkage. In this work, we chose 𝜆 as 0.01, which was obtained 

from testing several different 𝜆 and monitoring whether the cost converges accordingly. 

    In gradient descent, iterations are needed to optimize the 𝜃. Each iteration updates the 

parameters 𝜃 on the basis of the gradient of RSS(𝛽)[35]: 

𝜃𝑡+1 = 𝜃𝑡 − 𝛾
1

𝑛
∑ ∇𝑅𝑆𝑆(𝜃𝑡)𝑛

𝑖=1   (3.9) 

Where 𝜃𝑡 is the parameter before iteration, 𝜃𝑡+1 is the parameter after iteration, n is the 

scale of training data,  𝛾 is learning rate. 

This function is based on the derivation of the cost function i.e.∇𝑅𝑆𝑆(𝜃𝑡). With this 

function, we are able to find the most suitable parameters 𝜃.  

The learning rate 𝛾  was selected manually. If 𝛾  is too large, the function may not 

converge. If 𝛾 is too small, the convergence rate is too small and the required iterations 

times is large to achieve convergence for the cost. Hence it is meaningful to monitor the 

cost to ensure that the appropriate 𝛾  value is chosen. After around 10 times trial, the 

settings of learning rate were selected for the two models. 
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3.2 Neural Network 

3.2.1 Neural Network Definition 

    Neural network, also called artificial neural network, is constructed based on input, 

output, neurons and weights.  Three things should be specified for neural network 

algorithm: architecture, activity rule and learning rule [36].  

There are various types of neural network. In this study, we used supervised feed-forward 

neural networks. For supervised algorithm, actual targets are given in training dataset, and 

the targets will train the neural network to adapt its response due to the input to closely 

match the targets. 

The structure of neural network in this study is shown in Figure 13:

 

Figure 13 Neural Network Structure 
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    As shown in Figure 13, the main components for feed-forward neural networks are input 

layer, hidden layers and output layer. There is only one input layer, one output layer, but 

multiple hidden layers are permitted in feed-forward neural network. Each layer contains 

several neurons as required. Input layer contains input features extracted from raw data and 

one neuron whose value is always 1 and is called bias. Hidden layers contain hidden 

neurons. Output layer contains output neuron. In this study, there was only one output that 

was estimated blood pressure. The number of layers and the number of neurons in each 

hidden layer are defined manually.  

    The neurons are connected to the neurons in previous and next layers. The values given 

to the connections are called weights.  

A single neuron in hidden layers or output layer has a number of inputs from previous 

layer. For feed-forward neural network, the connections are directed from the inputs to the 

output of the neuron [36]. 

    In Figure 13, the input layer contains 5 input features plus one bias neuron. As mentioned 

in Section 1.6, different number of hidden layers will influence the performance of the 

structure.  Hence, feed-forward neural network structures with different number of hidden 

layers were tested in this research. Each hidden layer contains 5 hidden neurons as there 

are 5 input features. The output layer contains one output neuron, which is the estimated 

blood pressure. The neural network is fully connected. 
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3.2.2 Feed-forward 

    In the selected neural network for this study, the connections between the neurons are 

directed, and the hidden layers are ordered. This type of neural network is called feed-

forward neural network. The procedure of calculating the output from the input in feed-

forward neural network is called feed-forward.  

    The calculation in feed-forward neural network follows the activity rule. There are two 

steps in the activity rule. First step is to calculate the activation of the neuron. Second step 

is to calculate the activation function result of the activation.  

Activity rule: 

1. We should first compute the activation of the neuron: 

a = ∑ 𝑤𝑖𝑥𝑖𝑖  (3.10) 

    where the sum is over i=0,1,2… i.e. all the input weights times the corresponding input. 

wi is the value of weight, xi is the value of neuron connected by weight wi . 

2. The output is set as function of f(a), where f( ) is called the activation 

function. Here are several commonly used deterministic activation functions: 

I. Linear function:𝑓(𝑎) = 𝑎 

II. Sigmoid(Logistic function):𝑓(𝑎) =
1

1+𝑒−𝑎   where 𝑓(𝑎) ∈ (0,1) 

III. Sigmoid(tanh):𝑓(𝑎) = tanh 𝑎 where 𝑓(𝑎) ∈ (−1,1) 

IV. Threshold function: 𝑓(𝑎) = {
1  𝑎 ≥ 0

−1  𝑎 ≤ 0
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    In this study, the goal is to compute blood pressure from selected features. When the 

goal of the problem is to compute a real value instead of classifying the object, this problem 

is called regression problem. For regression problem, linear function is commonly used 

between the last hidden layer and the output. The sigmoid functions are often used between 

each hidden layer [37].  

    The linear function was selected as the activation function between the last hidden layer 

and output layer. The sigmoid (tanh) function was selected as the activation function 

between each hidden layer. 

 

Figure 14 Feed-forward example step 1 
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    For example, in Figure 14, we are going to compute value of the red neuron in hidden 

layer i+1. The connected neurons with y are x1, x2, x3, x4, x5. To compute the red neuron y, 

only the connections linked to y from hidden layer i will be considered, as shown in Figure 

15: 

 

Figure 15 Feed-forward example step 2 

     

    The activation of y is: 

𝑎 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥3𝑤3 + 𝑥4𝑤4 + 𝑥5𝑤5  (3.11) 

    Where w1, w2, w3, w4, w5 are weight values. 
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    Then we can get value of y: 

𝑦 = 𝑓(𝑎)  (3.12) 

Where f( ) is the sigmoid function tanh for the feed-forward between hidden layers. If y 

is the neuron in output layer, f( ) is the linear function. 

 

3.2.3 Back Propagation 

    To train the neural network in order to adapt its weights, we used back propagation 

method. Back propagation is the method to train the neural network in order to adapt the 

weights for the targets. The formula used in back propagation is related to the chosen 

activation function. 

During the training stage, to maximize the likelihood is equivalent to minimizing the 

sum-of-squares error function given by: 

𝐸(𝑤) =
1

2
∑ {𝑦(𝑥𝑛, 𝑤) − 𝑡𝑛}2𝑁

𝑛=1   (3.13) 

Where tn is the target value, y(xn,w) is the output calculated from input features xn and 

weights w. This function (3.13) is also called the cost function for neural network. It is vital 

to monitor the cost function in training procedure as it indicates the fitting level of the 

model in training datasets. There may exist other way to choose error function, for example 

Simard et al(2003) argued that using the cross-entropy error function for a classification 

problem leads to faster training [38].  
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In this study, we used sum-square-error as our error function which is a more common 

choice for regression problem. 

    In this study, the chosen activation function is sigmoid(tanh) function: h(a)=tanh(a) 

    Where: 

tanh 𝑎 =
𝑒𝑎−𝑒−𝑎

𝑒𝑎+𝑒−𝑎   (3.14) 

    Its derivative can be expressed as: 

ℎ′(𝑎) = 1 − ℎ(𝑎)2  (3.15) 

     

    The goal of training is to minimize the standard sum-of-squares error function, or can be 

treated as minimize the cost function. As inputs and expected output are fixed, the 

parameters we can adjust are weights w in neural network. 

    First we perform feed-forward to calculate the actual estimated value yk according to the 

current weights and inputs. Then we calculate the error term, which refers to the difference 

between the actual result and expected result. For error term in output layers: 

𝛿𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑦𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑜𝑢𝑡𝑝𝑢𝑡  (3.16) 

    Where youtput is the estimated blood pressure and toutput is the actual blood pressure. 
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Figure 16 Backpropagation Step 1 

As shown in Figure 16, we first computed the error of output 𝛿𝑜𝑢𝑡𝑝𝑢𝑡 in output layer. 

After that, we back propagated to obtain error items for hidden neuron. We assume that 

the error term calculated for hidden neuron is represented by j. The neurons connected with 

hidden neuron j in next hidden layer are labeled as neuron k. The formula is given: 

𝛿𝑗 = (1 − 𝑥𝑗
2) ∑ 𝑤𝑘𝑗𝛿𝑘  (3.17) 

    Where 𝛿𝑗 is the error term for hidden neuron j. xj is the actual result for hidden neuron j 

in feed-forward process. Wkj is the weight value on the connection between hidden neuron 
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j and hidden neuron k. 𝛿𝑘 is the error term for hidden neuron k. It should be noticed that 

hidden neuron k refers to all hidden neurons that connected with hidden neuron j in next 

hidden layer. 

 

Figure 17 Backpropagation Step 2 

    For example, as shown in Figure 17, we want to compute the error term of red neuron 

z2. As w2 is the only weight from z2 to connect with next layer, the error of z2 is: 

𝛿𝑧2 = (1 − 𝑧2
2)×𝑤2𝛿𝑜𝑢𝑡𝑝𝑢𝑡  (3.18) 
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    After the back propagation for hidden layer i, we are supposed to get all error terms for 

z1, z2, z3, z4, z5. Next step we want to calculate the error term for x1, x2, x3, x4, x5. We take 

the computation process for error term of x2 as example: 

 

Figure 18 Backpropagation Step 3 

    As shown in Figure 18, the weights from x2 to hidden layer i are w6, w7, w8, w9, w10. 

According to the formula, the error for x2 is: 

𝛿𝑥2 = (1 − 𝑥2
2)×(𝑤6𝛿𝑧1 + 𝑤7𝛿𝑧2 + 𝑤8𝛿𝑧3 + 𝑤9𝛿𝑧4 + 𝑤10𝛿𝑧5)  (3.19) 

This step is repeated until all neurons’ error are calculated. 
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    Finally, the derivatives of sum-of-square error with respect to the hidden-layers and the 

output-layer weights are given by: 

∂𝐸𝑛

∂w𝑗𝑖
𝑛 = 𝛿𝑗𝑥𝑖  (3.20) 

∂𝐸𝑛

∂w𝑜𝑢𝑡𝑝𝑢𝑡𝑗
𝑙𝑎𝑠𝑡 = 𝛿𝑜𝑢𝑡𝑝𝑢𝑡𝑥𝑗  (3.21) 

    In the equation 3.20, wji
n is the weight from neuron i in hidden layer n to neuron j in 

hidden layer n+1. 𝛿𝑗 is the error of neuron j in hidden layer n+1, xi is the calculated value 

in feed-forward process for neuron i in hidden layer n. 

In the equation 3.21, woutputj
last is the weight from neuron j in last hidden layer to output. 

𝛿𝑜𝑢𝑡𝑝𝑢𝑡 is the error of output in output layer. Xj is the value in feed-forward process for 

neuron j in last hidden layer. 

These two formulas are for derivatives of sum-of-square error on one training data. For 

batch training, where we have a bunch of training data, we will sum up 𝛿𝑘𝑥𝑗 in all the 

training data set [38]. 

∂𝐸𝑛

∂w𝑗𝑖
𝑛 = ∑ 𝛿𝑗𝑥𝑖𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡   (3.22) 

∂𝐸𝑛

∂w𝑜𝑢𝑡𝑝𝑢𝑡𝑗
𝑙𝑎𝑠𝑡 = ∑ 𝛿𝑜𝑢𝑡𝑝𝑢𝑡𝑥𝑗𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡   (3.23) 

To update the weights among hidden neurons, we have: 

𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖 
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∆𝑤𝑖 = −𝜂
𝜕𝐸𝑛

𝜕𝑤𝑖
  (3.24) 

After the substitution: 

∆𝑤𝑖 = −𝜂× ∑ 𝛿𝑘𝑥𝑖𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠𝑒𝑡   (3.25) 

Where 𝜂 is the learning rate [39].  

With large training rate, the convergence will become fast. However, if the learning rate 

is too large, the training may not converge, which directly leads to the failure of training.  

In this study, we set 10-6 as the learning rate, which is suitable for most cases during the 

experiment. 

3.2.4 Initial setting for Feed-Forward Neural Network 

Neural network’s performance is impacted by the number of hidden layers, the number 

of neurons in each hidden layer, the initial weights. Due to the limitation of back-

propagation method, the initial weights selection can impact the final neural network 

performance. Using the back-propagation method will lead us to different local minima 

with different initial weights. Hence, it is important to put the right initial weights for each 

patient in order to improve the accuracy of blood pressure prediction. In most cases, the 

initial weights are set as Gaussian distribution random variable with mean 0. We set the 

variance of Gaussian distribution in different values to see which will be the best common 

initial setting. We fixed the number hidden layers as 5, The neural networks with different 

number of neurons in each hidden layer and different initial weights were tested and their 

performances were evaluated. 
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The tested neural network structures are shown in Table 6.  

Structure Hidden 

layers 

Initial weights Hidden neurons per layer 

Neural Network Test1 Ver1 5 N(0,0.1) 1 

Neural Network Test1 Ver2 5 N(0,0.1) 5 

Neural Network Test1 Ver3 5 N(0,0.1) 10 

Neural Network Test1 Ver4 5 N(0,0.1) 15 

Neural Network Test1 Ver5 5 N(0,0.1) 30 

Neural Network Test2 Ver1 5 N(0,0.5) 1 

Neural Network Test2 Ver2 5 N(0,0.5) 5 

Neural Network Test2 Ver3 5 N(0,0.5) 10 

Neural Network Test2 Ver4 5 N(0,0.5) 15 

Neural Network Test2 Ver5 5 N(0,0.5) 30 

Neural Network Test3 Ver1 5 N(0,1) 1 

Neural Network Test3 Ver2 5 N(0,1) 5 

Neural Network Test3 Ver3 5 N(0,1) 10 

Neural Network Test3 Ver4 5 N(0,1) 15 

Neural Network Test3 Ver5 5 N(0,1) 30 

Neural Network Test4 Ver1 5 N(0,2) 1 

Neural Network Test4 Ver2 5 N(0,2) 5 

Neural Network Test4 Ver3 5 N(0,2) 10 

Neural Network Test4 Ver4 5 N(0,2) 15 

Neural Network Test4 Ver5 5 N(0,2) 30 

Table 6 Neural Network Setting 
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3.3 Recurrent Neural Network 

3.3.1 Recurrent Neural Network Definition 

    For feed-forward neural network described in Section 3.2, the structure is time-

independent. In another word, the output of blood pressure at time T is based on the input 

features at time T, and it is not relevant to any other data from past time. However, 

According to C.P.Chua and C.Heneghan [19], heart activity cycles are not independent. 

The heart activity cycle at time T is affected by the past heart activity cycles(T-1). 

Therefore, another type of neural network structure, whose output depends on both current 

and past inputs, was tested. It is called recurrent neural network.  

    For recurrent neural network, there exist several different structures, including back-

propagation-through-time (BPTT), Echo-state, RNN with Extended Kalman Filter, and etc. 

In this research, we selected BPTT recurrent neural network for its simplicity and ease of 

implementation. In addition, the training method of BPTT Recurrent neural network and 

feed-forward neural network is similar. Back-propagation-through-time recurrent neural 

network is developed from feed-forward neural network. We easily developed RNN from 

existing feed-forward neural network in Section 3.2. 

The recurrent neural network structure is shown in Figure 19: 
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Figure 19  Recurrent Neural Network Structure 

The red connection is the key difference between recurrent neural network (Figure 19) 

and feed-forward neural network (Figure 13).  For feed-forward neural network, the 

connections between neurons cannot form a cycle. For recurrent neural network, the 

connections between neurons are allowed to form directed cycle. This property of recurrent 

neural networks gives this structure more freedom and possibility. It is obvious that there 

are various possible structures of recurrent neural networks. In this research, we only 

defined the structure shown in Figure 19 and evaluated its performance. 

There are two reasons why we chose this structure. The first one is that training recurrent 

neural network is time-consuming. The complexity of training increases with more 

connections between neurons. The second one is that direct connection between estimated 
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blood pressure in past time and last hidden layer can increases the influence of the past 

time estimated blood pressure. Because the past time estimated blood pressure is calculated 

from past inputs, it can be considered that the past time inputs indirectly impact the current 

estimated blood pressure.  Unfortunately, in current stage, how to define the recurrent 

neural network is empirical. The only method is to try various structures of RNN and pick 

the best one. It is not realistic in this study to try out various RNN structures due to the 

limitation of computing power and time. 

3.3.2 Feed-forward for RNN 

    As mentioned above, RNN has different structures, including BPTT, Echo-state RNN, 

RNN with Extended-Kalman-Filter, etc. In this thesis, BPTT is chosen.  

Unlike feed-forward neural network, RNN exists directed cycle. If we consider RNN in 

time sequence, we can unfold RNN into multiple feed-forward neural network with 

connections in different time.  

One example is given by Herbert Jaeger is shown in Figure 20 [40]: 

 

Figure 20  Schema of the basic idea of BPTT. A: the original RNN. B: The feedforward 

network obtained from it. [27] 
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    In Figure 20 Schema A, the RNN exists several directed cycles. In Figure 20 Schema 

B, the RNN is unfolded into time-sequence feed-forward neural network. Between feed-

forward neural network at different moment, there are connections from the previous 

moment neural network.   

The unfolded structure of Figure 19 is shown in Figure 21: 

 

Figure 21  The feedforward network obtained from Recurrent Neural Network 

The selection of activation function is same as feed-forward neural network, i.e. the 

activation function between last hidden layer and output is linear function, the other 

activation function is sigmoid(tanh). 

It is very similar in RNN to calculate the output from input. The first step was to unfold 

the RNN into a format like feed-forward neural network, as shown in Figure 19. After that, 
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we applied the feed-forward procedure from input layer to hidden layer. We repeated the 

feed-forward procedure until output layer. The only difference between feed-forward 

procedure in feed-forward neural network and recurrent neural network is that for last 

hidden layer i, in addition to the previous hidden layer i-1, the previous output should be 

considered as another hidden neuron and should be applied into the formula. 

3.3.3 Back Propagation Through Time 

The training algorithm for BPTT RNN is called back propagation through time. This 

procedure is very similar to the backpropagation process in feed-forward neural network. 

As described in Figure 21, the first step was to unfold the RNN into a format similar to 

feed-forward neural network. After the feed-forward procedure, we calculated the error 

terms for each hidden neuron. This step is similar in Section 3.2.3. The only difference is 

that for the neuron of previous output, the error was calculated from the last hidden layer 

i. The definition of cost function for RNN is same as the definition of cost function for 

neural network, as shown in Equation 3.26. 𝑦(𝑥𝑛, 𝑤)  is the estimated blood pressure 

calculated from selected features, 𝑡𝑛is the actual blood pressure value, E(w) is the cost 

function value.  

𝐸(𝑤) =
1

2
∑{𝑦(𝑥𝑛, 𝑤) − 𝑡𝑛}2

𝑁

𝑛=1

 (3.26) 

  Monitoring cost function is vital in training RNN. It is an indicator to stop the training 

after proper back-propagation iteration times. 
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3.3.4 Initial setting for RNN 

Similar to feed-forward neural network, the RNN is impacted by the number of hidden 

layers, the number of hidden neurons in each layer, the initial weight. In this study, we 

mainly tested the impact from the number of neurons in each hidden layer and the initial 

weight. Considering the training for RNN is time-consuming, the iteration times for RNN 

was set as 1000. The learning rate was 10-5. The setting of tested RNN is shown in Table 

7: 

Name Hidden layers Initial weights Hidden neurons per layer 

RNN Test1Ver1 5 N(0,0.1) 1 

RNN Test1Ver2 5 N(0,0.1) 5 

RNN Test1Ver3 5 N(0,0.1) 10 

RNN Test1Ver4 5 N(0,0.1) 15 

RNN Test1Ver5 5 N(0,0.1) 30 

RNN Test2Ver1 5 N(0,0.5) 1 

RNN Test2Ver2 5 N(0,0.5) 5 

RNN Test2Ver3 5 N(0,0.5) 10 

RNN Test2Ver4 5 N(0,0.5) 15 

RNN Test2Ver5 5 N(0,0.5) 30 

RNN Test3Ver1 5 N(0,1) 1 

RNN Test3Ver2 5 N(0,1) 5 

RNN Test3Ver3 5 N(0,1) 10 

RNN Test3Ver4 5 N(0,1) 15 

RNN Test3Ver5 5 N(0,1) 30 

RNN Test4Ver1 5 N(0,2) 1 

RNN Test4Ver2 5 N(0,2) 5 

RNN Test4Ver3 5 N(0,2) 10 

RNN Test4Ver4 5 N(0,2) 15 

RNN Test4Ver5 5 N(0,2) 30 

Table 7 RNN Setting 
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Chapter 4 Result 

4.1 Linear Regression result 

    As mentioned in Chapter 3, linear regression was tested with two versions’ features. 

Section 4.1.1 describes the result of linear regression with 2 features (PTTp and HR). 

Section 4.1.2 describes the result of linear regression with 5 features (PTTp, PTTf, HR, …). 

4.1.1 Linear Regression with PTT and HR 

In early stage of study, we only applied two features to the linear regression, i.e. heart 

rate and PTTp. The reason is that in main popular existing PTT-based algorithms, these 

two features often appear as parameters in the formulas. 

12 patients’ data were tested by this method. We did not test this algorithm on all 59 

patients’ data and stopped the algorithm earlier because the disadvantage of this algorithm 

with this feature engineering was obvious and all results that we had in these 12 patients 

were not accurate.  

    For the data of 12 patients, they were divided into several groups with each group having 

2000 data sets. Each data set consisted of input features HR and PTT as mentioned earlier. 

Out of this 2000 data sets, 1500 were used for the training while 500 were used for the 

evaluation.  

    As mentioned in Section 3.1, the learning rate was set as 10-6 and the ridge regression 

coefficient 𝜆 was set as 0.01. This setting ensured the convergence of the training cost. 

Although the iteration times was set as 20000 for each data set, all training cost converged 

within 5000 iterations. 
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 Some example cost function graphs are presented in Figure 22 and Figure 23: 

 

Figure 22 Cost function result from Patient 3501007 Training dataset 1 
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Figure 23 Cost function from Patient 3505049 Training dataset 5 

    In Figure 22 and Figure 23, the cost converges within 1000 iterations. This implies that 

the algorithm found the local minima for the corresponding training set. As the 

convergence was ensured, we applied the model into testing dataset. Parts of the testing 

results are shown in Figure 24 and Figure 25. 
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Figure 24 Test Result for Patient 3501007 for Dataset 1 (with PTT and HR) 

 

Figure 25 Test Result for Patient 3501007 Dataset 6 (with PTT and HR) 
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    In Figure 24 and 25, the red points are the actual blood pressure, the blue points are the 

estimated blood pressure. The x-axis is PTTp, the y-axis is HR and the z-axis is blood 

pressure. From Figure 25, we observed that the blue points are almost in a flat surface. This 

means the estimated blood pressure did not vary with PTTp and HR. This phenomenon is 

called biased.  

    In Figure 24, for PTTp range in [0.6,0.8] and HR within [60,80], the blue points’ blood 

pressure values were from 120 to 140 while the red points’ blood pressure values were 

from 80 to 140.  If the estimation has high accuracy, the blue points should overlap red 

points. However, this did not appear in the testing result.  

    Similar results were also observed in the remaining testing data. This drove us to check 

the training part in order to judge whether it was a situation of overfitting or underfitting. 

For overfitting, the estimation result should perfectly fit the expected result in training set 

data. For underfitting, the estimation result would have large difference from the expected 

result in training set data.  
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Figure 26 Training Dataset 181 in Patient 3501369 

 

Figure 27 Training Dataset 34 in Patient 3503865 
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Parts of the estimation results in the training dataset are shown in Figure 26 and Figure 

27. The blue points are the estimated blood pressure and the red points are the actual blood 

pressure. The x-axis is PTTp, the y-axis is HR and the z-axis is blood pressure. 

    From Figure 26 and Figure 27, we didn’t observe the situation that blue points perfectly 

fit the red points. The similar situations existed in the other training dataset. From this, we 

deduced that there exists underfitting problem in linear regression with PTTp and HR, as 

the algorithm had poor performance in the training set estimation. 

    The underfitting problem may be caused by various reasons. Here one reasonable 

guessing is that the PTTp and HR are not sufficient to build the blood pressure model. In 

the training dataset, the patient may have different blood pressure with same PTTp and HR. 

As shown in Figure 26 and Figure 27, same x-axis and y-axis value may have multiple z-

values, like (0.6,85) in Figure 26. These training data confused the algorithm as linear 

regression is designed as a function of inputs. The same input values (PTTp=0.6, HR=85) 

cannot have multiple output values in large range (BP from 120 to 145). In this situation, 

linear regression will choose the average value in blood pressure as an ideal estimation and 

this will cause biasing problem in the evaluation of testing data. 

    One possible solution is to increase the dimension of inputs in order to solve the 

underfitting problem. That’s the reason we started to look at linear regression with 5 input 

features. 
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4.1.2 Linear Regression with 5 features 

    As mentioned in Section 4.1.1, linear regression with PTTp and HR revealed that with 

only two input features, the algorithm exhibited underfitting problem. Therefore, we 

developed linear regression with 5 input features and evaluated the algorithm on 59 patients’ 

data.  

Each patient database consisted of 1000 data sets. Each data set consisted of 5 features 

as mentioned earlier. Out of this 1000 data sets, the first 700 data sets were used for the 

training while the remaining 300 data sets were used for the evaluation. We did not choose 

the datasets randomly because for recurrent neural network, the prediction is based on time-

sequence. In order to compare the performance of linear regression with 5 features, feed-

forward neural network and recurrent neural network, we selected same data sets for 

training and evaluation parts. In RNN, to estimate the blood pressure at time current T, it 

requires the estimation at time current T-1 as input, as mentioned in Chapter 3 Part 3. For 

this reason, the datasets chosen for RNN must be in time sequence. In addition, in Chapter 

1, some research explained that the blood pressure at time current T may be influenced by 

the factors at time current T-1. To maintain the consistency of the chosen datasets, the data 

sets chosen for linear regression with 5 features were also in time sequence. 

One of the important index to evaluate the performance of algorithms is error percentage. 

The commonly used error percentage formula is: 

𝐸𝑟𝑟𝑜𝑟𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
1

𝑛
∑

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟

𝑎𝑐𝑡𝑢𝑎𝑙 𝑏𝑙𝑜𝑜𝑑𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)
×100%  (4.1) 
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However, for Patient 3514383 data in testing part, the patient’s blood pressure suddenly 

dropped from 144 mmHg to 0.196 mmHg, which was almost zero, and lasted for 10 heart 

cycles. During this time, the estimation result remained at 144mmHg. This largely 

impacted the error percentage calculation with commonly used formula, as the error 

percentage would be 2700%. However, MIMIC II Online databases do not offer any 

explanation for these abnormal situations. Hence, we cannot simply eliminate the blood 

pressure records of low blood pressure like 0.196 mmHg. We revised the formula on error 

percentage to minimize the impact of such abnormality:  

𝐸𝑟𝑟𝑜𝑟𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑎𝑣𝑒(𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟)

𝑎𝑣𝑒(𝑎𝑐𝑡𝑢𝑎𝑙 𝑏𝑙𝑜𝑜𝑑𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)
×100%  (4.2) 

We calculated the error percentage for every patient and took the average of these as the 

performance index of the algorithms. Similar estimation was performed for feed-forward 

neural network and recurrent neural network. 

 

In Table 8, the data in first row is abnormal. After checking this abnormal data, we found 

that for patient 3519374, one estimated blood pressure was 5*109. We believed that this 

data point could be erroneous and should be excluded. From this data point, it was observed 

that linear regression would be affected by some extreme value in data sets. 

Average 

Mean 

Error 

Average 

Max 

Error 

Average 

Error 

percentag

e 

Average 

Min 

Error 

Average 

<10 

Average 

[10,20) 

Average 

[20,30) 

Average 

 >30 

1806853 

4.34E+0

8 12977.12 

2.11150

6 

188.061

2 

67.9795

9 

26.1224

5 

17.8367

3 

11.3305

7 

35.6946

7 9.1252% 

2.13864

1 

190.208

3 

68.2291

7 

23.4166

7 

18.1458

3 

Table 8 Error Percentage of Linear Regression(5 features) 
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Therefore, we excluded patient 3519374 estimation result (which we believed to be 

erroneous), to see the average performance of linear regression with 5 input features. This 

is shown in the Second row of Table 8. 

The average error percentage was 9.12% and the average mean error was 11.33. We 

checked the linear regression estimation and found that linear regression is a strongly 

biased algorithm. 

 

Figure 28 Linear Regression Prediction (5 features) of Patient 3501007 
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Figure 29 Linear Regression Prediction (5 Features) of Patient 3503406 

In Figure 28 and Figure 29, the blue line is the prediction and the orange line is the actual 

blood pressure. The X-axis is the label of prediction and the Y-axis is the blood pressure 

value. Data were in time-sequence. The blue line was almost a straight line, because the 

model was biased. This involved biased-variance tradeoff. If one model is biased, it is 

likely to cause underfitting and the prediction is biased. If one model has large variance, it 

is likely to cause overfitting and the prediction varies but not accurate. We found that linear 

regression is still underfitting even with 5 input features. This happened in most patients’ 

estimation. 

Besides this problem, the training of linear regression with 5 features did not converge 

for some patients. Using learning rate (10-17) and ridge regression coefficient (0.01) for all 
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patients, only 49 patients’ cost functions converged out of a total of 50 patients. There are 

two possible solutions to solve this problem: 

1. Change the setting of learning rate and ridge regression coefficient for different 

patients.  

2. Change the method of normalization. Now in normalization process, we directly 

took raw features input to normalize. As described in Chapter 2, the formula is: 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋𝑎𝑐𝑡𝑢𝑎𝑙−𝑋𝑎𝑣𝑒

𝜎
  (4.3) 

and X is the input features (HR, PTTp, PTTf, and etc.). 

    In this linear regression formula (Equation 3.3), the input features were 

transferred into the following format in linear regression: X, X2, 
1

𝑋
 , 

1

𝑋2, eX .  

    Therefore, instead of directly applying normalization on input features, we 

applied normalization on the transferred input features in linear regression: 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑋𝑎𝑣𝑒

𝜎
 

    where X is HR, HR2, 
1

𝐻𝑅
 , 

1

𝐻𝑅2 ,eHR , PTTp, PTTp2… 

    This method can eliminate the convergence issue. 

4.2 Feed-forward Neural Network Result 

   As mentioned in Chapter 3, the main factors that affect neural network’s performance are 

the number of hidden layers, the number of hidden neurons in each hidden layers, the initial 

weights. In this study, we tested the impact caused by the number of hidden neurons in 

each hidden layer and the initial weights. 
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 In total, we investigated neural networks with 20 different initial settings. Table 9 and 

Figure 30 show the settings of neural network and the error percentage of each setting.  

From Table 9 and Figure 30, the best structure for feed forward neural network setting 

was the following: Neural Network Test2Ver3 with 5 hidden layers, 10 hidden neurons in 

each layer, initial weights set as N(0,0.5). The error percentage is 8.24%. 

 

Name Hidden neurons in each layer Initial weights Error percentage 

Neural Network Test1 Ver1 1 N(0,0.1) 9.24% 

Neural Network Test1 Ver2 5 N(0,0.1) 9.24% 

Neural Network Test1 Ver3 10 N(0,0.1) 9.24% 

Neural Network Test1 Ver4 15 N(0,0.1) 9.22% 

Neural Network Test1 Ver5 30 N(0,0.1) 8.60% 

Neural Network Test2 Ver1 1 N(0,0.5) 9.23% 

Neural Network Test2 Ver2 5 N(0,0.5) 8.36% 

Neural Network Test2 Ver3 10 N(0,0.5) 8.24% 

Neural Network Test2 Ver4 15 N(0,0.5) 8.49% 

Neural Network Test2 Ver5 30 N(0,0.5) 8.82% 

Neural Network Test3 Ver1 1 N(0,1) 9.24% 

Neural Network Test3 Ver2 5 N(0,1) 8.41% 

Neural Network Test3 Ver3 10 N(0,1) 8.41% 

Neural Network Test3 Ver4 15 N(0,1) 9.11% 

Neural Network Test3 Ver5 30 N(0,1) 11.24% 

Neural Network Test4 Ver1 1 N(0,2) 9.23% 

Neural Network Test4 Ver2 5 N(0,2) 8.89% 

Neural Network Test4 Ver3 10 N(0,2) 9.80% 

Neural Network Test4 Ver4 15 N(0,2) 10.08% 

Neural Network Test4 Ver5 30 N(0,2) 11.67% 

Table 9  Neural Network Result 



65 
 

 

Figure 30 Neural Network Error Percentage 

As shown in Table 10, we assessed the neural network performances from different 

aspects, including mean error, max error, min error, error percentage, the average number 

of estimation whose error is less than 10 for each patient, the average number of estimation 

whose error is between 10 and 20 for each patient, the average number of estimation whose 

error is between 20 and 30 for each patient, and the average number of estimation whose 

error is larger than 30 for each patient. Among all the index factor for performances, we 

considered the error percentage as the key performance index.  
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Structure 

Mean 

Error 

Max 

Error Error percentage 

Min 

Error 

Absolute error 

<10 

Absolute error 

[10,20) 

Absolute error 

[20,30) 

Absolute 

error >30 

Neural Network 

Test1 Ver1 11.35 37.84 9.24% 1.86 190.2033898 66.74576271 22.81355932 20.23728814 

Neural Network 
Test1 Ver2 11.35 37.84 9.24% 1.86 190.2033898 66.74576271 22.81355932 20.23728814 

Neural Network 

Test1 Ver3 11.35 37.84 9.24% 1.86 190.220339 66.72881356 22.81355932 20.23728814 

Neural Network 
Test1 Ver4 11.33 37.84 9.22% 1.86 190.2711864 66.74576271 22.74576271 20.23728814 

Neural Network 

Test1 Ver5 10.65 38.09 8.60% 1.74 196.7966102 65.49152542 18.93220339 18.77966102 

Neural Network 
Test2 Ver1 11.34 37.84 9.23% 1.86 190.220339 66.72881356 22.81355932 20.23728814 

Neural Network 

Test2 Ver2 10.38 38.75 8.36% 1.55 200.7966102 62.3559322 18.20338983 18.6440678 

Neural Network 
Test2 Ver3 10.21 40.44 8.24% 0.80 201.4067797 61.94915254 16.55932203 20.08474576 

Neural Network 

Test2 Ver4 10.46 43.42 8.49% 0.68 199.1186441 61.25423729 18.42372881 21.20338983 

Neural Network 
Test2 Ver5 10.91 52.74 8.82% 0.07 194.5762712 64.6779661 20.49152542 20.25423729 

Neural Network 

Test3 Ver1 11.35 37.85 9.24% 1.87 190.1186441 66.77966102 22.79661017 20.25423729 

Neural Network 
Test3 Ver2 10.46 41.26 8.41% 1.27 196.0338983 66.61016949 19.01694915 18.33898305 

Neural Network 

Test3 Ver3 10.49 51.45 8.41% 0.24 197.4745763 66.42372881 18.18644068 17.91525424 

Neural Network 
Test3 Ver4 11.37 62.23 9.11% 0.20 190.1864407 66.79661017 21.49152542 21.52542373 

Neural Network 

Test3 Ver5 13.84 79.01 11.24% 0.08 177.1864407 64.28813559 25.89830508 32.62711864 

Neural Network 
Test4 Ver1 11.34 37.83 9.23% 1.86 190.4576271 66.57627119 22.72881356 20.23728814 

Neural Network 

Test4 Ver2 11.00 52.93 8.89% 1.09 196.3220339 65.06779661 16.03389831 22.57627119 

Neural Network 
Test4 Ver3 11.97 82.27 9.80% 0.39 191.8474576 63.20338983 22.45762712 22.49152542 

Neural Network 

Test4 Ver4 12.48 74.04 10.08% 0.44 170.9152542 65.91525424 27.27118644 35.89830508 

Neural Network 
Test4 Ver5 14.32 91.63 11.67% 1.34 184.9661017 64.03389831 23 28 

Table 10  Neural Network Result with details 

The initial weight plays a key role in impacting the neural network’s performance. It is 

observed that the neural networks with initial weight N (0,0.5) has better performance than 

other neural networks with different initial weight but same hidden neuron number for each 

hidden layer. 80% neural networks with initial weight (0,0.5) have less than 9% error 

percentage while other initial weights settings have relatively bad performance. 

From Table 10, the Neural Network Test2 Ver3, in which the number of hidden neurons 

in each layer was 10, whose initial weight was N(0,0.5), had the best performance in mean 
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error, error percentage, and the number of predictions whose absolute error was smaller 

than 10. We focused on this setting of neural network and compared its performance with 

the best RNN setting in Section 4.3. 

For feed-forward neural network, convergence is guaranteed with proper setting of 

learning rate. During the experiment, we set iteration times as 1000 for every neural 

network’s back propagation process in order to guarantee the convergence. 

 

Figure 31 Cost function for Patient 3518665, Neural Network Test2 Ver3 

    In Figure 31, the cost of neural network converged within 100 iterations. We could stop 

the back-propagation process for neural network earlier in order to save the training time. 
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The complexity of calculation for training increases with increasing number of hidden 

layers and the number of hidden neurons in each layer. Compared with linear regression, 

the training process of neural network was very time-consuming. This was especially 

apparent when the number of hidden neurons in each layer was greater than 10. For neural 

network with 10 hidden neurons in each layer, it took more than 10 minutes to train the 

model for one patient with 1000 iterations (Test platform: I7 6700K, 32GM RAM). 

 

 

Figure 32 Prediction Result for Patient 3508696, Neural Network Test2 Ver3 
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Figure 33 Prediction Result for Patient 3523295, Neural Network Test2 Ver3 

 

Figure 34 Prediction Result for Patient 3524396, Neural Network Test2Ver3 

    In Figure 32, Figure33 and Figure 34, the orange line is the actual blood pressure and 

the blue line is the estimated blood pressure. 
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    From Figure 32, we observed that Neural Network Test2 Ver2 was trying to track the 

blood pressure and in most time, it has good performance. When the blood pressure was 

stable for long period, the NN had very good performance (Figure 33, Figure 34). 

    However, if the patient blood pressure fluctuated during a short interval with large 

variance, the neural network may not be able to track the blood pressure. One extreme case 

was patient 3521303. For this patient, all neural network had bad performance as the error 

percentage is higher than 40%. 

    We checked the actual blood pressure in training dataset for patient 3521303, shown in 

Figure 33: 

 

Figure 35 Training dataset (Actual blood pressure) for patient 3521303 

Patient 3521303 was a very special case among 59 patients. As shown in Figure 35, the 
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data sets’ blood pressure were less than 40. After 500 data sets, the blood pressure suddenly 

increased to 140. 

Although in machine learning, the training data sets should be randomly selected, in this 

thesis we selected the training data sets in time sequence. As explained in Section 4.1.2, 

RNN requires the training data sets in time sequence. To maintain the consistency of 

training data, for neural network, the training data sets were chosen as same as the one used 

in RNN. Therefore, the training data sets and the evaluation data sets were in time sequence. 

Because MIMIC II online databases do not provide any explanation of this sudden blood 

pressure increase, we cannot adjust our models accordingly. The prediction of patient 

3521303 was a disaster (NN Test2 Ver3), as shown in Figure 36. 

 

Figure 36 Prediction Result for Patient 3521303, Neural Network Test2 Ver3 

In Figure 36, the blue line is the prediction and the orange line is the actual blood pressure. 
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from actual blood pressure level (from 120 to 140). This was mainly caused by the training 

data of patient 3521303, where the level of actual blood pressure was very low. Second, 

we observed that the variance of predicted blood pressure was very large. We believed that 

because the patient situation changed from training data to testing data, the trained model 

was out-of-date. In this case, the selection of training dataset was not suitable and the model 

should be retrained on other training dataset. 

The possible reasons for the change of patient’s situation are various. We believed that 

some medicine will influence the elasticity of blood vessel, which could indirectly 

influence the effectiveness of PTT-based blood pressure measurement.  

 

Figure 37 Prediction Result for Patient 3511265, Neural Network Test2 Ver3 

    From Figure 37, it was observed that Neural Network Test2 Ver3 can track the actual 

blood pressure when the actual blood pressure varies. Although error still existed, 
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compared with Patient 3521303, the testing result of Patient 3511265 showed that the 

Neural Network can track the patient blood pressure with gradual variation. 

    Overall, for feed-forward neural network, the Neural Network Test 2 Version 3, with 5 

hidden layers, 10 neurons for each hidden layer and the initial weight is N(0,0.5) had the 

best performance. It had superior performance when blood pressure did not have large 

fluctuations. But when blood pressure in training datasets was fluctuated, the prediction 

had deficient performance.  

4.3 Recurrent Neural Network Result 

Recurrent Neural network has better performance compared to linear regression and 

feed-forward neural network. For RNN, its best error percentage is lower than linear 

regression and any feed-forward neural network. However, due to loop behavior, the 

training of RNN does not always lead to cost function convergence.     

As shown in Figure 38, the cost for RNN Test4 Ver2 on Patient 3523295 was not stable 

after 400 training iterations. In general, RNN has bad performance when the initial weights’ 

variance is too high. i.e. N(0,1), N(0,2). 
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Figure 38 Cost for Patient 3523295 RNN Test4 Ver2 

The error percentage of RNN is shown in Table 11 and the more detailed report is 

shown in Table 12 

    From Table 11 and Figure 39, there were two settings of RNN whose error percentage 

is lower than 8%. The best setting of RNN was RNN Test2Ver3, whose number of neurons 

in each hidden layer was 10, the initial weight was N(0,0.5). This setting was identical to 

the best Neural Network’s setting.  
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Name 

Hidden 

neurons in 

each layer 

Initial 

weights 

Error 

percentage 

RNN Test1Ver1 1 N(0,0.1) 9.24% 

RNN Test1Ver2 5 N(0,0.1) 9.23% 

RNN Test1Ver3 10 N(0,0.1) 9.24% 

RNN Test1Ver4 15 N(0,0.1) 9.23% 

RNN Test1Ver5 30 N(0,0.1) 8.43% 

RNN Test2Ver1 1 N(0,0.5) 9.24% 

RNN Test2Ver2 5 N(0,0.5) 8.52% 

RNN Test2Ver3 10 N(0,0.5) 7.62% 

RNN Test2Ver4 15 N(0,0.5) 8.73% 

RNN Test2Ver5 30 N(0,0.5) 9.46% 

RNN Test3Ver1 1 N(0,1) 8.68% 

RNN Test3Ver2 5 N(0,1) 7.99% 

RNN Test3Ver3 10 N(0,1) 9.04% 

RNN Test3Ver4 15 N(0,1) 11.24% 

RNN Test3Ver5 30 N(0,1) 11.16% 

RNN Test4Ver1 1 N(0,2) 8.96% 

RNN Test4Ver2 5 N(0,2) 9.08% 

RNN Test4Ver3 10 N(0,2) 9.99% 

RNN Test4Ver4 15 N(0,2) 10.07% 

RNN Test4Ver5 30 N(0,2) 10.01% 

Table 11  Recurrent Neural Network Result 

 

 

Figure 39  Recurrent Neural Network Error Percentage 
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Structure  Mean Error 

Max 

Error 

Error 

percentage 

Min 

Error 

Absolute 

error <10 

Absolute 

error 

[10,20) 

Absolute 

error 

[20,30) 

Absolute 

error >30 

RNN Test1Ver1 11.3467155 37.8427 9.24% 1.8625 190.203 66.746 22.81 20.24 

RNN Test1Ver2 11.346447 37.837 9.23% 1.8614 190.22 66.712 22.83 20.24 

RNN Test1Ver3 11.3471515 37.8386 9.24% 1.862 190.22 66.729 22.81 20.24 

RNN Test1Ver4 11.3450814 37.8415 9.23% 1.8614 190.22 66.729 22.81 20.24 

RNN Test1Ver5 10.4891464 38.0361 8.43% 1.6962 197.085 66.288 20.27 16.36 

RNN Test2Ver1 11.3505788 37.9888 9.24% 1.8491 190.356 66.203 23.46 19.98 

RNN Test2Ver2 10.5379676 39.4614 8.52% 1.0246 200.661 60.576 16.25 22.51 

RNN Test2Ver3 9.44498248 39.8426 7.62% 0.2518 201.966 63.203 18.9 15.93 

RNN Test2Ver4 10.7326147 43.9266 8.73% 0.371 192.746 66 21.8 19.46 

RNN Test2Ver5 11.7364206 56.4004 9.46% 0.0543 191.559 61.966 22.27 24.2 

RNN Test3Ver1 10.6089297 38.2658 8.68% 1.5174 193.169 67.407 23.29 16.14 

RNN Test3Ver2 9.83103211 43.4932 7.99% 0.3734 201.492 60.746 23.08 14.68 

RNN Test3Ver3 11.7997624 54.4199 9.04% 0.2181 196.627 55.424 20.88 27.07 

RNN Test3Ver4 13.6580838 71.6664 11.24% 0.0655 183.356 65.288 22.93 28.42 

RNN Test3Ver5 13.9183669 76.7245 11.16% 0.0684 171.525 66.61 28.39 33.47 

RNN Test4Ver1 11.1399376 38.2213 8.96% 0.7007 186.61 66.763 25.02 21.61 

RNN Test4Ver2 11.2311742 58.3684 9.08% 0.4643 189.542 65.746 23.36 21.36 

RNN Test4Ver3 12.3263917 78.6826 9.99% 0.4778 181.78 68.847 25.42 23.95 

RNN Test4Ver4 12.4691408 72.4429 10.07% 0.2087 184.661 65.288 24.12 25.93 

RNN Test4Ver5 12.4321227 78.9882 10.01% 0.8912 179.542 68.458 26.37 25.63 

Table 12 Recurrent Neural Network Result with details 

    From Table 12, we observed that RNN Test 2Ver3 had the lowest error percentage, the 

best number of predictions whose error was within 10. Therefore, among all RNN setting, 

we selected RNN Test2Ver3 and looked through its performance on tracking patient’s 

blood pressure. 
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Figure 40 Prediction Result for Patient 3508696, RNN Test2 Ver3 

From Figure 40, we observed that RNN was trying to track the blood pressure. In some 

patients, RNN’s advantage was obvious. For example, for patient 3508317, RNN 

Test2Ver3 had the best tracking capability, compared to both linear regression and neural 

network Test2Ver3, as shown in Figure 41: 
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Figure 41 Prediction Result for Patient 3508317 

    In Figure 41, the blue line is the prediction of feed-forward neural network (Test2Ver3). 

The orange line is the prediction of RNN (Test2Ver3). The gray line is the prediction of 

linear regression (5 features) and the yellow line is the actual blood pressure. RNN almost 

tracked the change of actual blood pressure from 120 to 145 then declined, while neither 

neural network nor linear regression provided good estimation. 

    Also for the extreme cases, for example patient 3521303, its performance was better than 

feed-forward neural network, as shown in Figure 42: 
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Figure 42 Prediction Result Patient 3521303 

The training dataset was same for feed-forward neural network (Test2Ver3), RNN 

(Test2Ver3) and linear regression (5 features) in Patient 3521303. In Figure 42, the blue 

line is the prediction of feed-forward neural network (Test2Ver3). The orange line is the 

prediction of RNN (Test2Ver3). The gray line is the prediction of linear regression (5 

features) and the yellow line is the actual blood pressure. From Figure 42 we observed that 

although RNN was also impacted from the abnormal training data, its performance was 

much better than feed-forward neural network and linear regression.  
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Chapter 5 Conclusion 

5.1 Significant contributions 

In this thesis, various machine learning algorithms have been tested, including linear 

regression, feed-forward neural network, and recurrent neural network. The different 

feature extraction strategies have been applied and the 40 types different initial settings for 

neural network and recurrent neural network have been tested. 

The real patient databases with accurate ECG, PPG and blood pressure waveform have 

been utilized to test the accuracy of the models proposed. This ensured the reality and 

accuracy of the result. The error percentage of the model with the best-performance is as 

low as 7%.  

Author Selected Model Error percentage Objects 

Simi Susan Thomas Linear Regression 7.2% Healthy people 

Enric Monte-

Moreno 

Neural Network 7% Healthy People 

Mohamad Kachuee Neural Network 9% (with estimation of 

average blood pressure 140)  

Patient 

This research Linear Regression 9.12% Patient 

This research Neural network 8% Patient 

This research Recurrent neural 

network 

7% Patient 

Table 13 Result Comparison with Existing Research 
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From Table 13, it is observed that the best model proposed in this research achieved 

superior performance when it was applied on patients. The defined RNN structure with 

proper setting (5 hidden layers, 10 neurons in each hidden layer, initial weight N(0,0.5)) is 

possible to meet the different and complicated patients’ situations and has ability to give 

continuous blood pressure estimation.  

The application of RNN in blood pressure estimation is promising as the hidden inner 

connections of time-sequential data are considered during the estimation procedure. Due 

to the complexity of RNN, we have proposed one RNN model in this research and it has 

better performance compared to standard feed-forward neural network models. 

 The disadvantage of RNN is time-cost and computational cost during the training 

process. It takes about 10 mins to train the model with CPU I7 6700K, 16 GB Memory 

platform. Moreover, it is not a general model and the training procedure should be 

performed for each patient.   

5.2 Suggestions to related works 

The proper initial setting for RNN is required to achieve good blood pressure estimation. 

In this research, 5 hidden layers with 10 neurons in each hidden layer and initial weight 

N(0,0.5) was considered as the proper setting in general case. The number of hidden layers 

and the number of hidden neurons in each hidden layer is adjustable according to the real 

situation, includes but not limited to the factors of patients’ disease type, age, etc. The cost 

can be monitored and the number of iteration can be reduced to save time cost of training 
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procedure. LSTM (Long-short term memory) RNN is a direction to improve the accuracy 

of the model, and irregular RNN can be tested as future work. 
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Appendix 

Error Percentage Summary 

 

Figure 43 Error Percentage Summary 
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