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Abstract

Many measurement schemes of quantum systems involve coupling of the

system to an electromagnetic field, which is then measured continuously.

This includes qubit systems, such as nitrogen-vacancy centers and quan-

tum dots, as well as mechanical systems, such as trapped ions and cavity

optomechanics. In this thesis, we study the problem of detection and es-

timation for quantum systems that are measured continuously. A signal

processing architecture for qubit readout is proposed to determine the ini-

tial state of a qubit. We consider both Gaussian and Poissonian noise

models and derive analytical solutions to our protocol, which should be

useful for fast feedback control and error correction purposes. We also

propose a framework of spectrum-parameter estimation for stochastic pro-

cesses using quantum dynamical systems, proving fundamental limits and

investigating measurement and data analysis techniques that approach the

limits. Lastly, we discuss our attempt at generalizing the framework of

spectrum-parameter estimation to include quantum stochastic processes.
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Chapter 1

Introduction

The study of measurements in quantum mechanics is a fascinating subject.

For example, the Copenhagen interpretation postulates a partition between

the observer and the system being observed. The observer is not described

by wave mechanics, rather his job is to ‘collapse’ the state of the system

into one of the eigenstates of a Hermitian observable that is measured. As

an apparatus is commonly used to measure a system, we can also consider

the apparatus as part of the quantum system. The wavefunction collapse

can happen in the larger Hilbert space consisting of both the apparatus and

the original system. This leads to the so-called ‘measurement problem’ [1],

where research in this direction has a few interesting implications [2, 3].

Ultimately, the purpose of measuring a system is to obtain information

about the system. The problems we study in this thesis are detection and

estimation. Detection theory is the study of hypothesis testing, where the

objective is to decide the best hypothesis among several possibilities. One

classic scenario of the detection problem is the detection of targets using

sonar, where there are only two choices: whether a specified target exists,

or not. In estimation theory, it is often more common to study continuous

parameters such as temperature. As we will see in the next chapter, we can

view the processes of choosing a hypothesis and estimating a parameter as

1



CHAPTER 1. INTRODUCTION

data processing protocols aimed at extracting useful information.

Decision and estimation strategies are often designed to perform with

respect to a measure of quality, which is chosen according to the context.

For example, we can focus on minimizing the probability of making a wrong

decision for detection problems; for parameter estimation problems, we can

use the variance of estimation error as a measure of accuracy. Owing to

measurement errors or intrinsic probabilistic behaviors such as the quantum

uncertainty, the process of measuring a system does not always give a

deterministic outcome. Therefore, it is often impossible to devise a strategy

where there would be no error, as it would imply a perfect measurement

process.

Thus, given a noisy measurement outcome, there should be a limit to

the performance of decision and estimation strategies. It is then interesting

to study this limit, and ways of achieving it, both as a benchmark to eval-

uate the performance of a certain data processing strategy, and to discover

fundamental limitations for a problem. In order to study this problem, we

will need the formalism of probability theory.

1.1 Probability theory

A probability space is given by the triplet {Ω,F, P}. Ω is the sample space

containing all the possible outcomes each labeled by ω, and the σ-field F

contains subsets of Ω which satisfy the following conditions:

• Ω ∈ F;

• F is closed under complementation;

• F is closed under countable union.

The elements of F are to be interpreted as events, and probabilities are

assigned to these events by a probability measure P . Defined on F, P

2



1.2. THE QUANTUM REGIME AND CONTINUOUS MEASUREMENT

satisfies the usual properties of probability:

• P (Ω) = 1;

• 0 ≤ P (A) ≤ 1 for A ∈ F ;

• P (
⋃
An) =

∑
n P (An) if An ∩ Am = ∅, m 6= n.

A random variable is a function Z : Ω→ Ω′ which is measurable:

Z−1(A′) = {ω : Z(ω) ∈ A′} ∈ F, ∀A′ ∈ F′. (1.1)

We call z = Z(ω) the realization of the random variable Z, and the state

space Ω′ is the collection of all z. Roughly speaking, the measurable func-

tion Z preserves the structures of the σ-field F, such that probabilities

can be assigned to the σ-field F′ on the state space through the relation

PZ(A′) = P (Z−1(A′)). Therefore, we often ignore the underlying probabil-

ity space (Ω,F, P ) and study the probability space (Ω′,F′, PZ) instead. For

more information on probability theory, the readers are referred to [4, 5].

1.2 The quantum regime and continuous mea-

surement

To generalize probability theory to the quantum regime, we have to re-

formulate the theory in terms of the density matrix ρ̂ and the positive

operator-valued measure (POVM) Ê, both of which are operators on a

Hilbert space. Similar to the previous section, let us assume that the ex-

perimental outcomes are labeled as z ∈ Ω′, and F′ is a σ-field on the state

space Ω′. The POVM Ê satisfies the following conditions [6–8]

3



CHAPTER 1. INTRODUCTION

• Ê(Ω′) = Î;

• Ê(A) ≥ 0, for A ∈ F′;

• Ê (
⋃
An) =

∑
n Ê(An), if An ∩ Am = ∅, m 6= n.

POVM represents the effect of a particular measurement process, where

the probability measure of the measurement process is given by the trace

formula PÊ(A) = tr(Ê(A)ρ̂). For discrete countable state space, we have

Ê(zi) ≡ Êi and
∑

i Êi = Î [9, 10].

There are a few reasons to study detection and estimation theory in

the quantum regime. First, while measurements in classical physics are de-

scribed by probability measures, we need both the density matrix and the

POVM to describe the statistics of a quantum measurement process. Thus,

it is possible to extract more information by performing a different mea-

surement on the quantum system, a freedom that is not present in classical

systems. An example would be the recently discovered limit of resolution of

incoherent point sources [11–13], which overturned long-held belief that the

ability to resolve two point sources is constrained by Rayleigh’s criterion.

Second, there are phenomena in quantum mechanics that are not ex-

plainable by classical physics [14]. One of the most well-known examples

is entanglement [15], which is present in highly nonclassical states. These

states provide nonclassical correlations and are known to be useful for tasks

such as quantum cryptography and quantum teleportation. In terms of

metrology, researchers have proposed to utilize these correlations as a re-

source to improve the accuracy of phase estimation and the resolution of

imaging [16–18].

On a more pragmatic note, quantum mechanics is needed to take quan-

tum noise into account. In particular, the interaction of light and matter

has received considerable attention as means of measuring and controlling

quantum systems [19–22]. For example, in cavity quantum electrodynamics

4



1.3. THESIS OUTLINE

or cavity optomechanics, the electromagnetic field inside the cavity inter-

acts with the system, either in the form of electromagnetic interaction or

through radiation pressure acting on the system. Information about the

system can then be obtained by measuring the electromagnetic field. In a

lot of these experiments, the electromagnetic field is measured continuously.

Continuous measurements allow the monitoring of time-dependent quanti-

ties of a system, such as the position of a mechanical oscillator [23, 24] and

the force acting on it [25, 26]. Continuous measurements of a qubit are also

often performed to infer the state of the qubit, which is the fundamental

building blocks of quantum computers [9]. For example, the readout of a

cavity quantum electrodynamics system [27] and the resonance fluorescence

photon counting of qubits [28, 29] both involve continuous measurement of

a qubit.

Fundamentally, all measurement processes take time to complete. It is

then natural to consider continuous measurements and study the extrac-

tion of information by this type of measurements. For example, continuous

measurements of a signal are useful for inferring the spectral density of the

signal and studying the evolution of feedback-controlled systems [30, 31].

Motivated by these developments, in this thesis, we explore the problem of

detection and estimation for quantum systems that are measured continu-

ously.

1.3 Thesis outline

To end this chapter, we give an outline of this thesis. We start by reviewing

concepts that are relevant to this thesis in Chap. 2, which include stochastic

calculus, detection, and estimation theory for both classical and quantum

statistics. In particular, we emphasize detection and estimation theory

and highlight similarities as well as differences between the quantum and

5



CHAPTER 1. INTRODUCTION

classical cases.

In Chap. 3, we study the problem of distinguishing the initial state

of a qubit which is subjected to continuous measurements. We propose

an optimal signal processing protocol that can infer the qubit state from

the measurement in the presence of noise and qubit dynamics. Assuming

continuous quantum nondemolition measurements with Gaussian or Pois-

sonian noise and a classical Markov model for the qubit, we derive analytic

solutions to the protocol in some special cases of interest using stochastic

calculus.

In Chap. 4, we prove a measurement-independent quantum limit to the

accuracy of estimating the spectrum parameters of a classical stochastic

process coupled to a quantum dynamical system. We demonstrate our

results by analyzing the data from a continuous optical phase estimation

experiment and showing that the experimental performance with homo-

dyne detection is close to the quantum limit. We further propose a spectral

photon counting method that can attain quantum-optimal performance for

weak modulation and a coherent-state input, with an error scaling superior

to that of homodyne detection at low signal-to-noise ratios.

We generalize the results of Chap. 4 to include the case of quantum

stochastic processes in Chap. 5. Inspired by the techniques used in Chap. 4,

we provide modifications to the variational method for quantum Fisher

information in the case of a quantum stochastic process. We then use

the modified variational method to find quantum limits to the accuracy of

estimating the spectrum parameters of a quantum stochastic process.

Lastly, we give an overall summary of the thesis in the conclusion chap-

ter and discuss some possible future directions and outlooks.

6



Chapter 2

Theoretical background

In this chapter, we give a review of various concepts that are crucial to

the understanding of later chapters. We present stochastic calculus in the

first section as a framework to describe stochastic processes and highlight

differences between ordinary calculus and stochastic calculus. In order

to study diffusive processes and jump processes, we introduce stochastic

differential equation driven by the Wiener process and the Poisson process.

These equations will allow us to describe measurement processes such as

homodyne detection and photon counting. Concepts central to classical

detection and estimation theory such as likelihood ratio tests and Fisher

information, as well as their generalizations to the quantum regime, will

be introduced in the following sections. For a more detailed account of

detection and estimation theory, the readers are referred to [32–35] for

classical statistics and [7, 36] for quantum statistics.

2.1 Stochastic calculus

Let us consider a stochastic differential equation given by

dx(t) = a[x(t), t]dt+ b[x(t), t]dW (t), (2.1)

7



CHAPTER 2. THEORETICAL BACKGROUND

where a[x(t), t] and b[x(t), t] are functions of x and t. W (t) is the Wiener

process, which is a Gaussian process that satisfies the following conditions

E[W (t)] = 0,

E[W (t)2] = t,

E[W (t)−W (s)|W (t′)] = 0, t > s ≥ t′.

(2.2)

Eq. (2.1) should be interpreted as an integral equation given by

x(t)− x(0) =

∫ t

0

a[x(t′), t′]dt′ +

∫ t

0

b[x(t′), t′]dW (t′), (2.3)

where the integration with respect to the Wiener process is called a stochas-

tic integration. There are mainly two ways to define the stochastic inte-

gration, the first one is the Itô integral, where the integral is defined by a

forward pointing Riemann sum1

∫ t

0

b[x(t′), t′]dW (t′) ≡ lim
n→∞

n∑
j=1

b[x(tj−1), tj−1][W (tj)−W (tj−1)], (2.4)

The second one is the Stratonovich integral where we use the mid point

Riemann sum:

∫ t

0

f(t′)dW (t′) ≡ lim
n→∞

n∑
j=1

b[
x(tj) + x(tj−1)

2
, tj−1][W (tj)−W (tj−1)]. (2.5)

The solution x(t) to the stochastic differential equation Eq. (2.1) given in

Eq. (2.3) depends on the definition of the stochastic integration. There-

fore, given the stochastic differential equation Eq. (2.1), one has to spec-

ify whether to interpret the differential equation in the Itô sense or the

Stratonovich sense. This is in contrast to ordinary calculus, where the dif-

ferent Riemann sums converges to the same limit regardless the choice of

1The limit is in the mean square sense, where limn→∞Xn = X means
limn→∞ E

{
(Xn −X)2

}
= 0. See [37].

8



2.1. STOCHASTIC CALCULUS

forward pointing sum or mid point sum. In fact, given Eq. (2.1) in the Itô

sense and let g ≡ g(x, t) be a function of x and t, the differential of g is

given by Itô’s lemma [37, 38]:

dg =

[
∂g

∂t
+
b2

2

∂2g

∂x2

]
dt+

∂g

∂x
dx. (2.6)

Compared to the ordinary differential rule, there is an additional second

partial derivative term. On the other hand, the differential rule for stochas-

tic differential equations in the Stratonovich sense follows the usual calculus

rules. While Itô calculus follows a different differential rule, it is often much

easier to manipulate mathematically due to the fact that b(x, t) and dW (t)

are statistically independent of each other [37]. The choice of the appro-

priate calculus depends on the particular application [39]. In general, one

can argue that the Stratonovich definition is appropriate for systems that

are influenced by external sources of noise. Itô calculus can find applica-

tions in systems driven by intrinsic noise, for example in radioactive decay

where the probability of decay depends on the number of particles before

the decay.

We can understand Itô’s lemma by expanding g(x, t) in a Taylor series.

Denoting the increments as δg, δx, and δt,

δg ≈ ∂g

∂t
δt+

∂g

∂x
δx+

1

2

[
∂2g

∂x2
δx2 +

∂2g

∂t2
δt2 + 2

∂2g

∂x∂t
δtδx

]
, (2.7)

where we ignored terms higher than second order in both δx and δt. Keep-

ing only terms that are first order in δx and δt and compare δg to Eq. (2.6),

we see that δxδt = 0 and (δx)2 = b2δt. Expanding δx = aδt+ bδW , we can

summarize the Itô’s lemma as:

dtdW = 0,

dW 2 = dt,

(2.8)

9



CHAPTER 2. THEORETICAL BACKGROUND

which roughly means that dW is on the order of
√
dt. The significance of

Itô’s lemma is that it allows computation of stochastic integrals without

needing to resort to the basic definition, much like how chain rule and the

fundamental theorem of calculus allow us to compute ordinary integrals

without having to start with Riemann sums.

The stochastic processes we described so far have continuous paths.

However, for particle counting experiments, the particle count as a function

of time is not continuous. The paths of these stochastic processes must

have discontinuities at the time when a particle is registered. A good

description of these processes is given by the Poisson process [40], where

n(t) ∈ {0, 1, 2, ...} is the number of particles counted up until time t. The

probability distribution of a Poisson process is characterized by an intensity

function λ(t):

P (n(t)− n(s)) = exp

[
−
∫ t

s

dτλ(τ)

] [∫ t
s
dτλ(τ)

]n(t)−n(s)

(n(t)− n(s))!
. (2.9)

A stochastic differential equation of the form

dx(t) = a[x(t), t]dt+ b[x(t), t]dn(t) (2.10)

can also be interpreted in the Itô sense. Under a change of variable g =

g(x, t), the differential dg is given by [40]

dg =

(
∂g

∂t
+ a

∂g

∂x

)
dt+ [g(x+ b, t)− g(x, t)]dn. (2.11)

To understand the Itô’s lemma for the Poisson process, let us define the

increment by δn(t) ≡ n(t + δt) − n(t). The probabilities of δn(t) = {0, 1}

are given by

P (δn(t) = 0) = 1− λ(t)δt+O(δt),

P (δn(t) = 1) = λ(t)δt+O(δt),

(2.12)

10



2.2. DETECTION THEORY

while for δn(t) ≥ 2, the probability is at least on the second order of δt.

Therefore for small intervals, there can only be unit jump or no jump at all,

thus [δn(t)]2 = δn(t). Assume that δn(t)δt = 0 and expand g(x+δx, t+δt)

in a Taylor series, one would then obtain Itô’s lemma Eq. (2.11). Hence,

we can also summarize Itô’s lemma for Poisson process as

dtdn = 0,

dn2 = dn.

(2.13)

2.2 Detection Theory

2.2.1 Binary hypothesis testing and likelihood ratio

tests

The study of hypothesis testing is also called detection theory in the lit-

erature, where the simplest scenario is binary hypothesis testing. Suppose

that we are given two hypotheses, H0 and H1. We define P (.|Hm) as the

probability measure conditioned on hypothesis Hm. The task is to decide

on a hypothesis given an experiment outcome. This separates the state

space into two regions, labeled as Zm which corresponds to the hypothe-

sis Hm. We call Zm the decision region for the hypothesis Hm: when an

observation falls in the region Zm, we would decide on Hm.

In the Bayesian setting, we assume that we have prior knowledge about

these hypotheses before the observation is made. This knowledge is cap-

tured by the prior probability distribution P (Hm). When we make a choice

between the hypotheses, there would be four scenarios: choose H0, H0 is

true; choose H0, H1 is true; and so on. Denoting the positive number Cnm

as the cost that corresponds to each scenario, the expected value of the cost

11
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can be used as a figure of merit for the performance of a detection strategy:

R =
∑

n,m=0,1

CnmP (Hm)

∫
Zn
dP (z|Hm), (2.14)

where we call R the risk of a detection strategy. In Bayes tests, we aim to

minimize the risk by changing the decision regions. A simple change of the

domain of integration yields

R =
∑
m=0,1

C1mP (Hm) +
∑
m=1,2

(C0m − C1m)P (Hm)

∫
Z0

dP (z|Hm), (2.15)

where only the second term depends on Z0. By changing the probability

measure, the second term can be rewritten as

∫
Z0

[
(C00 − C10)P (H0) + (C01 − C11)P (H1)

dP (z|H1)

dP (z|H0)

]
dP (z|H0), (2.16)

where Λ(z) = dP (z|H1)
dP (z|H0)

is called the likelihood ratio.

Hence, to minimize R one simply chooses Z0 such that the integrand

in Eq. (2.16) is always negative, which gives us the decision rule in terms

of the likelihood ratio:

Λ(z) < η ≡ P (H0)(C10 − C00)

P (H1)(C01 − C11)
, z ∈ Z0. (2.17)

Note that we have assumed that C10 − C00 and C01 − C11 are positive. In

other words, we assume that the cost of making the wrong decision is always

larger than the cost of making the right decision. The decision rule given

by Eq. (2.17) involves a data processing step to calculate a positive function

Λ(z) and test it against a threshold η. Such tests are called likelihood ratio

tests, and we will see the same decision-making process in a frequentist

framework. Note that the region where Λ(z) = η does not contribute to

the risk, thus can be freely assigned to any of the decision regions.

12



2.2. DETECTION THEORY

Before we continue our discussion on likelihood ratio tests, let us exam-

ine the likelihood ratio in more detail. Usually, instead of working directly

with a probability measure, the probability measure is given in terms of a

reference measure M :

∫
A

dP (z|Hm) =

∫
A

dP (z|Hm)

dM(z)
dM(z). (2.18)

The quantity

p(z|Hm) =
dP (z|Hm)

dM(z)
(2.19)

as a function of Hm is called the likelihood function. In particular, for

continuous random variable, the likelihood function is just the probability

density function conditioned on Hm; for discrete random variable, the like-

lihood function is the probability mass function conditioned on Hm. Using

the chain rule dP (z|H1)
dP (z|H0)

= dP (z|H1)
dM(z)

/dP (z|H0)
dM(z)

, the likelihood ratio can also be

expressed in terms of the ratio of likelihood functions:

Λ(z) =
p(z|H1)

p(z|H0)
, (2.20)

which explains the nomenclature of Λ(z).

For cases where the prior probabilities or the costs are not available, we

may focus on the false alarm probability PF and the miss probability PM

defined by

PF =

∫
Z1

dP (z|H0), (2.21)

PM =

∫
Z0

dP (z|H1). (2.22)

The Neyman-Pearson test seeks to constrain one of these error probabil-

ities and minimize the other. This choice is mainly because PF and PM

both depend on the decision regions and in general, can not be minimized

13
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simultaneously. Suppose that the experimenter decides to constrain the

false alarm probability to be less than a certain threshold α:

PF = α′ ≤ α (2.23)

and minimize the miss probability2. We start with a given α′ ≤ α and

employ the method of Lagrange multiplier to minimize PM , where the

following function is minimized in place of PM :

P = PM + η[PF − α′], (2.24)

and η is the Lagrange multiplier yet to be determined. Again we use the

same technique as in the Bayesian case, namely, a change of integration

region and probability measure, to obtain the decision rule

Λ(z) < η, z ∈ Z0. (2.25)

η is then chosen to satisfy the constraint PF = α′. Finally, the decision

rule is given by

Λ(z) < η, z ∈ Z0,

PF =

∫
Z1(η)

dP (z|H0) = α′,
(2.26)

which is a likelihood ratio test as in the Bayes test, but with a different

threshold η. To obtain a test for PF ≤ α, α′ is then increased to the largest

α′ ≤ α, and PM would be minimized given the constraint PF ≤ α.

In practice, the same experiment would often be repeated under sim-

ilar circumstances in the hope of acquiring better performance. Such N

repeated experiments would then produce N independent, identically dis-

tributed (IID) random variables Zj. The joint probability measure of

{Zj}Nj=1 is just the product of the individual probability measures, and

2The inequality is included to describe cases where the exact value of PF = α is not
achievable by any decision rule, for example when Z is a discrete random variable.

14
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the likelihood ratio is a multiplication Λ(z1...zN) =
∏

j Λ(zj). Thus to im-

plement the likelihood test, it is sometimes easier to use the log-likelihood

ratio ln Λ(z) as it becomes the sum of the individual log-likelihood ratios

under the IID condition. Since the logarithmic function is a monotonically

increasing function, the likelihood ratio test can be formulated in terms of

the log-likelihood ratio, where the threshold is ln η.

2.2.2 Performance of likelihood ratio tests

The performance of a Bayes test or a Neyman-Pearson test can be evalu-

ated by computing explicitly the Bayesian risk or the error probabilities.

However, analytical formulae are not always available, and bounds on the

performance are often derived in order to provide insight. Let us first

examine the Bayesian case, and assign the Bayesian cost

C01 = C10 = 1,

C11 = C00 = 0.

The risk is then given by the average error probability

R = Pe = P (H0)PF + P (H1)PM

=

∫
min

[
P (H0), P (H1)Λ(z)

]
dP (z|H0), (2.27)

where the integration is over all the state space of Z. The function min(a, b)

outputs the smaller number between the pair {a, b}.

Since exponentiation xs is a monotonic function in terms of s, where it

is monotonically increasing (decreasing) when x > 1 (x < 1), we have the

following identity for a, b ≥ 0

min(a, b) ≤ a1−sbs ≤ max(a, b), 0 ≤ s ≤ 1. (2.28)
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Introducing the conditional expectation notation EZ|H0(Λ
s) =

∫
Λs(z)dP (z|H0),

an upper bound on Pe is given by:

Pe ≤ c(s) ≡ EZ|H0(Λ
s), 0 ≤ s ≤ 1. (2.29)

The Chernoff coefficient c(s) equals unity when s = 0 or s = 1, and is a

convex function in terms of s. Its derivative dc(s)
ds

is negative at s = 0 but is

positive at s = 1, meaning that a local minimum exists within the interval

0 ≤ s ≤ 1. Therefore, the Chernoff coefficient is always smaller than unity

for s ∈ [0, 1], making it a meaningful upper bound on the error probabilities.

Aside from the minimum Chernoff coefficient, some particular cases of the

Chernoff coefficient are also of interest, such as when s = 1
2
, where it is also

known as the Bhattacharyya coefficient or the fidelity. We note that the

error bound given by the Chernoff coefficient is also often given in terms

of a positive exponent, termed Chernoff exponent:

C(s) = − lnEZ|H0(Λ
s). (2.30)

Tighter upper bounds on both the error probabilities PF and PM can be

found in terms of the Chernoff exponent, see [32]. These bounds can then be

applied to bound the performances of both the Bayes test and the Neyman-

Pearson test.

To conclude this section, let us consider the performance of a repeated

experiment. Under the IID condition, the maximum Chernoff exponent is

the asymptotic error rate for Bayes tests:

lim
N→∞

1

N
lnPe = −maxsC(s), (2.31)

where the maximum Chernoff exponent is termed Chernoff information

in the literature. This relation means that for sufficiently large number
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of experiments N , the average error probability of a Bayes test decreases

exponentially to zero at a rate given by the Chernoff information. For

Neyman-Pearson tests in IID experiments, similar relations hold for the er-

ror probabilities. However, the corresponding error exponents are given by

the relative entropy instead. See [41] for more information on asymptotic

hypothesis testing and the relation between Chernoff information and rel-

ative entropy. These results show that repeated experiments can improve

our ability to test hypotheses, as common wisdom dictates.

2.3 Estimation Theory

2.3.1 Random parameter estimation

As in detection theory, let us categorize parameter estimation into two

paradigms, depending on whether a prior probability measure is assigned

to the parameter of interest. For Bayesian estimation, where we assume

prior knowledge about the parameter, we treat the unknown parameter as a

random variable Θ, and the realization is denoted as θ. For multiparameter

problems, Θ is a multivariate random variable which can be represented by

a column vector.

Analogous to the detection theory, we define a cost function C(θ, θ̌)

where θ̌ ≡ θ̌(z) is an estimator of θ given the outcome z. Given a cost

function, the Bayesian procedure is to find the estimator that minimizes

the Bayesian risk:

R = EZ,Θ(C), (2.32)

where the expectation is over the joint probability measure of both the

random variables Z and Θ. For scalar parameter problems, the quantity

θe = θ̌ − θ represents the error of the estimator θ̌. Thus, it can be used to

define the cost function such that C(θ, θ̌) = C(θe). This way, the Bayesian
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Risk R can be interpreted as the expected value of estimation error. How-

ever, the definition C = θ̌−θ admits negative values of error, which may be

undesirable as the Bayesian Risk can be low even when the estimation error

θe has a high variability. A natural alternative is to use the absolute error

C = |θ̌ − θ| so that there would be no negative error. Another alternative

is the square error C = (θ̌ − θ)2 where large values of errors are penalized.

To find the estimator which minimizes the Bayesian risk, we write

EZ,Θ(C) = EZ [EΘ|z(C)], where EΘ|z(.) denotes the expectation conditioned

on the experiment outcome z. Hence, minimizing R is equivalent to min-

imizing EΘ|z(C). A particular elegant solution is given by the minimum

mean-square error estimator, where the mean-square error is minimized.

The minimum mean-square error estimator is the posterior mean of Θ:

θ̌MMSE(z) = EΘ|z(Θ). (2.33)

For minimum mean absolute error estimator, the estimator is given by the

median of the posterior probability density of Θ given an outcome z.

We note that many applications of hypothesis testing require the es-

timation of a random parameter. For instance, consider the problem of

detecting Gaussian signals in white Gaussian noise:

H0 : z(t) = ξ(t),

H1 : z(t) = x(t) + ξ(t),

where E[ξ(t)ξ(t′)] = δ(t− t′) and x(t) is a zero mean Gaussian signal with

covariance function E[x(t)x(t′)] = K(t, t′). If we define the time integral of
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the z(t) as y(t) =
∫ t

0
z(s)ds, the hypotheses become

H0 : y(t) = W (t),

H1 : y(t) =

∫ T

0

x(t′)dt′ +W (t),

whereW (t) is the Wiener process. The log-likelihood ratio can be expressed

in the Itô sense as [42, 43]

ln Λ(T ) =

∫ T

0

x̌1(t)dy(t)− 1

2

∫ T

0

x̌2
1(t)dt, (2.34)

where x̌1(t) is the minimum mean-square error estimator given past mea-

surement outcome {y(s), 0 ≤ s ≤ t} and conditioned on H1. This ex-

pression for the likelihood ratio where the estimator is correlated with the

observation is called the estimator-correlator formula. It is valid even if

the signal x(t) is not Gaussian [42, 43].

2.3.2 Non-random parameter estimation and the Cramér-

Rao lower bound

In a lot of situations, it is undesirable to treat the unknown parameter

as random. For these situations, we assume that the parameter θ is fixed

but hidden from the observers. What is available to the observers is then

the conditional probability measure PZ|θ, where θ is the true value of the

parameter of interest. Similar to the case of random parameter estimation,

let us first consider a single parameter problem. It is preferred to have an

estimator which is accurate in the sense of being distributed close to the

true value of the unknown parameter. As the moments of a distribution

provide a sense of the ‘shape’ of the distribution, we can study the moments

of the estimator to quantify the quality of an estimator. The first moment is

the mean of the estimator, conditioned on the true value of the parameter.
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An accurate estimator is expected to have a mean which is close to the true

value. Such an estimator is called an unbiased estimator, where EZ|θ(θ̌ −

θ) = 0. The second moment is the variance

V ar(θ̌ − θ) = EZ|θ[(θ̌ − θ)2], (2.35)

which tells us the ‘spread’ of the estimator. Thus, we expect that the more

accurate an unbiased estimator is, the lower the variance of its estimation

error.

Our goal is to investigate the limit of estimation accuracy in terms of

the variance of estimation error, which is also the mean-square error of

the estimator. To proceed, let us generalize to vectorial parameter and

introduce the mean-square estimation error matrix,

Σ = EZ|θ
[
(θ̌ − θ)(θ̌ − θ)>

]
. (2.36)

A lower bound on the estimation error matrix for unbiased estimators is

given by the Cramér-Rao bound:

Σ ≥ j−1(pZ),

jµν(pZ) = EZ|θ
(∂ ln pZ

∂θµ

∂ ln pZ
∂θν

)
,

(2.37)

where j(pZ) is the Fisher information matrix, and pZ ≡ pZ(z|θ) is the

likelihood function, which is a function of the parameter θ. The matrix in-

equality Σ ≥ j−1 means that the matrix Σ− j−1 is a positive-semidefinite

matrix. The proof is fairly easy to reproduce [7, 32, 34]: we assume regular-

ity conditions, where differentiation ∂
∂θµ

and integration (of the expectation

operation) are swappable, and the log-likelihood function is differentiable.

One then starts with taking derivative of EZ|θ(θ̌µ − θµ) = 0 with respect

to θν to obtain EZ|θ
[
(θ̌µ − θµ)∂ ln pZ

∂θν

]
= δµν . Multiplying vectors aµ and bν
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and sum over all indices, we get

EZ|θ(AB) = a>b,

A =
∑
µ

aµ(θ̌µ − θµ),

B =
∑
µ

bµ
∂ ln pZ
∂θµ

.

(2.38)

As the expectation EZ|θ(AB) is an inner product, we can apply Schwarz

inequality to get

EZ|θ(A2)EZ|θ(B2) = (a>Σa)(b>jb) ≥ |a>b|2. (2.39)

Finally, choosing b = j−1a and after some algebraic manipulations, one

obtains Σ ≥ j−1.

An estimator is called efficient when it saturates the Cramér-Rao bound.

This happens when the functions A and B are linearly dependent, where

the condition is ∑
µ

aµ(θ̌µ − θµ) =
∑
µ

bµ
∂ ln pZ
∂θµ

. (2.40)

Since this condition must be fulfilled for all values of z and θ, there is

no guarantee of the existence of such an estimator. However, whenever

this condition is satisfied, the efficient estimator is given by the maximum

likelihood estimator (MLE). The MLE is an estimator which is chosen to

be the value of θ that maximizes the likelihood function given an outcome

z:

θ̌MLE(z) = arg maxθ pZ(z|θ), (2.41)

where maxθ denotes maximizing over all possible values of θ. Assuming that

the likelihood function is differentiable, the MLE can be found by solving

the simultaneous equations ∂pZ
∂θµ
|θ=θ̌MLE

= 0, or equivalently in terms of the

log-likelihood function ∂ ln pZ
∂θµ
|θ=θ̌MLE

= 0. From the condition Eq. (2.40), we
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have

0 =
∑
µ

bµ
∂ ln pZ
∂θµ

|θ=θ̌MLE
=
∑
µ

aµ(θ̌µ − θµ)θ=θ̌MLE
, (2.42)

and θ̌ equals the MLE estimator. Thus, whenever an efficient estimate

exists, it is given by the MLE.

The idea that repeated measurements should improve the accuracy of

an estimator is captured by the fact that, for independent experiments,

the total Fisher information is the sum of Fisher information of individual

experiments. Hence, under the IID condition, the mean-square error matrix

is lower bounded by

Σ ≥ 1

Nj
, (2.43)

where N is the number of repetitions. Under certain conditions the MLE is

asymptotically efficient [32], meaning that the lower bound in Eq. (2.43) is

achievable as N →∞. This shows that as more experiments are performed,

estimators which are more accurate can be formed from the experiment

outcomes. In addition, the MLE is also asymptotically consistent, where

it converges in probability to the true value of the parameter3 as more

experiments are performed.

Finally, we can draw connections between detection theory and esti-

mation theory by considering the hypothesis testing problem where the

two different hypotheses are given by different true values of a parameter.

Suppose that H0 assumes the value θ while H1 assumes θ′, the Chernoff co-

efficient is a function of both θ and θ′. The derivative of the Bhattacharyya

coefficient c(0.5) with respect to θµ equals zero when θ′ = θ. Its second

derivative is proportional to the Fisher information [44]:

jµν = −4
[ ∂2

∂θµ∂θν
c(0.5; θ, θ′)

]
θ′=θ

. (2.44)

3It means that the probability that the estimator is finitely different from the true
parameter, is zero
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These results show that for two hypotheses which are infinitesimally close,

c(0.5; θ, θ + δθ) ≈ 1− 1

8
δθ>Jδθ, (2.45)

see also [45]. We note a relation similar to Eq. (2.44) can also be given in

terms of the Bhattacharyya distance C(0.5) [46], where

jµν = 4
[ ∂2

∂θµ∂θν
C(0.5; θ, θ′)

]
θ′=θ

. (2.46)

These relations allow one to calculate the Fisher information whenever the

Chernoff coefficient or Chernoff exponent is available.

2.4 Quantum detection and estimation

In the context of quantum mechanics, the concepts introduced in the pre-

vious sections can be regarded as a theory of signal processing after a given

measurement has been performed. For example, the Cramér-Rao bound

is specific to a given POVM. It is not clear whether better performance

can be acquired given another POVM. Hence, to study the optimal per-

formance permissible by quantum mechanics, one also has to work on the

level of POVM and find the POVM which provides the best performance.

Working on POVM amounts to experimental design. Thus, in contrast to

the classical case, we have the freedom to choose the type of measurement

to perform in the quantum case.

For binary hypothesis testing, each hypothesis Hm is now associated

with a density matrix ρ̂m. The decision region Zm of classical detection

theory corresponds to a POVM Êm in the quantum case, where Ê0 + Ê1 =

Î. The probability of choosing Hn while Hm is correct is then given by

Pr(n|m) = tr(Ênρ̂m), which corresponds to the quantity
∫
Zn dP (Z|Hm) in

Sec. (2.2). In particular, we have PF = Pr(1|0) and PM = Pr(0|1) for
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the false alarm probability and the miss probability. The Bayesian risk of

detection in Eq. (2.14) is also similarly defined:

R =
∑

n,m=1,2

CnmP (Hm) Pr(n|m). (2.47)

The goals of Bayes test and the Neyman-Pearson test for quantum

hypothesis testing are the same as in classical statistics. The difference

here is that in order to minimize the risk (miss probability) for Bayes test

(Neyman-Pearson test), one needs to solve a series of operator optimiza-

tion equations for the POVM [7]. The result is somewhat similar to the

likelihood ratio test, where the POVM Ê1 (Ê0) is a projection into the

positive (negative) eigenspace of the operator ρ̂1−ηρ̂0, and η is a threshold

that depends on the problem. Again, exact performance is often difficult

to evaluate but bounds on the average error probability are available, see

[47]. A quantum analogue of the Chernoff coefficient or Chernoff expo-

nent can also be defined [48, 49]; it is the best error exponent achievable

asymptotically in a quantum IID setting, analogous to the classical case.

The case of quantum estimation is very similar to quantum detection,

where the conditional probability measure PZ|θ is replaced by a density

matrix ρ̂θ. For Bayesian estimation, a prior probability measure PΘ is

assumed for the parameter and the unconditional density matrix is given

by ρ̂ = EΘ(ρ̂θ). We will also need to formulate the quantum estimation

process in terms of a POVM Ê. Suppose that the POVM can be given by

an integral of infinitesimal operators

Ê(A) =

∫
A

dÊ(θ̌), (2.48)

where θ̌ is the estimator. The Bayesian risk is defined as

R = Eθ
(∫

C(θ, θ̌) tr
[
ρ̂θdÊ(θ̌)

])
. (2.49)
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In order to minimize R, we need to choose a specific cost function C(θ, θ̌)

and solve a continuous version of the optimization equations as in the

quantum detection problem [7].

Similar to the classical estimation theory, we will focus on the estima-

tion of nonrandom parameters. We are interested in the optimal accuracy

allowed by quantum mechanics and seek quantum generalizations of the

Cramér-Rao bound for the mean-square error. The first quantum general-

ization of the Cramér-Rao bound is given in terms of Hermitian operators

Lµ, called the symmetrized logarithmic derivatives (SLD) of ρ̂θ [7]. These

operators satisfy
∂ρ̂θ
∂θµ

=
1

2
(L̂µρ̂θ + ρ̂θL̂µ),

tr(ρ̂θL̂µ) = 0.

(2.50)

The SLD quantum Cramér-Rao bound is given by

Σ ≥ J−1(ρ̂θ),

Jµν(ρ̂θ) =
1

2
tr
[
ρ̂θ(L̂µL̂ν + L̂νL̂µ)

]
,

(2.51)

where

Σ =

∫
(θ̌ − θ)(θ̌ − θ)> tr[ρ̂θdÊ(θ̌)] (2.52)

is the mean-square estimation error matrix and J(ρ̂θ) is called the SLD

quantum Fisher information matrix. The proof of the SLD quantum Cramér-

Rao bound is analogous to the classical one, where we use the following

Schwarz inequality for inner product of operators Â and B̂:

(∫
tr ρ̂θÂ

†dÊ(θ̌)Â
)(∫

tr ρ̂θB̂
†dÊ(θ̌)B̂

)
≥ |
∫

tr ρθB̂
†dÊ(θ̌)Â|2. (2.53)

To derive the quantum Cramér-Rao bound, we take derivatives on the

unbiased estimator condition
∫

tr
[
ρ̂θ(θ̌ν − θν)dÊ(θ̌)

]
= 0 with respect to

the parameters of interest. Repeating the procedure in Sec. (2.3.2), the
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result is

<
(∫

tr ρθB̂
†dÊ(θ̌)Â

)
= a>b,

Â =
∑
µ

aµ(θ̌µ − θµ),

B̂ =
∑
µ

bµLµ,

(2.54)

where < denotes the real part of a complex number and a, b are real

vectors. One then obtains the following inequality by applying the Schwarz

inequality:

(∫
tr ρ̂θÂ

†dÊ(θ̌)Â
)(∫

tr ρθB̂
†dÊ(θ̌)B̂

)
= (a>Σa)(b>Jb) ≥ (a>b)2,

(2.55)

which is formally the same as Eq. (2.39). Eq. (2.51) follows by choosing

b = J−1a.

Instead of the SLD, we can also use the right logarithmic derivative

(RLD) to define the RLD quantum Fisher information matrix [50, 51]:

JRLDµν = tr(ρ̂θL̂
′
µL̂
′†
ν ). (2.56)

where the RLD L̂′µ satisfies the equation

∂ρ̂θ
∂θµ

= ρ̂θL̂
′
µ. (2.57)

This will give us another quantum Cramér-Rao bound in terms of the RLD.

In fact, we note that other generalizations of quantum Fisher information

exist and each of them defines a quantum Cramér-Rao bound [52–54].

The SLD version of the Cramér-Rao bound is of particular interest to

us. For single parameter problems, one can apply an adaptive quantum

estimation scheme [52, 55]. The adaptive quantum estimation scheme is

asymptotically efficient and consistent in the sense of saturating the SLD

quantum Cramér-Rao bound. On the other hand, each POVM Ê defines
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a probability measure PÊ where the classical Fisher information is jÊ. A

quantum Cramér-Rao bound states that [36, 53, 54]

J(ρ̂θ) ≥ jÊ, (2.58)

which means that the SLD quantum Fisher information is the maximum

amount of information extractable by any measurement. In this sense, the

SLD quantum Fisher information represents a measurement-independent

quantum limit of estimation for any unbiased estimator. Hence, another

approach to saturate the SLD quantum Cramér-Rao bound is to find a

POVM such that jÊ = J(ρ̂θ). Given that such a POVM exists, the MLE

estimator can then attain the quantum Cramér-Rao bound asymptotically.

An equation similar to Eq. (2.45) exists in the quantum regime, where

the Bures distance can be expanded infinitesimally in terms of the SLD

Fisher information matrix [36, 56]:

D2
B(ρ̂θ, ρ̂θ+εu) ≡ 2[1− F (ρ̂θ, ρ̂θ+εu)] =

1

4
uµuνJµνε

2 + o(ε), (2.59)

where F (ρ̂θ, ρ̂θ′) = tr
√√

ρ̂θρ̂θ′
√
ρ̂θ is the quantum fidelity and u is an

arbitrary constant vector. Therefore, an equation analogous to Eq. (2.44)

exists:

Jµν = −4
[∂2F (ρ̂θ, ρ̂θ′)

∂θµ∂θν

]
θ′=θ

. (2.60)

This result is not too surprising considering that the quantum fidelity is

equal to the Bhattacharyya coefficient when ρ̂θ and ρ̂θ′ commutes.

2.5 Conclusion

In this chapter, we introduced the stochastic differential equation by start-

ing from a discussion of the stochastic integration. The stochastic integra-

tion can be defined in terms of Riemann sums; however, unlike ordinary
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calculus, different definitions converge differently. We discussed two differ-

ent definitions of stochastic integration, namely the Stratonovich integral

and the Itô integral. The Stratonovich calculus follows the same differenti-

ation rules as the ordinary calculus, while the Itô calculus follows a distinct

rule.

We also reviewed classical detection and estimation theory as a mathe-

matical framework to reduce errors and to optimize decision processes. The

likelihood ratio test is introduced as the optimal data processing strategy

in both Bayesian and frequentist protocols. The quantum version of the

likelihood ratio test is also discussed. Although the exact performance of

likelihood ratio tests is difficult to calculate, bounds on the performance are

available. For parameter estimation, we focused on estimation of nonran-

dom parameters and introduced the Fisher information as a figure of merit

for the ultimate accuracy of unbiased estimators. We presented MLE as

the estimator that is able to approach this ultimate accuracy. Connections

between detection theory and estimation theory are also discussed. We

provided a link between Fisher information and Bhattacharyya coefficient,

and a similar relation in the quantum case. These relations will be useful

in later chapters.
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Chapter 3

Optimal signal processing for

continuous qubit readout

Consider a quantum two-level system, or a qubit in modern terminology.

According to von Neumann, measurement of a qubit can be instantaneous

and perfectly accurate, with two possible outcomes and the qubit collapsing

to a specific state depending on the outcome [10]. In practice, this measure-

ment model, called a projective measurement, is an idealization. A qubit

measurement in real physical systems, such as superconducting microwave

circuits [57–59], trapped ions [60, 61], nitrogen-vacancy centers in diamond

[62, 63], semiconductor quantum dots [64, 65], and phosphorus donors in

silicon [66, 67], is often performed by coupling the qubit to an electromag-

netic field, before the field is measured continuously. The qubit state can

only be inferred with some degree of uncertainty from the noisy measure-

ment. During the measurement, the qubit may also undergo spontaneous

transitions, which further obscure the initial qubit state and complicate

the inference procedure. This qubit readout problem is challenging but

important for many quantum information processing applications, such as

quantum computing [9], magnetometry [68], and atomic clocks [69, 70],

which all require accurate measurements of qubits. The choice of a signal
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CHAPTER 3. OPTIMAL SIGNAL PROCESSING FOR CONTINUOUS QUBIT READOUT

processing method is crucial to the readout performance. Refs. [71, 72]

in particular contain detailed theoretical studies of qubit-readout signal

processing protocols.

In this chapter, we propose a new signal-processing architecture for

optimal qubit readout by exploiting well known techniques in classical de-

tection theory [32, 42, 43, 73, 74]. Following prior work [71, 72], we as-

sume that the measurement is quantum nondemolition (QND) [10, 75],

meaning that a classical stochastic theory is sufficient [10, 76, 77]. In ad-

dition to the Gaussian observation noise assumed in Refs. [71, 72], we also

consider a Poissonian noise model [40], which is more suitable for photon-

counting measurements [60–63, 65, 69]. We find that the likelihood ratio

needed for optimal hypothesis testing can be determined from the cele-

brated estimator-correlator formulas [42, 43, 73, 74, 78], which break down

the likelihood-ratio calculation into an estimator step and an easy corre-

lator step. The estimator turns out to have analytic solutions in special

cases of interest and simple numerical algorithms in general.

Although our protocols and the ones proposed in Refs. [71, 72] should

result in the same end results for the likelihood ratio in the case of Gaussian

noise, our analytic solutions involve elementary mathematical operations

and may be implemented by low-latency electronics, such as analog or pro-

grammable logic devices [79], for fast feedback control and error correction

purposes [10]. This is in contrast to the more complicated coupled stochas-

tic differential equations recommended by the prior studies. Moreover, the

prior studies never state whether their stochastic equations should be in-

terpreted in the Itô sense or the Stratonovich sense, making it difficult

for others to verify and correctly implement their protocols. As the equa-

tions are nonlinear with respect to the observation process, applying the

wrong stochastic calculus is likely to give wrong results [37, 38, 40, 42].

Our work here, on the other hand, makes explicit and consistent use of Itô
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calculus to ensure its correctness. Our estimator-correlator protocol is also

inherently applicable to multi-hypothesis testing, which can be useful for

online parameter estimation and making the readout robust against model

uncertainties [80–84].

3.1 M-ary hypothesis testing

In this section we give a simple generalization of Bayesian binary hy-

pothesis testing to Bayesian M -ary hypothesis testing. Let {Hm;m =

0, 1, 2, . . . ,M − 1} be the hypotheses to be tested. Given a noisy obser-

vation record z, the decision region for hypothesis Hm is labeled by Zm.

Define the observation probability measure as P (.|Hm), the average error

probability is

Pe ≡
∑
m

P (Hm)

∫
z /∈Zm

dP (z|Hm). (3.1)

Similarly to Sec. (2.2), to find the decision rule that minimizes Pe, we write

Pe = 1−
∑
m

∫
Zm

P (Hm)Λ(z|Hm)dP (z|H0), (3.2)

where we have defined

Λ(z|Hm) ≡ dP (z|Hm)

dP (z|H0)
(3.3)

as the likelihood ratio for Hm against H0, the null hypothesis. The decision

rule that minimizes Pe is to select z ∈ Zm whenever

P (Hm)Λ(z|Hm) > P (Hn)Λ(z|Hn), ∀n 6= m. (3.4)
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This is equivalent to choosing the hypothesis that maximizes the posterior

probability function [32, 85], which can be expressed as

P (Hm|z) =
P (Hm)Λ(z|Hm)∑
m P (Hm)Λ(z|Hm)

, (3.5)

The minimum-error decision strategy thus boils down to the computation

of Λ(z|Hm) for all hypotheses of interest, and then finding the hypothesis

that maximizes P (Hm|z), or equivalently in terms of the log-likelihood ratio

(LLR)

Zm = {z : ln Λ(z|Hm) + lnP (Hm) > ln Λ(z|Hn) + lnP (Hn), ∀n 6= m} .

(3.6)

3.2 Gaussian noise model

3.2.1 Observation process

Assume that the observation process z(t) conditioned on a hypothesis is

Hm : z(t) = Sm(t)xm(t) + ξ(t), (3.7)

where Sm(t) is a deterministic signal amplitude assumed by the hypothesis,

xm(t) is a hidden stochastic process, ξ(t) is a zero-mean white Gaussian

noise with covariance

E [ξ(t)ξ(t′)] = R(t)δ(t− t′), (3.8)

E denotes expectation, and R(t) is the noise power, assumed here to be the

same for all hypotheses. It is possible to test other values of noise power

by prescaling the observation and redefining Sm(t). For qubit readout,

the hypothesis should determine Sm(t) and the statistics of xm(t); Fig. 3.1

sketches a few example realizations of the signal component Sm(t)xm(t).
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Figure 3.1: (Color online) Some example realizations of the signal compo-
nent Sm(t)xm(t) of the observation process. Given a hypothesis Hm, Sm(t)
is a deterministic signal amplitude and xm(t) is a binary stochastic process.
The axes are in arbitrary units.
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In stochastic detection theory, it is convenient to define a normalized

observation process y(t) as the time integral of z(t):

y(t) ≡
∫ t

0

dτ
z(τ)√
R(τ)

, (3.9)

and represent it using a stochastic differential equation:

Hm : dy(t) ≡ y(t+ dt)− y(t)

= dtσm(t)xm(t) + dW (t), (3.10)

σm(t) ≡ Sm(t)√
R(t)

, (3.11)

whereW (t) is the standard Wiener process with increment variance dW 2(t) =

dt and Itô calculus is assumed throughout this chapter. The null hypothe-

sis, in particular, is taken to be

H0 : dy(t) = dW (t). (3.12)

Fig. 3.2 depicts the observation model through a block diagram.

Figure 3.2: (Color online) A block diagram for the observation model. Hm

is a hypothesis, xm(t) is the hidden signal, assumed here to be a two-state
Markov process with transition rates L−m and L+

m, Sm(t) is the signal ampli-
tude, ξ(t) is an additive white Gaussian noise, and z(t) is the observation
process. The definition of observation processes dy(t)/dt and y(t), normal-
ized with respect to the noise power R(t), is for mathematical convenience.
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3.2. GAUSSIAN NOISE MODEL

3.2.2 Estimator-correlator formula

Define the observation record as

Y T ≡ {y(t); 0 ≤ t ≤ T} . (3.13)

Under rather general conditions about xm(t), the LLR ln Λ(Y T |Hm) can

be expressed using the estimator-correlator formula [42, 43, 73, 78], which

correlates the observation with an “assumptive” estimate µm(t):

ln Λ(Y T |Hm) =

∫ T

0

dy(t)µm(t)− 1

2

∫ T

0

dtµ2
m(t), (3.14)

where

µm(t) ≡ σm(t)E
[
xm(t)|Y t,Hm

]
(3.15)

is a causal estimator of the hidden signal conditioned on the observation

record Y t and the hypothesis Hm. The integral with respect to y(t) is an

Itô integral, meaning that dy(t) is the future increment ahead of time t and

µm(t) in the integrand dy(t)µm(t) should not depend on dy(t). This rule is

important for consistent analytic and numerical calculations whenever one

multiplies dy(t) with a signal that depends on y(t) [42]. Fig. 3.3 illustrates

an implementation of the formula.

Estimator

Correlator

Figure 3.3: (Color online) An implementation of the estimator-correlator

formula in Eq. (3.14), which can be written as ln Λ =
∫ T

0
[dy(t) −

dtµm(t)/2]µm(t). dy(t) in the integrand should be the future increment
ahead of t in accordance with Itô calculus.
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As each ln Λ(Y T |Hm) depends only on one hypothesis Hm (in addition

to the fixed null hypothesis), once an algorithm for its computation is

implemented, it can be re-used even if the other hypotheses are changed or

new hypotheses are added. This makes the estimator-correlator protocol

more flexible and extensible than the ones proposed in Refs. [71, 72], which

are specific to the hypotheses considered there.

Despite its simple appearance, the formula does not in general reduce

the complexity of the LLR calculation, as the estimator may still be diffi-

cult to implement. We shall, however, present a simple numerical method

and some analytic solutions useful for the qubit readout problem in the

following.

3.2.3 Qubit dynamics

For QND qubit readout, we assume that xm(t) is a classical two-state first-

order Markov process; Appendix A shows explicitly how the classical theory

can arise from the quantum formalism of continuous QND measurement.

The possible values of xm(t) are assumed to be

xm(t) ∈ {0, 1} . (3.16)

Other possibilities can be modeled by subtracting a baseline value from the

actual observation and defining an appropriate σm(t) before the processing

described here. In the absence of measurements, the probability function
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of xm(t) = x obeys a forward Kolmogorov equation [37]:

dPm(t)

dt
= Lm(t)Pm(t), (3.17)

Pm(t) ≡

 P (x = 0, t|Hm)

P (x = 1, t|Hm)

 , (3.18)

Lm(t) ≡

 −L+
m(t) L−m(t)

L+
m(t) −L−m(t)

 , (3.19)

where L−m and L+
m are the spontaneous decay and excitation rates condi-

tioned on the hypothesis and can be time-varying for generality. The decay

time constant 1/L−m is commonly called T1, and L+
m can be used to model a

random turn-on time [72]. For example, we can model the problem studied

by Gambetta and coworkers [71] by defining

• H0: the qubit is in the x = 0 state, and x0(t) = 0.

• H1: the qubit is in the x = 1 state initially, P (x = 1, t = 0|H1) = 1,

and the unconditional statistics of x1(t) obey Eqs. (3.17)–(3.19), with

L−1 being the decay rate and L+
1 = 0.

3.2.4 Estimator

The estimator µm(t) can be computed using the Duncan-Mortensen-Zakai

(DMZ) equation [86–89]:

dpm(t) = dtLm(t)pm(t) + dy(t)σm(t)xpm(t), (3.20)

pm(t) ≡

 pm(x = 0, t)

pm(x = 1, t)

 , x ≡

 0 0

0 1

 , (3.21)

where

pm(x, t) ∝ P (x, t|Y t,Hm) (3.22)
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is the unnormalized posterior probability function of xm(t) conditioned on

Y t and Hm, and the initial condition is determined by the initial prior

probabilities:

pm(x, t = 0) = P (x, t = 0|Hm). (3.23)

The estimator is then

µm(t) =
σm(t)pm(1, t)

pm(0, t) + pm(1, t)
, (3.24)

as depicted by Fig. 3.4.

DMZ

Figure 3.4: (Color online) A block diagram for the estimator using the
Duncan-Mortensen-Zakai (DMZ) equation.

Although one can also use the Wonham equation [90] to perform the

estimator, and the normalization step would not be needed in theory, the

DMZ equation is linear with respect to pm(t) and easier to solve analytically

or numerically. In general, a numerical split-step method can be used [91]:

pm(t+ dt) ≈ exp

[
dy(t)σm(t)x− dt

2
σ2
m(t)x2 + dtLm(t)

]
pm(t). (3.25)

Many other numerical methods are available [92]. Analytic solutions can

be obtained in the following special cases.

3.2.5 Deterministic-signal detection

For a simple example, assume binary hypothesis testing (M = 2), no spon-

taneous transition (L−m = L+
m = 0), and deterministic initial conditions
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given by

p0(0, 0) = P (x = 0, t = 0|H0) = 1, (3.26)

p0(1, 0) = P (x = 1, t = 0|H0) = 0, (3.27)

p1(0, 0) = P (x = 0, t = 0|H1) = 0, (3.28)

p1(1, 0) = P (x = 1, t = 0|H1) = 1. (3.29)

The estimator becomes independent of the observation:

µ0(t) = 0, µ1(t) = σ1(t). (3.30)

This is simply a case of deterministic-signal detection, when the estimator-

correlator formula in Eq. (3.14) becomes a matched filter [32, 42]. The

minimum error probability Pe,min has an analytic expression [32]:

Pe,min = P+P (H0) + P−P (H1), (3.31)

P± ≡
1

2
erfc

[√
SNR

8

(
1± 2λ

SNR

)]
, (3.32)

erfcu ≡ 2√
π

∫ ∞
u

dv exp(−v2), (3.33)

SNR ≡
∫ T

0

dtσ2
1(t), λ ≡ ln

P (H1)

P (H0)
. (3.34)

For SNR→∞, the error exponent has the asymptotic behavior− lnPe,min →

SNR/8.

Although this solution for Pe,min is not strictly valid when spontaneous

transitions are present, it should be accurate when the observation time T

is short relative to 1/L−1 or 1/L+
1 and can serve as a rough guide for other

cases.
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3.2.6 No spontaneous excitation (L+
m = 0)

The case of L−m > 0 and L+
m = 0 corresponds to the model studied by

Gambetta and coworkers [71]. Eq. (3.20) becomes

dpm(0, t) = dtL−m(t)pm(1, t), (3.35)

dpm(1, t) = −dtL−m(t)pm(1, t) + dy(t)σm(t)pm(1, t). (3.36)

Eq. (3.36) describes the famous geometric Brownian motion [38]. Its well

known solution can be obtained by applying Itô’s lemma (2.8) to d ln pm(1, t):

d ln pm(1, t) =
dpm(1, t)

pm(1, t)
− [dpm(1, t)]2

2p2
m(1, t)

= −dt
[σ2

m(t)

2
+ L

]
+ dy(t)σm(t).

Integrating the above differential and upon exponentiation, the solution is

given by

pm(1, t) = pm(1, 0) exp

{∫ t

0

dy(τ)σm(τ)

−
∫ t

0

dτ

[
σ2
m(τ)

2
+ L−m(τ)

]}
. (3.37)

A time integral of pm(1, t) then gives pm(0, t):

pm(0, t) = pm(0, 0) +

∫ t

0

dτL−m(τ)pm(1, τ). (3.38)

For binary qubit state discrimination, we can assume that µ0(t) = 0, and

µ1(t) can be determined from Eqs. (3.37), (3.38), and (3.24), starting from

the deterministic initial conditions given by Eqs. (3.28) and (3.29) if the

measurement starts immediately after the qubit state is prepared, as shown

in Fig. 3.5. If there is a finite arming time before the measurement starts

[71, 72], the forward Kolmogorov equation (3.17) can be used to determine
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the initial state probabilities.

Figure 3.5: (Color online) Solution to the DMZ equation with spontaneous
decay (L−m > 0), no spontaneous excitation (L+

m = 0), and an initial excited
state (pm(1, t = 0) = 1, pm(0, t = 0) = 0).

3.2.7 No spontaneous decay (L−m = 0)

One can assume L+
m > 0 and L−m = 0 to model a random signal turn-on

time [72] and negligible spontaneous decay (T � 1/L−m). The simplest way

of computing µm(t) is to define a new observation process

dy′(t) ≡ dy(t)− σm(t)dt

= −dtσm(t) [1− xm(t)] + dW (t). (3.39)

A new DMZ equation can then be expressed in terms of y′(t) and is given

by

dpm(0, t) = −dtL+
m(t)pm(0, t)− dy′(t)σm(t)pm(0, t), (3.40)

dpm(1, t) = dtL+
m(t)pm(0, t), (3.41)
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which have the same form as Eqs. (3.35) and (3.36) and can be solved using

the same method. The final solution is

pm(0, t) = pm(0, 0) exp

{
−
∫ t

0

dy(τ)σm(τ)

+

∫ t

0

dτ

[
σ2
m(τ)

2
− L+

m(τ)

]}
, (3.42)

pm(1, t) = pm(1, 0) +

∫ t

0

dτL+
m(τ)pm(0, τ). (3.43)

3.3 Poissonian noise model

3.3.1 Observation process

For photon-counting measurements, it is more appropriate to assume that

the counting process n(t) ∈ {0, 1, 2, . . . }, conditioned on the hidden process

X t
m ≡ {xm(τ); 0 ≤ τ ≤ t}, obeys Poissonian statistics [40]:

P (n(t)|X t
m,Hm)

= exp

[
−
∫ t

0

dτλm(τ)

] [∫ t
0
dτλm(τ)

]n(t)

n(t)!
, (3.44)

where

λm(t) ≡ λ0(t) [1 + αm(t)xm(t)] (3.45)

is the intensity of the Poisson process and αm(t) is a deterministic signal

amplitude. dn(t) ∈ {0, 1} is then the detected photon number at time t.

We assume H0 with known intensity λ0(t) > 0 to be the null hypothesis.
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Poisson

Figure 3.6: (Color online) The Poissonian observation model. The counting
process n(t) is driven by the stochastic intensity λm(t).

3.3.2 Estimator-correlator formula

Define the observation record as

NT ≡ {n(t); t0 ≤ t ≤ T} . (3.46)

Our goal is to calculate the LLR

ln Λ(NT |Hm) = ln
dP (NT |Hm)

dP (NT |H0)
. (3.47)

A formula analogous to the Gaussian case in Eq. (3.14) is given by [74, 78]

ln Λ(NT |Hm) =

∫ T

0

dn(t) ln [1 + νm(t)]

−
∫ T

0

dtλ0(t)νm(t), (3.48)

νm(t) ≡ αm(t)E
[
xm(t)|N t,Hm

]
, (3.49)

where the dn(t) integral should again follow Itô’s convention [40]. Fig. 3.7

illustrates the formula.
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Estimator

Correlator

Figure 3.7: (Color online) The estimator-correlator structure for the Pois-
sonian observation model. dn(t) should be the future increment ahead of t
when multiplied with ln[1 + νm(t)].

3.3.3 Estimator

We assume the same unconditional qubit dynamics described in Sec. 3.2.3.

The estimator can be computed from a DMZ-type equation [78, 89]:

dpm(t) = dtLm(t)pm(t) + [dn(t)− dtκ(t)]

×
{
λ0(t)

κ(t)
[I + αm(t)x]− I

}
pm(t), (3.50)

where κ(t) > 0 is an arbitrary positive reference intensity and the estimator

is

νm(t) =
αm(t)pm(1, t)

pm(0, t) + pm(1, t)
. (3.51)

This procedure is identical to that depicted in Fig. 3.4. Assuming κ(t) =

λ0(t), Eq. (3.50) can be solved using a numerical split-step method:

pm(t+ dt)

≈ exp {dn(t) ln [I + αm(t)x]− dtλ0(t)αm(t)x}

× exp [dtLm(t)]pm(t). (3.52)

Analytic solutions can be found in the following cases.
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3.3.4 No spontaneous excitation (L+
m = 0)

Let κ(t) = λ0(t). Eq. (3.50) becomes

dpm(0, t) = dtL−m(t)pm(1, t), (3.53)

dpm(1, t) = −dtL−m(t)pm(1, t)

+ [dn(t)− dtλ0(t)]αm(t)pm(1, t). (3.54)

Following Chap. 5.3.1 in Ref. [40], we get

pm(1, t) = pm(1, 0) exp

{∫ t

0

dn(τ) ln [1 + αm(τ)]

−
∫ t

0

dτ
[
λ0(τ)αm(τ) + L−m(τ)

]}
, (3.55)

pm(0, t) = pm(0, 0) +

∫ t

0

dτL−m(τ)pm(1, τ). (3.56)

Fig. 3.8 depicts a block diagram for this solution.

Figure 3.8: (Color online) A block diagram for Eqs. (3.55) and (3.56), a
solution to the Poissonian DMZ equation. L+

m = 0, pm(1, t = 0) = 1, and
pm(0, t = 0) = 0 are assumed.
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3.3.5 No spontaneous decay (L−m = 0)

We now let κ(t) = λ0(t) [1 + αm(t)]. Eq. (3.50) becomes

dpm(0, t) = −dtL+
m(t)pm(0, t)

− [dn(t)− dtκ(t)]
αm(t)

1 + αm(t)
pm(0, t), (3.57)

dpm(1, t) = dtL+
m(t)pm(0, t). (3.58)

Similar to the previous case, the solution is

pm(0, t) = pm(0, 0) exp

{
−
∫ t

0

dn(τ) ln [1 + αm(τ)]

+

∫ t

0

dτ
[
λ0(τ)αm(τ)− L+

m(τ)
]}

, (3.59)

pm(1, t) = pm(1, 0) +

∫ t

0

dτL+
m(τ)pm(0, τ). (3.60)

It is interesting to note that all the Poissonian results approach the

Gaussian ones in Sec. 3.2 if we assume dn =
√
λ0dy+λ0dt, αm = σm/

√
λ0,

and λ0 →∞.

3.4 Conclusion

We have proposed an estimator-correlator architecture for optimal qubit-

readout signal processing and found analytic solutions in some special cases

of interest using Itô calculus. Although we have focused on a classical

model, our formalism can potentially be extended to more general quan-

tum dynamics [78, 93] and more realistic measurements, including artifacts

such as dark counts and finite detector bandwidth [10]. An open prob-

lem of interest is the evaluation of readout performance beyond the case

of deterministic-signal detection. Numerical Monte Carlo simulation is not

difficult for two-level systems, but analytic solutions should bring addi-

tional insight and may be possible using tools in classical and quantum

46



3.4. CONCLUSION

detection theory [7, 32, 94–97]. Tsang [98] has found an upper bound on

the minimum error probability based on the study of non-optimal Volterra

filters, which should provide insight to better optimize the readout process.

Another open problem is the accuracy, speed, and practicality of our

algorithms in reality, which will be subject to more specific experimental

requirements and hardware limitations [79]. In terms of speed, D’Anjou

et al. [99] proposed an adaptive decision scheme to speed up the readout

process. Instead of a likelihood ratio test at the end of an experiment,

their adaptive scheme involves setting an upper and lower threshold for

the likelihood ratio, and stopping the experiment once the likelihood ratio

reaches either one of the threshold. The decision then depends on whether

the likelihood ratio reaches the upper or lower threshold. D’Anjou et al.

have found that the average experimental duration can be as low as half of

the duration for the non-adaptive case, while maintaining the same error

probability.
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Chapter 4

Spectrum analysis with

quantum dynamical systems

Recent technological advances, especially in optomechanics [21], suggest

that quantum noise will soon be the major limiting factor in many metrolog-

ical applications [75]. Many tasks in optomechanics force sensing, includ-

ing thermometry, estimation of stochastic gravitational-wave background

[100, 101], and testing spontaneous wavefunction collapse [102, 103], involve

the spectrum analysis of a stochastic force, and the effect of quantum noise

on such tasks has been of recent interest [102, 103]. To study the quantita-

tive effect of experimental design on estimation accuracy, it is important to

use a rigorous statistical inference framework to investigate the parameter

estimation error. While there exist many theoretical studies of quantum

parameter estimation for thermometry (see, for example, Refs. [104–108]),

their application to more complex dynamical systems with broadband mea-

surements such as optomechanics remains unclear.

In this chapter, we propose a theoretical framework of spectrum-parameter

estimation with quantum dynamical systems, proving fundamental limits

and investigating measurement and data analysis techniques that approach

the limits. An outstanding feature of our work is the simple analytic results
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in terms of basic power spectral densities (PSDs) in the problem, such that

they can be readily applied to optics and optomechanics experiments. To

illustrate our theory, we analyze a recent experiment of continuous optical

phase estimation and demonstrate that the experimental performance us-

ing homodyne detection is close to our quantum limit. We further propose

a spectral photon counting method that can beat homodyne detection and

attain quantum-optimal performance for weak modulation and a coherent-

state input. The advantage is especially significant when the signal-to-noise

ratio (SNR) is low, thus demonstrating the importance of quantum-optimal

measurements and coherent optical information processing in the low-SNR

regime for gravitational-wave astronomy [26, 101, 109] and optical sensing

in general.

4.1 Quantum metrology

4.1.1 Parameter estimation

Consider a quantum dynamical system with Hamiltonian Ĥ[X, t] as a func-

tional of a c-number hidden stochastic process X(t), such as a classical

force. Assume that the prior probability measure of X(t) depends on a

vector of unknown parameters θ. Let Y be the quantum measurement out-

come and θ̌(Y ) be an estimator of θ using Y . The central error figure of

interest is the mean-square estimation error matrix, defined as

Σµν(θ) ≡ EY
{[
θ̌µ(Y )− θµ

] [
θ̌ν(Y )− θν

]}
, (4.1)

with EY denoting the expectation over the random variable Y . Our goal

here is to compute analytic results concerning Σ and discover quantum

measurement techniques that can accurately estimate θ.

For any unbiased estimator (EY (θ̂) = θ), the multiparameter Cramér-
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Rao bound states that

Σ ≥ j−1(pY ), (4.2)

where j(pY ) is the classical Fisher information matrix for a given likelihood

function pY [32]. For a quantum system, let ρ̂(θ) be a θ-dependent density

operator and Ê(y) be the POVM that models the measurement1, such that

pY (y|θ) = tr
[
Ê(y)ρ̂(θ)

]
, (4.3)

with tr being the operator trace. For dynamical systems, ρ̂(θ) can be

obtained using the principles of purification and deferred measurements

[9, 95, 110, 111]. For the purpose of spectrum-parameter estimation, we

model ρ̂ as

ρ̂(θ) = EX|θ
{
Û [X,T ]|ψ〉〈ψ|Û †[X,T ]

}
, (4.4)

where

Û [X,T ] = T exp

{
− i
~

∫ T

0

dtĤ[X, t]

}
(4.5)

is the unitary time-ordered exponential of Ĥ with total evolution time T ,

|ψ〉 is the initial quantum state, and the expectation is with respect to the

hidden process X(t), the prior probability measure of which depends on

θ. θ is called hyperparameters in this context [112]. For any POVM, a

quantum Cramér-Rao bound states that

j(pY ) ≤ J(ρ̂), (4.6)

where J(ρ̂) is the quantum Fisher information matrix with respect to the

1The definition of POVM here is slightly different than in the introductory chapter.
Here, we have

∫
Ω′ Ê(y)dy = Î
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symmetric logarithmic derivatives of ρ̂ [6, 7, 36].

4.1.2 Extended convexity

While quantum parameter estimation bounds for dynamical systems have

been studied previously in the context of low-dimensional systems such as

qubits (see, for example, Refs. [113–115]), J is much more difficult to evalu-

ate analytically for multimode high-dimensional dynamical systems under

continuous measurements. To proceed, we exploit a recently discovered

property of J known as the extended convexity [116], which states that

J(ρ̂) ≤ J {σ̂, pZ} ≡ EZ|θ [J (σ̂)] + j(pZ), (4.7)

where {σ̂, pZ} is any ensemble of ρ̂ with elements σ̂ and likelihood function

pZ such that ρ̂(θ) = EZ|θ[σ̂(Z|θ)].

The proof of extended convexity J ≤ J for one parameter in Ref. [116]

relies on the assumption that there exists an optimal POVM attaining

j = J . Such an assumption is questionable however [117], and here we use

instead the strong concavity of Uhlmann fidelity [9] to prove Eq. (4.7) for

multiple parameters. Let {σ̂, pZ} be an ensemble for ρ̂(θ) such that

ρ̂(θ) =

∫
dzpZ(z|θ)σ̂(z|θ). (4.8)

Define the Uhlmann fidelity as

F [ρ̂, ρ̂′] ≡ tr

√√
ρ̂ρ̂′
√
ρ̂. (4.9)

The strong concavity states that [9]

F [ρ̂(θ), ρ̂(θ′)] ≥
∫
dz
√
pZ(z|θ)pZ(z|θ′)

× F [σ̂(z|θ), σ̂(z|θ′)]. (4.10)
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To relate F to J , we use Eq. (2.59)

F [ρ̂(θ), ρ̂(θ + εu)] = 1− ε2

8
uµJµν(ρ̂)uν + o(ε2), (4.11)

where ε is a scalar, u is any real vector with the same dimension as θ (Ein-

stein summation is assumed throughout this chapter), and o(ε2) denotes

terms asymptotically smaller than ε2. Next we use the equivalent result in

classical statistics Eq. (2.45),

∫
dz
√
pZ(z|θ)pZ(z|θ + εu) = 1− ε2

8
uµjµν(pZ)uν + o(ε2). (4.12)

Expanding F [ρ̂(θ), ρ̂(θ′)] and F [σ̂(z|θ), σ̂(z|θ′)] in Eq. (4.10) using Eq. (4.11),

applying Eq. (4.12) to the right-hand side of Eq. (4.10), and comparing the

ε2 terms on both sides, we obtain

uµJµν(ρ̂)uν ≤ uµ
{
EZ|θ [Jµν(σ̂)] + jµν(pZ)

}
uν . (4.13)

Since this holds for any u, we obtain the matrix inequality in Eq. (4.7).

The classical simulation technique proposed in Ref. [118] can be regarded

as a special case of extended convexity when J(σ̂) = 0.

4.1.3 Dynamical systems

To compute simple analytic results for dynamical systems, we make further

assumptions. Assume that X(t) is zero-mean, Gaussian, and stationary,

with a PSD given by

SX(ω|θ) ≡
∫ ∞
−∞

dτEX|θ[X(t)X(t+ τ)] exp(iωτ). (4.14)
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For the quantum system, we assume that the Hamiltonian is of the form

Ĥ = Ĥ0 − Q̂X(t), (4.15)

where Q̂ is the quantum generator and Ĥ0 is the rest of the Hamiltonian.

For example, X(t) can be the classical force on a mechanical oscillator and

Q̂ can be the quantum position operator, as depicted in Fig. 4.1(a).

A modified purification technique can transform the problem in the

interaction picture and produce an alternative and possibly tighter bound

in terms of the optical statistics alone [111]. For an optomechanical system,

the Hamiltonian is of the form [21]

ĤOM = ĤM + ĤO + ĥ, (4.16)

where ĤM is the mechanical Hamiltonian, ĤO is the optical Hamiltonian,

and ĥ is the optomechanical interaction Hamiltonian. For example, if the

mechanical oscillator with position operator q̂ interacts with one cavity

optical mode with photon-number operator n̂, ĥ = −~g0n̂q̂, where g0 is

a coupling constant. A classical force f(t) on the mechanical oscillator

leads to a term −q̂f(t) in ĤM, and if we assume Û to be the time-ordered

exponential of ĤOM, f(t) can be regarded as the hidden process and q̂ the

generator.

In practice, measurements are made on the optics and not the mechanics

directly, so one is free to modify the purification [119] by applying any

mechanical unitary to the optomechanical one [111]. To be specific, let

ÛOM be the time-ordered exponential of ĤOM and ÛM be the time-ordered

exponential of ĤM. Since the POVM is not applied to the mechanics,

Û |ψ〉〈ψ|Û † with Û = Û †MÛOM is also a valid purification for a given force

[111]. Û becomes the time-ordered exponential of the interaction-picture
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Hamiltonian

Ĥ(t) = ĤO + ĥM(t), ĥM(t) ≡ Û †M(t)ĥÛM(t). (4.17)

For cavity optomechanics, ĥM(t) = −~g0n̂q̂M(t), where q̂M(t) is the interaction-

picture mechanical position. For a linear mechanical system, q̂M(t) =

q̂0(t)+X(t), where q̂0(t) is the operator-valued homogeneous component as

a function of the initial position and momentum operators and X(t) is the

c-number inhomogeneous component of the displacement due to the classi-

cal force. We can hence take X(t) to be the hidden process and Q̂ = ~g0n̂ to

be the generator, obtaining uncertainty relations between the displacement

errors and the photon-number fluctuations, as depicted in Fig. 4.1(b).

In general, this interaction-picture purification method can be applied

to any linear system with Hamiltonian of the form Ĥ0−Q̂X(t), where Q̂ is a

canonical coordinate operator and Ĥ0 is quadratic with respect to canonical

coordinates, as the effect of X(t) remains a displacement operation in any

interaction picture.

Figure 4.1(c) and (d) depict two other examples of Eq. (4.15) in the

context of optical phase modulation, in which case X(t) is the phase mod-

ulation on the optical beam and Q̂ is proportional to the photon-flux oper-

ator. Other examples include the magnetometer, where X(t) is an external

magnetic field and Q̂ is a spin operator [120], and the voltmeter, where

X(t) is an applied voltage and Q̂ is a charge operator.

4.1.4 Variational bound

As the extended convexity holds for any ensemble of ρ̂, tighter bounds can

be obtained by choosing the ensemble judiciously [116]. Instead of the

original ensemble given by Eq. (4.4), we define a new stochastic process
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(a)

(b)

(c)

Modulator

(d)

Figure 4.1: (Color online). Some examples of the hidden stochastic process
X(t) and generator Q̂. (a) X(t) is the classical force and Q̂ is the me-
chanical position, (b) X(t) is the c-number forced displacement and Q̂ is
proportional to the photon-number operator, (c) and (d) X(t) is the phase
modulation and Q̂ is proportional to the photon-flux operator.
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Z(t) by

X(t) =

∫ ∞
−∞

dτg(t− τ |θ)Z(τ), (4.18)

where g is an impulse-response function to be chosen later. ρ̂ can now be

expressed as

ρ̂(θ) = EZ|θ
{
Û [g ∗ Z, T ]|ψ〉〈ψ|Û †[g ∗ Z, T ]

}
, (4.19)

where ∗ denotes convolution. With

σ̂ = Û [g ∗ Z, T ]|ψ〉〈ψ|Û †[g ∗ Z, T ], (4.20)

this results in a family of ensembles {σ̂, pZ} parameterized by g for a given

ρ̂.

Assuming the Hamiltonian in Eq. (4.15), it can be shown that [110, 121]

Jµν(σ̂) =
4

~2

∫ T

0

dt

∫ T

0

dt′KQ(t, t′)

×
∫ ∞
−∞

dτ∂µg(t− τ |θ)Z(τ)

×
∫ ∞
−∞

dτ ′∂νg(t′ − τ ′|θ)Z(τ ′), (4.21)

where ∂µ ≡ ∂/∂θµ and KQ(t, t′) is the quantum covariance of the generator

in the Heisenberg picture, defined as

KQ(t, t′) ≡ Re
[
〈ψ|∆Q̂(t)∆Q̂(t′)|ψ〉

]
, (4.22)

∆Q̂(t) ≡ Q̂(t)− 〈ψ|Q̂(t)|ψ〉, (4.23)

Q̂(t) ≡ Û †(X, t)Q̂Û(X, t). (4.24)

We now assume that KQ(t, t′) is independent of X(t); such an assumption is

commonly satisfied in linear optomechanics and optical-phase-modulation
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systems. The expected J(σ̂) becomes

EZ|θ [Jµν(σ̂)] =
4

~2

∫ T

0

dt

∫ T

0

dt′KQ(t, t′)

×
∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′KZ(τ, τ ′|θ)

× [∂µg(t− τ |θ)] [∂νg(t′ − τ ′|θ)] , (4.25)

where

KZ(τ, τ ′|θ) ≡ EZ|θ [Z(τ)Z(τ ′)] (4.26)

is the prior covariance of Z(t). Assume further that the quantum statistics

of ∆Q̂(t) are stationary, with a PSD given by

SQ(ω) ≡
∫ ∞
−∞

dτKQ(t, t+ τ) exp(iωτ). (4.27)

The assumption of stationary processes and a long observation time T

(relative to all other time scales in the problem) is known as the SPLOT

assumption. Defining a transfer function as

G(ω|θ) ≡
∫ ∞
−∞

dtg(t|θ) exp(iωt), (4.28)

restricting G to be nonzero for all frequencies of interest, noting that the

PSD of Z(t) is SX/|G|2, and making the SPLOT assumption, Eq. (4.25)

can be rewritten as

EZ|θ [Jµν(σ̂)] = T

∫ ∞
−∞

dω

2π

4SQSX
~2

(∂µ lnG) (∂ν lnG∗) . (4.29)

The Fisher information j(pZ) can be obtained by applying Eq. (4.12) to the

Bhattacharyya distance between two stationary Gaussian processes [44].
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The result is

jµν(pZ) = T

∫ ∞
−∞

dω

2π

1

2

(
∂µ ln

SX
|G|2

)(
∂ν ln

SX
|G|2

)
. (4.30)

Combining Eqs. (4.29) and (4.30) according to Eq. (4.7), we obtain

uµJµνuν = T

∫ ∞
−∞

dω

2π

[
4SQSX

~2
|λ|2 +

1

2
(Λ− λ− λ∗)2

]
,

λ ≡ uµ∂µ lnG, Λ ≡ uµ∂µ lnSX . (4.31)

Since Eq. (4.31) is quadratic with respect to λ, the λ and thus G that

minimizes Eq. (4.31) for each u can be found analytically. Straightforward

algebra then leads to a variational upper bound on the quantum Fisher

information given by

J ≤ J̃ , J̃µν ≡ T

∫ ∞
−∞

dω

2π

(∂µ lnSX)(∂ν lnSX)

2 + ~2/(SQSX)
. (4.32)

This is the first main result of this chapter. Note that the quantum state

|ψ〉 need not be Gaussian for the result to hold.

For mechanical force measurements, the straightforward choice of the

Hamiltonian leads to SX being the force PSD and SQ being the mechani-

cal position PSD. For linear cavity optomechanics, the interaction-picture

purification technique explained in Sec. 4.1.3 leads to an alternative Hamil-

tonian such that SX is the PSD of the forced displacement and SQ is pro-

portional to the cavity photon-number PSD. For continuous optical phase

modulation [10, 122–124], SX is the phase PSD and SQ/~2 is the photon-

flux PSD. In all cases, the frequency-domain integral given by Eq. (4.32),

together with the matrix inequalities

Σ ≥ j−1 ≥ J−1 ≥ J̃ −1 (4.33)
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that follow from Eqs. (4.2), (4.6), and (4.32), represent a novel form of un-

certainty relations and indicate a nontrivial interplay between the classical

noise characterized by SX and a frequency-domain SNR given by SQSX/~2

in bounding the estimation error and the Fisher information quantities.

Note also that J̃ is proportional to the total time T , as are all the Fisher

information quantities we derive here. This means that a longer observa-

tion time can improve the parameter estimation even if the SNR is low, as is

well known in statistics [125] but missed by some of the previous quantum

studies [102, 103].

4.2 Continuous optical phase modulation

4.2.1 Error bounds

To illustrate our theory, consider the optics experiment depicted in Fig. 4.1(c)

or (d). An external stochastic source X(t), such as a moving mirror or an

electro-optic modulator, modulates the phase of a continuous optical beam,

which is then measured to obtain information about the source. The Hamil-

tonian is

Ĥ = ~Î(t)X(t), (4.34)

where Î(t) is the photon-flux operator, SX(ω|θ) is the source PSD, and

SI(ω) = SQ(ω)/~2 is the photon-flux PSD. This model also applies to

quantum optomechanics if the dynamics can be linearized around a strong

optical mean field and a suitable interaction picture is used, as discussed

in Sec. 4.1.3. The quantum limit given by Eq. (4.32) becomes

J̃µν = T

∫ ∞
−∞

dω

2π

(∂µ lnSX)(∂ν lnSX)

2 + 1/(SISX)
. (4.35)
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Equation (4.35) together with Eq. (4.33) represent an uncertainty relation

between the phase spectrum-parameter estimation error and the photon-

flux PSD.

We can compare our bound with the Fisher information for homodyne

detection, a standard experimental phase measurement method [10, 122–

124], as illustrated in Fig. 4.2(a). If the mean field is strong, and the

modulation is weak or tight phase locking is achieved, the output process

can be linearized as

Y (t) ≈ X(t) + η(t), (4.36)

where η(t) is the phase-quadrature noise. The information j(p
(hom)
Y ) can be

computed analytically if η is Gaussian and stationary with power spectral

density Sη(ω) such that Y is also Gaussian and stationary [44]; the result

with the SPLOT assumption is

jµν

(
p

(hom)
Y

)
= T

∫ ∞
−∞

dω

2π

(∂µ lnSX)(∂ν lnSX)

2(1 + Sη/SX)2
. (4.37)

The classical Cramér-Rao bound Σ ≥ j−1(p
(hom)
Y ) is asymptotically attain-

able for long T using maximum-likelihood estimation [125].

With the quadrature uncertainty relation

Sη(ω)SI(ω) ≥ 1

4
(4.38)

for the optical beam [19], the optimal homodyne information is

j
(
p

(hom)
Y

)
≤ j̃,

j̃µν ≡ T

∫ ∞
−∞

dω

2π

(∂µ lnSX)(∂ν lnSX)

2 + 1/(SISX) + 1/(8S2
IS

2
X)
. (4.39)

We can compare this homodyne limit with the quantum limit in Eq. (4.35);
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(a)

Local Oscillator

Filter

(b)

(c)

Modulator

Figure 4.2: (Color online). (a) Adaptive homodyne detection. (b) Spectral
photon counting with a diffraction grating and a lens. (c) Spectral photon
counting with an optical-resonator array.
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the expressions are similar, apart from a extra factor of 1/(8S2
IS

2
X) that

makes the homodyne limit strictly worse than our quantum limit, especially

if SISX is small.

4.2.2 Spectral photon counting

Although Eq. (4.33) sets rigorous lower bounds on the estimation error Σ,

there is no guarantee that the the error for any measurement can attain

the final bound J̃−1. Inspired by our previous work on astronomical quan-

tum optics [108, 126], here we analyze an alternative measurement that we

call spectral photon counting. Physically, it is simply a conventional opti-

cal spectrometer with photon counting for each spectral mode [127, 128].

The first step of spectral photon counting is the coherent optical Fourier

transform via a dispersive optical element, such as a diffraction grating or a

prism and a Fourier-transform lens [127] as depicted in Fig. 4.2(b), or an ar-

ray of optical ring resonators with different resonant frequencies coupled to

a cross grid of waveguides [129] as depicted in Fig. 4.2(c). The second step

is a measurement of the photon numbers in the spectral modes, and the fi-

nal step is a maximum-likelihood estimation of θ from the spectral photon

counting results. For the phase spectrum-parameter estimation problem

with weak modulation and a coherent-state input, this method turns out

to have an information j(p
(spc)
Y ) coinciding with J̃ for all parameters.

Let the positive-frequency electric field at the input of the phase mod-

ulator be

Ê(+)(t) = Â(t) exp(−iΩt), (4.40)

where Â(t) is an annihilation operator for the slowly varying envelope with
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commutation relation

[Â(t), Â†(t′)] = δ(t− t′), (4.41)

and Ω is the optical carrier frequency. With a strong mean field

α ≡ 〈ψ|Â(t)|ψ〉 (4.42)

and weak phase modulation, the output field can be linearized as

B̂(t) ≈ Â(t) + iαX(t). (4.43)

To model the optical Fourier transform, we follow Shapiro [127] to express

each frequency mode in terms of the mode annihilation operator as

b̂m =
1√
T

∫ T

0

dtB̂(t) exp(iωmt), (4.44)

with sideband frequencies

ωm =
2πm

T
, m ∈ {. . . ,−2,−1, 0, 1, 2, . . . } , (4.45)

and

[b̂m, b̂
†
n] = δmn. (4.46)

Assuming α to be time-constant,

b̂m ≈ âm + iαxm, (4.47)

where âm is the Fourier transform of Â(t) and xm is that of X(t) in the

same way as b̂m.

The strong mean field is contained in the m = 0 mode only, and if the
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spectrum of xm is wide, negligible information is lost if we neglect the m = 0

mode. The other modes are coherent states for a given displacement iαxm

if the input beam is a coherent state [127]. For a given xm, the photon-

counting distribution for n̂m ≡ b̂†mb̂m in each mode is therefore Poissonian

with mean |α|2|xm|2 and independent from one another.

Since X(t) is a hidden stochastic process, we must average the Poisso-

nian distribution over the prior of X(t) to obtain the final likelihood func-

tion. For a Gaussian X(t) with the SPLOT assumption, {xm;m > 0} are

independent complex Gaussian random variables with variances SX(ωm|θ)

[125], but since X(t) is real, the sidebands are symmetric with xm = x∗−m.

This means that, averaged over x, the photon numbers at opposite sideband

frequencies become correlated.

To simplify the analysis, suppose that, for each m > 0, we sum the

pair of measured photon numbers nm and n−m at opposite sidebands and

use a reduced set of measurement record {Nm ≡ nm + n−m;m > 0} for

estimation. It can be shown that each Nm is also Poissonian conditioned

on the mean 2|α|2|xm|2, but now they remain independent from one another

in the set after averaging over {xm;m > 0}.

With xm being complex Gaussian and Nm being conditionally Poisso-

nian with mean 2|α|2|xm|2, it can be shown that the marginal distribution

of Nm is a Bose-Einstein distribution [19] with mean number

N̄m = 2|α|2SX(ωm|θ). (4.48)

The Fisher information remains analytically tractable and is given by

jµν(p
(spc)
Y ) =

∑
m>0

(∂µ ln N̄m)(∂ν ln N̄m)

1 + 1/N̄m

. (4.49)

If we use the SPLOT assumption to replace
∑

m>0 with T
∫∞

0
dω/(2π)

[7] and use the symmetry of the integrand to replace T
∫∞

0
dω/(2π) with
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(T/2)
∫∞
−∞ dω/(2π), the Fisher information becomes

jµν

(
p

(spc)
Y

)
= T

∫ ∞
−∞

dω

2π

(∂µ lnSX)(∂ν lnSX)

2 + 1/(NSX)
, (4.50)

where N is the average input photon flux. Since SI(ω) = N for a coherent

state, Eq. (4.50) coincides with the quantum bound in Eq. (4.35). This

is the second main result of this chapter. Comparing Eq. (4.50) with the

homodyne limit given by Eq. (4.39), we can expect that spectral photon

counting becomes significantly better than homodyne detection when NSX

is small.

4.2.3 Ornstein-Uhlenbeck spectrum analysis

For a more specific example, consider the experiments in Refs. [122, 123],

which can be modeled as the continuous-optical-phase-modulation prob-

lem depicted in Fig. 4.1(d), with adaptive homodyne detection depicted in

Fig. 4.2(a) and X(t) given by an Ornstein-Uhlenbeck process. The PSD of

X(t) is

SX(ω|θ) =
2θ1θ2

ω2 + θ2
2

, (4.51)

where θ1 = EX|θ[X2(t)] is the area under SX and θ2 is the bandwidth.

The experimental SI can be assumed to be constant for all frequencies of

interest, and the quantum limit given by Eq. (4.35) on the estimation of θ1

and θ2 can be computed analytically:

J̃11 =
θ2T

8θ2
1

C√
1 + C/2

,

J̃22 =
2T

θ2

1 + C/4

C

(
1 + C/4√
1 + C/2

− 1

)
,

J̃12 = J̃21 =
T

2θ1

(
1 + C/4√
1 + C/2

− 1

)
, (4.52)
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where

C ≡ 8θ1SI
θ2

= 4SISX(0|θ) (4.53)

is an SNR quantity. For comparison, the homodyne limit given by Eq. (4.39)

is

j̃11 =
θ2T

8θ2
1

C2

(1 + C)3/2
,

j̃22 =
2T

θ2

1

C

[
(1 + C/2)(1 + 5C/4 + C2/8)

(1 + C)3/2

−
(

1 +
C

4

)]
,

j̃12 = j̃21 =
T

2θ1

[
1 + 3C/2 + C2/4

(1 + C)3/2
− 1

]
. (4.54)

For homodyne detection, C is an upper limit on the ratio between the peak

of SX and the homodyne noise floor Sη in the frequency domain.

Figure 4.3 plots the quantum (J̃ −1) and homodyne (j̃−1) bounds on the

estimation errors Σ11 and Σ22 versus C. Both plots show similar behaviors,

and the C � 1 and C � 1 limits are of special interest. In the high-SNR

regime (C � 1), both J̃ −1 and j̃−1 approach a C-independent limit:

lim
C→∞

J̃ −1 = lim
C→∞

j̃−1 =
2

θ2T

 θ2
1 −θ1θ2

−θ1θ2 θ2
2

 , (4.55)

and the homodyne performance is near-quantum-optimal. This asymptotic

behavior is different from that of the bounds for single-parameter estima-

tion, as both 1/J̃µµ and 1/j̃µµ scale as C−1/2 and decrease indefinitely for

increasing C. The matrix bounds thus demonstrate the detrimental effect

of having two unknown parameters that act as noise to each other. The

C-independent limits also suggest that, once an experiment is in the high-

SNR regime, no significant improvement can be made by increasing SI and
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reducing the noise floor via photon-flux increase, squeezing, or changing

the measurement method.

In the low-SNR regime (C � 1), on the other hand, it can be shown

that

J̃ −1 ≈ 8

θ2T
C−1

 θ2
1 0

0 2θ2
2

 , (4.56)

j̃−1 ≈ 16

θ2T
C−2

 θ2
1 θ1θ2

θ1θ2 2θ2
2

 , (4.57)

where the homodyne bounds on Σ11 and Σ22 diverge from the quantum

bounds by a large factor of 2/C � 1. The diverging bounds demonstrate

the importance of quantum-optimal measurement in the low-SNR limit: at

least for a coherent-state input and weak modulation, the quantum-optimal

performance of spectral photon counting can exhibit a superior error scaling

and offer significant improvements over homodyne detection.

4.2.4 Experimental data analysis

To compare our theory with actual experimental performance, we analyze

the data from the experiment reported in Ref. [122], which is in a high-SNR

regime (C ≥ 23.5) and the adaptive homodyne performance is expected to

be close to our quantum limit. We focus on the experiment with coher-

ent states and not the one with squeezed states reported in Ref. [123], as

Eqs. (4.55) imply that squeezing offers insignificant improvement in this

high-SNR regime.

The experiment reported in Ref. [122] used four different mean photon

fluxes N1 = 1.315 × 106 s−1, N2 = 3.616 × 106 s−1, N3 = 6.327 × 106 s−1,

N4 = 1.418× 107 s−1. For each photon flux Nk, Mk traces of X(t) and Mk

traces of Y (t) were recorded (M1 = 21, M2 = 23, M3 = 24, M4 = 27). Each

trace of Y (t) was obtained using a different feedback gain for the filter in
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Figure 4.3: (Color online). Log-log plots of the quantum limit J̃ −1 (in-
verse of Eqs. (4.52), black solid line) and homodyne limit j̃−1 (inverse of
Eqs. (4.54), blue dashed line) on the mean-square errors versus an SNR
quantity C ≡ 8θ1SI/θ2. Top plot: limits on Σ11 (normalized in a unit of
θ2

1/(θ2T )), bottom plot: limits on Σ22 (normalized in a unit of θ2/T ). No
measurement can achieve an error below the quantum limit (grey “forbid-
den” region), while the homodyne performance (blue “homodyne” region)
cannot go below the homodyne limit. For C � 1, the limits approach
constants, while for C � 1 the homodyne limit has a significantly worse
error scaling.
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the phase-locked loop, such that the phase locking might not be optimal.

The original purpose of varying the feedback gains was to demonstrate the

existence of an optimal filter for phase estimation in Ref. [122], but it is

also coincidentally appropriate in our present context, as θ1 and θ2 are

supposed to be unknown here and the optimal filter is not supposed to be

known. To make the data analysis tractable, we assume that the phase

locking remained tight even if the filter was suboptimal, such that we can

still use the linearized model

Y (t) = sin[X(t)− X̌(t)] + η(t) + X̌(t) ≈ X(t) + η(t), (4.58)

where X̌(t) is the feedback phase modulation on the local oscillator. Com-

parisons of the experimental X(t) with X̌(t) show that E[X(t)− X̌(t)]2 .

0.3 and the linearized model is reasonable. Most metrological experiments,

such as gravitational-wave detectors, deal with extremely weak phase mod-

ulation, so the linearized model is expected to be even more accurate

in those cases. Appendix B describes further calibrations to ensure that

Eq. (4.58) is accurate.

For any observation time T , the maximum-likelihood estimation can

be performed using an expectation-maximization algorithm [125, 130], but

our numerical simulations suggest that it is safe here to use a simpler and

faster method due to Whittle [131], which exploits the SPLOT assumption

to simplify the likelihood function. Consider a real discrete-time series

{Y (tl); l = 0, 1, . . . , L− 1} , tl = lδt, (4.59)

and zero-mean Gaussian statistics conditioned on θ. Define the discrete
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Fourier transform as

ym =
δt√
T

L−1∑
l=0

Y (tl) exp(iωmtl), ωm =
2πm

T
, (4.60)

with integer m and ym = y∗L−m. It can be shown that, with the SPLOT

assumption, the positive-frequency components {ym; 0 < m < L/2} are

independent zero-mean complex Gaussian random variables with variances

SY (ωm|θ) [125, 131]. This means that the log-likelihood function, up to a

θ-independent additive constant A, can be approximated as

ln pY ≈ A−
∑

0<m<L/2

[
lnSY (ωm|θ) +

|ym|2

SY (ωm|θ)

]
. (4.61)

Approximate maximum-likelihood estimation can then be performed by

Fourier-transforming the time series into {ym} and finding the parameters

that maximize Eq. (4.61). We use Matlabr and its fft and fminunc

functions to implement this procedure on a desktop PC. With T = 0.01 s

for each Y (t) trace, we expect the SPLOT assumption to be reasonable.

We also perform numerical simulations throughout our analysis to ensure

that our SPLOT and unbiased-estimator assumptions are valid and our

results are expected.

To prevent technical noise and model mismatch at higher frequencies

from contaminating our analysis, we consider only the spectral components

up to 6 × 105 rad/s ∼ 10θ2, rather than the full measurement bandwidth

π/δt = π × 108 rad/s. To estimate the true parameters more accurately,

we apply the Whittle method to the collective record of all
∑

kMk = 95

experimental X(t) traces, assuming the spectrum given by Eq. (4.51), and

obtain θ1 = 0.1323 and θ2 = 5.909 × 104 rad/s. We take these to be the

true parameters, as the estimates from such a large number of X(t) traces

are expected to be much more accurate than those from each Y (t) trace.

We apply the Whittle method to each Y (t) trace and evaluate the es-
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timation errors by comparing the estimates with the true parameters. For

each photon flux we assume a noise floor that is estimated from high-

frequency data, and then we estimate θ using spectral components of Y up

to ω = 6× 105 rad/s. Let the resulting estimates be

{
θ̌

(mk)
µk ;µ = 1, 2; k = 1, 2, 3, 4;mk = 1, . . . ,Mk

}
, (4.62)

where µ is the index for the two parameters, k is the index for the photon

fluxes, and mk is the index for the traces, and let the squared distance of

each estimate from the true parameter be

ε
(mk)
µk ≡

(
θ̌

(mk)
µk − θµ

)2

. (4.63)

ε
(mk)
µk can be regarded as an outcome for a random variable εµk, so we can

use the sample mean

ε̄µk ≡
1

Mk

Mk∑
mk=1

ε
(mk)
µk (4.64)

to estimate the expected error

Σµµ = EY (εµk). (4.65)

To find the deviation of the sample mean ε̄µk from the expected value, we

use an unbiased estimate of the variance of εµk, that is,

Vµk ≡
1

Mk − 1

Mk∑
mk=1

(
ε

(mk)
µk − ε̄µk

)2

, (4.66)

and divide it by the number of samples Mk. Our final results

{
ε̄µk ±

√
Vµk
Mk

;µ = 1, 2; k = 1, 2, 3, 4

}
(4.67)
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are plotted in normalized units in Fig. 4.4, together with the quantum

limit given by the inverse of Eqs. (4.52) and the homodyne limit given by

the inverse of Eqs. (4.54). The plots demonstrate estimation errors close

to both the homodyne limit and the fundamental quantum limit, despite

experimental imperfections such as imperfect phase locking.

4.3 Conclusion

We have presented three key results in this chapter: a measurement-independent

quantum limit to spectrum-parameter estimation, the optimality of spec-

tral photon counting, and an experimental data analysis. The quantum

limit applies to a wide range of experiments and is particularly relevant

to optomechanics, where the spectrum parameters of a stochastic force are

often of interest to gravitational-wave astronomy [26, 100–103, 109]. The

proposed spectral photon counting method will be useful whenever the

problem can be modeled as weak phase modulation of a coherent state and

the SNR is low. Most metrological experiments, including gravitational-

wave detectors, involve extremely weak phase modulation and low SNR, so

the potential improvement over homodyne or heterodyne detection with-

out the need of squeezed light is an important discovery. Our experimental

data analysis further demonstrates the relevance of our theory to current

technology and provides a recipe for future spectrum-analysis experiments.

There are many interesting potential extensions of our theory. Although

quantum baths can often be modeled classically, a generalization of our

formalism to account explicitly for nonclassical baths will make our the-

ory applicable to an even wider range of experiments. A generalization for

nonstationary processes and finite observation time will be valuable for the

study of unstable systems, which are potentially more sensitive than stable

systems [132]. Tighter quantum limits that explicitly account for decoher-
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Figure 4.4: (Color online). Log-log plots of the quantum limit J̃ −1 (in-
verse of Eqs. (4.52), black solid line), the homodyne limit j̃−1 (inverse
of Eqs. (4.54), blue dash line), and the experimental mean-square esti-
mation errors Σ versus the SNR quantity C ≡ 8θ1SI/θ2. Top plot: Ex-
perimental Σ11 = {4.0 ± 1.2, 2.0 ± 0.6, 2.0 ± 0.6, 4.4 ± 1.1} (in a unit of
θ2

1/(θ2T )) versus C = {23.5, 64.8, 113, 254}, compared with the homo-
dyne limit and the quantum limit. Bottom plot: Experimental Σ22 =
{8.7± 3.2, 4.4± 1.6, 5.2± 1.7, 6.4± 1.4} (in a unit of θ2/T ) versus the same
C values, compared with the homodyne limit and the quantum limit.
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ence may be derived by applying the techniques in Refs. [111, 118, 119].

A Bayesian formulation that removes the unbiased-estimator assumption

should be possible [32, 110, 111, 133, 134]. A more detailed study of

our theory in the context of optomechanics can serve as an extension of

Refs. [102, 103] and enable a more rigorous analysis of quantum limits to

testing wavefunction-collapse models. Application of our theory to spin

systems will provide a more rigorous foundation for stochastic magnetom-

etry [120].

The actual performance of spectral photon counting depends on the

bandwidth and spectral resolution of the Fourier-transform device, as well

as the quantum efficiency and dark counts of the photodetectors in practice.

While a more detailed analysis of such practical concerns is needed before

one can judge the realistic performance of spectral photon counting with

current technology, the large potential improvement in the low-SNR regime

indicates the fundamental importance of coherent optical information pro-

cessing for sensing applications and should motivate further technological

advances in coherent quantum optical devices [11–13, 108, 126, 135, 136]. In

the high-SNR regime, on the other hand, our theory and experimental data

analysis suggest that current technology can already approach the quantum

limits with homodyne or even heterodyne detection. In this regime, our

quantum limit primarily serves as a no-go theorem, proving that no other

measurement can offer significant improvement. The challenge for actual

metrological experiments will be to reach the high-SNR regime for weak

signals, in which case our theory should serve as a rigorous foundation to

guide future experimental designs.
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Chapter 5

Spectral analysis for quantum

stochastic processes

1In the previous chapter, we have studied the case where a quantum sys-

tem is used to measure the spectrum parameters of a classical stochastic

process. However, in a lot of cases, the system-bath interaction requires

a full quantum treatment, especially when the quantum system interacts

with a bath of quantum fields. Inspired by quantum optical experiments

[19–21], one of our main interests lies in studying the usage of cavity sys-

tem as a measuring device. In a lot of these experiments, the cavity field

is coupled to the continuous field outside the cavity, causing the cavity

field to leak through the mirrors. To describe such an interaction between

the cavity field and the continuous field, Gardiner and Collett developed

a quantum input-output formalism for optical systems [137, 138]. Under

this formalism, the Heisenberg equation of motion for a system operator

is in the form of a quantum Langevin equation, where the continuous field

serves as a quantum stochastic process driving the evolution of the system

operator. Thus, measurements performed on the cavity field can be used

to infer the properties of the quantum stochastic process.

As we have seen, the answer to the limit of estimation accuracy comes

1For notational simplicity, operators in this chapter are not denoted with a ‘hat’.
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in the form of quantum Cramér-Rao bound. The minimum mean-square

error of any estimator, independent of any measurements is given by the

inverse of quantum Fisher information. However, the direct evaluation of

the quantum Fisher information is often too difficult, and we will focus

on finding upper bounds for our problem. As seen in Chap. 4, we can

apply a variational method to the extended convexity of quantum Fisher

information [116] to find an upper bound if the stochastic process that

couples to the system is classical. However, such method is not applicable to

the case of a quantum stochastic process and generalization of the method

in Chap. 4 is needed.

We will start in Sec. (5.1) to introduce the modified extended convex-

ity of quantum Fisher information, which provides an upper bound on the

quantum Fisher information of interest. As we will model the bath statis-

tics with a special class of quantum Gaussian state, a quick reminder of

Gaussian quantum information [139, 140] will be given in Sec. (5.2). These

two sections form the core ideas of the method we use to derive our upper

bounds to the quantum Fisher information. Finally, we state explicitly the

model of quantum stochastic process we consider and present our results

in Sec. (5.3).

5.1 The modified extended convexity of quan-

tum Fisher information

Let us start with the Hilbert space H = HS ⊗HB, where HS is the system

Hilbert space while HB is the bath Hilbert space. We assume that the bath

degrees of freedom are not available to us. Measurements are performed on

the system degrees of freedom to infer properties of the bath. The density
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matrix of interest is given by the channel defined as

ρ(θ) = trB
[
UρS ⊗ ρB(θ)U †

]
, (5.1)

where ρS (ρB) is the initial system (bath) density matrix. The system-

bath interaction is specified by the unitary operator U on the system-

bath Hilbert space H. Although we are interested in the case where only

the initial bath density matrix depends on an unknown parameter θ, the

technique we present here would also be applicable when both ρB and U

depend on the parameter.

To follow the similar procedure as in Chap. 4, we first find a modified

convexity of quantum Fisher information for states given by Eq. (5.1),

which would provide an upper bound on the quantum Fisher information.

Inspired by the variational approach in Chap. 4 and [119, 141], we further

assume that the initial bath density matrix is ρB = tran(Utotρ
′
totU

†
tot) to

tighten the upper bound, where an stands for the ancilla degree of freedom

we introduced. A θ-dependent unitary operator Utot on the enlarged bath

Hilbert space Htot = HB ⊗Han is included to serve as the variable for the

variational approach. The upper bound specified by the modified extended

convexity of quantum Fisher information then depends on (ρ′tot,Utot) and

can be improved by minimizing over a selected class of (ρ′tot,Utot).

Given the assumption ρB = tran(Utotρ
′
totU

†
tot), the density matrix in

question is given equivalently by

ρ = trtot
[
ŨρS ⊗ ρ′totŨ †

]
, (5.2)

Ũ = U †totUUtot. (5.3)

Here, the unitary U acts on the system-bath Hilbert space H, while the

unitary Utot acts on the enlarged bath Hilbert space Htot. For our purpose,

let us consider ρ′tot =
∑

m pm(θ)|ψm〉〈ψm|, where {|ψm〉} is an orthogonal
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basis which does not depend on the unknown parameter. In that case, the

SLD Lµ for the bath density matrix ρ′tot is simply given by

Lµ =
∑
m

∂µ ln pm(θ)|ψm〉〈ψm|, (5.4)

where ∂µ = ∂
∂θµ

. Consider the purification of ρ′tot given by

|ρ′tot〉 =
∑
m

√
pm(θ)|ψm, φm〉, (5.5)

where {φm} is an orthogonal basis on the extra Hilbert space H ˜tot used to

purify ρ′tot. Let I ˜tot be the identity operator in H ˜tot, Lµ ⊗ I ˜tot solves the

following Lyapunov equation:

∂µ(|ρ′tot〉〈ρ′tot|) =
1

2
(Lµ ⊗ I ˜tot|ρ′tot〉〈ρ′tot|+ |ρ′tot〉〈ρ′tot|Lµ ⊗ I ˜tot), (5.6)

〈ρ′tot|Lµ ⊗ I ˜tot|ρ′tot〉 =
∑
m

∂µpm = 0. (5.7)

In other words, the operator Lµ⊗ I ˜tot is the SLD for the purification |ρ′tot〉.

Given this purification of ρ′tot, let us purify ρ by

|ρ〉 = Ũ |ρS〉|ρ′tot〉, (5.8)

where |ρS〉 is a purification of ρS in the space HS ⊗HS̃. For simplicity, we

write Ũ = Ũ ⊗ Ĩ where Ĩ is the identity operator in the combined ancilla

Hilbert space H̃ = HS̃ ⊗ H ˜tot. By the monotonicity of quantum Fisher

information under completely positive map2 [53, 54], the quantum Fisher

information J of the pure state |ρ〉 then sets an upper bound on J(ρ):

J ≥ J(ρ). (5.9)

2It’s easy to understand why this must be true: subsystem must always contains less
information than the total system.
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We now calculate the quantum Fisher information for the purification

|ρ〉. Instead of using the SLD, the quantum Fisher information for pure

states can also be calculated by using any nonsymmetric logarithmic deriva-

tives Lµ [142] satisfying

∂µ|ρ〉〈ρ| =
1

2
(Lµ|ρ〉〈ρ|+ |ρ〉〈ρ|L†µ),

tr(Lµ|ρ〉〈ρ|) = 0,

(5.10)

where the quantum Fisher information of the pure state |ρ〉〈ρ| is given by

the expression

Jµν(|ρ〉〈ρ|) =
1

2
tr
[
|ρ〉〈ρ|(L†µLν + L†νLµ)

]
. (5.11)

The following nonsymmetric logarithmic derivative satisfies the conditions

in Eqs. (5.10):

Lµ = Ũ [LUµ + Lµ]Ũ † (5.12)

LUµ = 2[Ũ †∂µŨ − tr(ρSρ
′
totŨ

†∂µŨ)]. (5.13)

Thus, the quantum Fisher information of pure state |ρ〉 is given by:

J = J U + J(ρ′tot),

J U
µν =

1

2
tr
[
ρSρ

′
tot(L

U†
µ L

U
ν + LU†ν L

U
µ )
]
,

Jµν(ρ
′
tot) =

1

2
tr [ρ′tot(LµLν + LνLµ)] .

(5.14)

The final bound on the quantum Fisher information J(ρ) is then given by

J = J U + J(ρ′tot) ≥ J(ρ). (5.15)

We call Eq. (5.15) the modified extended convexity of quantum Fisher infor-

mation for quantum channel defined by Eq. (5.1), where ρB = tran(Utotρ
′
totU

†
tot).
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The upper bound specified by Eqs. (5.14) and (5.15) can be further opti-

mized by choosing a family of (ρ′tot, Utot) satisfying ρB = tran(Utotρ
′
totU

†
tot)

and finding the particular doublet (ρ′tot, Utot) with the minimum J .

5.2 Gaussian bosonic systems

Before we discuss the selection of the family (ρ′tot, Utot), let us review some

concepts of Gaussian systems [139, 140]. Consider the Hilbert space HB of

N bosonic modes where the quadrature operators are given by qm and pm.

Define the 2N -vector of quadrature operators QT = (q1...qN , p1...pN), the

canonical commutation relation can be summarized as

[Qm, Qn] = iΩB,mn, (5.16)

ΩB =

 0 1

−1 0

⊗ IN , (5.17)

where IN is the N ×N identity matrix. It is customary to use the Wigner

quasiprobability distribution to describe the state of a bosonic system,

which is the Fourier transform of the Wigner characteristic function defined

as

φρB(z) = tr
(
ρBe

iQ>z
)
, (5.18)

where z is a 2N -vector.

A Gaussian state ρB is fully characterized by its mean and quantum

covariance matrix, defined as

Q̄B,m = tr(ρBQm), (5.19)

αB,mn =
1

2
tr(ρB{Qm, Qn}), (5.20)

where {Qm, Qn} = QmQn+QnQm is the anticommutator. On top of being

a real symmetric matrix, the quantum covariance matrix must also satisfy
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the uncertainty relation αB + i
2
ΩB ≥ 0. The Wigner characteristic function

of a Gaussian state is a Gaussian parametrized by Q̄B and αB:

φρB(z) = exp

(
iQ̄>Bz −

1

2
z>αBz

)
. (5.21)

Consider a Hamiltonian quadratic in terms of the quadratures H(A) =

Q>AQ where A is a real symmetric matrix, we have the following unitary

transformation

eiH(A)tQ>e−iH(A)t = Q>DA, (5.22)

DA = exp(−2AΩBt). (5.23)

Therefore, under the action of the unitary U = e−iH(A)t, the Gaussian

state ρB transforms into another Gaussian state UρBU
†, with the mean

D>AQ̄B and quantum covariance matrix D>AαBDA. Futhermore, since uni-

tary transformations must preserve the commutator, DA must be a sym-

plectic transformation which satisfies

D>AΩBDA = ΩB. (5.24)

If we consider only Gaussian states and Gaussian unitaries, we can focus

on the symplectic space ZB, which is a R2N vector space equipped with

the symplectic form ΩB. Gaussian states can then be represented on the

symplectic space, and Gaussian unitaries are symplectic transformations

DA
3. If we introduce new bosonic modes, and call the extra Hilbert space

Han, the resulting Hilbert space would be Htot = HB

⊗
Han, whereas the

total symplectic space becomes Ztot = ZB
⊕

Zan, and the total symplectic

form is given by Ωtot = ΩB ⊕ Ωan.

Consider the case where ρB is a zero mean Gaussian state, that is Q̄B =

3We have ignored Hamiltonians linear in terms of the quadratures, which correspond
to displacements of the mean.
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0. We can always find a Gaussian state ρtot in a larger Hilbert space such

that ρB = tran(ρtot). This is best understood by considering the Wigner

characteristic function:

φρB(z) = trtot

(
ρtote

iQ>
totztot

)∣∣∣
ztot=(z>,0)>

= φρtot(ztot)|ztot=(z>,0)> ,

where Qtot = Q⊕Qan is the quadrature vector in the enlarged space. Thus,

the covariance matrix of ρtot must be in the form

αtot =

 αB β

β> αan

 , (5.25)

where αtot satisfies the uncertainty relation αtot+
i
2
Ωtot ≥ 0. For simplicity,

we shall assume that the ancilla Hilbert space has the same dimension as

the Hilbert space HB, hence Ωan = ΩB.

In order to facilitate future discussions, let us consider ρB = tran(ρtot)

and

ρtot = exp(−iHtot)(ρ
′
1 ⊗ ρ′2) exp(iHtot), (5.26)

Htot = Q>totAtotQtot, (5.27)

Atot =
1

2



0 0 0 g

0 0 g> 0

0 g 0 0

g> 0 0 0


, (5.28)

where g is a real matrix. Assume that ρ′j is a Gaussian state with covariance
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matrix given by the block matrix

α′j =

 α′j,R −α′j,I

α′j,I α′j,R

 , (5.29)

α′>j,R = α′j,R, α′>j,I = −α′j,I ,

the covariance matrix αtot can be calculated from the equations:

αtot = D>tot(α
′
1 ⊕ α′2)Dtot, (5.30)

Dtot = exp(−2AtotΩtot). (5.31)

The matrix Dtot and its inverse can be evaluated explicitly:

Dtot =



C 0 S 0

0 C> 0 −S>

S 0 C 0

0 −S> 0 C>


, (5.32)

D−1
tot =



C 0 −S 0

0 C> 0 S>

−S 0 C 0

0 S> 0 C>


, (5.33)

S ≡ sinh(g), C ≡ cosh(g). (5.34)

Therefore, we can relate the covariance matrices of ρB and ρan = trB(ρtot)

to the covariance matrix of ρ′j:

αB =

 C>α′1,RC + S>α′2,RS −C>α′1,IC> + S>α′2,IS
>

Cα′1,IC − Sα′2,IS Cα′1,RC
> + Sα′2,RS

>

 ,

αan =

 S>α′1,RS + C>α′2,RC S>α′1,IS
> − C>α′2,IC>

−Sα′1,IS + Cα′2,IC Sα′1,RS
> + Cα′2,RC

>

 .

(5.35)
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Note that since αB is given by the problem, by our constructions we

assumed that the bath state ρB is a zero mean Gaussian state with covari-

ance matrix as given in Eqs. (5.35). In other words, αB is decomposable

in terms of matrix g (which specifies the unitary Utot) and the covariance

matrix α′j. The bound in Eq. (5.15) can then be minimized by varying the

matrices g and α′j while keeping αB fixed to obtain a tighter bound.

5.3 Upper bounds on the Quantum Fisher

information for quantum stochastic pro-

cesses

Let us assume the total Hamiltonian

H = HS +HB +Hint, (5.36)

HB = ~
∫ ∞
−∞

dω ωb†(ω)b(ω), (5.37)

Hint = ~
√

γ

2π

∫ ∞
−∞

dω
[
c†b(ω) + (ω)cb†(ω)

]
, (5.38)

where c is an operator in the system’s Hilbert space HS, b(ω) is the annihi-

lation operator in the bath’s Hilbert space HB which satisfies the commu-

tation relation [b(ω), b†(ω′)] = δ(ω− ω′). The above Hamiltonian was used

originally by Gardiner and Collett to describe an input-output theory for

damped quantum system [137, 138], where the bath annihilation operator

b(ω) serves as quantum noise driving the evolution of a quantum system.

Going into interaction picture using U0(t, t0) = e−i(HS+HB)(t−t0), we obtain

the interaction picture propagator describing the evolution under the total

Hamiltonian:

U(t, t0) = T exp
[
− i√γ

∫ t

t0

(
c†0(t′)b(t′) + c0(t′)b†(t′)

)
dt′
]
, (5.39)
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where

c0(t) ≡ U †0(t, t0)cU0(t, t0) = e
i
~HStce−

i
~HSt, (5.40)

b(t) ≡ 1√
2π

∫ ∞
−∞

dωb(ω)e−iω(t−t0), (5.41)

[b(t), b†(t′)] = δ(t− t′). (5.42)

In order to simplify the problem, we assume that c† = c and write d =

√
2γc, the propagator becomes

U(t, t0) = T exp
[
− i
∫ t

t0

d0(t′)x(t′)dt′
]
,

x(t) =
1√
2

[
b(t) + b†(t)

]
.

(5.43)

The quantum operator x(t) can now be interpreted as a quantum stochas-

tic process playing the part of the classical process X(t) in the previous

chapter.

Assuming an initial product state, the density matrix of interest is given

by

ρ̃(θ) = trB
[
e−

i
~H(tf−t0)ρS ⊗ ρB(θ)e

i
~H(tf−t0)

]
, (5.44)

where only the initial bath density matrix ρB depends on the unknown

parameter θ. We go into the interaction picture described above, and study

the interaction picture density matrix, which is

ρ(θ) = trB
[
U(tf , t0)ρS ⊗ ρB(θ)U †(tf , t0)

]
. (5.45)

Instead of the quantum white noise statistics assumed in the original for-

mulation by Gardiner and Collett, we assume the bath state to be a con-

tinuous version of the Gaussian states in Eq. (5.35). We will dedicate the

next subsection to describe the bath density matrix ρB.
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5.3.1 A family of bath states ρtot such that ρB = tran(ρtot)

In order to apply the theory in Sec. (5.1), first, we need to describe a family

of Gaussian bath states ρtot = Utotρ
′
totU

†
tot such that ρB = tran(ρtot). As we

are now working with bosonic fields instead of discrete bosonic modes, we

need to extend the construction in Sec. (5.2). From now on, let us relabel

HB as HB1 and Han as HB2 . We assume that HB2 is a Hilbert space

with similar structures as HB1 , i.e. there are field operators satisfying

[b2(t), b†2(t′)] = δ(t − t′). The field operator b(t) will be relabeled as b1(t)

while ρ1 = ρB is the bath density matrix of interest and ρ2 = trB1(ρtot)

is the reduced density matrix of ρtot on the space of HB2 . Let us assume

that ρtot = Utotρ
′
1⊗ ρ′2U

†
tot where ρ′j is a Gaussian state with density matrix

given by

ρ′j = exp
[
−
∫ ∞
−∞

dt

∫ ∞
−∞

dt′G′j(t− t′)b
†
j(t)bj(t

′)
]
Z ′j (5.46)

where Z ′j is a normalization constant4. Under finite time approximation,

ρ′1 ⊗ ρ′2 is indeed diagonal in the discrete Fourier modes5, therefore the

theory of Sec. (5.1) can be applied. Let Qj(t) be a vector of the field

operator bj(t)

Qj(t) =

 xj(t)

pj(t)

 =

 1√
2

(
bj(t) + b†j(t)

)
1√
2i

(
bj(t)− b†j(t)

)
 (5.47)

and define the Fourier transform by:

G′j(ω) =

∫ ∞
−∞

dtG′j(t)e
−iωt, (5.48)

4In terms of bj(ω) the bath state is given by ρ′j = Z ′j exp[−
∫∞
−∞G′j(ω)b†(ω)b(ω)dω],

where G′j(ω) =
∫∞
−∞G′j(t)e

−iωtdt
5See Appendix C
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the quantum covariance matrix α′j of ρ′j, defined as

α′j,mn(t, t′) =
1

2
tr
(
ρB{Qj,m(t), Qj,n(t′)}

)
, (5.49)

is completely characterized by a complex function K ′j(t) satisfying K ′j(t) =

K ′∗j (−t). The quantum covariance matrix is given by

α′j(t, t
′) =

 <{K ′j(t− t′)} −={K ′j(t− t′)}
={K ′j(t− t′)} <{K ′j(t− t′)}

 ,

K ′j(t) =
1

4π

∫ ∞
−∞

dω coth
G′j(ω)

2
eiωt,

(5.50)

where < and = denote the real part and imaginary part of a complex

number. We note that the above covariance function is the continuous-

time version of Eqs (5.29). See Appendix C for the proof that Eq. (5.46)

leads to Eqs. (5.50).

The unitary Utot is chosen to be the continuous-time analogue of exp(−iHtot)

as in Sec. (5.2), where matrix multiplications become time integrals. For

example,

g2 →
∫ ∞
−∞

dt1g(t− t1)g(t1 − t′). (5.51)

The action of Utot on the quadratures is given by

U †totQ
>(t)Utot =

∫ ∞
−∞

dt′Q>(t′)D(t′, t),

D(t, t′) =



C(t, t′) 0 S(t, t′) 0

0 C(t′, t) 0 −S(t′, t)

S(t, t′) 0 C(t, t′) 0

0 −S(t′, t) 0 C(t′, t)


,

(5.52)

where Q(t) = Q1(t)⊕Q2(t). The real functions C(t, t′) and S(t, t′) are de-

fined in terms of a real function g(t, t′), analogous to Eq. (5.34). Assuming

that g(t, t′) = g(t− t′), they can be given in terms of the Fourier transform
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of g(t):

C(t− t′) =
1

2π

∫ ∞
−∞

dω cosh g(ω)eiω(t−t′), (5.53)

S(t− t′) =
1

2π

∫ ∞
−∞

dω sinh g(ω)eiω(t−t′). (5.54)

The functions C(t− t′) and S(t− t′) satisfy the following useful properties

∫ ∞
−∞

dt1[C(t− t1)C(t1 − t′)− S(t− t1)S(t1 − t′)] = δ(t− t′), (5.55)∫ ∞
−∞

dt1[C(t− t1)S(t1 − t′)− S(t− t1)C(t1 − t′)] = 0, (5.56)

which can be checked in the frequency domain. As shown in Sec. (5.2),

the transformation D(t − t′) describes a symplectic transformation which

transforms the Gaussian state ρ′1⊗ρ′2 into another Gaussian state ρtot. The

quantum covariance matrix for ρtot is given by

αtot,σν =
∑
k,m

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2Dkσ(t1 − t)α′km(t1 − t2)Dmν(t2 − t′), (5.57)

where α′ = α′1 ⊕ α′2. This equation and the triplet g(t), K ′1(t) and K ′2(t)

then define the density matrix ρtot where ρ1 = trB2(ρtot) as needed. The

covariance matrix of ρ1 is given in terms of g(t), K ′1(t) and K ′2(t) analo-

gous to Eqs. (5.35), hence we can vary the triplet g(t), K ′1(t) and K ′2(t)

while keeping ρ1 fixed to tighten the quantum Fisher information bound

Eq. (5.15) by using the technique in Sec. (5.1). We first calculate the upper

bound Eq. (5.15).
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5.3.2 Upper bound on the quantum Fisher informa-

tion

For Utot specified by Eqs. (5.52), Ũ in Eqs. (5.3) is given by

Ũ = T exp[−i
∫ tf

t0

d0(t)x′1(t)dt],

x′1(t) = U †totx1(t)Utot =

∫ ∞
−∞

dt1[C(t1 − t)x1(t1) + S(t1 − t)x2(t1)].

(5.58)

To calculate the partial derivatives of Ũ , we first discretize the time axis

into N − 1 equal segments. Ũ becomes

Ũ =
N−1∏
j=0

Ũj,

Ũj = exp
[
− id0(tj)x

′
1(tj)δt

]
.

(5.59)

To get the partial derivatives of Ũ , it is then sufficient to calculate the

partial derivatives of exponential Ũj, given by

∂µŨj =
[
− iδtd(tj)∂µx

′
1(tj)

]
Ũj, (5.60)

∂µŨ is then given by taking the continuous time limit δt→ 0, the result of

which is similar to the one in [110]:

∂µŨ = −iŨ
∫ tf

t0

hµ(t)dt, (5.61)

hµ(t) = U †totdH(t)Utot∂µx
′
1(t), (5.62)

dH(t) = U †(t, t0)d0(t)U(t, t0). (5.63)

Here, dH(t) is the Heisenberg picture of the operator d, before the trans-

formation Utot. Eq. (5.13) is then given by

LUµ = −2i

∫ tf

t0

[
hµ(t)− tr

(
ρSρ

′
1 ⊗ ρ′2hµ(t)

)]
. (5.64)
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To proceed, we assume that dH(t) is an operator in HS, hµ(t) becomes

a zero mean process. We note that this assumption is more restrictive than

the assumptions made in the last chapter, however, it is still applicable to

situations such as pure dephasing systems and continuous phase modula-

tion. The unitary part of the bound on Fisher information in Eq. (5.15)

can then be calculated as:

J U
µν =

4

∫ tf

t0

dt

∫ tf

t0

dt′
∫ ∞
−∞

dt1

∫ ∞
−∞

dt2Rd(t, t
′)∂µg(t1 − t)R2(t1, t2)∂νg(t2 − t′),

Rd(t, t
′) =

1

2
tr(ρS{dH(t), dH(t′)}),

Rj(t, t
′) =

1

2
tr(ρtot{xj(t), xj(t′)}).

(5.65)

We further assume that the experiment duration tf − t0 must be long

compared to all timescales of the problem. To calculate the minimum

bound, we assume that dH(t) is a stationary process and make a finite time

approximation by first letting t0 = −T/2 and tf = T/2, then take the long

time limit T → ∞. In terms of the unnormalized Fourier components of

function f(t)

fm =

∫ T/2

−T/2
f(t)e−i

2π
T
mt, (5.66)

J U
µν is given by

J U
µν = 4

∑
m

Rd,mR2,m∂µgm∂νg
∗
m, (5.67)

On the other hand, the quantum Fisher information of state ρ′j is given

by6:

Jµν(ρ
′
j) =

∂µK
′
j,m∂νK

′
j,m

K ′2j,m − 1/4
. (5.68)

6The calculation of the quantum Fisher information is given in Appendix C
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Hence, the quantum Fisher information bound J in Eq. (5.15) becomes

J(ρ) ≤ J ,

Jµν =
∑
m

[
4Rd,mR2,m∂µgm∂νg

∗
m +

∑
j=1,2

∂µK
′
j,m∂νK

′
j,m

K ′2j,m − 1/4

]
. (5.69)

To obtain a tighter upper bound on the quantum Fisher information

by varying Utot and ρ′j while keeping ρ1 fixed, we will first need to express

Eq. (5.69) in terms of the covariance matrix of ρ1. For simplicity, we will

assume that K ′j,m = K ′j,−m, as a result the function K ′j(t) does not have an

imaginary part and equals a real function

R′j(t, t
′) =

1

2
tr(ρ′{xj(t), xj(t′)}). (5.70)

We first study the symmetric case where g(t) = g(−t).

5.3.3 Tightening the upper bound for the symmetric

case

When we have a symmetric g(t), from Eqs. (5.35) and (5.57),

R1,m = C2
mR

′
1,m + S2

mR
′
2,m,

R2,m = C2
mR

′
2,m + S2

mR
′
1,m.

(5.71)

To simplify the analysis, we first assume that R′1,m = R′2,m, as a result

R2,m = R1,m. Eq. (5.69) can then be expressed in terms of R1,m and the

free variable gm instead of the primed variables. As Eq. (5.69) is a matrix

inequality, a tighter bound Jtight on the quantum Fisher information is

given by the matrix inequality Jtight < J . Hence, to obtain such a tighter

upper bound it is necessary to minimize F = aµaνJµν for all vector aµ,

while varying gm. We note that it is not necessary to find a single g(t) that

would minimize the bound for all values of θ. The minimization process
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can be done by first assuming that the true value is θ = θ0, and repeat the

process for other values of θ. Hence, the problem of minimizing the above

bound can then be reduced to optimization problem involving the variables

gm and ∂µgm. Defining the following new variables:

Am = aµ∂µ lnR1,m, (5.72)

Bm = aµ∂µ lnχm, (5.73)

Rm = Rd,mR1,m, (5.74)

χm = C2
m + S2

m = cosh2 gm + sinh2 gm, (5.75)

F is given by

F =
∑
m

8R2
1,m(Am −Bm)2

4R2
1,m − χ2

m

+
Rmχ

2
mB

2
m

χ2
m − 1

. (5.76)

Since F contains a sum of functions in (Bm, χm), they can be minimized

independently for different m. The problem of minimizing F becomes

an optimization problem in terms of the variables (χm, Bm). The critical

points are the roots of the simultaneous equations ∂F
∂χm

= 0 and ∂F
∂Bm

= 0,

where the minimum point is given by

χm = 4

√
8R1,m

Rd,m

, (5.77)

Bm =
8R2

1,m(χ2
m − 1)Am

8R2
1,m(χ2

m − 1) +Rmχ2
m(4R2

1,m − χ2
m)
. (5.78)

In order for χm to describe a valid unitary transformation, we have to make

sure R′1,m ≥ 1
2

so that the uncertainty principle is respected. Together

with the properties of hyperbolic functions which give us the requirement

χm ≥ 1, we have the following contraint on Rd,m:

1

2R3
1,m

≤ Rd,m ≤ 8R1,m. (5.79)
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We note that in the limit of large R1,m there is effectively no constraint on

Rd,m as the L.H.S. goes to zero while the R.H.S. scales with R1,m. Thus

this bound should be useful in the classical bath regime where R1,m is large.

Assuming that the constraint is fulfilled, the best bound is given by

J (1)
µν =

∑
m

∂µ lnR1,m∂ν lnR1,m

1
2

+ 1
R1,mRd,m

− 1

R1,m

√
2R1,mRd,m

(5.80)

= T

∫ ∞
−∞

dω

2π

∂µ lnR1(ω)∂ν lnR1(ω)
1
2

+ 1
R1(ω)Rd(ω)

− 1

R1(ω)
√

2R1(ω)Rd(ω)

, (5.81)

where the second line is obtained by making the long observation time limit∑
m → T

∫∞
−∞

dω
2π

. See Appendix D for proof that this bound is minimum.

Instead of having R′2,m = R′1,m, it is possible to obtain another bound

by assuming that ρ′2 does not depend on θ and R′2,m = 1
2
. Again, we express

J in terms of R1,m and gm. From Eq. (5.69), F becomes

F =
∑
m

Rd,mB
2
m

2

(
2R1,m + 1 +

χm
χm − 1

)
+

(2R1,m + 1)(Am −Bm)2

2R1,m + 1− 2χm
,

(5.82)

where we have redefined the following variables:

Am = aµ∂µ ln

(
R1,m +

1

2

)
, (5.83)

Bm = 2aµ∂µ ln cosh gm, (5.84)

χm = C2
m = cosh2 gm. (5.85)

Repeating the procedures as in the case where R′2,m = R′1,m, we obtain the

minimum point at

χm =
1

2(R1,m + 1)

(
2R1,m + 1 +

√
2R1,m + 1

Rd,m

)
, (5.86)

Bm =
HmAm
Hm +Gm

, (5.87)
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where

Hm = 2(χm − 1)(2R1,m + 1), (5.88)

Gm = Rd,m(2R1,m + 1− 2χm)[2(R1,m + 1)χm − (2R1,m + 1)]. (5.89)

Imposing the uncertainty principle R′1,m+ 1
2

=
R1,m+ 1

2

χm
≥ 1 and χm ≥ 1, the

constraints on the value of χm is given by

1

R2
1,m(2R1,m + 1)

≤ Rd,m ≤ 2R1,m + 1. (5.90)

The constraint behaves similarly as in the case of R′2,m = R′1,m when R1m �

1. Assuming that χm obey the above inequality, the minimized bound is

given by

J (2)
µν =

∑
m

∂µ ln(R1,m + 1
2
)∂ν ln(R1,m + 1

2
)

1 + 1
R1,mRd,m

− 2

R1,m

√
Rd,m(2R1,m+1)

(
1 +

1

R1,m

)
(5.91)

= T

∫ ∞
−∞

dω

2π

∂µ ln(R1(ω) + 1
2
)∂ν ln(R1(ω) + 1

2
)

1 + 1
R1(ω)Rd(ω)

− 2

R1(ω)
√
Rd(ω)(2R1(ω)+1)

(
1 +

1

R1(ω)

)
, (5.92)

where we have also taken the long observation time limit in the second line.

The proof for minimality is also in Appendix D.

5.3.4 Tightening the upper bound for the antisym-

metric case

Lastly, we find another bound by assuming that g(t) is antisymmetric where

g(−t) = −g(t). In this case, we have

R1,m = C2
mR

′
1,m − S2

mR
′
2,m, (5.93)

R2,m = C2
mR

′
2,m − S2

mR
′
1,m. (5.94)
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First, we note that if we assume R′1 = R′2, we have R1 = R2 = R′1. This

is uninteresting as J(ρ1) = J(ρ′j) and J U ≥ 0. The minimum bound is

then given by the case where ∂µg(t− t′) = 0 and J U = 0. The best bound

on the quantum Fisher information is then simply the quantum Fisher

information of the initial bath density matrix, J(ρ1). We proceed to the

case where R′2,m = 1/2. Redefining the new variables

Am = aµ∂µ ln

(
R1,m −

1

2

)
, (5.95)

Bm = 2aµ∂µ lnCm, (5.96)

χm = C2
m = cosh2 gm, (5.97)

F is given by

F =
∑
m

Rd,mB
2
m

(
R1,m −

1

2
− χm

2(χm − 1)

)
+

4(R1,m − 1
2
)(Am −Bm)2

4(R1,m − 1
2

+ χm
2

)2 − χ2
m

.

(5.98)

The critical points are similarly given by the solutions of the simultaneous

equations ∂F
∂Bm

= 0 = ∂F
∂χm

, where the minimum point is given by

χm =
1

2(R1,m − 1)

(
2R1,m − 1−

√
2R1,m − 1

Rd,m

)
, (5.99)

Bm =
HmAm
Hm +Gm

, (5.100)

where

Hm = 2(χm − 1)(2R1,m − 1), (5.101)

Gm = Rd,m[2R1,m − 1 + 2χm][(2R1,m − 1)(χm − 1)− χm]. (5.102)

We give the proof that this critical point is a minimum point when R1,m > 1

in the Appendix. χm is a valid transformation when 0 ≤ χm ≤ 1, or
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equivalently when

1

2R1,m − 1
≤ Rd,m ≤ 2R1,m − 1. (5.103)

We note that the uncertainty relation on R′1,m does not impose new con-

straint to the problem. Similar to the symmetric case, the bound should

be most useful when R1,m � 1. Assuming that the constraints on Rd,m is

met, the minimum bound is then given by

J (3)
µν =

∑
m

[∂µ ln(R1,m − 1/2)][∂ν ln(R1,m − 1/2)]

1 + 1
R1,mRd,m

− 2

R1,m

√
Rd,m(2R1,m−1)

(
1− 1

R1,m

)
, (5.104)

= T

∫ ∞
−∞

dω

2π

[∂µ ln(R1(ω)− 1/2)][∂ν ln(R1(ω)− 1/2)]

1 + 1
R1(ω)Rd(ω)

− 2

R1(ω)
√
Rd(ω)(2R1(ω)−1)

(
1− 1

R1(ω)

)
.

(5.105)

5.4 Discussion and Conclusion

We proposed a generalization of our results in Chap. 4 to the case where the

stochastic process X(t) is replaced by a quantum stochastic process x(t).

We assumed that the statistics of x(t) is given by a quantum Gaussian

state, where its power spectral density depends on some unknown parame-

ters. Because of the assumption we made on dH(t), the applicability of our

bounds is more limited than the one in Chap. 4. Nevertheless, it should

be applicable for pure dephasing models as well as continuous phase mod-

ulation problems, where the noise is of quantum origin. A possible future

direction is to study whether the assumption on dH(t) can be lifted to

include more complex systems. It would also be interesting to make com-

parisons between our theory and experiments, as well as study experiment

methods and conditions to reach the quantum bounds we derived.

On the other hand, we followed a modified variational approach which

is similar to the one in Chap. 4 to derive our upper bounds. The main
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ingredient of our recipe is the modified extended convexity for the channel

defined in Eq. (5.1) and a variational procedure based on equivalent fam-

ilies of Eq. (5.1). By considering three different families, we found three

different upper bounds to the quantum Fisher information. A price to pay

for going from a classical bath to a quantum bath is that the quantum

bath must satisfy the Heisenberg uncertainty principle. This requirement

is manifested in the conditions in which our derived bounds are valid and

it is interesting to see whether upper bounds that don’t suffer from these

limitations exists.

We have assumed the simplified evolution given by Eq. (5.43) through-

out this chapter. However, the more general evolution in Eq. (5.39) is

more suitable to describe the case of quantum dissipation [19, 138]. Hence,

more efforts should be invested into studying quantum Fisher information

bounds for these models. The main difficulty lies in taking the deriva-

tive of the time-ordered exponential Ũ , which now contains time-integrals

that do not commute. A discrete time approximation like the one we used

in Eqs. (5.59) can be applied. However, care must be taken as the time

integral now involves field operator b(t) which has a delta function com-

mutator. After making the appropriate discrete time approximation, the

time-ordered exponential should be given in terms of multiplications of ex-

ponential operators as in Eq. (5.59). The method of taking derivatives of

an exponential operator found in [143] can then be used to evaluate the

derivative of Ũ .
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Chapter 6

Thesis conclusion

In this thesis, we studied detection and estimation theory for continuously

measured quantum systems. We will give an overall summary in this chap-

ter, and conclude the thesis with a discussion of future outlook.

6.1 Summary

To start our discussions, we gave a review of theoretical backgrounds in

Chap. 2. We introduced the readers to stochastic calculus, in particular

the Itô calculus, which is widely used to analyze stochastic processes. We

gave an account of various concepts of detection and estimation theory,

for example, the likelihood ratio tests and the Fisher information. We

highlighted the goal of detection and estimation theory, which is to ex-

tract information by improving the data analysis process and optimizing

experimental techniques.

We presented the first problem we studied in Chap. 3, where we ex-

plored the qubit readout problem of determining the initial state of a con-

tinuously measured qubit. In contrast to earlier studies, we considered two

different noise models, namely the Gaussian and Poissonian noise mod-

els. The qubit readout problem is framed as a hypothesis testing problem,

and we proposed to use the optimal likelihood ratio test to process the
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measurement data. The likelihood ratio test involves solving a stochastic

differential equation, and we have found analytic solutions for the cases

where there is no excitation or no relaxation in the qubit dynamics. We

note that numerical solutions are available for the other cases. Another

important feature of our work is the consistent use of Itô calculus, which

makes our protocol easier to implement and less likely to cause confusion

over the interpretation of stochastic integrals in our protocol.

In Chap. 4, we studied the problem of estimating the spectrum param-

eters of a classical stochastic processes. We assumed that the stochastic

process is coupled to a quantum system, and measurement is made on the

quantum system to infer the value of the spectrum parameter. We found a

fundamental limit to the accuracy of spectrum-parameter estimation based

on the quantum Cramêr-Rao bound. To compare our theory with experi-

ments, we analyzed an experiment of continuous optical phase estimation

and demonstrated that the experimental performance using homodyne de-

tection is close to our quantum limit. In the case of weak modulation and a

coherent state input, we proposed the spectral photon counting method to

outperform homodyne detection and attain quantum-optimal performance.

Lastly, we provided a generalization to the problem of spectrum-parameter

estimation by considering quantum stochastic processes. We considered a

simplified model of interaction between a quantum system and a quantum

bath, and found quantum limits similar to the ones in Chap. 4. Because

of the assumption that the stochastic process is quantum, we find that our

derived bounds is valid only in certain regimes.

6.2 Future outlook

In Chap. 3, we have assumed that the continuous measurement made on

the qubit is quantum nondemolition and replaced the quantum model with
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an equivalent classical one. For more general quantum dynamics and mea-

surements, it would be interesting to see how one applies the formalism in

[78]. Another open problem is the evaluation of the performance of our

protocol beyond the case of deterministic signal detection. A possible ap-

proach is to look for upper bounds on the error probability, for example in

terms of the Chernoff coefficient.

Although we have provided an extension to the theory in Chap. 4, our

theory for quantum bath in Chap. 5 suffers from several limitations. For in-

stance, the derived limits are only valid under certain conditions. Our the-

ory also only works for specific system-bath interactions which include pure

dephasing systems and continuous phase modulation experiments. Further

work needs to be done to lift these limitations, as well as to extend our

results to the more interesting case of dissipation caused by a quantum

bath. Since our derived limits are based on an upper bound on the quan-

tum Fisher information, it is unclear if the limits are achievable by any

experimental method. It is then important to study the conditions under

which these quantum limits are achievable.

Throughout this thesis, we consider only the case of nonrandom param-

eter estimation. We have already encountered random parameter estima-

tion in Chap. 3, and other possible scenarios include stochastic waveform

estimation. For these problems, the mean-square error of an estimator is

bounded by Bayesian bounds [110, 133, 134, 144, 145]. Interestingly, a

lot of the limitations of nonrandom parameter estimation are lifted in the

Bayesian formulation. For example, to apply the Bayesian Cramér-Rao

bound, we do not need to require the estimator to be unbiased. It would

be interesting to seek an extension of our results to the case of random

parameter estimation.
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Communications 3, 1063 EP (2012), article.

[119] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nat Phys

7, 406 (2011).

[120] L. T. Hall, J. H. Cole, C. D. Hill, and L. C. L. Hollenberg, Phys.

Rev. Lett. 103, 220802 (2009).

[121] A. De Pasquale, D. Rossini, P. Facchi, and V. Giovannetti, Phys.

Rev. A 88, 052117 (2013).

[122] T. A. Wheatley, D. W. Berry, H. Yonezawa, D. Nakane, H. Arao,

D. T. Pope, T. C. Ralph, H. M. Wiseman, A. Furusawa, and E. H.

Huntington, Phys. Rev. Lett. 104, 093601 (2010).

[123] H. Yonezawa, D. Nakane, T. A. Wheatley, K. Iwasawa, S. Takeda,

H. Arao, K. Ohki, K. Tsumura, D. W. Berry, T. C. Ralph, H. M.

Wiseman, E. H. Huntington, and A. Furusawa, Science 337, 1514

(2012).

[124] K. Iwasawa, K. Makino, H. Yonezawa, M. Tsang, A. Davidovic,

E. Huntington, and A. Furusawa, Phys. Rev. Lett. 111, 163602

(2013).

[125] R. Shumway and D. Stoffer, Time Series Analysis and Its Applica-

tions: With R Examples, Springer Texts in Statistics (Springer, New

York, 2006).

[126] M. Tsang, Phys. Rev. Lett. 107, 270402 (2011).

114



BIBLIOGRAPHY

[127] J. H. Shapiro, Quantum and Semiclassical Optics: Journal of the

European Optical Society Part B 10, 567 (1998).

[128] D. Brady, Optical Imaging and Spectroscopy (Wiley, Hoboken, NJ,

2009).

[129] S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun,

IEEE Photonics Technology Letters 11, 691 (1999).

[130] S. Z. Ang, G. I. Harris, W. P. Bowen, and M. Tsang, New Journal

of Physics 15, 103028 (2013).

[131] P. Whittle, Journal of the Royal Statistical Society. Series B (Method-

ological) 15, 125 (1953).

[132] M. Tsang, Phys. Rev. A 88, 021801 (2013).

[133] M. Tsang, Phys. Rev. Lett. 108, 230401 (2012).

[134] D. W. Berry, M. Tsang, M. J. W. Hall, and H. M. Wiseman, Phys.

Rev. X 5, 031018 (2015).

[135] J. Carolan, C. Harrold, C. Sparrow, E. Mart́ın-López, N. J. Russell,
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Appendix A

Quantum formalism of

continuous quantum

nondemolition measurement

for qubits

Let

f̂m(t) =

 fm(0, 0, t) fm(0, 1, t)

fm(1, 0, t) fm(1, 1, t)

 (A.1)

be the unnormalized density matrix for the qubit conditioned on the obser-

vation record Y t and hypothesis Hm. Consider the following linear stochas-

tic quantum master equation [10]:

df̂m = dtL−m

(
σ̂−f̂mσ̂+ −

1

2
σ̂+σ̂−f̂m −

1

2
f̂mσ̂+σ̂−

)
+ dtL+

m

(
σ̂+f̂mσ̂− −

1

2
σ̂−σ̂+f̂m −

1

2
f̂mσ̂−σ̂+

)
+ dtLxm

(
x̂f̂mx̂−

1

2
x̂2f̂m −

1

2
f̂mx̂

2

)
+
dyσm

2

(
x̂f̂m + f̂mx̂

)
, (A.2)
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where

σ̂− =

 0 1

0 0

 , σ̂+ =

 0 0

1 0

 , x̂ =

 0 0

0 1

 , (A.3)

and L−m, L+
m, and Lxm ≥ σ2

m/4 are the decay, excitation, and dephasing rates,

respectively. The estimator in the quantum estimator-correlator formula

[78] is

σm(t)E
(
x̂|Y t,Hm

)
=

σm(t)fm(1, 1, t)

fm(0, 0, t) + fm(1, 1, t)
. (A.4)

The important point here is that the estimator involves only the diagonal

components of f̂m(t), which are decoupled from the off-diagonal compo-

nents throughout the evolution:

dfm(0, 0, t) = dt
[
−L+

m(t)fm(0, 0, t) + L−m(t)fm(1, 1, t)
]
, (A.5)

dfm(1, 1, t) = dt
[
L+
m(t)fm(0, 0, t)− L−m(t)fm(1, 1, t)

]
+ dy(t)σm(t)fm(1, 1, t). (A.6)

This means that a classical stochastic model is sufficient. In particular,

Eqs. (A.5) and (A.6) are identical to the classical DMZ equation given by

Eq. (3.20). The argument in the case of Poissonian noise is similar.
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Appendix B

Experimental data

recalibration for Chap. 4

In the experiment described in Ref. [122], calibration procedures were used

to convert applied and measured voltages to the various physical quantities

defined throughout Ref. [122]. In the course of analysing that experimental

data for the purposes of the new estimation task described here, we found

that the data gives non-negligible bias in the estimation of θ1. It turns

out that the original calibration of experimental data was not accurate

enough for the new task of estimating θ1 (note that θ2 is robust against

this inaccuracy). The systematic calibration error had insignificant effects

on the phase estimation task in Ref. [122] – making the estimate slightly

worse than it would have been without the bias but generally within the

uncertainty of the experiment as reported in Ref. [122]. The bias might

have been caused by non-linearity or saturation of electronic circuits during

the calibration phase of the experiment or long timescale drift. For the

purpose of this new estimation task, we refine the calibration of the data

from Ref. [122] so that we can achieve an accurate estimate. To do this

in a fair way we use two extra data sets (k = 5, 6), which were not shown

in Ref. [122] but recorded by the same experimental setup with different
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experimental parameters. Mean photon fluxes of these data sets are N5 =

6.198× 106 s−1 and N6 = 5.986× 106 s−1. Number of traces are M5 = 24

and M6 = 24. Note that we use these “training” data only for the purposes

of refining the experimental calibration. We apply the Whittle method to

the two extra data sets to obtain the true θ1 from the collective record of

X(t), and a mean value of the estimated θ1 from the collective record of

Y (t) traces using the coarse calibration from Ref. [122]. We determine that

a refined calibration factor of 0.8945 is required to cancel the unwanted bias

in the estimate of θ1 for the extra data sets k = 5, 6. We then apply the

refined calibration factor to Y (t) of the original data sets (k = 1 to 4). By

this method, we can refine the calibration of the original data presented in

Ref. [122] by making use of independent, but contemporaneously recorded

data.
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Appendix C

A special class of thermal

states for Chap. 5

Let b(t) be the field operators such that [b(t), b†(t′)] = δ(t− t′), we approx-

imate the bath state (5.46) by a finite time approximation:

ρTB = exp[−
∫ T/2

−T/2

∫ T/2

−T/2
G(t− t′)b†(t)b(t′)dtdt′]ZB

= exp[−
∑
m

GmB
†
mBm]ZB, (C.1)

where ρB = limT→∞ ρ
T
B and ZB =

∏
m[1 − exp(−Gm)] is a normalization

constant. Bm is the discrete Fourier modes while Gm is the unnormalized

Fourier component of G(t):

Bm =
1√
T

∫ T/2

−T/2
b(t)e−i

2πm
T

tdt, (C.2)

G(t) =
∑
m

νG,me
i 2πm
T

t, (C.3)

Gm = TνG,m =

∫ T/2

−T/2
G(t)e−i

2πm
T

tdt. (C.4)

Due to hermiticity of the density operators, the coefficients νG,m must

be real. Also, the discrete Fourier modes Bm are independent modes as

[Bm, B
†
n] = δmn. Thus ρTB represents a product thermal state in the dis-
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crete Fourier basis.

Let us define the quadratures of these Fourier modes by xm = 1√
2
(Bm+

B†m) and pm = 1√
2i

(Bm −B†m), the quantum moments are given by:

tr(ρTB
1

2
{xm, xn}) = tr(ρTB

1

2
{pm, pn}) = Kjδmn, (C.5)

tr(ρTB
1

2
{xm, pn}) = 0, (C.6)

N̄m = tr(ρTBNm) = Km − 1/2, (C.7)

tr[ρTB(Nm − N̄m)(Nn − N̄n)] = (K2
j − 1/4)δmn. (C.8)

where Km = 1
2

coth(Gm
2

).

Let x(t) = 1√
2
[b(t) + b†(t)] and p(t) = 1√

2i
[b(t)− b†(t)], and note that we

can write b(t) = 1√
T

∑
mBme

i 2πm
T

t. Denote

Q(t) =

 x(t)

p(t)

 , (C.9)

we can express Q(t) as

Q(t) =
1√
T

∑
m

M(m, t)Qm, (C.10)

M(m, t) =

 cos(2πm
T
t) − sin(2πm

T
t)

sin(2πm
T
t) cos(2πm

T
t)

 , (C.11)

Qm =

 xm

pm

 . (C.12)
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Define αm1n1(t, t
′) = tr[ρTB

1
2
{Qm1(t), Qn1(t

′)},

αm1,n1(t, t
′) =

1

T

∑
m,n,m2,n2

Mm1,m2(m, t)Mn1,n2(n, t
′) tr[ρTB

1

2
{Qm,m2 , Qn,n2}]

=
1

T

∑
m

[M(m, t)M>(m, t′)]m1,n1Km

=
1

T

∑
m

Mm1,n1(m, t− t′)Km, (C.13)

and thus

α(t, t′) =

 <{K(t− t′)} −={K(t− t′)}

={K(t− t′)} <{K(t− t′)}

 , (C.14)

K(t) =
∑
m

Km

T
ei

2πm
T

t. (C.15)

By taking the long time limit we then haveK(t) = 1
4π

∫∞
−∞ dω coth(G(ω)

2
)eiωt,

and proved the assertion that K(t) characterize the density matrix ρB com-

pletely. Note that <{K(−t)} = <{K(t)} and ={K(−t)} = −={K(t)}.

Let’s consider the case where the function G(t, t′) in Eq. (C.1) depends

on the parameter θ, the quantum Fisher information matrix can be easily

calculated, by first finding the s.l.d.:

∂µρ
T
B =

∑
m

[−∂µGmB
†
mBm + ∂µGmN̄m]ρTB

= −
∑
m

∂µGm[Nm − N̄m]ρTB

= −
∑
m

∂µGm

2
[Nm − N̄m]ρTB − ρTB

∑
m

∂µGm

2
[Nm − N̄m]. (C.16)

Therefore, we have Lµ = −
∑

m ∂µGm[Nm − N̄m]. The quantum Fisher
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information is given by

Jµν(ρ
T
B) = tr[ρTB

1

2
{Lµ, Lν}]

=
∑
m,n

∂µGm∂νGn[K2
m − 1/4]δmn,

=
∑
m

∂µGm∂νGm[K2
m − 1/4]

=
∑
m

∂µKm∂νKm

K2
m − 1/4

, (C.17)

since ∂µN̄m = −[K2
m − 1/4]∂µGm. Under the long time limit, we have

Jµν(ρB) = T

∫ ∞
−∞

dω

2π

∂µK(ω)∂νK(ω)

K2(ω)− 1/4
. (C.18)
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Appendix D

Proofs for the upper bounds

for Chap. 5

D.1 The symmetric case and R′2 = R′1

First, we note that when χm = 1, R′1,m = R1,m and ∂µR
′
1,m = ∂µR1,m from

Eqs. (5.71). According to Eq. (5.69) we have the obvious bound J > j(ρ1),

which does not provide any insight. When χm = 2R1,m, the only finite case

is when ∂µR
′
1,m. Eq. (5.69) becomes

Jµν =
∑
m

∂µ lnR1,m∂ν lnR1,m

1
Rd,mR1,m

− 1
4R3

1,mRd,m

. (D.1)

This bound is less tight than J (1) in Eq. (5.80).

We proceed to find tighter bound for other cases by defining

Fm =
Hm(Am −Bm)2 +GmB

2
m

(χ2
m − 1)(4R2

1,m − χ2
m)

, (D.2)

Gm = Rmχ
2
m(4R2

1,m − χ2
m), (D.3)

Hm = 8R2
1,m(χ2

m − 1). (D.4)

The equations determining the critical points are given by ∂F
∂Bm

= 0 and
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∂F
∂χm

= 0:

GmBm −Hm(Am −Bm)

(χ2
m − 1)(4R2

1,m − χ2
m)

= 0, (D.5)

2χm
(χ2

m − 1)(4R2
1,m − χ2

m)

[
8R2

1,m(Am −Bm)2 + 2CmB
2
m(2R2

1,m − χ2
m)

−Fm(4R2
1,m − 2χ2

m + 1)
]

= 0. (D.6)

Assuming χ2
m 6= 1 and χ2

m 6= 4R2
1,m, we solve the equations by first express-

ing Bm as a function of χm from Eq. (D.5):

Bm =
HmAm
Hm +Gm

, (D.7)

then plugging Eq. (D.7) into Eq. (D.6). We obtain

χ(min)
m = 4

√
8R1,m

Rd,m

. (D.8)

The condition for a local minimum is given by ∂2F
∂B2

m
> 0 and det = ∂2F

∂B2
m

∂2F
∂χ2

m
−

( ∂2F
∂Bm∂χm

)2 > 0. Looking at

∂2F
∂B2

m

=
16R2

1,m(χ2
m − 1) + 2Cmχ

2
m(4R2

1,m − χ2
m)

(χ2
m − 1)(4R2

1,m − χ2
m)

, (D.9)

the first condition is always true since χm = cosh2 gm + sinh2 gm > 1 and

R′1,m = R1,m

χm
> 1

2
. The second condition on the determinant det is harder

to prove, but at the critical point the determinant is equivalent to

det =
128χ4

mR
2
1,mA

2
mC

2
m

(χ2
m − 1)(4R2

1,m − χ2
m)(Hm +Gm)

> 0. (D.10)

Therefore the critical point given by Eqs. (D.7) and (D.8) is indeed a min-

imum, assuming that it describes a valid transformation.
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2

D.2 The symmetric case and R′2 =
1
2

Again, when χm = 1 we have R′1,m = R1,m and ∂µR
′
1,m = ∂µR1,m from

Eqs. (5.71). This case gives the upper bound J > j(ρ1) which is unin-

teresting. For χm = R1,m + 1
2
, the only finite upper bound is again when

∂µR
′
1,m = 0:

Jµν =
∑
m

Rd,mR1,m(R1,m +
1

2
)
∂µ ln(R1,m + 1

2
)∂ν ln(R1,m + 1

2
)

R1,m − 1
2

. (D.11)

This is again a less tighter upper bound than J (2).

We proceed to the other cases. Define

Gm = Rd,m

[
2R1,m + 1− 2χm

][
2(R1,m + 1)χm − (2R1,m + 1)

]
, (D.12)

Hm = 2(χm − 1)(2R1,m + 1). (D.13)

The equations determining the critical points are given by

GmBm −Hm(Am −Bm)

(χm − 1)(2R1,m + 1− 2χm)
= 0 (D.14)

− Rd,mB
2
m

2(χm − 1)2
+

2(2R1,m + 1)(Am −Bm)2

(2R1,m + 1− 2χm)2
= 0. (D.15)

Assuming that χm 6= 1 and χm 6= R1,m + 1
2
, from Eq. (D.14) we can obtain

Bm in terms of χm:

Bm =
HmAm
Hm +Gm

. (D.16)

Plugging Eq. (D.16) into Eq. (D.15) and realizing that χm ≥ 1 for a valid

transformation, we obtain

χ(min)
m =

1

2(R1,m + 1)

(
2R1,m + 1 +

√
2R1,m + 1

Rd,m

)
. (D.17)
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We conclude that this critical point is a minimum point as

∂2F
∂B2

m

= Rd,m

(
2R1,m + 1 +

χm
χm − 1

)
+

2(2R1,m + 1)

2R1,m + 1− 2χm
> 0, (D.18)

and the determinant det = ∂2F
∂B2

m

∂2F
∂χ2

m
− ( ∂2F

∂Bm∂χm
)2 at the critical point is

given by

det =
8R2

d,mA
2
m(2R1,m + 1)2(R1,m + 1)

(χm − 1)(2R1,m + 1− 2χm)
× (D.19)

2R1,m + 1− 2χm + 2
[
χm − 1

][
2(R1,m + 1)χm − (2R1,m + 1)

](
Hm +Gm

)2 , (D.20)

which is also positive.

D.3 The antisymmetric case

Similar to the other cases, when χm = 1 the upper bound is given by j(ρ1).

Since 0 ≤ χm ≤ 1, 2R1,m − 1 + 2χm ≥ 2R1,m − 1. By the requirement

R1,m > 1, we have 2R1,m−1+2χm ≥ 1 6= 0. To proceed to the other cases,

define

Gm = Rd,m

[
2R1,m − 1 + 2χm

][
2(R1,m − 1)χm − (2R1,m − 1)

]
, (D.21)

Hm = 2(χm − 1)(2R1,m − 1). (D.22)

The critical points are given by the solutions of:

GmBm −Hm(Am −Bm)

(χm − 1)(2R1,m − 1 + 2χm)
= 0, (D.23)

Rd,mB
2
m

2(χm − 1)2
− 2(2R1,m − 1)(Am −Bm)2

(2R1,m − 1 + 2χm)2
= 0, (D.24)

Assuming that χm 6= 1, Bm is then given by

Bm =
HmAm
Hm +Gm

. (D.25)
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Substituting this into Eq. (D.24), we have

χ(min)
m =

1

2(R1,m − 1)

(
2R1,m − 1−

√
2R1,m − 1

Rd,m

)
. (D.26)

We first note that

(2R1,m − 1)(χ(min)
m − 1)− χ(min)

m = −2R1,m

Rd,m

≤ 0, (D.27)

since 2R1,m − 1 + 2χm ≥ 0 for all valid χm, the second derivative

∂2F
∂B2

m

=
Rd,m[(2R1,m − 1)(χm − 1)− χm]

χm − 1
+

2(2R1,m − 1)

2R1,m − 1 + 2χm
> 0 (D.28)

at the critical point. The determinant det = ∂2F
∂χ2

m

∂2F
∂B2

m
− ( ∂2F

∂χm∂Bm
)2 is given

by

det = −
8R2

d,mA
2
m(2R1,m − 1)2(R1,m − 1)

(χm − 1)(2R1,m − 1 + 2χm)
× (D.29)

2R1,m − 1 + 2χm + 2(χm − 1)[(2R1,m − 1)(χm − 1)− χm]

(Hm +Gm)2
, (D.30)

and det /(R1,m − 1) is positive at the critical point (χ
(min)
m , B

(min)
m ). Thus,

this critical point is a minimum point assuming that R1,m > 1.
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